Polyamidoamine cascade polymers mediate efficient tra

Bioconjugate Chemistry 4, 372-379

DOI: 10.1021/bc00023a012

Citation Report

#	Article	IF	CITATIONS
1	Non-viral approaches to gene therapy. Current Opinion in Biotechnology, 1993, 4, 705-710.	3.3	132
2	Dendrimere: von Generationen zu FunktionalitÄ z en und Funktionen. Angewandte Chemie, 1994, 106, 2507-2514.	1.6	128
3	Non-viral gene therapy. Current Opinion in Biotechnology, 1994, 5, 626-636.	3.3	94
4	What promise for dendrimers?. Nature, 1994, 372, 617-618.	13.7	175
5	Imporved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Research, 1994, 22, 4681-4688.	6.5	163
6	Gene Transfer with Synthetic Cationic Amphiphiles: Prospects for Gene Therapy. Bioconjugate Chemistry, 1994, 5, 382-389.	1.8	372
7	Cationic Gelatin as a Gene Carrier. Materials Research Society Symposia Proceedings, 1995, 394, 61.	0.1	6
8	A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7297-7301.	3.3	5,897
9	Dendrimers: From Generations and Functional Groups to Functions. Angewandte Chemie International Edition in English, 1995, 33, 2413-2420.	4.4	244
10	Chemical engineering of polymers: Production of flexible, functional materials. Chemical Engineering Science, 1995, 50, 4123-4141.	1.9	17
11	Hepatic gene expression after direct DNA injection. Advanced Drug Delivery Reviews, 1995, 17, 265-271.	6.6	11
12	Glycosylated Polylysine/DNA Complexes: Gene Transfer Efficiency in Relation with the Size and the Sugar Substitution Level of Glycosylated Polylysines and with the Plasmid Size. Bioconjugate Chemistry, 1995, 6, 401-410.	1.8	132
13	Nonviral Gene Therapy: The Promise of Genes as Pharmaceutical Products. Human Gene Therapy, 1995, 6, 1129-1144.	1.4	455
14	Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1744-1748.	3.3	264
15	Mechanisms of leakage. Journal of Liposome Research, 1995, 5, 855-871.	1.5	2
16	Transfection of Folate-Polylysine DNA Complexes: Evidence for Lysosomal Delivery. Bioconjugate Chemistry, 1995, 6, 512-515.	1.8	131
17	Targeted Gene Delivery with a Low Molecular Weight Glycopeptide Carrier. Bioconjugate Chemistry, 1995, 6, 283-291.	1.8	94
18	Membrane permeabilization by α-helical peptides: a flow cytometry study. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1239, 249-256.	1.4	35

#	Article	IF	CITATIONS
19	In Vitro Gene Delivery by Degraded Polyamidoamine Dendrimers. Bioconjugate Chemistry, 1996, 7, 703-714.	1.8	818
20	Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophysical Journal, 1996, 71, 3288-3301.	0.2	71
21	Chiral Dendritic Macromolecules. , 0, , 183-200.		0
22	Folding and aggregation of DNA chains induced by complexation with lipospermine: formation of a nucleosome-like structure and network assembly. FEBS Letters, 1996, 396, 71-76.	1.3	23
23	Potentiation of Cationic Liposome-Mediated Gene Delivery by Polycationsâ€. Biochemistry, 1996, 35, 1027-1036.	1.2	486
24	Dendrimer Delivery of Oligonucleotides. Drug Delivery, 1996, 3, 255-261.	2.5	34
26	Activation of the Complement System by Synthetic DNA Complexes: A Potential Barrier for Intravenous Gene Delivery. Human Gene Therapy, 1996, 7, 1437-1446.	1.4	572
27	Glycerol Enhancement of Ligand-Polylysine/DNA Transfection. BioTechniques, 1996, 20, 905-913.	0.8	75
28	Lipidic Supramolecular Assemblies for Gene Transfer. Journal of Liposome Research, 1996, 6, 589-608.	1.5	21
29	Gene Transfer with Multivalent Synthetic Vectors. Journal of Liposome Research, 1996, 6, 535-544.	1.5	8
30	Formation of stable cationic lipid/DNA complexes for gene transfer Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7305-7309.	3.3	203
31	Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4897-4902.	3.3	995
32	Recent advances in dendritic polymers. Current Opinion in Colloid and Interface Science, 1996, 1, 221-235.	3.4	90
33	Controllable gene therapy pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 1996, 39, 357-372.	4.8	132
34	Evaluation of adjuvants that enhance the effectiveness of antisense oligodeoxynucleotides. Pharmaceutical Research, 1996, 13, 404-410.	1.7	70
35	Enhanced cellular uptake of oligonucleotides by EGF receptor-mediated endocytosis in A549 cells. Pharmaceutical Research, 1996, 13, 57-61.	1.7	22
36	Pharmaceutical approach to somatic gene therapy. Pharmaceutical Research, 1996, 13, 1595-1614.	1.7	182
37	Structural characterization and 5′-mononucleotide binding of polyalanine β-sheet complexes. , 1996, 9, 488-493.		15

#	Article	IF	CITATIONS
38	Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers., 1996, 30, 53-65.		526
39	Gene Transfer Using a Novel Fusion Protein, GAL4/Invasin. Human Gene Therapy, 1997, 8, 1253-1262.	1.4	44
40	Delivery of Polynucleotides with Polyamine Lipids and Polymers. Nucleosides & Nucleotides, 1997, 16, 1121-1127.	0.5	2
41	Basis of Pulmonary Toxicity Associated with Cationic Lipid-Mediated Gene Transfer to the Mammalian Lung. Human Gene Therapy, 1997, 8, 689-707.	1.4	239
42	Human gene therapy: principles and modern advances. Biotechnology Annual Review, 1997, 3, 59-110.	2.1	1
43	Nonviral Gene Delivery to the Rat Kidney with Polyethylenimine. Human Gene Therapy, 1997, 8, 1243-1251.	1.4	188
44	Dioleoylmelittin as a Novel Serum-Insensitive Reagent for Efficient Transfection of Mammalian Cells. Bioconjugate Chemistry, 1997, 8, 57-63.	1.8	62
45	Design, Synthesis, and Characterization of a Cationic Peptide That Binds to Nucleic Acids and Permeabilizes Bilayers. Biochemistry, 1997, 36, 3008-3017.	1.2	439
46	Shell Cross-Linked Knedels:Â A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres. Journal of the American Chemical Society, 1997, 119, 6656-6665.	6.6	364
47	Dendrimers in Supramolecular Chemistry:  From Molecular Recognition to Self-Assembly. Chemical Reviews, 1997, 97, 1681-1712.	23.0	1,385
48	Characterization of Complexes of Oligonucleotides with Polyamidoamine Starburst Dendrimers and Effects on Intracellular Delivery. Journal of Pharmaceutical Sciences, 1997, 86, 762-764.	1.6	125
49	The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1353, 180-190.	2.4	205
50	Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /Ov	erlock 10	Tf 50 262 Td
51	Toward development of a non-viral gene therapeutic. Advanced Drug Delivery Reviews, 1997, 26, 135-150.	6.6	72
52	Biosynthetic retrovectoring systems for gene therapy. Journal of Molecular Medicine, 1997, 75, 249-258.	1.7	12
53	Dendrimers in molecular recognition and self-assembly. Current Opinion in Colloid and Interface Science, 1997, 2, 89-99.	3.4	58
54	Synthesis of Glycodendrimers by Modification of Poly(propylene imine) Dendrimers. Chemistry - A European Journal, 1997, 3, 974-984.	1.7	135
55	Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharmaceutical Research, 1998, 15, 1332-1339.	1.7	472

#	ARTICLE	IF	Citations
56	Cationic lipid-mediated gene transfer: analysis of cellular uptake and nuclear import of plasmid DNA. Cell Biology and Toxicology, 1998, 14, 95-104.	2.4	68
57	Semliki Forest virus-based DNA expression vector: transient protein production followed by cell death. Gene Therapy, 1998, 5, 415-418.	2.3	50
58	Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors. Advanced Drug Delivery Reviews, 1998, 30, 5-11.	6.6	72
59	Gene transfer with lipospermines and polyethylenimines. Advanced Drug Delivery Reviews, 1998, 30, 85-95.	6.6	216
60	Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews, 1998, 30, 97-113.	6.6	487
61	Application of membrane-active peptides for drug and gene delivery across cellular membranes. Advanced Drug Delivery Reviews, 1998, 34, 21-35.	6.6	172
62	Dendrimersâ€"Branching out from curiosities into new technologies. Progress in Polymer Science, 1998, 23, 1-56.	11.8	606
63	Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 1998, 51, 213-220.	4.8	383
64	Effects of membrane-active agents in gene delivery. Journal of Controlled Release, 1998, 53, 155-158.	4.8	95
65	Synthesis of Spacer-Armed Glucodendrimers Based on the Modification of Poly(propylene Imine) Dendrimers. European Journal of Organic Chemistry, 1998, 1998, 1879-1886.	1.2	31
66	Preparation of [14C]G2.5 and [14C]G5.5 Starburst® PAMAM dendrimers: the first example of dendrimer radiosynthesis. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 935-939.	0.5	2
68	Macromolecular cytosolic delivery: Cell membranes as the primary obstacle. Archives of Pharmacal Research, 1998, 21, 621-628.	2.7	3
69	Acid-base properties of poly(propylene imine)dendrimers. Polymer, 1998, 39, 2657-2664.	1.8	131
70	Lipitoids $\hat{a} \in \mathbb{C}^n$ novel cationic lipids for cellular delivery of plasmid DNA in vitro. Chemistry and Biology, 1998, 5, 345-354.	6.2	78
71	Applications of dendrimers in bio-organic chemistry. Current Opinion in Chemical Biology, 1998, 2, 733-742.	2.8	141
72	Molecular assembling of DNA with amphipathic peptides. FEBS Letters, 1998, 421, 7-11.	1.3	31
73	A Novel Tetraester Construct That Reduces Cationic Lipid-Associated Cytotoxicity. Implications for the Onset of Cytotoxicityâ€. Biochemistry, 1998, 37, 6533-6540.	1.2	81
74	Terminal Groups in Starburst Dendrimers: Activation and Reactions with Proteinsâ€. Bioconjugate Chemistry, 1998, 9, 54-63.	1.8	74

#	Article	IF	CITATIONS
75	Vaporâ°'Liquid Equilibria for Solutions of Dendritic Polymers. Journal of Chemical & Engineering Data, 1998, 43, 541-550.	1.0	37
76	Importance of Hydrophobic Region in Amphiphilic Structures of α-Helical Peptides for Their Gene Transfer-Ability into Cells. Biochemical and Biophysical Research Communications, 1998, 245, 259-265.	1.0	50
77	In VivoGene Therapy with a Cationic Polymer Markedly Enhances the Antitumor Activity of Antiangiogenic Genes. Molecular Genetics and Metabolism, 1998, 64, 193-197.	0.5	15
78	A Physicochemical Approach for Predicting the Effectiveness of Peptide-Based Gene Delivery Systems for Use in Plasmid-Based Gene Therapy. Biophysical Journal, 1998, 74, 2802-2814.	0.2	105
79	Supramolecular Chemistry within Dendritic Structures. Topics in Current Chemistry, 1998, , 19-77.	4.0	73
80	MR imaging of gene delivery to the central nervous system with an artificial vector Radiology, 1998, 208, 65-71.	3.6	32
81	Interaction of Oligodeoxynucleotides with Mycobacteria: Implications for New Therapeutic Strategies. Oligonucleotides, 1998, 8, 207-214.	4.4	2
82	Optimization of Cell Surface Binding Enhances Efficiency and Specificity of Molecular Conjugate Gene Delivery. Journal of Biological Chemistry, 1998, 273, 28004-28009.	1.6	135
83	Biochemical, Morphological, and Functional Analyses of a Cyclic Peptide, Phospholipid, and DNA Ternary Complex used for Gene Delivery. Journal of Liposome Research, 1998, 8, 347-366.	1.5	4
84	A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1517-1522.	3.3	207
85	Effect of Cation Content of Polycation-type Gene Carriers on in vitro Gene Transfer. Chemistry Letters, 1998, 27, 1171-1172.	0.7	8
86	Functions of Dendrimers and Hyper-branched Polymers Kobunshi, 1998, 47, 812-815.	0.0	1
87	Systemic gene therapy with p53 inhibits breast cancer recent advances and therapeutic implications. Frontiers in Bioscience - Landmark, 1998, 3, d997-1004.	3.0	20
88	A novel T7 RNA polymerase autogene for efficient cytoplasmic expression of target genes. Gene Therapy, 1999, 6, 263-270.	2.3	54
89	Glycofection: The Ubiquitous Roles of Sugar Bound on Glycoplexes. Drug Delivery, 1999, 6, 45-50.	2.5	9
90	Biodistribution and Imaging of Polyethyleneimine-A Gene Delivery Agent. Drug Delivery, 1999, 6, 187-194.	2.5	17
91	POLY-L-LYSINE- <i>GRAFT</i> -PEG COMB-TYPE POLYCATION COPOLYMERS FOR GENE DELIVERY. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 1061-1084.	1.2	7
92	Calcium Phosphate Transfection of Mammalian Cultured Cells. , 2000, 130, 135-146.		38

#	Article	IF	Citations
93	Biomedical application of functional polymers. Reactive and Functional Polymers, 1999, 39, 99-138.	2.0	250
94	Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. Chemical Biology and Drug Design, 1999, 54, 311-318.	1.2	74
95	Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. Journal of Pharmaceutical Sciences, 1999, 88, 1112-1118.	1.6	89
96	Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer–plasmid complexes. Gene Therapy, 1999, 6, 6-11.	2.3	153
97	Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Therapy, 1999, 6, 939-943.	2.3	137
98	Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharmaceutical Research, 1999, 16, 494-502.	1.7	135
99	PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharmaceutical Research, 1999, 16, 1799-1804.	1.7	95
100	Subcellular Trafficking of the Cytoplasmic Expression System. Human Gene Therapy, 1999, 10, 2601-2613.	1.4	50
101	Stabilization of poly-l-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 171-190.	2.4	253
102	The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999, 61, 137-143.	4.8	396
103	To fuse or not to fuse: the effects of electrostatic interactions, hydrophobic forces, and structural amphiphilicity on protein-mediated membrane destabilization. Advanced Drug Delivery Reviews, 1999, 38, 257-277.	6.6	36
104	Application of membrane-active peptides for nonviral gene delivery. Advanced Drug Delivery Reviews, 1999, 38, 279-289.	6.6	188
105	Taking polycation gene delivery systems from in vitro to in vivo. Pharmaceutical Science & Technology Today, 1999, 2, 365-372.	0.7	123
106	Designing dendrimers for drug delivery. Pharmaceutical Science & Technology Today, 1999, 2, 393-401.	0.7	380
107	Electrochemical method for entrapment of oligonucleotides in polymer-coated electrodes., 1999, 46, 566-572.		19
108	Dendrimer construction and macromolecular property modification via combinatorial methods. , 1999, 61, 243-253.		29
109	GlycofectionTM in the presence of anionic fusogenic peptides: a study of the parameters affecting the peptide-mediated enhancement of the transfection efficiency. Journal of Gene Medicine, 1999, 1, 134-143.	1.4	16
110	Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. Journal of Gene Medicine, 1999, 1, 331-340.	1.4	79

#	ARTICLE	IF	Citations
111	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. Chemistry - A European Journal, 1999, 5, 3644-3650.	1.7	189
112	Vecteurs synthétiques pour le transfert de gènes: état actuel et perspectives. Annales De L'Institut Pasteur / Actualités, 1999, 10, 301-312.	0.1	4
113	Pharmaceutical Perspectives of Nonviral Gene Therapy. Advances in Genetics, 1999, 41, 95-156.	0.8	126
114	DNA Complexing with Polyamidoamine Dendrimers:Â Implications for Transfection. Bioconjugate Chemistry, 1999, 10, 843-850.	1.8	236
115	Synthesis of Polyallylamine Derivatives and Their Use as Gene Transfer Vectors in Vitro. Bioconjugate Chemistry, 1999, 10, 877-883.	1.8	95
116	Pharmaceutical and Biological Properties of Poly(amino acid)/DNA Polyplexes. Journal of Drug Targeting, 1999, 7, 143-156.	2.1	20
117	Surface aggregation and membrane penetration by peptides: relation to pore formation and fusion. Molecular Membrane Biology, 1999, 16, 95-101.	2.0	49
118	In vitro cytotoxicity of poly(amidoamine)s: relevance to DNA delivery. Biochimica Et Biophysica Acta - General Subjects, 1999, 1427, 161-174.	1.1	63
119	Dendrimers and Dendrimer-Polymer Hybrids. Advances in Polymer Science, 1999, , 179-228.	0.4	86
120	Structureâ^'Activity Relationships of Water-Soluble Cationic Methacrylate/Methacrylamide Polymers for Nonviral Gene Delivery. Bioconjugate Chemistry, 1999, 10, 589-597.	1.8	403
121	Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1415, 331-341.	1.4	311
122	Elimination of prions by branched polyamines and implications for therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14529-14534.	3.3	241
123	An EPR Study of the Interactions between Starburst Dendrimers and Polynucleotides. Macromolecules, 1999, 32, 2275-2282.	2.2	83
124	DNA Condensation and Transfection of Cells in Culture by a New Polynorbornane Polycationic Polymer. Langmuir, 1999, 15, 6956-6960.	1.6	26
125	Efficient Gene Transfer by Histidylated Polylysine/pDNA Complexes. Bioconjugate Chemistry, 1999, 10, 406-411.	1.8	474
126	Small-Angle Neutron Scattering and Surface Force Investigations of Poly(amido amine) Dendrimer with Hydroxyl End Groupsâ€. Langmuir, 1999, 15, 4076-4084.	1.6	53
127	Infinite-Dilution Activity Coefficients of Polar and Nonpolar Solvents in Solutions of Hyperbranched Polymers. Journal of Chemical & Engineering Data, 1999, 44, 839-845.	1.0	20
128	Gene Transfer by DNA–Gelatin Nanospheres. Archives of Biochemistry and Biophysics, 1999, 361, 47-56.	1.4	177

#	Article	IF	CITATIONS
129	Enhancement of Dendrimer-Mediated Transfection Using Synthetic Lung Surfactant Exosurf Neonatal in Vitro. Biochemical and Biophysical Research Communications, 1999, 264, 253-261.	1.0	59
130	Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. Journal of Leukocyte Biology, 1999, 65, 270-279.	1.5	70
131	In vitro transport and delivery of antisense oligonucleotides. Methods in Enzymology, 2000, 313, 342-358.	0.4	26
132	Eukaryotic gene transfer with liposomes: effect of differences in lipid structure. Biotechnology Annual Review, 2000, 5, 197-220.	2.1	16
133	Photo-Regulative Transfection Using a Cationic Polyazobenzene Dendrimer Kobunshi Ronbunshu, 2000, 57, 696-700.	0.2	2
134	Branched Polymers. II. Structure and Functionality of Dendrimers Kobunshi Ronbunshu, 2000, 57, 810-824.	0.2	1
135	Enhanced Expression of Foreign Gene Transferred to Mammalian Cellsin vitroUsing Chemically Modified Poly(L-lysine)s as Gene Carriers. Chemistry Letters, 2000, 29, 118-119.	0.7	6
136	Diffusion of Dendritic Polymers Through Concentrated Polymer Solutions. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	0
137	Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery., 2000, 67, 598-606.		469
138	An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector. Journal of Gene Medicine, 2000, 2, 455-464.	1.4	32
139	Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials, 2000, 21, 877-887.	5.7	165
140	Translocating peptides and proteins and their use for gene delivery. Current Opinion in Biotechnology, 2000, 11, 461-466.	3.3	127
141	Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. International Journal of Pharmaceutics, 2000, 196, 257-261.	2.6	261
142	Synthetic DNA delivery systems. Nature Biotechnology, 2000, 18, 33-37.	9.4	1,494
143	Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnology, 2000, 18, 893-895.	9.4	532
144	Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Therapy, 2000, 7, 1698-1705.	2.3	71
145	The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceutical Science & Technology Today, 2000, 3, 232-245.	0.7	276
146	A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. European Journal of Pharmaceutical Sciences, 2000, 10, 187-193.	1.9	65

