Chapter 9 Sequencing and scheduling: Algorithms and o

Handbooks in Operations Research and Management Science 4, 445-522

DOI: 10.1016/s0927-0507(05)80189-6

Citation Report

#	Article	IF	CITATIONS
1	An Integrated Model for Job-Shop Planning and Scheduling. Management Science, 1992, 38, 1201-1211.	2.4	77
2	An approximation algorithm for the generalized assignment problem. Mathematical Programming, 1993, 62, 461-474.	1.6	526
3	A STATIONARY CYCLICAL PRODUCTION SCHEDULING PROBLEM UNDER A NONADDITIVE OUTPUT FUNCTION. Engineering Optimization, 1994, 22, 203-212.	1.5	0
4	Task scheduling in networks. Lecture Notes in Computer Science, 1994, , 290-301.	1.0	7
5	Improved Approximation Algorithms for Shop Scheduling Problems. SIAM Journal on Computing, 1994, 23, 617-632.	0.8	143
6	Stronger Lagrangian bounds by use of slack variables: Applications to machine scheduling problems. Mathematical Programming, 1995, 70, 173-190.	1.6	41
7	Robust Scheduling to Hedge Against Processing Time Uncertainty in Single-Stage Production. Management Science, 1995, 41, 363-376.	2.4	282
8	Continuous flow models for batch manufacturing: a basis for a hierarchical approach. International Journal of Production Research, 1995, 33, 1635-1660.	4.9	13
9	Approximability of flow shop scheduling. , 0, , .		12
10	A New Heuristic for Three-Machine Flow Shop Scheduling. Operations Research, 1996, 44, 891-898.	1.2	56
11	MINIMIZING TOTAL TARDINESS FOR SINGLE MACHINE SEQUENCING. Journal of the Operations Research Society of Japan, 1996, 39, 316-321.	0.3	1
12	Single machine scheduling to minimize the number of early and tardy jobs. Computers and Operations Research, 1996, 23, 769-781.	2.4	61
13	Machine scheduling with an availability constraint. Journal of Global Optimization, 1996, 9, 395-416.	1.1	357
14	A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process. Operations Research, 1996, 44, 510-525.	1.2	742
15	Probabilistic Analyses and Practical Algorithms for the Vehicle Routing Problem with Time Windows. Operations Research, 1996, 44, 501-509.	1.2	83
16	Lot Streaming in Job-Shop Scheduling. Operations Research, 1997, 45, 584-595.	1.2	66
17	Short Shop Schedules. Operations Research, 1997, 45, 288-294.	1.2	192
18	A Parametric Worst Case Analysis of the LPT Heuristic for Two Uniform Machines. Operations Research, 1997, 45, 116-125.	1.2	34

#	Article	IF	CITATIONS
19	Minimizing flow time nonclairvoyantly. , 0, , .		14
20	Minimizing the number of tardy jobs with precedence constraints and agreeable due dates. Discrete Applied Mathematics, 1997, 72, 167-177.	0.5	4
21	On-Line Scheduling of Two-Machine Open Shops Where Jobs Arrive Over Time. Journal of Combinatorial Optimization, 1998, 1, 355-365.	0.8	16
22	Approximability of flow shop scheduling. Mathematical Programming, 1998, 82, 175-190.	1.6	54
23	Makespan minimization in open shops: A polynomial time approximation scheme. Mathematical Programming, 1998, 82, 191-198.	1.6	70
24	Scheduling uniform machines on-line requires nondecreasing speed ratios. Mathematical Programming, 1998, 82, 225-234.	1.6	8
25	Approximation algorithms for two-machine flow shop scheduling with batch setup times. Mathematical Programming, 1998, 82, 255-271.	1.6	17
26	Makespan minimization in preemptive two machine job shops. Computing (Vienna/New York), 1998, 60, 73-79.	3.2	12
27	A composite heuristic for the single machine early/tardy job scheduling problem. Computers and Operations Research, 1998, 25, 625-635.	2.4	26
28	Asymptotic optimality in probability of a heuristic schedule for open shops with job overlaps. Operations Research Letters, 1998, 22, 63-68.	0.5	11
29	A fast bipartite network flow algorithm for selective assembly. Operations Research Letters, 1998, 22, 137-143.	0.5	12
30	An improvement of the Lagrangean relaxation approach for job shop scheduling: a dynamic programming method. IEEE Transactions on Automation Science and Engineering, 1998, 14, 786-795.	2.4	94
31	On-line scheduling. Lecture Notes in Computer Science, 1998, , 196-231.	1.0	154
32	Approximation Bounds for a General Class of Precedence Constrained Parallel Machine Scheduling Problems. Lecture Notes in Computer Science, 1998, , 367-382.	1.0	31
33	A Simple Heuristic for m-Machine Flow-Shop and its Applications in Routing-Scheduling Problems. Operations Research, 1999, 47, 165-170.	1.2	39
34	Approximation in stochastic scheduling. Journal of the ACM, 1999, 46, 924-942.	1.8	130
35	Solving Parallel Machine Scheduling Problems by Column Generation. INFORMS Journal on Computing, 1999, 11, 78-94.	1.0	157
36	A Classification Scheme for Project Scheduling. Profiles in Operations Research, 1999, , 1-26.	0.3	67

