Protease Inhibitors and Indolamines Selectively Inhibit Histopathologic Structures of Alzheimer's Diseasea

Annals of the New York Academy of Sciences 695, 65-68 DOI: 10.1111/j.1749-6632.1993.tb23029.x

Citation Report

#	Article	IF	CITATIONS
1	The Role of Cholinesterase Inhibitors in Alzheimer's Disease. CNS Drugs, 1994, 1, 146-165.	2.7	33
2	Amyloid Fibril Formation by a Synthetic Peptide from a Region of Human Acetylcholinesterase that Is Homologous to the Alzheimer's Amyloid-β Peptide. Biochemistry, 2002, 41, 13539-13547.	1.2	71
3	Unconventional ligands and modulators of nicotinic receptors. Journal of Neurobiology, 2002, 53, 479-500.	3.7	191
4	Amyloid-β deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathologica, 2002, 103, 48-58.	3.9	111
5	Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death and Differentiation, 2002, 9, 790-800.	5.0	284
6	Distribution, progression and chemical composition of cortical amyloid-Î ² deposits in aged rhesus monkeys: similarities to the human. Acta Neuropathologica, 2003, 105, 145-156.	3.9	69
7	Medicinal chemistry approaches for the treatment and prevention of Alzheimer's disease. Medicinal Research Reviews, 2003, 23, 48-88.	5.0	86
8	Aryl Acylamidase Activity on Acetylcholinesterase Is High During Early Chicken Brain Development. Protein Journal, 2004, 23, 325-333.	0.7	26
9	Cellular Stress Reactions as Putative Cholinergic Links in Alzheimer's Disease. Neurochemical Research, 2005, 30, 909-919.	1.6	23
10	Amyloid–cholinesterase interactions. FEBS Journal, 2008, 275, 625-632.	2.2	215
11	Interactions of acetylcholinesterase with caveolin-1 and subsequently with cytochrome c are required for apoptosome formation. Carcinogenesis, 2008, 29, 729-737.	1.3	36
12	Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behavioural Brain Research, 2009, 203, 1-14.	1.2	68
13	Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiological Reviews, 2009, 89, 73-120.	13.1	1,467
14	Acetylcholinesterase as a Pharmacological Target in Cancer Research. , 2010, , 221-236.		1
15	In silico modeling of the specific inhibitory potential of thiophene-2,3-dihydro-1,5-benzothiazepine against BChE in the formation of β-amyloid plaques associated with Alzheimer's disease. Theoretical Biology and Medical Modelling, 2010, 7, 22.	2.1	29
16	In silico pharmacophore model generation for the identification of novel butyrylcholinesterase inhibitors against Alzheimer's disease. Medicinal Chemistry Research, 2012, 21, 2716-2722.	1.1	5
17	Role of Acetylcholinesterase Inhibitors and Alzheimer Disease. , 2014, , 387-425.		6
18	Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain. Current Alzheimer Research, 2021, 18, 470-481.	0.7	3

ATION RED

#	Article	IF	CITATIONS
19	Efficacy and safety of cholinesterase inhibitors in Alzheimer's disease: a meta-analysis. Cmaj, 2003, 169, 557-64.	0.9	104