#	Article	IF	CITATIONS
147	Cellular transplants as sources for therapeutic agents. Advanced Drug Delivery Reviews, 2000, 42, 3-27.	6.6	21
148	The delivery of antisense therapeutics. Advanced Drug Delivery Reviews, 2000, 44, 3-21.	6.6	202
149	Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Advanced Drug Delivery Reviews, 2000, 41, 209-221.	6.6	50
150	Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer–DNA complexes for gene delivery. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 1-18.	2.4	77
151	Galactosylated chitosan–graft–dextran as hepatocyte-targeting DNA carrier. Journal of Controlled Release, 2000, 69, 97-108.	4.8	163
152	Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. Journal of Controlled Release, 2000, 65, 203-220.	4.8	104
153	Dendrimers:. Journal of Controlled Release, 2000, 65, 133-148.	4.8	1,151
154	Cyclic core dendrimer as a new kind of vector for gene transfer into mammalian cells. Genetica, 2000, 108, 53-56.	0.5	16
155	Cationic polymer based gene delivery systems. Pharmaceutical Research, 2000, 17, 113-126.	1.7	816
156	Aerosol Delivery of Robust Polyethyleneimine– DNA Complexes for Gene Therapy and Genetic Immunization. Molecular Therapy, 2000, 1, 180-188.	3.7	166
157	Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Research, 2000, 28, 4225-4231.	6.5	164
158	Polycation/DNA complexes for in vivo gene delivery. Gene Therapy and Regulation, 2000, 1, 95-114.	0.3	23
159	Promoter Analysis of TGF- \hat{l}^2 Responsive Genes by Transient Transfection and Deletional/Mutational Analysis. , 2000, 142, 79-95.		0
160	Targeted Gene Transfer: A Practical Guide Based on Experience with Lipid-Based Plasmid Delivery Systems., 2000, 25, 255-304.		1
161	A Cationic Derivative of Amphotericin B as a Novel Delivery System for Antisense Oligonucleotides. Oligonucleotides, 2000, 10, 177-184.	4.4	14
162	Gene Delivery and Expression in Human Retinal Pigment Epithelial Cells: Effects of Synthetic Carriers, Serum, Extracellular Matrix and Viral Promoters. Journal of Drug Targeting, 2000, 7, 413-421.	2.1	44
163	Ion Complex Formation between Poly(amido amine) Dendrimer HCl Salt and Poly(L-glutamic acid) Sodium Salt. Polymer Journal, 2000, 32, 107-112.	1.3	13
164	Interaction of Cationic Colloids at the Surface of J774 Cells: A Kinetic Analysis. Biophysical Journal, 2000, 79, 1298-1309.	0.2	39

#	ARTICLE	IF	CITATIONS
165	Interactions of peptides with liposomes: pore formation and fusion. Progress in Lipid Research, 2000, 39, 181-206.	5.3	77
166	Current status of pH-sensitive liposomes in drug delivery. Progress in Lipid Research, 2000, 39, 409-460.	5.3	437
167	Poly(DMAEMA-NVP)-b-PEG-galactose as Gene Delivery Vector for Hepatocytes. Bioconjugate Chemistry, 2000, 11, 688-695.	1.8	116
168	Cellular delivery of antisense oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 101-119.	2.0	116
169	New approaches for imaging in gene therapy. European Journal of Radiology, 2000, 34, 156-165.	1.2	52
170	Block and Graft Copolymers and Nanogelâ,,¢ Copolymer Networks for DNA Delivery into Cell. Journal of Drug Targeting, 2000, 8, 91-105.	2.1	133
171	Formation of Supramolecular Structures between DNA and Starburst Dendrimers Studied by EPR, CD, UV, and Melting Profiles. Macromolecules, 2000, 33, 7842-7851.	2,2	123
172	Development of Biomaterials for Gene Therapy. Molecular Therapy, 2000, 2, 302-317.	3.7	373
173	High Compacted DNAâ^'Polymer Complexes via New Polynorbornene Polycationic Latexes with Acetate Counterion. Langmuir, 2000, 16, 8980-8983.	1.6	11
174	A Nonviral DNA Delivery System Based on Surface Modified Silica-Nanoparticles Can Efficiently Transfect Cells in Vitro. Bioconjugate Chemistry, 2000, 11, 926-932.	1.8	319
175	Synthesis of a Novel Water-Soluble Polyazobenzene Dendrimer and Photoregulation of Affinity Toward DNA. Molecular Crystals and Liquid Crystals, 2000, 345, 227-232.	0.3	16
176	Gene Delivery to the Corneal Endothelium. American Journal of Respiratory and Critical Care Medicine, 2000, 162, S194-S200.	2.5	34
177	Unusual pH-Dependent Polarity Changes in PAMAM Dendrimers:  Evidence for pH-Responsive Conformational Changes. Macromolecules, 2000, 33, 9169-9172.	2.2	185
178	A pH-Sensitive Polymer That Enhances Cationic Lipid-Mediated Gene Transfer. Bioconjugate Chemistry, 2001, 12, 906-910.	1.8	162
179	Spectroscopic Investigations of Polyamido Amine Starburst Dendrimers Using the Solvatochromic Probe Phenol Blue. Journal of Physical Chemistry A, 2001, 105, 6826-6833.	1.1	44
180	Synthesis and Characterization of Poly(glycerolâ^'succinic acid) Dendrimers. Macromolecules, 2001, 34, 7648-7655.	2.2	97
181	Structural Characteristics of Size-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNA Delivery Carrier. Bioconjugate Chemistry, 2001, 12, 932-938.	1.8	200
182	Histidylated Polylysine as DNA Vector:Â Elevation of the Imidazole Protonation and Reduced Cellular Uptake without Change in the Polyfection Efficiency of Serum Stabilized Negative Polyplexes. Bioconjugate Chemistry, 2001, 12, 92-99.	1.8	90

#	Article	IF	Citations
183	Different Strategies for Formation of PEGylated EGF-Conjugated PEI/DNA Complexes for Targeted Gene Delivery. Bioconjugate Chemistry, 2001, 12, 529-537.	1.8	226
184	Materials for Non-Viral Gene Delivery. Annual Review of Materials Research, 2001, 31, 25-46.	4.3	115
185	Anticancer Activity of Mycobacterial DNA: Effect of Formulation as Chitosan Nanoparticles. Journal of Drug Targeting, 2001, 9, 317-328.	2.1	32
186	Water-Soluble Adamantane-Terminated Dendrimers Possessing a Rhenium Core. Journal of Organic Chemistry, 2001, 66, 5405-5412.	1.7	37
187	Water-Soluble 99mTc-Labeled Dendritic Novel Porphyrins Tumor Imaging and Diagnosis. Biochemical and Biophysical Research Communications, 2001, 281, 32-36.	1.0	32
188	Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chemical Reviews, 2001, 101, 3819-3868.	23.0	1,547
189	Stearylated Arginine-Rich Peptides:  A New Class of Transfection Systems. Bioconjugate Chemistry, 2001, 12, 1005-1011.	1.8	428
190	Physico-chemical analysis of cationic liposome–DNA complexes (lipoplexes) with respect to in vitro and in vivo gene delivery efficiencyâ€. Perkin Transactions II RSC, 2001, , 624-632.	1.1	27
191	Paramagnetic Cobalt(II) as an NMR Probe of Dendrimer Structure:Â Mobility and Cooperativity of Dendritic Arms. Journal of the American Chemical Society, 2001, 123, 8583-8592.	6.6	59
192	Fast and Convenient Divergent Synthesis of Aliphatic Ester Dendrimers by Anhydride Coupling. Journal of the American Chemical Society, 2001, 123, 5908-5917.	6.6	277
193	In Vitro Gene Transfer with a Novel Galactosylated Spermine Bolaamphiphile. Bioconjugate Chemistry, 2001, 12, 569-575.	1.8	35
194	Synthesis and Characterization of Membrane-Active GALA-OKT9 Conjugates. Bioconjugate Chemistry, 2001, 12, 742-749.	1.8	19
195	Intramolecular Energy Hopping and Energy Trapping in Polyphenylene Dendrimers with Multiple Peryleneimide Donor Chromophores and a Terryleneimide Acceptor Trap Chromophore. Journal of the American Chemical Society, 2001, 123, 7668-7676.	6.6	142
196	Testosterone Effect on Insulin Content, Messenger Ribonucleic Acid Levels, Promoter Activity, and Secretion in the Rat*. Endocrinology, 2001, 142, 1442-1447.	1.4	69
197	Cationic Lipid Polymerization as a Novel Approach for Constructing New DNA Delivery Agents. Bioconjugate Chemistry, 2001, 12, 251-257.	1.8	49
198	Somatische Gentherapie der Mukoviszidose. Monatsschrift Fur Kinderheilkunde, 2001, 149, 270-280.	0.1	2
199	Transfection of Eastern Oyster (Crassotrea virginica) Embryos. Marine Biotechnology, 2001, 3, 322-335.	1.1	28
200	Enhancing transfection efficiency using polyethylene glycol grafted polyethylenimine and fusogenic peptide. Biotechnology and Bioprocess Engineering, 2001, 6, 269-273.	1.4	5

#	Article	IF	CITATIONS
201	Sugar-based tertiary amino gemini surfactants with a vesicle-to-micelle transition in the endosomal pH range mediate efficient transfectionin vitro. FEBS Journal, 2001, 268, 1269-1279.	0.2	120
202	The synthesis of unsymmetrical PAMAM dendrimers using a divergent/divergent approach. Tetrahedron Letters, 2001, 42, 1119-1121.	0.7	32
203	Phage display selection of a peptide DNase II inhibitor that enhances gene delivery. Journal of Gene Medicine, 2001, 3, 101-108.	1.4	37
204	Polyethylenimine-mediated gene delivery: a mechanistic study. Journal of Gene Medicine, 2001, 3, 135-144.	1.4	485
205	Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharmaceutical Research, 2001, 18, 23-28.	1.7	92
206	Effects of Structure of \hat{I}^2 -Cyclodextrin-Containing Polymers on Gene Delivery. Bioconjugate Chemistry, 2001, 12, 280-290.	1.8	218
207	Transport of poly amidoamine dendrimers across Madin–Darby canine kidney cells. International Journal of Pharmaceutics, 2001, 215, 263-267.	2.6	88
208	CL22 \hat{a} e" a novel cationic peptide for efficient transfection of mammalian cells. Gene Therapy, 2001, 8, 99-110.	2.3	39
209	Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release, 2001, 70, 399-421.	4.8	1,140
210	DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). Journal of Controlled Release, 2001, 73, 391-399.	4.8	171
211	Evaluation of polyplexes as gene transfer agents. Journal of Controlled Release, 2001, 73, 401-416.	4.8	375
212	A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. Journal of Controlled Release, 2001, 76, 183-192.	4.8	122
213	Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. Journal of Controlled Release, 2001, 77, 345-355.	4.8	172
214	Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001, 53, 341-358.	6.6	641
215	Towards synthetic viruses. Advanced Drug Delivery Reviews, 2001, 52, 245-253.	6.6	212
216	Histidine-rich peptides and polymers for nucleic acids delivery. Advanced Drug Delivery Reviews, 2001, 53, 75-94.	6.6	244
217	The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discovery Today, 2001, 6, 303-315.	3.2	101
218	Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today, 2001, 6, 44-51.	3.2	341

#	Article	IF	CITATIONS
220	Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Research, 2001, 29, 1334-1340.	6.5	85
221	Methods for Studying Formation of Polycation-DNA Complexes and Properties Useful for Gene Delivery., 2001, 65, 131-148.		3
222	Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1200-1205.	3.3	464
223	Extracellular Glycosaminoglycans Modify Cellular Trafficking of Lipoplexes and Polyplexes. Journal of Biological Chemistry, 2001, 276, 33875-33880.	1.6	182
224	Optimal transfection with the HK polymer depends on its degree of branching and the pH of endocytic vesicles. Nucleic Acids Research, 2002, 30, 1338-1345.	6.5	77
226	Poly(ethylenimine-co-l-lactamide-co-succinamide):Â A Biodegradable Polyethylenimine Derivative with an Advantageous pH-Dependent Hydrolytic Degradation for Gene Delivery. Bioconjugate Chemistry, 2002, 13, 812-821.	1.8	125
227	Efficient Synthesis and Cell-Transfection Properties of a New Multivalent Cationic Lipid for Nonviral Gene Delivery. Journal of Medicinal Chemistry, 2002, 45, 5023-5029.	2.9	134
228	Cationic Polysaccharides for Gene Delivery. Macromolecules, 2002, 35, 9947-9953.	2.2	105
229	Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery. Macromolecules, 2002, 35, 3456-3462.	2.2	388
230	Polyester Dendritic Systems for Drug Delivery Applications:Â In Vitro and In Vivo Evaluation. Bioconjugate Chemistry, 2002, 13, 453-461.	1.8	485
231	Rapid and Efficient Synthesis of Aliphatic Ester Dendrons and Dendrimers. Macromolecules, 2002, 35, 8307-8314.	2.2	162
232	Dendritic polyglycerol: a new versatile biocompatible material. Reviews in Molecular Biotechnology, 2002, 90, 257-267.	2.9	313
233	Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. Reviews in Molecular Biotechnology, 2002, 90, 339-347.	2.9	85
234	Effects of Structure of Polyamidoamine Dendrimer on Gene Transfer Efficiency of the Dendrimer Conjugate with α-Cyclodextrin. Bioconjugate Chemistry, 2002, 13, 1211-1219.	1.8	140
235	Ternary Complexes with Poly(β-cyclodextrin), Cationic Surfactant, and Polyanion in Dilute Aqueous Solution:  A Viscometric and Small-Angle Neutron Scattering Study. Langmuir, 2002, 18, 9687-9695.	1.6	21
236	Structural Molecular Dynamics Studies on Polyamidoamine Dendrimers for a Therapeutic Application:  Effects of pH and Generation. Macromolecules, 2002, 35, 4510-4520.	2.2	263
237	Polyester Dendritic Systems for Drug Delivery Applications:Â Design, Synthesis, and Characterization. Bioconjugate Chemistry, 2002, 13, 443-452.	1.8	308
238	Polycationic Telomers and Cotelomers for Gene Transfer: Synthesis and Evaluation of Their an Vitro Transfection Efficiency. Bioconjugate Chemistry, 2002, 13, 59-75.	1.8	8

#	Article	IF	CITATIONS
239	In Vitro Gene Transfection Using Dendritic Poly(I-lysine). Bioconjugate Chemistry, 2002, 13, 510-517.	1.8	254
240	Delivery Systems for Pulmonary Gene Therapy. Treatments in Respiratory Medicine, 2002, 1, 35-46.	1.4	17
241	Solid-State NMR Investigations of Molecular Dynamics in Polyphenylene Dendrimers:Â Evidence of Dense-Shell Packing. Macromolecules, 2002, 35, 10071-10086.	2.2	62
242	Polylysine and Polyornithine Gene Transfer Complexes: A Study of Complex Stability and Cellular Uptake as a Basis for their Differential in-vitro Transfection Efficiency. Journal of Drug Targeting, 2002, 10, 1-9.	2.1	50
243	Evaluation of Multicomponent Non-viral Vectors for Liver Directed Gene Delivery. Journal of Drug Targeting, 2002, 10, 105-111.	2.1	2
244	Novel dendrimer based polyurethanes for PEO incorporation. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 667-689.	1.9	7
245	Peptide dendrimers: applications and synthesis. Reviews in Molecular Biotechnology, 2002, 90, 195-229.	2.9	288
246	On the Kinetics of Polyplex Endocytic Trafficking: Implications for Gene Delivery Vector Design. Molecular Therapy, 2002, 6, 57-66.	3.7	124
247	Poly(l-lysine)-g-poly(d,l-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. Journal of Controlled Release, 2002, 82, 159-166.	4.8	98
248	A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. Journal of Controlled Release, 2002, 83, 109-119.	4.8	71
249	Structure–activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. Journal of Controlled Release, 2002, 83, 169-182.	4.8	222
250	New polyphosphoramidate with a spermidine side chain as a gene carrier. Journal of Controlled Release, 2002, 83, 157-168.	4.8	120
251	Histidine containing peptides and polypeptides as nucleic acid vectors. Somatic Cell and Molecular Genetics, 2002, 27, 27-47.	0.7	37
252	Dendritische Polymere f $\tilde{A}^{1}\!\!/\!\!4$ r medizinische Anwendungen: auf dem Weg zum Einsatz in Diagnostik und Therapie. Angewandte Chemie, 2002, 114, 1385.	1.6	76
253	Dendritic Polymers in Biomedical Applications: From Potential to Clinical Use in Diagnostics and Therapy. Angewandte Chemie - International Edition, 2002, 41, 1329-1334.	7.2	627
254	Exploitation of Intracellular pH Gradients in the Cellular Delivery of Macromolecules. Journal of Pharmaceutical Sciences, 2002, 91, 903-913.	1.6	127
255	Effect of Physicochemical Properties of Polyplexes Composed of Chemically Modified PL Derivatives on Transfection Efficiency In Vitro. Macromolecular Bioscience, 2002, 2, 437-446.	2.1	20
256	Intracellular processing and stability of DNA complexed with histidylated polylysine conjugates. Journal of Gene Medicine, 2002, 4, 271-281.	1.4	30

#	Article	IF	CITATIONS
257	Preparation and characterization of poly-DL-lactide-poly(ethylene glycol) microspheres containing ?DNA. Journal of Applied Polymer Science, 2002, 86, 2557-2566.	1.3	15
258	Improvement of DNA transfection with cationic liposomes. Journal of Physiology and Biochemistry, 2002, 58, 45-56.	1.3	15
259	The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials, 2002, 23, 321-342.	5.7	129
260	Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharmaceutical Research, 2002, 19, 140-146.	1.7	140
261	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 361-364.	1.6	14
262	Single-Cell Measurements of Polyamidoamine Dendrimer Binding. Annals of Biomedical Engineering, 2002, 30, 409-416.	1.3	16
263	A novel nonviral nanoparticle gene vector: Poly-L-lysine-silica nanoparticles. Science Bulletin, 2002, 47, 654.	1.7	23
264	Title is missing!. Journal of Fluorescence, 2003, 13, 339-347.	1.3	15
265	Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. International Journal of Peptide Research and Therapeutics, 2003, 10, 309-323.	0.1	0
266	Recent progress in polymer-based gene delivery vectors. Science Bulletin, 2003, 48, 1304-1309.	1.7	14
267	Formulation and characterization of DNA–polyethylenimine–dextran sulfate nanoparticles. European Journal of Pharmaceutical Sciences, 2003, 19, 191-202.	1.9	68
268	A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. Journal of Controlled Release, 2003, 93, 105-120.	4.8	240
269	Efficient gene delivery by urocanic acid-modified chitosan. Journal of Controlled Release, 2003, 93, 389-402.	4.8	208
270	Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Advanced Drug Delivery Reviews, 2003, 55, 199-215.	6.6	1,270
271	Design strategies to improve soluble macromolecular delivery constructs. Advanced Drug Delivery Reviews, 2003, 55, 421-437.	6.6	99
272	Structure/Function Analysis of Peptoid/Lipitoid:DNA Complexes. Journal of Pharmaceutical Sciences, 2003, 92, 1905-1918.	1.6	38
273	Optimisation of dendrimer-mediated gene transfer by anionic oligomers. Journal of Gene Medicine, 2003, 5, 61-71.	1.4	89
274	Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magnetic Resonance in Medicine, 2003, 49, 998-1005.	1.9	117