#	Article	IF	CITATIONS
37	Bin Packing Approximation Algorithms: Combinatorial Analysis. , 1999, , 151-207.		40
38	Non-preemptive Profile Scheduling and Quasi Interval Orders. Electronic Notes in Discrete Mathematics, 1999, 3, 133-139.	0.4	0
39	Match-up scheduling under a machine breakdown. European Journal of Operational Research, 1999, 112, 81-97.	3.5	112
40	Optimal stochastic single-machine-tardiness scheduling by stochastic branch-and-bound. European Journal of Operational Research, 1999, 117, 396-413.	3.5	31
41	A heuristic for the two-machine open-shop scheduling problem with transportation times. Discrete Applied Mathematics, 1999, 93, 287-304.	0.5	53
42	A tight upper bound for the k-partition problem on ideal sets. Operations Research Letters, 1999, 24, 165-173.	0.5	3
43	Exploiting process plan flexibility in production scheduling: A multi-objective approach. European Journal of Operational Research, 1999, 114, 59-71.	3.5	25
44	Scheduling preemptive jobs with precedence constraints on parallel machines. European Journal of Operational Research, 1999, 117, 355-367.	3.5	14
45	A 3/2 Algorithm for Two-Machine Open Shop with Route-Dependent Processing Times. Journal of Heuristics, 1999, 5, 5-28.	1.1	3
46	When difference in machine loads leadsto efficient scheduling in open shops. Annals of Operations Research, 1999, 92, 211-239.	2.6	14
47	A review of scheduling research involving setup considerations. Omega, 1999, 27, 219-239.	3.6	695
48	Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling, 1999, 2, 203-213.	1.3	107
49	Optimal clustering of tree-sweep computations for high-latency parallel environments. IEEE Transactions on Parallel and Distributed Systems, 1999, 10, 813-824.	4.0	8
50	Fault-tolerant rate-monotonic first-fit scheduling in hard-real-time systems. IEEE Transactions on Parallel and Distributed Systems, 1999, 10, 934-945.	4.0	70
51	Online scheduling to minimize average stretch., 0,,.		47
52	SINGLE-MACHINE SCHEDULING WITH MIXED PRECEDENCE CONSTRAINTS. Journal of the Operations Research Society of Japan, 1999, 42, 330-341.	0.3	2
53	Scheduling for parallel dedicated machines with a single server. Naval Research Logistics, 2000, 47, 304-328.	1.4	62
54	Load Balancing for Response Time. Journal of Algorithms, 2000, 35, 1-16.	0.9	40

#	Article	IF	Citations
55	The Loading Time Scheduling Problem. Journal of Algorithms, 2000, 36, 1-33.	0.9	4
56	Restarts can help in the on-line minimization of the maximum delivery time on a single machine. Journal of Scheduling, 2000, 3, 333-341.	1.3	33
57	On-line and off-line preemptive two-machine job shop scheduling. Journal of Scheduling, 2000, 3, 355-364.	1.3	6
58	Tabu search for minimizing total tardiness in a job shop. International Journal of Production Economics, 2000, 63, 131-140.	5.1	60
59	Group technology approach to the open shop scheduling problem with batch setup times. Operations Research Letters, 2000, 26, 181-192.	0.5	20
60	A 1.47-approximation algorithm for a preemptive single-machine scheduling problem. Operations Research Letters, 2000, 26, 149-154.	0.5	21
61	A parallel approximation scheme for the multiprocessor scheduling problem. Parallel Computing, 2000, 26, 47-72.	1.3	4
62	Complexity of mixed shop scheduling problems: A survey. European Journal of Operational Research, 2000, 120, 343-351.	3 . 5	45
63	Minimizing tardy jobs in a flowshop with common due date. European Journal of Operational Research, 2000, 120, 375-381.	3. 5	43
64	Flow shop and open shop scheduling with a critical machine and two operations per job. European Journal of Operational Research, 2000, 127, 120-125.	3 . 5	21
65	Scheduling multiple variant programs under hard real-time constraints. European Journal of Operational Research, 2000, 127, 458-465.	3 . 5	5
66	Scheduling one batch processor subject to job release dates. Discrete Applied Mathematics, 2000, 105, 129-136.	0.5	65
67	Evaluation and comparison of production schedules. Computers in Industry, 2000, 42, 203-220.	5 . 7	49
68	Scheduling on uniform parallel machines to minimize maximum lateness. Operations Research Letters, 2000, 26, 175-179.	0.5	15
69	A comment on scheduling on uniform machines under chain-type precedence constraints. Operations Research Letters, 2000, 26, 107-109.	0.5	21
70	Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan. European Journal of Operational Research, 2000, 120, 277-288.	3 . 5	26
71	Worst-case performance of critical path type algorithms. International Transactions in Operational Research, 2000, 7, 383-399.	1.8	7
72	When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?. INFORMS Journal on Computing, 2000, 12, 57-74.	1.0	196

#	Article	IF	CITATIONS
73	Robust scheduling of a two-machine flow shop with uncertain processing times. IIE Transactions, 2000, 32, 421-432.	2.1	174
74	Selecting Scheduling Heuristics Using Neural Networks. INFORMS Journal on Computing, 2000, 12, 150-162.	1.0	29
75	Approximability and in-approximability results for no-wait shop scheduling. , 0, , .		2
76	Application of a neural-network scheduler on a real manufacturing system. IEEE Transactions on Control Systems Technology, 2001, 9, 261-270.	3.2	20
77	On preemption redundancy in scheduling unit processing time jobs on two parallel machines. , 0, , .		0
78	A unified algorithmic framework for variable-rate TDM switching assignments. IEEE/ACM Transactions on Networking, 2001, 9, 662-668.	2.6	2
79	An elaborate analysis of production systems in industry: what a consultant should know. Industrial Management and Data Systems, 2001, 101, 185-193.	2.2	4
80	Non-Approximability Results for Scheduling Problems with Minsum Criteria. INFORMS Journal on Computing, 2001, 13, 157-168.	1.0	35
81	Scheduling with Opting Out: Improving upon Random Priority. Operations Research, 2001, 49, 565-577.	1.2	59
82	How good is a dense shop schedule?. Acta Mathematicae Applicatae Sinica, 2001, 17, 121-128.	0.4	7
83	A 3/2-approximation algorithm for two-machine flow-shop sequencing subject to release dates. Discrete Applied Mathematics, 2001, 114, 255-271.	0.5	13
84	Linear time approximation scheme for the multiprocessor open shop problem. Discrete Applied Mathematics, 2001, 114, 273-288.	0.5	27
85	Two-machine open shop scheduling with an availability constraint. Operations Research Letters, 2001, 29, 65-77.	0.5	35
86	A -approximation algorithm for parallel machine scheduling with controllable processing times. Operations Research Letters, 2001, 29, 41-47.	0.5	14
87	Evolution-based scheduling of multiple variant and multiple processor programs. Future Generation Computer Systems, 2001, 17, 405-414.	4.9	9
88	On-line single-server dial-a-ride problems. Theoretical Computer Science, 2001, 268, 91-105.	0.5	113
89	Minimizing maximum earliness on parallel identical machines. Computers and Operations Research, 2001, 28, 317-327.	2.4	5
90	A common due-date assignment problem on parallel identical machines. Computers and Operations Research, 2001, 28, 719-732.	2.4	37