#	Article	IF	Citations
275	Gemini-Tenside: neue synthetische Vektoren zur Gentransfektion. Angewandte Chemie, 2003, 115, 1486-1496.	1.6	16
276	Amphiphilic Dendrimers: Novel Self-Assembling Vectors for Efficient Gene Delivery. Angewandte Chemie, 2003, 115, 1524-1528.	1.6	45
277	Nuclear Localisation Sequence Templated Nonviral Gene Delivery Vectors: Investigation of Intracellular Trafficking Events of LMD and LD Vector Systems. ChemBioChem, 2003, 4, 286-298.	1.3	67
278	Gemini Surfactants: New Synthetic Vectors for Gene Transfection. Angewandte Chemie - International Edition, 2003, 42, 1448-1457.	7.2	377
279	Amphiphilic Dendrimers: Novel Self-Assembling Vectors for Efficient Gene Delivery. Angewandte Chemie - International Edition, 2003, 42, 1486-1490.	7.2	171
280	Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal, 2003, 39, 1741-1771.	2.6	390
281	In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24, 1121-1131.	5.7	2,026
282	Physicochemical properties of aqueous mixed solutions of sugar-persubstituted poly(amidoamine)dendrimers and bovine serum albumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 157-165.	2.3	9
283	Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids and Surfaces B: Biointerfaces, 2003, 27, 365-375.	2.5	45
284	Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Therapy, 2003, 10, 180-187.	2.3	54
285	Non-viral gene delivery in skeletal muscle: a protein factory. Gene Therapy, 2003, 10, 131-142.	2.3	177
286	Synthesis and Characterization of Star-Shaped Poly(I-lactide)s Initiated with Hydroxyl-Terminated Poly(Amidoamine) (PAMAM-OH) Dendrimers. Chemistry of Materials, 2003, 15, 2836-2843.	3.2	102
287	Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes. Journal of Biological Chemistry, 2003, 278, 44826-44831.	1.6	950
288	In Vitro and In Vivo Gene Transfer by an Optimized α-Cyclodextrin Conjugate with Polyamidoamine Dendrimer. Bioconjugate Chemistry, 2003, 14, 342-350.	1.8	161
289	Long-Term Release and Improved Intracellular Penetration of Oligonucleotideâ^'Polyethylenimine Complexes Entrapped in Biodegradable Microspheres. Biomacromolecules, 2003, 4, 529-536.	2.6	48
290	Syntheses of polyamidoamine dendrimers starting from a hexadimensional core and application in gene transfer. Science in China Series B: Chemistry, 2003, 46, 271.	0.8	10
291	Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. International Journal of Peptide Research and Therapeutics, 2003, 10, 309-323.	0.9	4
292	Characterization of the membrane-destabilizing properties of different pH-sensitive methacrylic acid copolymers. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1613, 28-38.	1.4	108

#	Article	IF	Citations
293	Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 237-246.	2.0	76
294	Synthesis of Novel Cationic Lipids Having Polyamidoamine Dendrons and Their Transfection Activity. Bioconjugate Chemistry, 2003, 14, 764-773.	1.8	86
295	Microscopic Protonation Equilibria of Poly(amidoamine) Dendrimers from Macroscopic Titrations. Macromolecules, 2003, 36, 4201-4207.	2.2	305
296	Dendrimers and Supramolecular Chemistry. Supramolecular Chemistry, 2003, 15, 5-23.	1.5	63
297	Chemical Modification of Chitosan for Gene Delivery. Journal of Dispersion Science and Technology, 2003, 24, 489-498.	1.3	14
298	Water-Soluble Polycationic Dendrimers with a Phosphoramidothioate Backbone: Preliminary Studies of Cytotoxicity and Oligonucleotide/Plasmid Delivery in Human Cell Culture. Oligonucleotides, 2003, 13, 193-205.	2.7	113
299	Time-dependent complex formation of dendritic poly(L-lysine) with plasmid DNA and correlation with in vitro transfection efficiencies. Organic and Biomolecular Chemistry, 2003, 1, 1270-1273.	1.5	60
300	Tumor Cell Killing Enabled by Listeriolysin O-liposome-mediated Delivery of the Protein Toxin Gelonin. Journal of Biological Chemistry, 2003, 278, 35102-35108.	1.6	72
301	Polymer-Based Gene Delivery Systems. Drugs and the Pharmaceutical Sciences, 2003, , .	0.1	0
302	Synthesis of Amphiphilic Guanylated Polymers as Potential Gene Delivery Carriers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 1459-1466.	1.2	6
303	Surfection: a new platform for transfected cell arrays. Nucleic Acids Research, 2004, 32, 33e-33.	6. 5	57
304	Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Research, 2004, 32, 2730-2739.	6.5	128
305	Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Research, 2004, 32, 2102-2112.	6. 5	59
306	Dendritic Poly-[N-(2-Hydroxyethyl)-L-Glutamine] as Potential Drug Carrier. Journal of Bioactive and Compatible Polymers, 2004, 19, 367-382.	0.8	6
307	A nanotechnology-based analog of monoclonal antibodies for targeted delivery of diagnostic and therapeutic agents., 2004, 2004, 5242-5.		0
308	Templated assembly of the pH-sensitive membrane-lytic peptide GALA. Chemical Biology and Drug Design, 2004, 63, 451-459.	1.2	6
309	Stable polyplexes based on arginine-containing oligopeptides for in vivo gene delivery. Gene Therapy, 2004, 11, 457-464.	2.3	27
310	Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Therapy, 2004, 11, 1001-1010.	2.3	65

#	Article	IF	CITATIONS
311	A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. Journal of Controlled Release, 2004, 99, 139-155.	4.8	84
312	Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. Journal of Controlled Release, 2004, 99, 157-166.	4.8	109
313	GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Advanced Drug Delivery Reviews, 2004, 56, 967-985.	6.6	518
314	Deformability of poly(amidoamine) dendrimers. European Physical Journal E, 2004, 14, 7-16.	0.7	208
315	Polymer Side-Chain Degradation as a Tool to Control the Destabilization of Polyplexes. Pharmaceutical Research, 2004, 21, 170-176.	1.7	78
316	Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility. Pharmaceutical Research, 2004, 21, 1362-1373.	1.7	317
317	Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, 2004, , 1978.	2.2	185
318	Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials, 2004, 25, 3267-3273.	5.7	66
319	Effects of polyrotaxane structure on polyion complexation with DNA. Science and Technology of Advanced Materials, 2004, 5, 363-369.	2.8	24
320	Evaluation of internal structure and morphology of poly(benzyl ether) dendrimers by molecular dynamics simulations. Macromolecular Research, 2004, 12, 178-188.	1.0	2
321	Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers. Journal of Polymer Science Part A, 2004, 42, 5574-5586.	2.5	15
322	Tandem mass spectrometry of half-generation PAMAM dendrimer anions. Rapid Communications in Mass Spectrometry, 2004, 18, 960-972.	0.7	41
323	Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology, 2004, 2, 12.	4.2	1,142
324	Partitioning of model toxins to hydrophobically terminated DAB dendrimers. Biotechnology and Bioengineering, 2004, 86, 512-519.	1.7	7
325	Biodegradable polyphosphoester micelles for gene delivery. Journal of Pharmaceutical Sciences, 2004, 93, 2142-2157.	1.6	71
326	Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer. Journal of Gene Medicine, 2004, 6, 405-414.	1.4	94
327	Dendritic Polyamines: Simple Access to New Materials with Defined Treelike Structures for Application in Nonviral Gene Delivery. ChemBioChem, 2004, 5, 1081-1087.	1.3	104
328	Favorable interactions of amine- and ester-terminated PAMAM with cationic surfactants: photophysical and transport studies. Journal of Colloid and Interface Science, 2004, 277, 221-229.	5.0	8

#	ARTICLE	IF	CITATIONS
329	Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 2004, 132, 3-14.	1.5	221
330	Cationic surfactant–poly(amido amine) dendrimer interactions studied by Krafft temperature measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233, 203-210.	2.3	32
331	Head group controlled specific interactions of aliphatic- and aromatic-polyester dendrimers with cationic surfactants of identical hydrophobic tails. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 244, 159-168.	2.3	9
332	The Design and Exogenous Delivery of siRNA for Post-transcriptional Gene Silencing. Journal of Drug Targeting, 2004, 12, 315-340.	2.1	69
333	Alkylated derivatives of poly(ethylacrylic acid) can be inserted into preformed liposomes and trigger pH-dependent intracellular delivery of liposomal contents. Molecular Membrane Biology, 2004, 21, 385-393.	2.0	26
334	Azo-functionalized dendrimers. Canadian Journal of Chemistry, 2004, 82, 551-566.	0.6	13
335	Polyamidoamine (Yet Not PAMAM) Dendrimers as Bioinspired Materials for Drug Delivery:Â Structureâ^'Activity Relationships by Molecular Simulationsâ€. Biomacromolecules, 2004, 5, 1371-1378.	2.6	40
336	Assessment of a Modular Transfection System Based upon Cellular Localization of DNA. Molecular Pharmaceutics, 2004, 1, 309-316.	2.3	12
337	Novel Hyperbranched Dendron for Gene Transfer in Vitro and in Vivo. Bioconjugate Chemistry, 2004, 15, 960-968.	1.8	42
338	Endosomal Escape of Polymeric Gene Delivery Complexes Is Not Always Enhanced by Polymers Buffering at Low pH. Biomacromolecules, 2004, 5, 32-39.	2.6	252
339	Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 155-162.	2.0	129
340	Dendrimers as guests in molecular recognition phenomena. Chemical Communications, 2004, , 1677-1683.	2.2	81
341	Dendrimers in drug research. Chemical Society Reviews, 2004, 33, 43.	18.7	1,110
342	BIOMATERIALS AND GENE THERAPY. Advances in Chemical Engineering, 2004, , 131-168.	0.5	6
343	Phosphorus Dendrimers: Nano-objects for Nanosciences. Macromolecular Symposia, 2005, 229, 1-7.	0.4	4
344	Enhancing Effects of Galactosylated Dendrimer/.ALPHACyclodextrin Conjugates on Gene Transfer Efficiency. Biological and Pharmaceutical Bulletin, 2005, 28, 500-505.	0.6	70
345	Water-soluble phosphorus-containing dendrimers. Progress in Polymer Science, 2005, 30, 491-505.	11.8	125
346	Self-assembly using dendritic building blocks—towards controllable nanomaterials. Progress in Polymer Science, 2005, 30, 220-293.	11.8	178

#	ARTICLE	IF	CITATIONS
347	Fluorescence studies of interactions of ionic surfactants with poly(amidoamine) dendrimers. Journal of Colloid and Interface Science, 2005, 284, 680-686.	5.0	16
348	PEGylation and aqueous solution behaviour of pH responsive poly(I-lysine iso-phthalamide). Polymer, 2005, 46, 2497-2505.	1.8	20
349	Complex formation between plasmid DNA and self-aggregates of deoxycholic acid-modified chitosan. Polymer, 2005, 46, 8107-8112.	1.8	33
350	PAMAM dendrimers and model membranes: Differential scanning calorimetry studies. International Journal of Pharmaceutics, 2005, 305, 154-166.	2.6	57
351	Synthesis of polyester dendrimers and dendrons starting from Michael reaction of acrylates with 3-hydroxyacetophenone. Tetrahedron Letters, 2005, 46, 1027-1030.	0.7	12
352	Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS Journal, 2005, 7, E20-E41.	2.2	130
353	Structural investigations of DNA-polycation complexes. European Physical Journal E, 2005, 16, 17-28.	0.7	112
354	Supramolecular structures from dendrons and dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2238-2270.	6.6	124
355	Dendrimers in gene delivery. Advanced Drug Delivery Reviews, 2005, 57, 2177-2202.	6.6	929
356	Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 2005, 57, 2215-2237.	6.6	1,046
357	Designing dendrimers for biological applications. Nature Biotechnology, 2005, 23, 1517-1526.	9.4	1,894
358	Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005, 4, 581-593.	21.5	2,279
359	Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today, 2005, 10, 35-43.	3.2	1,247
360	Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. Journal of Controlled Release, 2005, 101, 233-246.	4.8	64
361	Polymer genomics: shifting the gene and drug delivery paradigms. Journal of Controlled Release, 2005, 101, 259-271.	4.8	96
362	Synthesis, Characterization, and Thermal Behavior of Steroidal Dendrons. European Journal of Organic Chemistry, 2005, 2005, 73-84.	1.2	23
363	Synthesis and screening of a small library of proline-based biodendrimers for use as delivery agents. Biopolymers, 2005, 80, 800-814.	1.2	29
364	Synthesis and characterization of 2-diethyl-aminoethyl-dextran-methyl methacrylate graft copolymer for nonviral gene delivery vector. Journal of Applied Polymer Science, 2005, 98, 9-14.	1.3	18

#	Article	IF	CITATIONS
365	High-Affinity Multivalent DNA Binding by Using Low-Molecular-Weight Dendrons. Angewandte Chemie - International Edition, 2005, 44, 2556-2559.	7.2	119
367	Toroid formation in charge neutralized flexible or semi-flexible biopolymers: potential pathway for assembly of DNA carriers. Journal of Gene Medicine, 2005, 7, 334-342.	1.4	13
368	Amphipathic and Membrane-Destabilizing Properties of the Cationic Acrylate Polymer Eudragit \hat{A} \otimes E100. Macromolecular Bioscience, 2005, 5, 207-213.	2.1	34
369	Ternary Complex Formation in Aqueous Solution between a $\hat{1}^2$ -Cyclodextrin Polymer, a Cationic Surfactant and DNA. Macromolecular Bioscience, 2005, 5, 1057-1065.	2.1	15
370	Versatile Peptide Dendrimers for Nucleic Acid Delivery. Journal of Pharmaceutical Sciences, 2005, 94, 446-457.	1.6	62
371	Structure/Function Relationships of Polyamidoamine/DNA Dendrimers as Gene Delivery Vehicles. Journal of Pharmaceutical Sciences, 2005, 94, 423-436.	1.6	207
372	Stability of ionic complexes prepared from plasmid DNA and self-aggregated chitosan nanoparticles. Macromolecular Research, 2005, 13, 542-544.	1.0	8
373	Synthesis and characterization of poly(amidoamine)-platinum(II) complexes. Detailed speciation by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Journal of Organometallic Chemistry, 2005, 690, 1978-1985.	0.8	11
374	Molecular recognition and adsorption equilibria in starburst dendrimers: gas structure and sensing via molecular theory. Fluid Phase Equilibria, 2005, 228-229, 197-205.	1.4	5
375	Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. International Journal of Peptide Research and Therapeutics, 2005, 10, 309-323.	0.9	0
377	Nanotechnology and DNA Delivery. MRS Bulletin, 2005, 30, 654-658.	1.7	16
378	Pluronic Block Copolymers for Gene Delivery. Advances in Genetics, 2005, 53PA, 231-261.	0.8	107
379	Use of Synthetic Peptides for Non-viral Gene Delivery. , 2005, , 87-102.		1
380	Peptide-Enhanced Nucleic Acid Delivery. MRS Bulletin, 2005, 30, 663-667.	1.7	24
382	Dendrimers as DNA Carriers. , 2005, , 75-86.		0
383	Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules, 2005, 38, 979-991.	2.2	389
384	Structural Characterization and Buffering Capacity in Relation to the Transfection Efficiency of Biodegradable Polyurethane. Bioconjugate Chemistry, 2005, 16, 1375-1381.	1.8	40
385	Enhancement of an Electroporation System for Gene Delivery Using Electrophoresis with Planar Electrodes., 2005, 2006, 522-5.		0

#	Article	IF	CITATIONS
386	Reagent Anions for Charge Inversion of Polypeptide/Protein Cations in the Gas Phase. Analytical Chemistry, 2005, 77, 3173-3182.	3.2	50
387	Synthesis and Characterization of Biodegradable Hyperbranched Poly(ester-amide)s Based on Natural Material. Biomacromolecules, 2005, 6, 3181-3188.	2.6	49
388	Mesomorphic Complexes of Poly(amidoamine) Dendrimer with DNA. Macromolecules, 2005, 38, 9434-9440.	2.2	32
389	Synthetic and Natural Polycationic Polymer Nanoparticles Interact Selectively with Fluid-Phase Domains of DMPC Lipid Bilayers. Langmuir, 2005, 21, 8588-8590.	1.6	128
390	In Vitro Gene Delivery Using Polyamidoamine Dendrimers with a Trimesyl Coreâ€. Biomacromolecules, 2005, 6, 341-350.	2.6	103
391	Activation of antigen-presenting cells by DNA delivery vectors. Expert Opinion on Biological Therapy, 2005, 5, 1019-1028.	1.4	16
392	What Role Can Chemistry Play in Cationic Liposomeâ€Based Gene Therapy Research Today?. Advances in Genetics, 2005, 53PA, 69-118.	0.8	9
393	Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular Therapy, 2005, 12, 468-474.	3.7	773
394	Temperature-Sensitive Dendritic Micelles. Journal of the American Chemical Society, 2005, 127, 14922-14929.	6.6	210
395	Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chemical Communications, 2005, , 313.	2.2	65
396	Sustained release of PEG-g-chitosan complexed DNA from poly(lactide-co-glycolide). Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1359-1378.	1.9	32
397	Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection. Nucleic Acids Research, 2005, 33, e40-e40.	6.5	73
398	Biomembrane-Active Molecular Switches as Tools for Intracellular Drug Delivery. Australian Journal of Chemistry, 2005, 58, 411.	0.5	25
400	Lipid Bilayer Disruption by Polycationic Polymers:  The Roles of Size and Chemical Functional Group. Langmuir, 2005, 21, 10348-10354.	1.6	258
401	Intracellular trafficking of nonviral vectors. Gene Therapy, 2005, 12, 1734-1751.	2.3	309
402	Targeting of Polyplexes: Toward Synthetic Virus Vector Systems. Advances in Genetics, 2005, 53PA, 333-354.	0.8	44
403	Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chemical Society Reviews, 2005, 34, 970.	18.7	171
404	Dynamics and Thermodynamics of Water in PAMAM Dendrimers at Subnanosecond Time Scales. Journal of Physical Chemistry B, 2005, 109, 8663-8672.	1.2	131

#	Article	IF	Citations
405	PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chemical Communications, 2006, , 2362.	2.2	297
406	Acetylation of Polyethylenimine Enhances Gene Delivery via Weakened Polymer/DNA Interactions. Biomacromolecules, 2006, 7, 2427-2435.	2.6	251
407	Dendritic Cationic Lipids with Highly Charged Headgroups for Efficient Gene Delivery. Bioconjugate Chemistry, 2006, 17, 877-888.	1.8	59
408	Effect of Dendrimer Generation on the Assembly and Mechanical Properties of DNA/Phosphorus Dendrimer Multilayer Microcapsules. Macromolecules, 2006, 39, 5479-5483.	2.2	31
409	Modified poly(propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). Journal of Drug Targeting, 2006, 14, 69-86.	2.1	85
410	Cooperative binding and self-assembling behavior of cationic low molecular-weight dendrons with RNA molecules. Organic and Biomolecular Chemistry, 2006, 4, 581.	1.5	20
411	Effects of structural modification on gene transfection and self-assembling properties of amphiphilic dendrimers. Organic and Biomolecular Chemistry, 2006, 4, 766.	1.5	50
412	Dendritic supermolecules – towards controllable nanomaterials. Chemical Communications, 2006, , 34-44.	2.2	166
413	Dendrimers for pharmaceutical and biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 3-19.	1.9	164
414	Thermosensitive Properties of Poly(amidoamine) Dendrimers with Peripheral Phenylalanine Residues. Langmuir, 2006, 22, 4920-4922.	1.6	72
415	CHEMISTRY: Dendrimers at Work. Science, 2006, 313, 929-930.	6.0	194
416	Polymeric nanoparticles for gene delivery. Expert Opinion on Drug Delivery, 2006, 3, 325-344.	2.4	60
417	Facile Synthesis of Aryl Ether Dendrimer from Unprotected AB2Building Blocks Using Thionyl Chloride as an Activating Agent. Organic Letters, 2006, 8, 2321-2324.	2.4	33
418	Solvent Quality Changes the Structure of G8 PAMAM Dendrimer, a Disagreement with Some Experimental Interpretations. Journal of Physical Chemistry B, 2006, 110, 25628-25632.	1.2	87
419	Structure and Dynamics of DNAâ^'Dendrimer Complexation:Â Role of Counterions, Water, and Base Pair Sequence. Nano Letters, 2006, 6, 2478-2485.	4.5	139
420	Nanomaterials of Triazine-Based Dendrons:  Convergent Synthesis and Their Physical Studies. Organic Letters, 2006, 8, 1541-1544.	2.4	29
421	Synthesis and Characterization of Thermoresponsive-co-Biodegradable Linearâ^'Dendritic Copolymers. Macromolecules, 2006, 39, 7805-7811.	2.2	54
422	Dendrimers as Drug and Gene Delivery Systems. , 2006, , 489-508.		0