#	Article	IF	Citations
91	Batch scheduling in the no-wait two-machine flowshop to minimize the makespan. Computers and Operations Research, 2001, 28, 613-624.	2.4	33
92	Sensitivity analysis of scheduling algorithms. European Journal of Operational Research, 2001, 134, 606-615.	3.5	32
93	Solving a bicriteria scheduling problem on unrelated parallel machines occurring in the glass bottle industry. European Journal of Operational Research, 2001, 135, 42-49.	3.5	30
94	Two-stage open shop scheduling with a bottleneck machine. European Journal of Operational Research, 2001, 128, 159-174.	3.5	12
95	A note on scheduling flowshops with flexible stage ordering. European Journal of Operational Research, 2001, 129, 224-229.	3.5	1
96	Minmax earliness–tardiness costs with unit processing time jobs. European Journal of Operational Research, 2001, 130, 638-652.	3.5	29
97	Scheduling broadcasts in wireless networks. Journal of Scheduling, 2001, 4, 339-354.	1.3	22
98	Human performance in industrial scheduling: A framework for understanding. Human Factors and Ergonomics in Manufacturing, 2001, 11 , 299-320.	1.4	39
99	On preemption redundancy in scheduling unit processing time jobs on two parallel machines. Operations Research Letters, 2001, 28, 205-212.	0.5	15
100	Extending Graham's result on scheduling to other heuristics. Operations Research Letters, 2001, 29, 149-153.	0.5	1
101	A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots. Omega, 2001, 29, 577-584.	3.6	60
102	Scheduling with Fixed Delivery Dates. Operations Research, 2001, 49, 134-144.	1.2	77
103	Sorting Permutations by Reversals Through Branch-and-Price. INFORMS Journal on Computing, 2001, 13, 224-244.	1.0	20
104	Scheduling with due dates and deadlines. , 2002, , .		1
105	Coordinating the motions of multiple robots with specified trajectories. , 0 , , .		79
106	Two processor scheduling with real release times and deadlines. , 2002, , .		1
107	Due date assignment and scheduling: Slk, TWK and other due date assignment models. Production Planning and Control, 2002, 13, 117-132.	5.8	97
108	Supply-chain redesign to reduce safety stock levels: sequencing and merging operations. IEEE Transactions on Engineering Management, 2002, 49, 243-257.	2.4	6

#	Article	IF	CITATIONS
109	Minimizing makespan on parallel machines subject to release dates and delivery times. Journal of Scheduling, 2002, 5, 329-355.	1.3	59
110	Approximation algorithms for shop scheduling problems with minsum objective. Journal of Scheduling, 2002, 5, 287-305.	1.3	41
111	A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems. International Journal of Production Economics, 2002, 79, 185-196.	5.1	64
112	Randomized algorithms for on-line scheduling problems: how low can't you go?. Operations Research Letters, 2002, 30, 89-96.	0.5	23
113	A linear time approximation scheme for makespan minimization in an open shop with release dates. Operations Research Letters, 2002, 30, 276-280.	0.5	5
114	Scheduling and constraint propagation. Discrete Applied Mathematics, 2002, 123, 227-256.	0.5	47
115	A survey of the state-of-the-art of common due date assignment and scheduling research. European Journal of Operational Research, 2002, 139, 1-25.	3.5	395
116	A cutting plane algorithm for the unrelated parallel machine scheduling problem. European Journal of Operational Research, 2002, 141, 515-525.	3.5	44
117	Polynomial time approximation schemes for general multiprocessor job shop scheduling. Journal of Algorithms, 2002, 45, 167-191.	0.9	6
118	Performance Bounds of Algorithms for Scheduling Advertisements on a Web Page. Journal of Scheduling, 2003, 6, 373-394.	1.3	43
119	Scheduling jobs on parallel machines: a restricted tabu search approach. International Journal of Advanced Manufacturing Technology, 2003, 22, 278-287.	1.5	41
120	Exact algorithms for scheduling multiple families of jobs on parallel machines. Naval Research Logistics, 2003, 50, 823-840.	1.4	43
121	Single machine scheduling to minimize the number of late jobs under uncertainty. Fuzzy Sets and Systems, 2003, 139, 421-430.	1.6	12
122	Scheduling unitary task systems with zero–one communication delays for quasi-interval orders. Discrete Applied Mathematics, 2003, 127, 461-476.	0.5	3
123	Scheduling problems for parallel dedicated machines under multiple resource constraints. Discrete Applied Mathematics, 2003, 133, 45-68.	0.5	46
124	Efficient scheduling of consumer goods manufacturing processes in the continuous time domain. Computers and Operations Research, 2003, 30, 1367-1381.	2.4	17
125	Scheduling parallel dedicated machines under a single non-shared resource. European Journal of Operational Research, 2003, 147, 345-364.	3.5	47
126	An alternative framework to Lagrangian relaxation approach for job shop scheduling. European Journal of Operational Research, 2003, 149, 499-512.	3.5	84