#	Article	IF	CITATIONS
424	Synthesis and aggregation of amine-cored polyamidoamine dendrons synthesised without invoking a protection/deprotection strategy. Polymer International, 2006, 55, 798-807.	1.6	7
425	Synthesis of lipopolyhydroxylalkyleneamines for gene delivery. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2428-2432.	1.0	3
426	Novel polyallylamine–dextran sulfate–DNA nanoplexes: Highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics, 2006, 320, 143-149.	2.6	48
427	A review of in vitro–in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 66-73.	1.7	92
428	A spectroscopic study of the self-association and inter-molecular aggregation behaviour of pH-responsive poly(l-lysine iso-phthalamide). Polymer, 2006, 47, 2689-2698.	1.8	24
429	The design, synthesis, and characterization of a PAMAM-based triple helical collagen mimetic dendrimer. Tetrahedron, 2006, 62, 5280-5286.	1.0	34
430	Gene Delivery Using Polymer Therapeutics. , 0, , 135-173.		103
431	Emerging vectors and targeting methods for nonviral gene therapy. Expert Opinion on Emerging Drugs, 2006, 11, 541-557.	1.0	44
433	Influence of interfacial features in the supramolecular assembly of 3,5-dihydroxybenzylalcohol based dendrimers on Si/SiO2 surfaces. Journal of Colloid and Interface Science, 2006, 297, 455-464.	5.0	3
434	DNA polyplexes based on degradable oligoethylenimine-derivatives: Combination with EGF receptor targeting and endosomal release functions. Journal of Controlled Release, 2006, 116, 115-122.	4.8	40
435	Improved Cell Viability of Linear Polyethylenimine through \hat{I}^3 -Cyclodextrin Inclusion for Effective Gene Delivery. ChemBioChem, 2006, 7, 297-302.	1.3	42
436	Polymer Therapeutics: Concepts and Applications. Angewandte Chemie - International Edition, 2006, 45, 1198-1215.	7.2	1,037
437	Novel Water-Soluble Carbosilane Dendrimers: Synthesis and Biocompatibility. European Journal of Inorganic Chemistry, 2006, 2006, 1388-1396.	1.0	64
438	Effect of molecular weight on the transfection efficiency of novel polyurethane as a biodegradable gene vector. Journal of Biomedical Materials Research - Part A, 2006, 77A, 736-746.	2.1	32
439	The role of folate receptor \hat{l}_{\pm} in cancer development, progression and treatment: Cause, consequence or innocent bystander?. International Journal of Cancer, 2006, 119, 243-250.	2.3	423
440	Protein transduction by lipidic peptide dendrimers. Journal of Pharmaceutical Sciences, 2006, 95, 1227-1237.	1.6	26
442	Synthetic and Natural Polycations for Gene Therapy: State of the Art and New Perspectives. Current Gene Therapy, 2006, 6, 59-71.	0.9	92
443	Gene delivery to vascular endothelium using chemical vectors: implications for cardiovascular gene therapy. Expert Opinion on Biological Therapy, 2007, 7, 627-643.	1.4	20

#	Article	IF	Citations
444	Pharmaceutical and Biomedical Potential of PEGylated Dendrimers. Current Pharmaceutical Design, 2007, 13, 415-429.	0.9	119
446	Cyclodextrins Inhibit Replication of Scrapie Prion Protein in Cell Culture. Journal of Virology, 2007, 81, 11195-11207.	1.5	39
448	Nanoparticles as Nonviral Gene Delivery Vectors. IEEE Transactions on Nanobioscience, 2007, 6, 319-330.	2.2	68
449	Nonviral gene delivery: What we know and what is next. AAPS Journal, 2007, 9, E92-E104.	2.2	351
450	Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face?. Accounts of Chemical Research, 2007, 40, 335-342.	7.6	492
451	Cytotoxicity of Polypropylenimine Dendrimer Conjugates on Cultured Endothelial Cells. Biomacromolecules, 2007, 8, 3853-3859.	2.6	148
452	Dendritic systems in drug delivery applications. Expert Opinion on Drug Delivery, 2007, 4, 495-512.	2.4	35
453	Dendritic vectors for gene transfection. New Journal of Chemistry, 2007, 31, 1111-1127.	1.4	166
454	Polyethylenimine–DNA solid particles for gene delivery. Journal of Drug Targeting, 2007, 15, 714-720.	2.1	11
455	Enhancement of an electroporation system for gene delivery using electrophoresis with a planar electrode. Lab on A Chip, 2007, 7, 86-92.	3.1	24
457	Supramolecular Complex Induced by the Binding of Sodium Dodecyl Sulfate to PAMAM Dendrimers. Langmuir, 2007, 23, 1635-1639.	1.6	32
458	Quaternized Poly(4-vinylpyridine)s as Model Gene Delivery Polycations:Â Structureâ ² Function Study by Modification of Side Chain Hydrophobicity and Degree of Alkylation. Bioconjugate Chemistry, 2007, 18, 922-928.	1.8	50
459	Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes. Organic and Biomolecular Chemistry, 2007, 5, 3674.	1.5	83
460	Facile Synthesis of Amine-Terminated Aromatic Polyamide Dendrimers via a Divergent Method. Organic Letters, 2007, 9, 1363-1366.	2.4	24
461	Water-Soluble Carbosilane Dendrimers: Synthesis Biocompatibility and Complexation with Oligonucleotides; Evaluation for Medical Applications. Chemistry - A European Journal, 2007, 13, 483-495.	1.7	149
462	Linear-dendritic ABA triblock copolymers as nanocarriers. Journal of Applied Polymer Science, 2007, 104, 267-272.	1.3	24
463	Optically Triggered Release of DNA from Multivalent Dendrons by Degrading and Chargeâ€6witching Multivalency. Angewandte Chemie - International Edition, 2007, 46, 7600-7604.	7.2	103
465	Chemical modification of chitosan as a gene carrier in vitro and in vivo. Progress in Polymer Science, 2007, 32, 726-753.	11.8	312

#	Article	IF	CITATIONS
466	Polymer systems for gene deliveryâ€"Past, present, and future. Progress in Polymer Science, 2007, 32, 799-837.	11.8	399
467	Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Progress in Polymer Science, 2007, 32, 1054-1082.	11.8	225
468	Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicology and Applied Pharmacology, 2007, 225, 70-79.	1.3	179
469	Synthesis and characterization of guanidinylated poly(propylene imine) dendrimers as gene transfection agents. Journal of Controlled Release, 2007, 117, 137-146.	4.8	86
470	Lysine dendrimers as vectors for delivery of genetic constructs to eukaryotic cells. Russian Journal of Genetics, 2007, 43, 593-600.	0.2	16
471	Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticlesâ [*] †. Advanced Drug Delivery Reviews, 2007, 59, 491-504.	6.6	501
472	Poly(2-oxazolines) in biological and biomedical application contexts. Advanced Drug Delivery Reviews, 2007, 59, 1504-1520.	6.6	433
473	Glycotargeting to improve cellular delivery efficiency of nucleic acids. Glycoconjugate Journal, 2007, 24, 107-123.	1.4	33
474	The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 205-219.	1.6	27
475	An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation. Biomedical Microdevices, 2007, 9, 761-768.	1.4	28
476	The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials, 2008, 29, 3384-3392.	5.7	82
477	Synthesis and incorporation in Langmuir films of oligophenylenevinylene dendrimers bearing a polar head group and different dendritic poly(benzyl ether) branches. Polymer, 2008, 49, 3911-3922.	1.8	9
478	The Silent (R)evolution of Polymeric Nucleic Acid Therapeutics. Pharmaceutical Research, 2008, 25, 2920-2923.	1.7	11
479	Synthesis and Evaluation of Amphiphilic Poly(tetrahydrofuran-b-ethylene oxide) Copolymers for DNA Delivery into Skeletal Muscle. Pharmaceutical Research, 2008, 25, 2963-2971.	1.7	22
480	Novel Nanomaterials for Clinical Neuroscience. Journal of NeuroImmune Pharmacology, 2008, 3, 83-94.	2.1	199
481	Relating Chemical and Biological Diversity Space: A Tunable System for Efficient Gene Transfection. ChemBioChem, 2008, 9, 1960-1967.	1.3	11
482	Tailorâ€Made Poly(amidoamine)s for Controlled Complexation and Condensation of DNA. Chemistry - A European Journal, 2008, 14, 2025-2033.	1.7	97
483	Dendrimers and DNA: Combinations of Two Special Topologies for Nanomaterials and Biology. Chemistry - A European Journal, 2008, 14, 7422-7432.	1.7	125

#	Article	IF	Citations
484	Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1â†'2 branching motifs: An overview of the divergent procedures. Polymer, 2008, 49, 1-173.	1.8	358
485	Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, 2008, 33, 113-137.	11.8	453
486	A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials, 2008, 29, 4823-4830.	5.7	142
487	Generation of highly potent nonviral gene vectors by complexation of lipoplexes and transferrin-bearing fusogenic polymer-modified liposomes in aqueous glucose solution. Biomaterials, 2008, 29, 1262-1272.	5.7	26
488	Ligand based dendritic systems for tumor targeting. International Journal of Pharmaceutics, 2008, 350, 3-13.	2.6	103
489	Synthesis and evaluation of functional hyperbranched polyether polyols as prospected gene carriers. International Journal of Pharmaceutics, 2008, 356, 314-324.	2.6	37
490	Star-Shaped Mesogens of Triazine-Based Dendrons and Dendrimers as Unconventional Columnar Liquid Crystals. Journal of Organic Chemistry, 2008, 73, 485-490.	1.7	61
491	Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Therapy, 2008, 15, 18-29.	2.3	92
492	Cellular Fate of a Modular DNA Delivery System Mediated by Silica Nanoparticles. Biotechnology Progress, 2008, 21, 532-537.	1.3	99
493	Release of cationic polymer-DNA complexes from the endosome: A theoretical investigation of the proton sponge hypothesis. Journal of Chemical Physics, 2008, 129, 185105.	1.2	80
494	Quantum Dotâ^'Amphipol Nanocomplex for Intracellular Delivery and Real-Time Imaging of siRNA. ACS Nano, 2008, 2, 1403-1410.	7.3	206
495	Design and synthesis of novel galactosylated polymers for liposomes as gene drug carriers targeting the hepatic asialoglycoprotein receptor. Journal of Drug Targeting, 2008, 16, 233-242.	2.1	23
496	Toward Multivalent Signaling across G Protein-Coupled Receptors from Poly(amidoamine) Dendrimers. Bioconjugate Chemistry, 2008, 19, 406-411.	1.8	44
497	Systematic Investigation of Polyamidoamine Dendrimers Surface-Modified with Poly(ethylene glycol) for Drug Delivery Applications: Synthesis, Characterization, and Evaluation of Cytotoxicity. Bioconjugate Chemistry, 2008, 19, 1660-1672.	1.8	151
498	Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1035-1052.	1.5	120
500	Surface-Modified and Internally Cationic Polyamidoamine Dendrimers for Efficient siRNA Delivery. Bioconjugate Chemistry, 2008, 19, 1396-1403.	1.8	196
501	Synthetic polymeric vectors in gene therapy. Current Opinion in Solid State and Materials Science, 2008, 12, 89-102.	5.6	45
502	Poly(amidoamine) Dendrimers on Lipid Bilayers I: Free Energy and Conformation of Binding. Journal of Physical Chemistry B, 2008, 112, 9337-9345.	1.2	74

#	Article	IF	CITATIONS
503	CO2-switchable oligoamine patches based on amino acids and their use to build polyelectrolyte containers with intelligent gating. Soft Matter, 2008, 4, 534.	1.2	41
504	Polymers for intracellular delivery of nucleic acids. Journal of Materials Chemistry, 2008, 18, 832-841.	6.7	34
505	Solid-Supported Block Copolymer Membranes through Interfacial Adsorption of Charged Block Copolymer Vesicles. Langmuir, 2008, 24, 6254-6261.	1.6	50
506	Carboxymethyl Poly(<scp><scp> </scp></scp> -histidine) as a New pH-Sensitive Polypeptide To Enhance Polyplex Gene Delivery. Molecular Pharmaceutics, 2008, 5, 898-901.	2.3	46
507	Development and Characterization of New Cyclodextrin Polymer-Based DNA Delivery Systems. Bioconjugate Chemistry, 2008, 19, 2311-2320.	1.8	33
508	Photoinduced Cross-Linking of Star Vector for Improvement of Gene Transfer Efficiency. Bioconjugate Chemistry, 2008, 19, 2513-2519.	1.8	9
509	Counterion Distribution and ζ-Potential in PAMAM Dendrimer. Macromolecules, 2008, 41, 5002-5006.	2.2	76
510	Selective Gene Transfer to Endometrial Cancer Cells by a Polymer Against Matrix Metalloproteinase 2 (MMP-2). Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 247-258.	0.7	4
511	Degradable polyethylenimines as gene carriers. Materials Science and Technology, 2008, 24, 1118-1126.	0.8	10
512	The triple helix: 50 years later, the outcome. Nucleic Acids Research, 2008, 36, 5123-5138.	6.5	302
513	Quantitative Comparison of Intracellular Unpacking Kinetics of Polyplexes by a Model Constructed From Quantum Dot-FRET. Molecular Therapy, 2008, 16, 324-332.	3.7	145
514	Poly(ethylene glycol)-mediated Steric Stabilization of Complexes Formed between Negatively Charged Liposomes and Folate-conjugated Poly(amidoamine) Dendrimers in Water. Chemistry Letters, 2008, 37, 324-325.	0.7	5
515	Polymer-Based Gene Delivery: A Current Review on the Uptake and Intracellular Trafficking of Polyplexes. Current Gene Therapy, 2008, 8, 335-352.	0.9	200
516	Dendrimers and the Double Helix - From DNA Binding Towards Gene Therapy. Current Topics in Medicinal Chemistry, 2008, 8, 1187-1203.	1.0	64
518	Facile Synthesis of Second-Generation Dendrons with an Orthogonal Functional Group at the Focal Point. Synthetic Communications, 2009, 39, 1966-1980.	1.1	15
519	Surface-Engineered Dendrimers: a Solution for Toxicity Issues. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 141-166.	1.9	65
520	Deformation and Hyperfine Structures of Dendrimers Investigated by Scanning Tunneling Microscopy. Journal of Physical Chemistry A, 2009, 113, 4168-4174.	1.1	18
521	Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA. Sensors, 2009, 9, 6346-6361.	2.1	46

#	Article	IF	CITATIONS
522	Osteogenic differentiation of mesenchymal stem cells using PAMAM dendrimers as gene delivery vectors. Journal of Controlled Release, 2009, 134, 141-148.	4.8	87
523	How to study dendriplexes I: Characterization. Journal of Controlled Release, 2009, 135, 186-197.	4.8	83
524	A matrix reservoir for improved control of non-viral gene delivery. Journal of Controlled Release, 2009, 136, 220-225.	4.8	66
525	Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. Journal of Controlled Release, 2009, 139, 88-93.	4.8	158
526	Targeting gene delivery to activated vascular endothelium using anti E/P-Selectin antibody linked to PAMAM dendrimers. Journal of Immunological Methods, 2009, 343, 79-90.	0.6	51
527	Precision Polymers: Monodisperse, Monomerâ€Sequenceâ€Defined Segments to Target Future Demands of Polymers in Medicine. Advanced Materials, 2009, 21, 3425-3431.	11.1	148
528	PAMAM Dendrimers Mediate siRNA Delivery to Target Hsp27 and Produce Potent Antiproliferative Effects on Prostate Cancer Cells. ChemMedChem, 2009, 4, 1302-1310.	1.6	116
529	Multiâ€Tier Dendrimers with an Aromatic Core. European Journal of Organic Chemistry, 2009, 2009, 1570-1577.	1.2	13
530	The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides. Biomaterials, 2009, 30, 1954-1961.	5.7	101
531	Synthesis of a polyamidoamine dendron-bearing lipid having sugar moieties and its use for preparation of nonviral gene vectors. Research on Chemical Intermediates, 2009, 35, 1005-1014.	1.3	8
532	Functionalization of single- and multi-walled carbon nanotubes with cationic amphiphiles for plasmid DNA complexation and transfection. Nano Research, 2009, 2, 638-647.	5.8	18
533	Dendrimers in gene transfection. Biochemistry (Moscow), 2009, 74, 1070-1079.	0.7	50
534	Prospects of antisense therapy technologies. Molecular Biology, 2009, 43, 917-929.	0.4	10
535	Ethylendiamine core PAMAM dendrimers/siRNA complexes as in vitro silencing agents. International Journal of Pharmaceutics, 2009, 380, 189-200.	2.6	57
536	The characteristics and transfection efficiency of cationic poly (ester–co–urethane) – short chain PEI conjugates self-assembled with DNA. Biomaterials, 2009, 30, 6665-6673.	5.7	41
537	Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 287-297.	1.7	135
538	Bioinspired application of dendrimers: From bio-mimicry to biomedical applications. Progress in Polymer Science, 2009, 34, 1-23.	11.8	190
539	The conjugation of diphtheria toxin T domain to poly(ethylenimine) based vectors for enhanced endosomal escape during gene transfection. Biomaterials, 2009, 30, 402-408.	5.7	51

#	Article	IF	CITATIONS
540	Synthesis of a novel water-soluble polyamide dendrimer based on a facile convergent method. European Polymer Journal, 2009, 45, 1994-2001.	2.6	11
541	Efficient nucleic acid transduction with lipoplexes containing novel piperazine- and polyamine-conjugated cholesterol derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 100-103.	1.0	31
542	Nonviral Vectors for Gene Delivery. Chemical Reviews, 2009, 109, 259-302.	23.0	2,160
543	PAMAM dendrimers â€" diverse biomedical applications. Facts and unresolved questions. Open Life Sciences, 2009, 4, 434-451.	0.6	35
544	Polyaspartamide-Based Oligo-ethylenimine Brushes with High Buffer Capacity and Low Cytotoxicity for Highly Efficient Gene Delivery. Bioconjugate Chemistry, 2009, 20, 440-446.	1.8	24
545	pH-Dependent Encapsulation of Pyrene in PPI-Core:PAMAM-Shell Dendrimers. Langmuir, 2009, 25, 5282-5285.	1.6	77
546	Nanocarrier Cross-Linking Density and pH Sensitivity Regulate Intracellular Gene Transfer. Nano Letters, 2009, 9, 4467-4473.	4. 5	70
547	Snail Down-Regulation using Small Interfering RNA Complexes Delivered through Collagen Scaffolds. Bioconjugate Chemistry, 2009, 20, 2262-2269.	1.8	31
548	Triazine Dendrimers as Nonviral Gene Delivery Systems: Effects of Molecular Structure on Biological Activity. Bioconjugate Chemistry, 2009, 20, 1799-1806.	1.8	79
549	Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chemical Reviews, 2009, 109, 6275-6540.	23.0	1,131
550	Dendrimers in Oncology: An Expanding Horizon. Chemical Reviews, 2009, 109, 49-87.	23.0	446
551	PAMAM Dendrimers as Nanoscale Oral Drug Delivery Systems. , 2009, , 423-459.		6
552	Stimuli-Sensitive Nanotechnology for Drug Delivery. , 2009, , 545-578.		9
553	Role of nanocarrier systems in cancer nanotherapy. Journal of Liposome Research, 2009, 19, 310-321.	1.5	7 5
554	Polycationic triazine-based dendrimers: effect of peripheral groups on transfection efficiency. New Journal of Chemistry, 2009, 33, 1918.	1.4	39
555	The role of the disulfide group in disulfide-based polymeric gene carriers. Expert Opinion on Drug Delivery, 2009, 6, 421-439.	2.4	69
556	Dendrimers and nanomedicine: multivalency in action. New Journal of Chemistry, 2009, 33, 1809.	1.4	176
557	Silica nanoparticles as a delivery system for nucleic acid-based reagents. Journal of Materials Chemistry, 2009, 19, 6308.	6.7	72

#	Article	IF	CITATIONS
558	Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand "Sacrifice―and Screening Can Enhance Binding. Journal of the American Chemical Society, 2009, 131, 9686-9694.	6.6	118
559	Progress toward liverâ€based gene therapy. Hepatology Research, 2009, 39, 325-340.	1.8	24
561	The Effect of Generation 2 and 3 Poly(amidoamine) Dendrimers on Viability of Human Breast Cancer Cells. Journal of Health Science, 2009, 55, 169-177.	0.9	33
562	Polymeric Carriers for Gene Delivery: Chitosan and Poly(amidoamine) Dendrimers. Current Pharmaceutical Design, 2010, 16, 2350-2368.	0.9	92
563	Chitosan and Chitosan Derivatives as DNA and siRNA Carriers. , 2010, , 377-390.		0
564	Polycation gene delivery systems: escape from endosomes to cytosol. Journal of Pharmacy and Pharmacology, 2010, 55, 721-734.	1.2	319
565	Mechanism of cell death induced by cationic dendrimers in RAW 264.7 murine macrophage-like cellsâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 489-495.	1.2	57
566	Vehicles for oligonucleotide delivery to tumours. Journal of Pharmacy and Pharmacology, 2010, 54, 3-27.	1.2	68
567	Nonviral gene transfer as a tool for studying transcription regulation of xenobiotic metabolizing enzymes. Advanced Drug Delivery Reviews, 2010, 62, 1250-1256.	6.6	15
568	Effect of clustered peptide binding on DNA condensation. Molecular BioSystems, 2010, 6, 249-255.	2.9	12
569	The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF165. Biomaterials, 2010, 31, 2893-2902.	5.7	105
571	Nanodelivery in airway diseases: Challenges and therapeutic applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 237-244.	1.7	120
572	Advances in Targeted Breast Cancer Therapy. Current Breast Cancer Reports, 2010, 2, 146-151.	0.5	8
573	New-generation biomedical materials: Peptide dendrimers and their application in biomedicine. Science China Chemistry, 2010, 53, 458-478.	4.2	47
574	Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors. Nanoscale Research Letters, 2010, 5, 1804-1811.	3.1	7
575	Self-assembled micellar aggregates based monomethoxyl poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Td delivery vectors. Journal of Materials Science: Materials in Medicine, 2010, 21, 2817-2825.	Tf 50 147 [·] 1.7	Td (glycol)- 8
576	Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Molecular Biology Reports, 2010, 37, 2003-2008.	1.0	30
577	The Development and Mechanism Studies of Cationic Chitosan-Modified Biodegradable PLGA Nanoparticles for Efficient siRNA Drug Delivery. Pharmaceutical Research, 2010, 27, 1285-1295.	1.7	69

#	Article	IF	CITATIONS
578	Nanoparticle-Mediated Brain-Specific Drug Delivery, Imaging, and Diagnosis. Pharmaceutical Research, 2010, 27, 1759-1771.	1.7	197
579	How to study dendriplexes II: Transfection and cytotoxicity. Journal of Controlled Release, 2010, 141, 110-127.	4.8	72
580	A top-down approach for construction of hybrid polymer-virus gene delivery vectors. Journal of Controlled Release, 2010, 144, 39-45.	4.8	34
581	Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. Journal of Controlled Release, 2010, 146, 99-105.	4.8	68
582	Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncology, 2010, 46, 698-704.	0.8	56
583	Gene Therapy in HIVâ€Infected Cells to Decrease Viral Impact by Using an Alternative Delivery Method. ChemMedChem, 2010, 5, 921-929.	1.6	48
584	Quantifying the Effect of Surface Ligands on Dendron–DNA Interactions: Insights into Multivalency through a Combined Experimental and Theoretical Approach. Chemistry - A European Journal, 2010, 16, 4519-4532.	1.7	63
585	Non-viral polyplexes: Scaffold mediated delivery for gene therapy. Progress in Polymer Science, 2010, 35, 441-458.	11.8	107
586	Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategiesâ€"A review. Progress in Polymer Science, 2010, 35, 1163-1194.	11.8	171
587	Photo-crosslinking copolymers based polyanhydride and 1G polyamidoamine-methacrylamide as bone tissue engineering: Synthesis, characterization, and in vitro degradation. Polymer Degradation and Stability, 2010, 95, 1961-1968.	2.7	10
588	Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. International Journal of Pharmaceutics, 2010, 383, 228-235.	2.6	65
589	Dextran–glycidyltrimethylammonium chloride conjugate/DNA nanoplex: A potential non-viral and haemocompatible gene delivery system. International Journal of Pharmaceutics, 2010, 389, 195-206.	2.6	31
590	Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors. Acta Biomaterialia, 2010, 6, 2658-2665.	4.1	50
591	The effect of swelling and cationic character on gene transfection by pH-sensitive nanocarriers. Biomaterials, 2010, 31, 6859-6866.	5 . 7	40
592	Complexation between amine- and hydroxyl-terminated PAMAM dendrimers and sodium dodecyl sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 49-54.	2.3	18
593	Understanding specific and nonspecific toxicities: a requirement for the development of dendrimerâ€based pharmaceuticals. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 249-259.	3.3	69
594	Structural characterization of poly(amino)ester dendrimers and related impurities by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2207-2216.	0.7	10
595	Physicochemical and biological properties of self-assembled antisense/poly(amidoamine) dendrimer nanoparticles: the effect of dendrimer generation and charge ratio. International Journal of Nanomedicine, 2010, 5, 359.	3.3	17

#	Article	IF	CITATIONS
596	Downregulation of miR-21 Enhances Chemotherapeutic Effect of Taxol in Breast Carcinoma Cells. Technology in Cancer Research and Treatment, 2010, 9, 77-86.	0.8	111
597	Hyperbranched Polyamines for Transfection. Topics in Current Chemistry, 2010, 296, 95-129.	4.0	31
598	Molecular-Weight-Dependent Toxic Effects of Chitosans on the Human Keratinocyte Cell Line HaCaT. Skin Pharmacology and Physiology, 2010, 23, 164-170.	1.1	71
599	Application of Polyhydroxyalkanoates Nanoparticles as Intracellular Sustained Drug-Release Vectors. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 127-140.	1.9	107
600	Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	38
601	Applications of Nanobiotechnology in Ophthalmology – Part I. Ophthalmic Research, 2010, 44, 1-16.	1.0	9
602	Endosomal disruptors in non-viral gene delivery. Expert Opinion on Drug Delivery, 2010, 7, 331-339.	2.4	22
604	Cationic Liposome–Nucleic Acid Complexes for Gene Delivery and Silencing: Pathways and Mechanisms for Plasmid DNA and siRNA. Topics in Current Chemistry, 2010, 296, 191-226.	4.0	131
605	Pharmaceutical emulsions: a new approach for gene therapy. Journal of Drug Targeting, 2010, 18, 333-342.	2.1	21
606	Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and <i>in Vitro</i> Transfection Efficiency. Molecular Pharmaceutics, 2010, 7, 1734-1746.	2.3	119
607	A Truncated HGP Peptide Sequence That Retains Endosomolytic Activity and Improves Gene Delivery Efficiencies. Molecular Pharmaceutics, 2010, 7, 1260-1265.	2.3	38
608	Computational Approach for Understanding the Interactions of UV-Degradable Dendrons with DNA and siRNA. Journal of Physical Chemistry B, 2010, 114, 5686-5693.	1.2	38
609	Ability to Adapt: Different Generations of PAMAM Dendrimers Show Different Behaviors in Binding siRNA. Journal of Physical Chemistry B, 2010, 114, 2667-2675.	1.2	101
610	Hyperbranched Polyphosphates for Drug Delivery Application: Design, Synthesis, and In Vitro Evaluation. Biomacromolecules, 2010, 11, 1564-1570.	2.6	98
611	Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie, 2010, 92, 1242-1251.	1.3	126
612	Molecular Characterization of the Interaction between siRNA and PAMAM G7 Dendrimers by SAXS, ITC, and Molecular Dynamics Simulations. Biomacromolecules, 2010, 11, 3571-3577.	2.6	75
613	Receptor-Mediated Gene Delivery Using PAMAM Dendrimers Conjugated with Peptides Recognized by Mesenchymal Stem Cells. Molecular Pharmaceutics, 2010, 7, 763-774.	2.3	100
614	Polycation-Induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA. Molecular Pharmaceutics, 2010, 7, 870-883.	2.3	39

#	Article	IF	Citations
615	Strategies for the Preparation of Synthetic Transfection Vectors. Topics in Current Chemistry, 2010, 296, 15-49.	4.0	5
616	Synthesis and Gene Delivery of Poly(amido amine)s with Different Branched Architecture. Biomacromolecules, 2010, 11, 489-495.	2.6	83
617	Linear cyclen-based polyamine as a novel and efficient reagent in gene delivery. Organic and Biomolecular Chemistry, 2010, 8, 640-647.	1.5	16
618	PEGylated Polyamidoamine Dendrimers with Bis-Aryl Hydrazone Linkages for Enhanced Gene Delivery. Biomacromolecules, 2010, 11, 1940-1947.	2.6	81
619	Synthesis of a Fluorescent Cationic Phosphorus Dendrimer and Preliminary Biological Studies of Its Interaction with DNA. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 155-167.	0.4	27
620	DNA Condensation by pH-Responsive Polycations. Biomacromolecules, 2010, 11, 2399-2406.	2.6	40
621	Synthesis and Evaluation of Phenylalanine-Modified Hyperbranched Poly(amido amine)s as Promising Gene Carriers. Biomacromolecules, 2010, 11, 245-251.	2.6	65
622	Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine, 2010, 5, 1219-1236.	1.7	63
623	Calcium carbonate/CalP6 nanocomposite particles as gene delivery vehicles for human vascular smooth muscle cells. Journal of Materials Chemistry, 2010, 20, 8050.	6.7	44
624	Peptide- and polymer-based delivery of therapeutic RNA. Soft Matter, 2010, 6, 226-234.	1.2	34
625	Conformations of high-generation dendritic polyelectrolytes. Journal of Materials Chemistry, 2010, 20, 10486.	6.7	25
626	Biological properties of phosphorus dendrimers. New Journal of Chemistry, 2010, 34, 1512.	1.4	87
627	Less is more – multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chemical Science, 2010, 1, 393.	3.7	76
628	Co-delivery of as-miR-21 and 5-FU by Poly(amidoamine) Dendrimer Attenuates Human Glioma Cell Growth in Vitro. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 303-314.	1.9	155
629	Liposomal Polyamineâ^'Dialkyl Phosphate Conjugates as Effective Gene Carriers: Chemical Structure, Morphology, and Gene Transfer Activity. Bioconjugate Chemistry, 2010, 21, 844-852.	1.8	22
630	Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo. Topics in Current Chemistry, 2010, 296, 1-13.	4.0	16
631	Influence of block sequences in polymer vectors for gene transfection in vitro and toxicity assessment of zebrafish embryos in vivo. Journal of Materials Chemistry, 2011, 21, 4538.	6.7	10
632	A monitoring method for Atg4 activation in living cells using peptide-conjugated polymeric nanoparticles. Autophagy, 2011, 7, 1052-1062.	4.3	30

#	Article	IF	Citations
633	Dendritic Poly(ether imine) Based Gene Delivery Vector. Bioconjugate Chemistry, 2011, 22, 115-119.	1.8	25
634	Using Ethidium To Probe Nonequilibrium States of DNA Condensed for Gene Delivery. Biochemistry, 2011, 50, 1125-1127.	1.2	13
635	NANOTECHNOLOGY IN PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS: DENDRIMERS. Nano, 2011, 06, 509-539.	0.5	41
637	Self-Assembly of Focal Point Oligo-catechol Ethylene Glycol Dendrons on Titanium Oxide Surfaces: Adsorption Kinetics, Surface Characterization, and Nonfouling Properties. Journal of the American Chemical Society, 2011, 133, 10940-10950.	6.6	185
638	A Discussion of the pH-Dependent Protonation Behaviors of Poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /Ove Journal of Physical Chemistry B, 2011, 115, 844-860.	erlock 10 ⁻ 1 . 2	Tf 50 587 Td 125
639	Structurally Diverse Nitric Oxide-Releasing Poly(propylene imine) Dendrimers. Chemistry of Materials, 2011, 23, 4227-4233.	3.2	64
640	Hydrophobically Modified Dendrons: Developing Structureâ Activity Relationships for DNA Binding and Gene Transfection. Molecular Pharmaceutics, 2011, 8, 416-429.	2.3	74
641	Interactions of a Charged Nanoparticle with a Lipid Membrane: Implications for Gene Delivery. Biophysical Journal, 2011, 100, 1288-1297.	0.2	46
642	Gene delivery with polycationic fullerene hexakis-adducts. Chemical Communications, 2011, 47, 4640.	2.2	74
643	Nanoparticles for Nucleic Acid Delivery. , 2011, , 389-410.		5
644	Advances in Gene Delivery Systems. Pharmaceutical Medicine, 2011, 25, 293-306.	1.0	107
645	Effective interactions between charged dendrimers. Soft Matter, 2011, 7, 8419.	1.2	19
646	A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector. Nanotechnology, 2011, 22, 375102.	1.3	24
647	pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs. , 2011, , 357-375.		1
648	Degradable Self-Assembling Dendrons for Gene Delivery: Experimental and Theoretical Insights into the Barriers to Cellular Uptake. Journal of the American Chemical Society, 2011, 133, 20288-20300.	6.6	166
649	Gene Delivery into Mesenchymal Stem Cells: A Biomimetic Approach Using RGD Nanoclusters Based on Poly(amidoamine) Dendrimers. Biomacromolecules, 2011, 12, 472-481.	2.6	80
650	Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opinion on Drug Delivery, 2011, 8, 485-504.	2.4	53
651	Bundling and Aggregation of DNA by Cationic Dendrimers. Biomacromolecules, 2011, 12, 511-517.	2.6	117

#	Article	IF	CITATIONS
653	Non-viral Gene Therapy. Fundamental Biomedical Technologies, 2011, , 599-699.	0.2	4
654	A supramolecular approach to the preparation of charge-tunable dendritic polycations for efficient gene delivery. Chemical Communications, 2011, 47, 5473-5475.	2.2	81
655	A Tris-Dendrimer for Hosting Diverse Chemical Species. Journal of Physical Chemistry C, 2011, 115, 12789-12796.	1.5	14
656	Biomedical applications of dendrimers: a tutorial. Chemical Society Reviews, 2011, 40, 173-190.	18.7	607
657	Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery. Advances in Polymer Science, 2011, , 1-29.	0.4	6
658	Modeling of hyperbranched polyesters as hosts for the multifunctional bioactive agent shikonin. Physical Chemistry Chemical Physics, 2011, 13, 10808.	1.3	16
659	Structurally Flexible Triethanolamine Core PAMAM Dendrimers Are Effective Nanovectors for DNA Transfection in Vitro and in Vivo to the Mouse Thymus. Bioconjugate Chemistry, 2011, 22, 2461-2473.	1.8	65
660	The influence of PAMAM-OH dendrimers on the activity of human erythrocytes ATPases. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2714-2723.	1.4	28
661	Dendrosome-dendriplex inside liposomes: as a gene delivery system. Journal of Drug Targeting, 2011, 19, 925-932.	2.1	38
662	Average relaxation time of internal spectrum for carbosilane dendrimers: Nuclear magnetic resonance studies. Journal of Chemical Physics, 2011, 135, 124901.	1.2	9
663	Polymeric Nanoparticles of Chitosan Derivatives as DNA and siRNA Carriers. Advances in Polymer Science, 2011, , 1-21.	0.4	8
664	Photoluminescent Hyperbranched Poly(amido amine) Containing \hat{I}^2 -Cyclodextrin as a Nonviral Gene Delivery Vector. Bioconjugate Chemistry, 2011, 22, 1162-1170.	1.8	89
665	Targeted Cellular Uptake and siRNA Silencing by Quantumâ€Dot Nanoparticles Coated with βâ€Cyclodextrin Coupled to Amino Acids. Chemistry - A European Journal, 2011, 17, 5171-5179.	1.7	39
666	Odd–Even Effect of Repeating Aminoethylene Units in the Side Chain of N-Substituted Polyaspartamides on Gene Transfection Profiles. Journal of the American Chemical Society, 2011, 133, 15524-15532.	6.6	199
667	Understanding the Effect of Polylysine Architecture on DNA Binding Using Molecular Dynamics Simulations. Biomacromolecules, 2011, 12, 3870-3879.	2.6	78
668	Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery. Therapeutic Delivery, 2011, 2, 493-521.	1.2	49
669	Cyclodextrin-based gene delivery systems. Chemical Society Reviews, 2011, 40, 1586-1608.	18.7	371
670	Alkyl sulfonyl derivatized PAMAM-G2dendrimers as nonviral gene delivery vectors with improved transfection efficiencies. Organic and Biomolecular Chemistry, 2011, 9, 851-864.	1.5	50

#	Article	IF	CITATIONS
671	Reconfiguring polylysine architectures for controlling polyplex binding and non-viral transfection. Biomaterials, 2011, 32, 2432-2444.	5.7	50
672	Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages. International Journal of Nanomedicine, 2011, 6, 2715.	3.3	30
673	Polycation-Mediated Gene Delivery: The Physicochemical Aspects Governing the Process., 2011,,.		3
674	Polycation-Based Gene Therapy: Current Knowledge and New Perspectives. Current Gene Therapy, 2011, 11, 288-306.	0.9	96
675	Polyamidoamine dendrimers as gene delivery carriers in the inner ear: How to improve transfection efficiency. Experimental and Therapeutic Medicine, 2011, 2, 777-781.	0.8	28
676	Peptide dendrimers as efficient and biocompatible gene delivery vectors: Synthesis and in vitro characterization. Journal of Controlled Release, 2011, 155, 77-87.	4.8	111
677	Intracellular Trafficking of Polyamidoamine–Poly(ethylene glycol) Block Copolymers in DNA Delivery. Bioconjugate Chemistry, 2011, 22, 1519-1525.	1.8	37
678	Nucleic Acid Carriers Based on Precise Polymer Conjugates. Bioconjugate Chemistry, 2011, 22, 1737-1752.	1.8	69
679	Delivery of Nucleic Acid Drugs. Advances in Polymer Science, 2011, , 95-134.	0.4	27
680	DNA Compaction by a Dendrimer. Journal of Physical Chemistry B, 2011, 115, 217-230.	1.2	89
681	Synthesis of PAMAM Dendrimer Derivatives with Enhanced Buffering Capacity and Remarkable Gene Transfection Efficiency. Bioconjugate Chemistry, 2011, 22, 1046-1055.	1.8	92
682	The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 1228-1246.	6.6	459
683	Designing Dendrimers for Drug Delivery and Imaging: Pharmacokinetic Considerations. Pharmaceutical Research, 2011, 28, 1500-1519.	1.7	113
684	The effect of pH on PAMAM dendrimer–siRNA complexation — Endosomal considerations as determined by molecular dynamics simulation. Biophysical Chemistry, 2011, 158, 126-133.	1.5	77
685	Phosphoester modified poly(ethylenimine) as efficient and low cytotoxic genevectors. Science China Chemistry, 2011, 54, 351-358.	4.2	6
686	Lowâ€generation asymmetric dendrimers exhibit minimal toxicity and effectively complex DNA. Journal of Peptide Science, 2011, 17, 470-478.	0.8	52
687	Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 33-46.	3.3	53
688	Nanomaterials: Applications in Cancer Imaging and Therapy. Advanced Materials, 2011, 23, H18-40.	11.1	814

#	Article	IF	CITATIONS
690	Lightâ€Responsive Capture and Release of DNA in a Ternary Supramolecular Complex. Angewandte Chemie - International Edition, 2011, 50, 9747-9751.	7.2	164
691	Stabilization of polyamidoamine (PAMAM) dendrimers/sodium dodecyl sulfate complexes via PEGylation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 47-52.	2.3	11
692	Carbosilane dendrimers NN8 and NN16 form a stable complex with siGAG1. Colloids and Surfaces B: Biointerfaces, 2011, 83, 388-391.	2.5	33
693	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 4283-4292.	5 . 7	79
694	PAMAM dendrimer with a 1,2-diaminoethane surface facilitates endosomal escape for enhanced pDNA delivery. Polymer, 2011, 52, 339-346.	1.8	40
695	Injectable polymeric carriers for gene delivery systems. , 2011, , 235-259.		1
696	Coupled Folding and Specific Binding: Fishing for Amphiphilicity. International Journal of Molecular Sciences, 2011, 12, 1431-1450.	1.8	11
697	Engineering Biomaterials for Regenerative Medicine. , 2012, , .		16
699	Polyamidoamine dendron-bearing lipid assemblies: Their morphologies and gene transfection ability. Journal of Biomaterials Applications, 2012, 27, 445-456.	1.2	8
700	Targeting corneal disorders using gene therapy. Expert Review of Ophthalmology, 2012, 7, 351-362.	0.3	1
701	Nonviral gene delivery system. International Journal of Pharmaceutical Investigation, 2012, 2, 97.	0.2	17
702	Dendritic nanoparticles: the next generation of nanocarriers?. Therapeutic Delivery, 2012, 3, 941-959.	1.2	46
703	Nanotechnology Based Diagnostic and Therapeutic Strategies for Neuroscience with Special Emphasis on Ischemic Stroke. Current Medicinal Chemistry, 2012, 19, 744-756.	1.2	29
705	Minimum free energy paths for a nanoparticle crossing the lipid membrane. Soft Matter, 2012, 8, 12066.	1.2	21
706	Lower Rim Guanidinocalix[4] arenes: Macrocyclic Nonviral Vectors for Cell Transfection. Bioconjugate Chemistry, 2012, 23, 993-1002.	1.8	59
707	Polyamidoamine Dendron-Bearing Lipids as a Nonviral Vector: Influence of Dendron Generation. Bioconjugate Chemistry, 2012, 23, 871-879.	1.8	42
708	Dendrimers as non-viral vectors for siRNA delivery. New Journal of Chemistry, 2012, 36, 256-263.	1.4	89
709	Advances in Metalâ€Free Heterocycleâ€Based Columnar Liquid Crystals. Chemistry - A European Journal, 2012, 18, 14560-14588.	1.7	88

#	Article	IF	CITATIONS
710	Synthesis and evaluation of N-(2,3-dihydroxypropyl)-PEIs as efficient vectors for nucleic acids. Molecular BioSystems, 2012, 8, 1426.	2.9	13
711	The Use of Solid Supports to Generate Nucleic Acid Carriers. Accounts of Chemical Research, 2012, 45, 1140-1152.	7.6	21
712	Neuron-Targeted Copolymers with Sheddable Shielding Blocks Synthesized Using a Reducible, RAFT-ATRP Double-Head Agent. Journal of the American Chemical Society, 2012, 134, 16554-16557.	6.6	65
713	Nitric Oxide-Releasing Dendrimers as Antibacterial Agents. Biomacromolecules, 2012, 13, 3343-3354.	2.6	121
714	Dendrimer-Enabled Modulation of Gene Expression in <i>Chlamydia trachomatis</i> Pharmaceutics, 2012, 9, 413-421.	2.3	38
715	Structural Effects and Lipid Membrane Interactions of the pH-Responsive GALA Peptide with Fatty Acid Acylation. Biochemistry, 2012, 51, 4658-4668.	1.2	25
716	Single Cyclized Molecule Versus Single Branched Molecule: A Simple and Efficient 3D "Knot―Polymer Structure for Nonviral Gene Delivery. Journal of the American Chemical Society, 2012, 134, 4782-4789.	6.6	81
717	siRNA carriers based on carbosilane dendrimers affect zeta potential and size of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2209-2216.	1.4	31
718	Lipophosphonate/lipophosphoramidates: A family of synthetic vectors efficient for gene delivery. Biochimie, 2012, 94, 33-41.	1.3	46
719	A review of nanocarriers for the delivery of small interfering RNA. Biomaterials, 2012, 33, 7138-7150.	5.7	313
720	Multivalent Dendritic Architectures for Theranostics. Nanostructure Science and Technology, 2012, , 315-344.	0.1	2
721	Nucleic Acid Delivery via Polymer Vehicles. , 2012, , 497-527.		6
723	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-& amp; alpha;. International Journal of Nanomedicine, 2012, 7, 3625.	3.3	20
724	Dendrimers. , 2012, , 113-176.		15
725	Synthesis of Cationic Carbosilane Dendrimers via Click Chemistry and Their Use as Effective Carriers for DNA Transfection into Cancerous Cells. Molecular Pharmaceutics, 2012, 9, 433-447.	2.3	31
726	Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter, 2012, 8, 5414.	1.2	132
728	Dendrimer-Based Nanoparticle Therapies: Can Uniform Multifunctional Therapeutics Be Made with Current Chemical Approaches?. Nanostructure Science and Technology, 2012, , 295-313.	0.1	0
729	Dendritic and lipid-based carriers for gene/siRNA delivery (a review). Current Opinion in Solid State and Materials Science, 2012, 16, 310-322.	5.6	40

#	Article	IF	CITATIONS
731	Stability of Dendriplexes Formed by Anti-HIV Genetic Material and Poly(propylene imine) Dendrimers in the Presence of Glucosaminoglycans. Journal of Physical Chemistry B, 2012, 116, 14525-14532.	1.2	11
732	Endosomal Escape Pathways for Non-Viral Nucleic Acid Delivery Systems. , 0, , .		46
733	Nanomedical and advanced materials. , 2012, , 187-254.		1
734	Bioreducible Cationic Polymers for Gene Transfection. , 2012, , .		1
735	Synthetic polyspermine imidazole-4, 5-amide as an efficient and cytotoxicity-free gene delivery system. International Journal of Nanomedicine, 2012, 7, 3813.	3 . 3	19
736	Design and synthesis of new cationic waterâ€soluble pyrene containing dendrons for DNA sensory applications. Journal of Polymer Science Part A, 2012, 50, 297-305.	2.5	7
737	Nucleic Acid Delivery: The Missing Pieces of the Puzzle?. Accounts of Chemical Research, 2012, 45, 1153-1162.	7.6	291
738	Synthesis of Aliphatic Polyamide Dendrimers Based on Facile Convergent Method. Macromolecules, 2012, 45, 4175-4183.	2.2	6
739	Endocytosis and Intracellular Trafficking as Gateways for Nanomedicine Delivery: Opportunities and Challenges. Molecular Pharmaceutics, 2012, 9, 2380-2402.	2.3	282
740	\hat{l}_{\pm} -amino acid pendant polymers as endosomal pH-responsive gene carriers. Macromolecular Research, 2012, 20, 302-308.	1.0	12
741	Interaction of nucleic acids with carbon nanotubes and dendrimers. Journal of Biosciences, 2012, 37, 457-474.	0.5	50
742	Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. International Journal of Pharmaceutics, 2012, 422, 364-373.	2.6	27
743	Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials, 2012, 33, 3025-3035.	5.7	226
744	Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials, 2012, 33, 4917-4927.	5.7	160
745	Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials, 2012, 33, 4773-4782.	5.7	148
746	Endosomal escape and transfection efficiency of PEGylated cationic liposome–DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials, 2012, 33, 4928-4935.	5.7	132
747	Effect of unsaturated alkyl chains on transfection activity of poly(amidoamine) dendron-bearing lipids. Journal of Controlled Release, 2012, 160, 552-560.	4.8	47
748	Poly(amidoamine)â€based Dendrimer/siRNA Complexation Studied by Computer Simulations: Effects of pH and Generation on Dendrimer Structure and siRNA Binding. Macromolecular Bioscience, 2012, 12, 225-240.	2.1	61

#	ARTICLE	IF	Citations
749	Conformational changes of small PAMAM dendrimers as a function of their charge state: A combined electrospray mass spectrometry, traveling-wave ion mobility and molecular modeling study. International Journal of Mass Spectrometry, 2013, 354-355, 235-241.	0.7	9
750	Positively charged phosphorus dendrimers. An overview of their properties. New Journal of Chemistry, 2013, 37, 3358.	1.4	33
751	Bioengineered nanoparticles for <scp>siRNA</scp> delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 449-468.	3.3	42
752	Efficient Dendrimer–DNA Complexation and Gene Delivery Vector Properties of Nitrogen-Core Poly(propyl ether imine) Dendrimer in Mammalian Cells. Bioconjugate Chemistry, 2013, 24, 1612-1623.	1.8	50
753	Gold nanoparticles and fluorescently-labelled DNA as a platform for biological sensing. Nanoscale, 2013, 5, 9503.	2.8	66
7 54	Novel Monodisperse PEGtide Dendrons: Design, Fabrication, and Evaluation of Mannose Receptor-Mediated Macrophage Targeting. Bioconjugate Chemistry, 2013, 24, 1332-1344.	1.8	29
755	Dendrimers for siRNA Delivery. Pharmaceuticals, 2013, 6, 161-183.	1.7	135
756	Synthesis of amino-terminated hyperbranched polymers and their application in microfiber synthetic leather base dyeing. Textile Reseach Journal, 2013, 83, 381-395.	1.1	17
757	Quantitation of Complexed versus Free Polymers in Interpolyelectrolyte Polyplex Formulations. ACS Macro Letters, 2013, 2, 1038-1041.	2.3	15
758	Rational Design of a Biomimetic Cell Penetrating Peptide Library. ACS Nano, 2013, 7, 8616-8626.	7.3	43
760	Adenoviral Vectors Coated with PAMAM Dendrimer Conjugates Allow CAR Independent Virus Uptake and Targeting to the EGF Receptor. Molecular Pharmaceutics, 2013, 10, 606-618.	2.3	40
761	Polymeric Nucleic Acid Vehicles Exploit Active Interorganelle Trafficking Mechanisms. ACS Nano, 2013, 7, 347-364.	7.3	76
762	Force Biased Molecular Dynamics Simulation Study of Effect of Dendrimer Generation on Interaction with DNA. Journal of Chemical Theory and Computation, 2013, 9, 722-729.	2.3	22
763	Synthesis and properties of peptide dendrimers containing fluorescent and branched amino acids. Biopolymers, 2013, 100, 64-70.	1.2	7
764	Cell-surface glycosaminoglycans inhibit intranuclear uptake but promote post-nuclear processes of polyamidoamine dendrimer–pDNA transfection. European Journal of Pharmaceutical Sciences, 2013, 48, 55-63.	1.9	15
765	Supramolecular pseudo-block gene carriers based on bioreducible star polycations. Biomaterials, 2013, 34, 5411-5422.	5.7	78
766	Efficient gene transfection in the neurotypic cells by star-shaped polymer consisting of \hat{l}^2 -cyclodextrin core and poly(amidoamine) dendron arms. Carbohydrate Polymers, 2013, 94, 185-192.	5.1	18
767	Oligobenzylethylenimine enriches linear polyethylenimine with a pH-sensitive membrane-disruptive property and leads to enhanced gene delivery activity. Acta Biomaterialia, 2013, 9, 4985-4993.	4.1	16

#	Article	IF	CITATIONS
768	Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Advanced Drug Delivery Reviews, 2013, 65, 1204-1214.	6.6	53
769	Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomaterials Science, 2013, 1, 152-170.	2.6	137
770	Design of Hybrid Lipid/Retroviral-Like Particle Gene Delivery Vectors. Molecular Pharmaceutics, 2013, 10, 1725-1735.	2.3	25
771	Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Progress in Polymer Science, 2013, 38, 993-1008.	11.8	104
773	Polymers in Drug Delivery: Concepts, Developments and Potential. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 1-34.	0.6	2
774	Folic Acid Modified Cationic \hat{I}^3 -Cyclodextrin-oligoethylenimine Star Polymer with Bioreducible Disulfide Linker for Efficient Targeted Gene Delivery. Biomacromolecules, 2013, 14, 476-484.	2.6	91
776	Ionization Behavior of Chitosan and Chitosan–DNA Polyplexes Indicate That Chitosan Has a Similar Capability to Induce a Proton-Sponge Effect as PEI. Biomacromolecules, 2013, 14, 1732-1740.	2.6	149
777	Biocompatible, multifunctional, and well-defined OEG-based dendritic platforms for biomedical applications. Organic and Biomolecular Chemistry, 2013, 11, 4109.	1.5	14
778	Synthesis of novel polyesteramine dendrimers by divergent and convergent methods. Tetrahedron, 2013, 69, 6810-6820.	1.0	17
779	Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 185-224.	0.6	3
780	Complexation of HIV derived peptides with carbosilane dendrimers. Colloids and Surfaces B: Biointerfaces, 2013, 101, 236-242.	2.5	40
781	Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opinion on Drug Delivery, 2013, 10, 1687-1698.	2.4	98
782	Polymeric nanoparticles for gene delivery., 2013,, 137-145.		0
783	Dendrimers., 2013,, 259-285.		5
784	PAMAM dendrimer roles in gene delivery methods and stem cell research. Cell Biology International, 2013, 37, 415-419.	1.4	22
785	Preparation of amphiphilic diblock copolymers with pendant hydrophilic phosphorylcholine and hydrophobic dendron groups and their self-association behavior in water. Journal of Polymer Science Part A, 2013, 51, 4923-4931.	2.5	8
786	Synthesis of Carboxymethyl Poly(1-vinylimidazole) as a Polyampholyte for Biocompatibility. Chemistry Letters, 2013, 42, 358-360.	0.7	9
787	Organic–Organic Hybrid Nanoassemblies. , 2013, , 219-302.		0

#	ARTICLE	IF	CITATIONS
788	- Marine Biomaterials: Role in Drug Delivery and Tissue Engineering toward Biomedical Applications. , 2013, , 656-679.		0
789	Visualizing the Attack of RNase Enzymes on Dendriplexes and Naked RNA Using Atomic Force Microscopy. PLoS ONE, 2013, 8, e61710.	1.1	14
790	Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review. Scientific World Journal, The, 2013, 2013, 1-16.	0.8	68
791	Cationic Peptide Exposure Enhances Pulsed-Electric-Field-Mediated Membrane Disruption. PLoS ONE, 2014, 9, e92528.	1.1	14
792	DNA Compaction Induced by a Cationic Polymer or Surfactant Impact Gene Expression and DNA Degradation. PLoS ONE, 2014, 9, e92692.	1.1	38
793	APPLICATION OF DENDRIMER/PLASMID hBMP-2 COMPLEXES LOADED INTO β-TCP/COLLAGEN SCAFFOLD IN THE TREATMENT OF FEMORAL DEFECTS IN RATS. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450005.	0.3	1
794	Dendrimers for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 279-328.	0.1	0
795	CHAPTER 7. Dendrimers. RSC Nanoscience and Nanotechnology, 0, , 246-279.	0.2	1
796	Gene Delivery into Cells and Tissues. , 2014, , 687-723.		2
797	Sequence-defined shuttles for targeted nucleic acid and protein delivery. Therapeutic Delivery, 2014, 5, 1025-1045.	1.2	3
798	Chemical Modification of Chitosan for Efficient Gene Therapy. Advances in Food and Nutrition Research, 2014, 73, 83-101.	1.5	14
799	Cationic Polymers as Gene-Activated Matrices for Biomedical Applications. RSC Polymer Chemistry Series, 2014, , 438-462.	0.1	O
800	Interactions of Cationic Polymers with Cells. RSC Polymer Chemistry Series, 2014, , 479-511.	0.1	1
801	Cationic Dendritic Systems as Non-viral Vehicles for Gene Delivery Applications. RSC Polymer Chemistry Series, 2014, , 321-355.	0.1	1
802	Cationic Polymers for Gene Delivery into Mesenchymal Stem Cells as a Novel Approach to Regenerative Medicine. RSC Polymer Chemistry Series, 2014, , 386-437.	0.1	0
803	Applications of Dendrimers in Drug Delivery Agents, Diagnosis, Therapy, and Detection. Journal of Nanomaterials, 2014, 2014, 1-19.	1.5	147
804	Effect of methotrexate conjugated PAMAM dendrimers on the viability of MES-SA uterine cancer cells. Journal of Pharmacy and Bioallied Sciences, 2014, 6, 297.	0.2	16
805	Gene transfection in complex media using PCBMAEE-PCBMA copolymer with both hydrolytic and zwitterionic blocks. Biomaterials, 2014, 35, 7909-7918.	5.7	36

#	Article	IF	Citations
806	Recent Trends of Polymer Mediated Liposomal Gene Delivery System. BioMed Research International, 2014, 2014, 1-15.	0.9	17
807	BIOINSPIRED ENGINEERING OF MULTIFUNCTIONAL DEVICES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 31-63.	0.1	0
808	Synthesis and Properties of Polyalkylenimines. RSC Polymer Chemistry Series, 2014, , 30-61.	0.1	3
809	Cationic Polymer Nanoparticles for Drug and Gene Delivery. RSC Polymer Chemistry Series, 2014, , 268-295.	0.1	1
810	The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions. Journal of Chemical Physics, 2014, 140, 204912.	1.2	4
811	PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. Polymer, 2014, 55, 2761-2771.	1.8	20
812	pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers. Journal of Controlled Release, 2014, 174, 117-125.	4.8	99
813	Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnology Advances, 2014, 32, 844-852.	6.0	56
814	Combination of Dendrimer-Nanovector-Mediated Small Interfering RNA Delivery to Target Akt with the Clinical Anticancer Drug Paclitaxel for Effective and Potent Anticancer Activity in Treating Ovarian Cancer. Journal of Medicinal Chemistry, 2014, 57, 2634-2642.	2.9	59
815	Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: A potential injectable cellular product for nucleus pulposus regeneration. Acta Biomaterialia, 2014, 10, 3463-3474.	4.1	50
816	Isolation and Characterization of Precise Dye/Dendrimer Ratios. Chemistry - A European Journal, 2014, 20, 4638-4645.	1.7	22
817	Nonviral gene delivery with dendritic self-assembling architectures. Nanomedicine, 2014, 9, 667-693.	1.7	29
818	The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35, 3396-3405.	5.7	78
819	Polycationic Adamantane-Based Dendrons of Different Generations Display High Cellular Uptake without Triggering Cytotoxicity. Journal of the American Chemical Society, 2014, 136, 810-819.	6.6	44
820	Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnology Advances, 2014, 32, 818-830.	6.0	58
821	Enhanced Cellular Transfection by Ternary Non-Viral Gene Vectors Coupled with Adeno-Associated Virus-Derived Peptides. Macromolecular Bioscience, 2014, 14, 121-130.	2.1	1
822	Polymers for Nucleic Acid Transfer—An Overview. Advances in Genetics, 2014, 88, 231-261.	0.8	46
823	Co-caged gold nanoclusters and methyl motifs lead to detoxification of dendrimers and allow cytosolic access for siRNA transfection. Journal of Materials Chemistry B, 2014, 2, 6730-6737.	2.9	9

#	Article	IF	Citations
824	Polyglycerol-based amphiphilic dendrons as potential siRNA carriers for in vivo applications. Journal of Materials Chemistry B, 2014, 2, 2153-2167.	2.9	32
825	Construction and DNA Condensation of Cyclodextrinâ€Coated Gold Nanoparticles with Anthryl Grafts. Chemistry - an Asian Journal, 2014, 9, 1895-1903.	1.7	8
826	Polyethylenimine-grafted polyamidoamine conjugates for gene delivery with high efficiency and low cytotoxicity. Macromolecular Research, 2014, 22, 757-764.	1.0	8
827	Shapeâ€Persistent and Adaptive Multivalency: Rigid Transgeden (TGD) and Flexible PAMAM Dendrimers for Heparin Binding. Chemistry - A European Journal, 2014, 20, 9666-9674.	1.7	21
828	Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	88
829	Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromolecular Research, 2014, 22, 500-508.	1.0	23
830	Efficient targeted gene delivery by a novel PAMAM/DNA dendriplex coated with hyaluronic acid. Nanomedicine, 2014, 9, 2787-2801.	1.7	26
831	Preparation and evaluation of polyamidoamine dendrimer conjugate with glucuronylglucosyl- $\langle b \rangle$ 12/b>-cyclodextrin (G3) as a novel carrier for siRNA. Journal of Drug Targeting, 2014, 22, 927-934.	2.1	16
832	Dendrimers for drug delivery. Journal of Materials Chemistry B, 2014, 2, 4055-4066.	2.9	215
833	Interaction of phosphorus dendrimers with HIV peptidesâ€"Fluorescence studies of nano-complexes formation. Journal of Luminescence, 2014, 148, 364-369.	1.5	9
834	Current trends in bioelectrics for reversible cell membrane manipulation. Physics of Life Reviews, 2014, 11, 212-214.	1.5	3
836	Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale, 2014, 6, 6415.	2.8	159
838	CATIONIC POLYMER BASED GENE DELIVERY: UPTAKE AND INTRACELLULAR TRAFFICKING. Cosmos, 2014, 10, 17-24.	0.4	1
840	Dendrimers, Dendrigrafts, and Their Conjugations as Delivery Vectors in Gene Therapy., 2015,, 315-330.		0
841	Recombinant adeno-associated virus-, polyethylenimine/plasmid- and lipofectamine/carboxyfluorescein-labeled small interfering RNA-based transfection in retinal pigment epithelial cells with ultrasound and/or SonoVue. Molecular Medicine Reports, 2015, 11, 3609-3614.	1.1	6
842	Conducting Polymers: Prospects. , 0, , 2024-2038.		0
843	Dendrimer-enabled transformation of Anaplasma phagocytophilum. Microbes and Infection, 2015, 17, 817-822.	1.0	8
844	Multifunctional nanoparticles for gene delivery and spinal cord injury. Journal of Biomedical Materials Research - Part A, 2015, 103, 3474-3482.	2.1	25

#	Article	IF	CITATIONS
845	Determining average path length and average trapping time on generalized dual dendrimer. International Journal of Modern Physics B, 2015, 29, 1550072.	1.0	1
846	Synthesis and properties of aromatic polyamide dendrimers with polyhedral oligomeric silsesquioxane cores. Polymer Chemistry, 2015, 6, 4758-4765.	1.9	13
847	Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Human Gene Therapy, 2015, 26, 452-462.	1.4	164
848	Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	0
849	Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids and Surfaces B: Biointerfaces, 2015, 132, 85-102.	2.5	43
850	Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chemical Society Reviews, 2015, 44, 5680-5742.	18.7	441
851	The mining chemical Polydadmac is cytotoxic but does not interfere with Cu-induced toxicity in Atlantic salmon hepatocytes. Toxicology in Vitro, 2015, 30, 492-505.	1.1	3
852	Micelle-like Nanoparticles as Carriers for DNA and siRNA. Molecular Pharmaceutics, 2015, 12, 301-313.	2.3	107
853	Synthetic Nucleic Acid Delivery Systems: Present and Perspectives. Journal of Medicinal Chemistry, 2015, 58, 4091-4130.	2.9	78
854	Defined Polymeric Materials for Gene Delivery. Macromolecular Bioscience, 2015, 15, 600-612.	2.1	53
856	New Ionic bisâ€MPA and PAMAM Dendrimers: A Study of Their Biocompatibility and DNA omplexation. Macromolecular Bioscience, 2015, 15, 657-667.	2.1	11
857	Fluorescent dye incorporation causes weakened gene association and intracellular aggregate formation in nonviral carriers. Journal of Gene Medicine, 2015, 17, 69-79.	1.4	1
858	PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 2015, 18, 565-572.	8.3	219
859	Convergent synthesis of degradable dendrons based on <scp>I</scp> -malic acid. New Journal of Chemistry, 2015, 39, 1161-1171.	1.4	4
860	Coarse-Grained Simulation of Polycation/DNA-Like Complexes: Role of Neutral Block. Molecular Pharmaceutics, 2015, 12, 2834-2844.	2.3	16
861	Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews, 2015, 115, 11043-11078.	23.0	495
862	Surface-Engineered Dendrimers in Gene Delivery. Chemical Reviews, 2015, 115, 5274-5300.	23.0	369
863	Polymeric oncolytic adenovirus for cancer gene therapy. Journal of Controlled Release, 2015, 219, 181-191.	4.8	66

#	Article	IF	CITATIONS
864	Comparative evaluation and optimization of off-the-shelf cationic polymers for gene delivery purposes. Polymer Chemistry, 2015, 6, 6325-6339.	1.9	32
865	Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. Journal of Controlled Release, 2015, 219, 488-499.	4.8	58
866	Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner. Biophysical Chemistry, 2015, 207, 40-50.	1.5	17
867	Recent Advances in Dendrimer Research for Cardiovascular Diseases. Biomacromolecules, 2015, 16, 2588-2598.	2.6	48
868	Synthesis of efficient gene delivery systems by grafting pegylated alkylcarboxylate chains to PAMAM dendrimers: Evaluation of transfection efficiency and cytotoxicity in cancerous and mesenchymal stem cells. Journal of Biomaterials Applications, 2015, 30, 632-648.	1.2	29
869	Photoinduced conformational changes in DNA by poly(vinyl alcohol) carrying a malachite green moiety for protecting DNA against attack by nuclease. Soft Matter, 2015, 11, 8246-8252.	1.2	5
870	Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10, 487-510.	6.2	967
871	Polyethylenimine-poly(amidoamine) dendrimer modified with l-arginines as an efficient gene delivery vector. Macromolecular Research, 2015, 23, 726-733.	1.0	4
872	Nanoparticles in Biomedical Applications. Bioanalytical Reviews, 2015, , 177-210.	0.1	8
873	Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Analytica Chimica Acta, 2015, 853, 451-459.	2.6	10
874	The dendritic effect illustrated with phosphorus dendrimers. Chemical Society Reviews, 2015, 44, 3890-3899.	18.7	118
875	Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomaterials Science, 2015, 3, 25-40.	2.6	58
876	Polymeric <scp>siRNA</scp> delivery vectors: knocking down cancers with polymericâ€based gene delivery systems. Journal of Chemical Technology and Biotechnology, 2015, 90, 1196-1208.	1.6	14
877	Dendrimers – from organic synthesis to pharmaceutical applications: an update. Pharmaceutical Development and Technology, 2015, 20, 22-40.	1.1	37
878	Dual-Targeted Polyplexes Based on Sequence-Defined Peptide-PEG-Oligoamino Amides. Journal of Pharmaceutical Sciences, 2015, 104, 464-475.	1.6	34
880	Polymeric Delivery Vehicles for Exogenous Nucleic Acid Delivery. , 2016, , .		0
881	Dendrimers for gene therapy., 2016,, 113-146.		2
882	Mechanism, current challenges andÂnew approaches for non viralÂgene delivery. , 2016, , 1-27.		10

#	Article	IF	CITATIONS
883	Nanocarriers Usage for Drug Delivery in Cancer Therapy. Iranian Journal of Cancer Prevention, 2016, In Press, e3966.	0.7	50
884	Evaluation and Elucidation of DNAâ€Containing Viologen Dendrimer Complex Formation. European Journal of Organic Chemistry, 2016, 2016, 1897-1907.	1.2	2
885	Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction. Scientific Reports, 2016, 6, 29436.	1.6	30
886	Dendrimer-entrapped gold nanoparticles modified with \hat{l}^2 -cyclodextrin for enhanced gene delivery applications. RSC Advances, 2016, 6, 25633-25640.	1.7	43
887	Synthesis of a novel archaeal tetraether-type lipid containing a diorthoester group as a helper lipid for gene delivery. Tetrahedron Letters, 2016, 57, 2976-2980.	0.7	6
888	Biodegradable and bioerodible polymers for medical applications. , 2016, , 63-83.		11
889	Synthesis, Characterization and Biological Evaluation of Metal Complexes with Water-Soluble Macromolecular Dendritic Ligand. Pharmaceutical Chemistry Journal, 2016, 49, 868-877.	0.3	1
890	Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	16
891	Surface functionalization of biomaterials by radical polymerization. Progress in Materials Science, 2016, 83, 191-235.	16.0	120
892	Comparative study of calf-thymus DNA complexation by low generation PAMAM dendrimers and linear cationic PEGylated block copolymers by time-resolved fluorescence spectroscopy. Journal of Molecular Liquids, 2016, 221, 547-556.	2.3	5
893	Studying the dynamic mechanism of transporting a single drug carrier-polyamidoamine dendrimer through cell membranes by force tracing. Nanoscale, 2016, 8, 18027-18031.	2.8	15
894	Catalysis: Nanoparticles and Catalysis. , 2016, , 150-158.		0
895	Synthesis of a novel PEGDGA-coated hPAMAM complex as an efficient and biocompatible gene delivery vector: an <i>in vitro</i> and <i>in vivo</i> study. Drug Delivery, 2016, 23, 2956-2969.	2.5	9
896	Polyethyleneimines, Degradable: Gene Carrier Design. , 2016, , 6299-6311.		0
897	Endocytosis and the Endolysosomal Route in Drug Delivery. , 2016, , 331-358.		0
898	Heparan sulfate proteoglycan synthesis in CHO DG44 and HEK293 cells. Biotechnology and Bioprocess Engineering, 2016, 21, 439-445.	1.4	9
900	Role of Unmodified Low Generation - PAMAM Dendrimers in Efficient Non-Toxic Gene Transfection. ChemistrySelect, 2016, 1, 5206-5217.	0.7	4
902	Combined ultrasoundâ€targeted microbubble destruction and polyethylenimineâ€mediated plasmid DNA delivery to the rat retina: enhanced efficiency and accelerated expression. Journal of Gene Medicine, 2016, 18, 47-56.	1.4	13

#	Article	IF	CITATIONS
903	Polycationic adamantane-based dendrons form nanorods in complex with plasmid DNA. RSC Advances, 2016, 6, 42933-42942.	1.7	9
904	Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake. Nanoscale Research Letters, 2016, 11, 66.	3.1	24
905	Non-viral nucleic acid containing nanoparticles as cancer therapeutics. Expert Opinion on Drug Delivery, 2016, 13, 1475-1487.	2.4	30
906	Polymer-Based DNA Delivery Systems for Cancer Immunotherapy. Advances in Delivery Science and Technology, 2016, , 221-244.	0.4	1
907	Harnessing the PEG-cleavable strategy to balance cytotoxicity, intracellular release and the therapeutic effect of dendrigraft poly- <scp>l</scp> -lysine for cancer gene therapy. Journal of Materials Chemistry B, 2016, 4, 1284-1295.	2.9	37
908	Tailoring the dendrimer core for efficient gene delivery. Acta Biomaterialia, 2016, 35, 1-11.	4.1	73
909	Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chemical Society Reviews, 2016, 45, 5174-5186.	18.7	70
910	Nanoparticles for Imaging and Non-viral Gene Therapy. Biosystems and Biorobotics, 2016, , 3-18.	0.2	0
911	Dendrimerâ€based nanocarriers: a versatile platform for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1409.	3.3	132
912	Synthesis and Antimicrobial Activity of Unsymmetrical Dendrimers With Indazole, Salicylates and Anthranilates as Surface Units. Journal of Heterocyclic Chemistry, 2017, 54, 1963-1973.	1.4	4
913	Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chemical Science, 2017, 8, 2923-2930.	3.7	101
914	Complexation between DNA and Hydrophilic-Cationic Diblock Copolymers. Journal of Physical Chemistry B, 2017, 121, 2230-2243.	1.2	12
915	Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1452.	3.3	185
916	History of Polymeric Gene Delivery Systems. Topics in Current Chemistry, 2017, 375, 26.	3.0	58
917	DNA Transfection to Mesenchymal Stem Cells Using a Novel Type of Pseudodendrimer Based on 2,2-Bis(hydroxymethyl)propionic Acid. Bioconjugate Chemistry, 2017, 28, 1135-1150.	1.8	15
918	Transfection. , 2017, , 191-209.		2
919	Therapeutic nanomaterials: from a drug delivery perspective., 2017,, 1-61.		1
920	Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines. Journal of Controlled Release, 2017, 258, 146-160.	4.8	27

#	Article	IF	Citations
921	Molecular engineering of dendrimer nanovectors for siRNA delivery and gene silencing. Frontiers of Chemical Science and Engineering, 2017, 11, 663-675.	2.3	23
922	Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromolecular Bioscience, 2017, 17, 1700022.	2.1	37
923	Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene Delivery. Topics in Current Chemistry, 2017, 375, 62.	3.0	17
924	In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells. International Journal of Pharmaceutics, 2017, 530, 291-299.	2.6	43
925	Formation and stability of polyelectrolyte/polypeptide monolayers determined by electrokinetic measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 302-310.	2.3	18
926	Recent advances in DNAzyme-based gene silencing. Science China Chemistry, 2017, 60, 591-601.	4.2	93
927	Difference in the core-shell dynamics of polyethyleneimine and poly(I-lysine) DNA polyplexes. European Journal of Pharmaceutical Sciences, 2017, 103, 122-127.	1.9	8
928	Biodegradable and bioreducible poly(betaâ€amino ester) nanoparticles for intracellular delivery to treat brain cancer. AICHE Journal, 2017, 63, 1470-1482.	1.8	6
929	Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials, 2017, 118, 51-62.	5.7	52
930	Construction of core–shell tecto dendrimers based on supramolecular host–guest assembly for enhanced gene delivery. Journal of Materials Chemistry B, 2017, 5, 8459-8466.	2.9	37
931	Dendrimers and Dendrimers-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization, Functionalization, and Biological Applications in Drug Delivery Systems., 2017,, 75-94.		5
933	Phosphorus dendrimers for nanomedicine. Chemical Communications, 2017, 53, 9830-9838.	2.2	63
934	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	6.6	307
935	Design and Biomedical Applications of Poly(amidoamine)â€Dendrimerâ€Based Hybrid Nanoarchitectures. Small Methods, 2017, 1, 1700224.	4.6	45
936	Clustered versus Uniform Display of GALA-Peptides on Carrier Nanoparticles: Enhancing the Permeation of Noncharged Fluid Lipid Membranes. Langmuir, 2017, 33, 13625-13633.	1.6	1
937	Spermine modified starch-based carrier for gene delivery: Structure-transfection activity relationships. Carbohydrate Polymers, 2017, 173, 690-700.	5.1	17
938	Advances in nanomicelles for sustained drug delivery. Journal of Industrial and Engineering Chemistry, 2017, 55, 21-34.	2.9	45
939	Scutellarin-graft cationic \hat{l}^2 -cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation. Materials Science and Engineering C, 2017, 71, 1028-1036.	3.8	4

#	Article	IF	CITATIONS
940	Monolayers of poly(amido amine) dendrimers on mica – In situ streaming potential measurements. Journal of Colloid and Interface Science, 2017, 485, 232-241.	5.0	19
941	Polymer-based nanocarriers for therapeutic nucleic acids delivery. , 2017, , 445-460.		20
942	Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules, 2017, 22, 1401.	1.7	474
943	4.26 pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs. , 2017, , 472-492.		0
944	Supramolecular Assemblies of Dendrimers and Dendritic Polymers inÂNanomedicine. , 2017, , 237-256.		4
945	Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. Science China Materials, 2018, 61, 1404-1419.	3.5	21
946	Precisely Defined Polymers for Efficient Gene Delivery. Topics in Current Chemistry, 2018, 376, 2.	3.0	5
947	Lamotrigine loaded poly-É>-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. European Journal of Pharmaceutical Sciences, 2018, 115, 77-87.	1.9	24
948	From fundamental supramolecular chemistry to self-assembled nanomaterials and medicines and back again $\hat{a} \in \text{``how Sam inspired SAMul. Chemical Communications, 2018, 54, 4743-4760.}$	2.2	22
949	Effect of Tb/Mg doping on composition and physical properties of hydroxyapatite nanoparticles for gene vector application. Transactions of Nonferrous Metals Society of China, 2018, 28, 125-136.	1.7	11
950	Synthesis of biocompatible amino acid-modified poly(acrylic acid) derivatives for intracellular gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 174-180.	1.8	4
951	Detection of Membrane Mechanical Properties and Endocytosis by Single Molecule Force Spectroscopy., 2018,, 91-115.		0
952	Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids and Surfaces B: Biointerfaces, 2018, 162, 380-388.	2.5	7
953	Synthesis of Cationic Amphiphilic Surface-Block Polyester Dendrimers. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 383-398.	1.9	1
954	Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Therapeutic Delivery, 2018, 9, 731-749.	1.2	18
955	Multifunctional Polymeric Enveloped Nanocarriers: Targeting Extracellular and Intracellular Barriers. , 0, , .		0
956	Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 29-40.	2.0	17
957	The great escape: how cationic polyplexes overcome the endosomal barrier. Journal of Materials Chemistry B, 2018, 6, 6904-6918.	2.9	263

#	Article	IF	CITATIONS
958	Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics, 2018, 10, 126.	2.0	77
959	PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Applied Materials Today, 2018, 12, 177-190.	2.3	299
960	The proton sponge hypothesis: Fable or fact?. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 184-190.	2.0	199
961	Block Copolymer Micelles in Nanomedicine Applications. Chemical Reviews, 2018, 118, 6844-6892.	23.0	925
962	Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomaterialia, 2018, 76, 257-274.	4.1	58
963	PAMAM dendrimer - cell membrane interactions. Advances in Colloid and Interface Science, 2018, 257, 1-18.	7.0	158
964	The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency. RSC Advances, 2018, 8, 28356-28366.	1.7	11
965	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	23.0	490
966	Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy. Biomedical Microdevices, 2018, 20, 59.	1.4	21
967	Polymers and hydrogels for local nucleic acid delivery. Journal of Materials Chemistry B, 2018, 6, 5651-5670.	2.9	31
968	Dendrimers and hyperbranched structures for biomedical applications. European Polymer Journal, 2019, 119, 61-73.	2.6	98
969	Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools. Molecular Pharmaceutics, 2019, 16, 3727-3743.	2.3	97
970	Evolution from Covalent to Self-Assembled PAMAM-Based Dendrimers as Nanovectors for siRNA Delivery in Cancer by Coupled In Silico-Experimental Studies. Part I: Covalent siRNA Nanocarriers. Pharmaceutics, 2019, 11, 351.	2.0	12
971	New Water-Soluble Oxyamino Chitosans as Biocompatible Vectors for Efficacious Anticancer Therapy via Co-Delivery of Gene and Drug. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37442-37460.	4.0	34
972	A facile methodology using quantum dot multiplex labels for tracking co-transfection. RSC Advances, 2019, 9, 20053-20057.	1.7	2
973	Peptide Sequence-Dependent Gene Expression of PEGylated Peptide/DNA Complexes. Molecular Pharmaceutics, 2019, 16, 3072-3082.	2.3	4
974	Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews, 2019, 119, 10241-10287.	23.0	324
976	Nano design of extracellular matrix for tissue engineering. , 2019, , 547-583.		0

#	Article	IF	CITATIONS
977	Advanced Polymers for Nonviral Gene Delivery. , 2019, , 311-364.		4
978	Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Progress in Materials Science, 2019, 103, 484-508.	16.0	126
979	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	3.2	32
980	Developing small activating RNA as a therapeutic: current challenges and promises. Therapeutic Delivery, 2019, 10, 151-164.	1.2	49
981	Role of Generation on Successful DNA Delivery of PAMAM–(Guanidino)Neomycin Conjugates. ACS Omega, 2019, 4, 6796-6807.	1.6	24
982	mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate Antigen Presenting Cells. Bioconjugate Chemistry, 2019, 30, 461-475.	1.8	62
983	Anti–HER2 single domain antibody-conjugated dendrimers for targeted delivery of truncated-Bid transgene to breast cancer cells. Journal of Bioactive and Compatible Polymers, 2019, 34, 39-57.	0.8	3
984	Cationic polymers for enhancing CpG oligodeoxynucleotides-mediated cancer immunotherapy. European Polymer Journal, 2019, 113, 115-132.	2.6	12
985	Overcoming Endosomal Entrapment in Drug Delivery. Bioconjugate Chemistry, 2019, 30, 273-283.	1.8	223
986	Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles. Pharmaceutical Development and Technology, 2019, 24, 127-132.	1.1	36
987	A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Medicinal Research Reviews, 2020, 40, 753-810.	5.0	106
988	Dendrimers in gene delivery. , 2020, , 211-231.		5
989	Efficient Delivery of dsRNA and DNA in Cultured Silkworm Cells for Gene Function Analysis Using PAMAM Dendrimers System. Insects, 2020, 11, 12.	1.0	14
990	Dendrimer-Based Tumor-targeted Systems. , 2020, , 337-369.		1
991	Efficient and Low Cytotoxicity Gene Carriers Based on Amine-Functionalized Polyvinylpyrrolidone. Polymers, 2020, 12, 2724.	2.0	5
992	Application of advances in endocytosis and membrane trafficking to drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 118-141.	6.6	44
993	Phosphorus Dendrimers as Nanotools against Cancers. Molecules, 2020, 25, 3333.	1.7	26
994	Application of nano-based systems for drug delivery and targeting: a review. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	36

#	Article	IF	CITATIONS
995	Poly(amidoamine) Dendrimer-Gold Nanohybrids in Cancer Gene Therapy: A Concise Overview. ACS Applied Bio Materials, 2020, 3, 5590-5605.	2.3	26
996	Applications and Limitations of Dendrimers in Biomedicine. Molecules, 2020, 25, 3982.	1.7	192
997	Duplex of Polyamidoamine Dendrimer/Custom-Designed Nuclear-Localization Sequence Peptide for Enhanced Gene Delivery. Bioelectricity, 2020, 2, 150-157.	0.6	7
998	The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics, 2020, 12, 774.	2.0	28
999	Design, characterization, and intracellular trafficking of biofunctionalized chitosan nanomicelles. Biointerphases, 2020, 15, 061003.	0.6	5
1000	Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules, 2020, 21, 2502-2511.	2.6	40
1001	Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arabian Journal of Chemistry, 2020, 13, 6009-6039.	2.3	48
1002	Polymeric vehicles for nucleic acid delivery. Advanced Drug Delivery Reviews, 2020, 156, 119-132.	6.6	106
1003	Synthesis, characterization and applications of poly-aliphatic amine dendrimers and dendrons. Journal of the Iranian Chemical Society, 2020, 17, 2717-2736.	1.2	10
1004	Efficient co-delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core–shell tecto dendrimers formed ⟨i⟩via⟨ i⟩ supramolecular host–guest assembly. Journal of Materials Chemistry B, 2020, 8, 2768-2774.	2.9	54
1005	Tuning surface functionalities of sub-10 nm-sized nanocarriers to target outer retina in designing drug delivery agents for intravitreal administration. Biomaterials, 2020, 255, 120188.	5.7	7
1006	Nanoscale Self-Assembly for Therapeutic Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 127.	2.0	170
1007	Dendrimers for pharmaceutical applicationsâ€"potential and challenges. , 2020, , 29-52.		2
1008	Gene delivery into cells and tissues. , 2020, , 519-554.		3
1009	Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability. Biochemistry, 2020, 59, 1845-1853.	1.2	1
1010	Oligomers of Cyclic Oligochalcogenides for Enhanced Cellular Uptake. ChemBioChem, 2021, 22, 253-259.	1.3	8
1011	A review on synthesis and applications of dendrimers. Journal of the Iranian Chemical Society, 2021, 18, 503-517.	1.2	35
1012	Starch-based nanocomposites for gene delivery. , 2021, , 263-277.		2

#	ARTICLE	IF	CITATIONS
1013	Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics, 2021, 13, 116.	2.0	5
1014	Dendrimers for gene therapy. , 2021, , 285-309.		2
1015	Dendrimers: A Novel Nanomaterial. Springer Series in Materials Science, 2021, , 411-449.	0.4	0
1016	Nanocarrierâ€delivered small interfering <scp>RNA</scp> for chemoresistant ovarian cancer therapy. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1648.	3.2	8
1017	Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. International Journal of Molecular Sciences, 2021, 22, 2912.	1.8	54
1018	Recent Advances in Engineered Nanoparticles for RNAi-Mediated Crop Protection Against Insect Pests. Frontiers in Agronomy, 2021, 3, .	1.5	26
1019	Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. Biology, 2021, 10, 265.	1.3	26
1020	Evolutionary Timeline of Genetic Delivery and Gene Therapy. Current Gene Therapy, 2021, 21, 89-111.	0.9	2
1021	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
1022	Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. Journal of Controlled Release, 2021, 335, 465-480.	4.8	55
1023	Physicochemical properties and bioâ€interfacial interactions of surface modified PDLLAâ€PAMAM linear dendritic block copolymers. Journal of Polymer Science, 2021, 59, 2177-2192.	2.0	4
1024	Facile Formation of PAMAM Dendrimer Nanoclusters for Enhanced Gene Delivery and Cancer Gene Therapy. ACS Applied Bio Materials, 2021, 4, 7168-7175.	2.3	14
1025	Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules, 2021, 22, 4060-4083.	2.6	23
1026	Nucleic acid delivery for therapeutic applications. Advanced Drug Delivery Reviews, 2021, 178, 113834.	6.6	122
1027	Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. European Journal of Medicinal Chemistry, 2021, 221, 113572.	2.6	19
1028	Breast cancer-derived DAMPs enhance cell invasion and metastasis, while nucleic acid scavengers mitigate these effects. Molecular Therapy - Nucleic Acids, 2021, 26, 1-10.	2.3	11
1029	Color-convertible fluorescent nanoprobe for Parkinson's disease diagnosis. Chemical Engineering Journal, 2022, 429, 132368.	6.6	6
1034	Supramolecular Dendrimer Chemistry: A Journey Through the Branched Architecture. Topics in Current Chemistry, 2000, , 183-227.	4.0	109

#	Article	IF	CITATIONS
1035	Active DNA Release from Complexes. , 2005, , 155-164.		1
1036	Intracellular Delivery of Nucleic Acids: Differences Between Transfection and siFection Reflect Differences Between DNA and RNA, and Between Oligodeoxynucleotides and Oligonucleotides. , 2005, , 441-455.		2
1037	Polymeric Gene Carriers. , 2005, , 35-50.		3
1038	Nonviral Gene Delivery for Applications in Regenerative Medicine. , 2012, , 285-319.		1
1039	A Novel Series of Serum-Resistant Lipoaminoacid Compounds for Cellular Delivery of Plasmid DNA. Advances in Experimental Medicine and Biology, 1998, 451, 461-467.	0.8	6
1040	Controllable Gene Therapy: Recent Advances in Non-Viral Gene Delivery. , 1996, , 79-95.		3
1041	Macromolecular Drug Delivery., 2008,, 293-323.		1
1042	Introducing Cloned Genes into Cultured Neurons Providing Novel In vitro Models for Neuropathology and Neurotoxicity Studies. Neuromethods, 2011, 56, 185-222.	0.2	1
1043	Formulation and Delivery of Nucleic Acids. Handbook of Experimental Pharmacology, 1999, , 165-192.	0.9	1
1044	Nucleic Acid Vaccines: Veterinary Applications. Current Topics in Microbiology and Immunology, 1998, 226, 90-106.	0.7	13
1045	Ligand—Polycation Conjugates for Receptor-Targeted Gene Transfer. , 1999, , 207-227.		8
1046	Designing Polymer-Based DNA Carriers for Non-Viral Gene Delivery: Have We Reached an Upper Performance Limit?., 2006, , 57-76.		1
1047	The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems Journal of Biological Chemistry, 1994, 269, 12918-12924.	1.6	621
1048	Molecular topology of dendrimers. Advances in Dendritic Macromolecules, 1999, , 135-201.	0.6	26
1049	Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1200-5.	3.3	168
1051	Cationic Dendrimers as Gene Transfection Vectors. , 2004, , .		4
1053	Sugar Ball. Kobunshi, 1996, 45, 260-260.	0.0	2
1054	Development in Somatic Gene Therapy. Expert Opinion on Investigational Drugs, 1994, 3, 913-921.	1.9	6

#	ARTICLE	IF	Citations
1055	Dendrimers: properties and applications Acta Biochimica Polonica, 2001, 48, 199-208.	0.3	404
1056	Advances in Gene Delivery Systems. Pharmaceutical Medicine, 2011, 25, 293-306.	1.0	82
1057	Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. Current Pharmaceutical Design, 2016, 22, 1227-1244.	0.9	28
1058	Inhalable Nanostructures for Lung Cancer Treatment: Progress and Challenges. Current Nanomedicine, 2019, 9, 4-29.	0.2	4
1059	DENDRIMER: A NOVEL DRUG DELIVERY SYSTEM. Journal of Drug Delivery and Therapeutics, 2011, 1, .	0.2	14
1060	Non-viral Mediated Gene Delivery for Therapeutic Applications. , 2006, , 115-140.		2
1061	Bioassay Testing the Toxicity of Nano-Structure Polymer (PAMAM G2) as Coagulant Aid in Water Treatment. Research Journal of Environmental Toxicology, 2015, 9, 261-267.	1.0	2
1062	Synthesis of Novel Poly(amido ethylenimine) (PAMEIM) Dendrimer and Its Self-assembly with Plasmid DNA. Bulletin of the Korean Chemical Society, 2006, 27, 1894-1896.	1.0	4
1063	Extra- and Intranuclear Dynamics and Distribution of Modified-PAMAM Polyplexes in Living Cells: A Single-Molecule Analysis. Bulletin of the Korean Chemical Society, 2008, 29, 1565-1568.	1.0	3
1064	PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier. Bulletin of the Korean Chemical Society, 2014, 35, 1036-1042.	1.0	9
1065	Evaluation and optimization of chitosan derivatives-based gene delivery system via kidney epithelial cells. Advanced Pharmaceutical Bulletin, 2012, 2, 7-16.	0.6	6
1066	Poly(amidoamine)/cellulose based bio-composites as potential anticancer bio-compatible polymers. Polymer Bulletin, 2022, 79, 8807-8822.	1.7	3
1067	Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules, 2021, 26, 5976.	1.7	6
1068	Applications in Vaccine and Gene Delivery. , 2000, , 335-370.		0
1069	Molekulare Therapie der pulmonalen Erkrankung der CF., 2001, , 521-542.		0
1072	Gene Transfer into Eukaryotic Cells. , 2002, , 135-153.		2
1073	Gene Delivery., 2002,,.		0
1074	Gene Delivery to the Lung. Drugs and the Pharmaceutical Sciences, 2003, , .	0.1	0

#	Article	IF	CITATIONS
1075	Gene Delivery to the Lung., 2003, , 513-564.		4
1076	Polymeric Gene Delivery Systems. , 2003, , .		1
1077	Molecular Vectors for Gene Delivery to Cancer Cells. , 2004, , 129-140.		0
1078	Cationic Lipospheres as Delivery Systems for Nucleic Acid Molecules. , 2004, , 155-172.		1
1079	Cationic Lipospheres as Delivery Systems for Nucleic Acid Molecules. , 2004, , 143-159.		0
1080	Cationic Polymers for Gene DeliveryFormation of Polycation-DNA Complexes and in vitro Transfection. , 2006, , 29-34.		0
1081	Dendrimers in Drug and Gene Delivery. , 2006, , 199-236.		2
1082	Dendrimers in Drug and Gene Delivery. , 2006, , .		0
1083	Nucleic acid delivery using dendrimer composed of amino acids. Drug Delivery System, 2007, 22, 108-114.	0.0	0
1084	Gene delivery to the lung. Drug Delivery System, 2008, 23, 454-459.	0.0	0
1085	Viral, Nonviral, and Physical Methods for Gene Delivery., 2008, , 141-173.		0
1090	Polyamine – Lipid Conjugates as Effective Gene Carriers: Chemical Structure, Morphology, and Gene Transfer Activity. , 0, , .		1
1091	Poly (amido amine) dendrimer silences the expression of epidermal growth factor receptor and p53 gene in vitro. African Journal of Pharmacy and Pharmacology, 2012, 6, .	0.2	0
1093	Nanotherapeutics in Oncology: Dendrimers the Nano Wonder. Journal of Scientific Dentistry, 2013, 3, 45-53.	0.1	0
1094	Gene and Ribonucleic Acid Therapy. , 2013, , 493-510.		0
1096	Dendrimers and Hyperbranched Polymers in Medicine. , 2013, , 1-7.		1
1097	Plasmid and Other Non-Viral Vectors. Developments in Cardiovascular Medicine, 1997, , 85-110.	0.1	0
1098	Biopolymer—DNA Nanospheres. , 1999, , 267-287.		1

#	Article	IF	Citations
1099	Nonviral Methods for Gene Transfer. Blood Cell Biochemistry, 1999, , 123-154.	0.3	0
1100	Receptor Mediated Gene Transfer. , 1999, , 47-59.		0
1101	Nonviral Gene Delivery. , 1999, , 107-142.		1
1102	Dendritic Nanomaterials for Therapeutic and Diagnostic Applications. Biosystems and Biorobotics, 2016, , 41-75.	0.2	0
1103	Gene Delivery., 0,, 3610-3620.		0
1104	Solution Properties: Networks, Micelles, Dendrimers, and Hydrogels. , 0, , 7500-7511.		0
1105	Pulmonary Diseases: Polymeric Gene Delivery Carriers. , 0, , 6875-6893.		0
1106	Development of Dendrimer-Based Nanomaterials for Diagnostic and Therapeutic Applications. Methods in Pharmacology and Toxicology, 2016, , 47-63.	0.1	0
1107	Toxicological Concerns Related to Nanoscale Drug Delivery Systems. , 2016, , 541-561.		0
1109	<i>In Situ</i> Detection of Intracellular Messenger RNA and MicroRNA. RSC Detection Science, 2020, , 47-66.	0.0	0
1110	Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs, 2021, 35, 643-671.	2.2	8
1111	Nucleic-Acid Scavengers Mitigate Breast Cancer Induced Inflammation, Invasion, and Metastasis. SSRN Electronic Journal, 0, , .	0.4	1
1112	Dendronised Polymers as Templates for In Situ Quantum Dot Synthesis. Australian Journal of Chemistry, 2020, 73, 658.	0.5	0
1113	Medicinal Chemistry of Plasmid DNA with Peptide Nucleic Acids. , 2006, , 195-211.		0
1118	CHAPTER 6. DNA Particles. RSC Nanoscience and Nanotechnology, 2014, , 216-245.	0.2	0
1119	Cationic vs. non-cationic polymeric vectors for nucleic acid delivery. , 2023, , 574-589.		1
1123	Dendrimer as a momentous tool in tissue engineering and regenerative medicine. Journal of Controlled Release, 2022, 346, 328-354.	4.8	20
1124	Re-examination of Peptide-Sequence-Dependent Gene Expression of Cysteine-Installed Pegylated Oligolysine/DNA Complexes. ACS Omega, 2022, 7, 15478-15487.	1.6	O

#	Article	IF	CITATIONS
1125	Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics, 2022, 14, 907.	2.0	28
1126	Essential cues of engineered polymeric materials regulating gene transfer pathways. Progress in Materials Science, 2022, 128, 100961.	16.0	7
1127	Ionic Self-Assembly of Dendrimers. , 2022, , 85-118.		3
1128	Advances of nano drug delivery system for the theranostics of ischemic stroke. Journal of Nanobiotechnology, 2022, 20, .	4.2	13
1129	UPLC-ESI-TOF-MS Analysis of the Effect of Dendrimers Core Lengths on Their Molecular Profiles and Purity. Journal of Nanomaterials, 2022, 2022, 1-8.	1.5	0
1130	Design and Gene Delivery Application of Polymeric Materials in Cancer Immunotherapy. , 2023, 01, .		2
1131	Emerging applications of bionanomaterials in medicine and drug delivery., 2022, , 129-185.		0
1132	Analyzing siRNA Concentration, Complexation and Stability in Cationic Dendriplexes by Stem-Loop Reverse Transcription-qPCR. Pharmaceutics, 2022, 14, 1348.	2.0	2
1133	Intracellular Communication between Synthetic Macromolecules. Journal of the American Chemical Society, 2022, 144, 14112-14120.	6.6	3
1134	Structural Characterization of Dendriplexes In Vacuo: A Joint Ion Mobility/Molecular Dynamics Investigation. Journal of the American Society for Mass Spectrometry, 2022, 33, 1555-1568.	1.2	4
1135	Translational Drug Delivery: Time to be Frank for Future Success. Advanced Drug Delivery Reviews, 2022, , 114521.	6.6	0
1136	pH-sensitive endosomolytic peptides in gene and drug delivery: Endosomal escape and current challenges. Journal of Drug Delivery Science and Technology, 2022, 76, 103786.	1.4	6
1137	mRNA nanomedicine: Design and recent applications. Exploration, 2022, 2, .	5.4	37
1138	Synthesis and Biological Use of Nanomaterials. Topics in Applied Physics, 2022, , 793-858.	0.4	0
1139	Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomaterials Science, 2023, 11, 1589-1606.	2.6	6
1140	Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 310-332.	1.8	4
1141	Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier. Korean Journal of Chemical Engineering, 2023, 40, 379-389.	1.2	1
1142	Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics, 2023, 15, 524.	2.0	4

#	Article	IF	CITATIONS
1143	Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research, 2023, 25, .	0.8	66
1144	Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules, 2023, 13, 609.	1.8	0
1145	Polypropylene based bio-composites for packaging materials: Physico-mechanical impacts of prepared hyper-branched polyamidoamine and gamma-irradiation. Journal of Thermoplastic Composite Materials, 0, , 089270572311699.	2.6	1
1147	Biopolymers and their nanoparticles as imprinting matrixâ€"introspection and commercialization prospects. , 2023, , 233-270.		1
1153	Dendrimers: promises and challenges in drug delivery. , 2024, , 237-267.		0