#	Article	IF	Citations
127	On scheduling an unbounded batch machine. Operations Research Letters, 2003, 31, 42-48.	0.5	37
128	Two-machine flowshop minimum-length scheduling problem with random and bounded processing times. International Transactions in Operational Research, 2003, 10, 65-76.	1.8	36
129	Request redirection algorithms for distributed web systems. IEEE Transactions on Parallel and Distributed Systems, 2003, 14, 355-368.	4.0	67
130	Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem. Operations Research, 2003, 51, 981-992.	1.2	51
131	Task allocation via multi-agent coalition formation: taxonomy, algorithms and complexity. , 0, , .		9
132	On Minimizing Average Weighted Completion Time: A PTAS for the Job Shop Problem with Release Dates. Lecture Notes in Computer Science, 2003, , 319-328.	1.0	4
133	Job shop scheduling by taboo search with fuzzy reasoning. , 0, , .		4
134	Minimizing flow time nonclairvoyantly. Journal of the ACM, 2003, 50, 551-567.	1.8	40
136	Packing: Scheduling, Embedding, and Approximating Metrics. Lecture Notes in Computer Science, 2004, , 764-775.	1.0	3
137	New hardness results for congestion minimization and machine scheduling. , 2004, , .		24
138	Minimizing makespan on parallel machines with release time and machine eligibility restrictions. International Journal of Production Research, 2004, 42, 1243-1256.	4.9	59
139	Hoprield neural network approach for single machine scheduling problem. , 0, , .		2
140	Scheduling With Release Times and Deadlines on A Minimum Number of Machines., 2004,, 209-222.		19
141	Differential Evolution for the Flow Shop Scheduling Problem. Studies in Fuzziness and Soft Computing, 2004, , 585-611.	0.6	7
142	Rolling horizon heuristic for single-machine scheduling problem. , 0, , .		0
143	Lower Bounds for Scheduling on Identical Parallel Machines with Heads and Tails. Annals of Operations Research, 2004, 129, 187-204.	2.6	16
144	Heuristic Algorithms and Scatter Search for the Cardinality Constrained Pâ", Cmax Problem. Journal of Heuristics, 2004, 10, 169-204.	1.1	17
145	A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems. Journal of Combinatorial Optimization, 2004, 8, 195-220.	0.8	54

#	Article	IF	CITATIONS
146	Approximating the Advertisement Placement Problem. Journal of Scheduling, 2004, 7, 365-374.	1.3	27
147	Operator scheduling in data stream systems. VLDB Journal, 2004, 13, 333-353.	2.7	117
148	A concise survey of scheduling with time-dependent processing times. European Journal of Operational Research, 2004, 152 , 1 - 13 .	3.5	582
149	Makespan minimization on uniform parallel machines with release times. European Journal of Operational Research, 2004, 157, 262-266.	3.5	22
150	Batching decisions for assembly production systems. European Journal of Operational Research, 2004, 157, 620-642.	3.5	20
151	Mean flow time minimization with given bounds of processing times. European Journal of Operational Research, 2004, 159, 558-573.	3.5	21
152	A heuristic approach for minimizing weighted tardiness and overtime costs in single resource scheduling. Computers and Operations Research, 2004, 31, 1273-1301.	2.4	25
153	A note on scheduling parallel machines subject to breakdown and repair. Naval Research Logistics, 2004, 51, 60-71.	1.4	17
154	Two-machine flow shop no-wait scheduling with a nonavailability interval. Naval Research Logistics, 2004, 51, 613-631.	1.4	17
155	Parallel-machine batch scheduling to minimize the maximum lateness and the number of tardy jobs. International Journal of Production Economics, 2004, 91, 121-134.	5.1	35
156	Inapproximability results for no-wait job shop scheduling. Operations Research Letters, 2004, 32, 320-325.	0.5	22
157	Earliness/tardiness scheduling with a common due date and family setups. Computers and Industrial Engineering, 2004, 47, 275-288.	3.4	11
158	Performance of work conserving schedulers and scheduling of some synchronous dataflow graphs. , 0, , .		2
159	Parallel machine scheduling to minimize the sum of quadratic completion times. IIE Transactions, 2004, 36, 11-17.	2.1	21
160	Scheduling Satellite-Switched Time-Division Multiple Access With General Switching Modes. IEEE/ACM Transactions on Networking, 2004, 12, 645-652.	2.6	3
161	A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society, 2004, 55, 1243-1255.	2.1	229
162	Scheduling AND/OR-Networks on Identical Parallel Machines. Lecture Notes in Computer Science, 2004, , 123-136.	1.0	7
163	A Hybrid Bin-Packing Heuristic to Multiprocessor Scheduling. Lecture Notes in Computer Science, 2004, , 1-13.	1.0	16

#	Article	IF	CITATIONS
164	Flowshop scheduling problem to minimize total completion time with random and bounded processing times. Journal of the Operational Research Society, 2004, 55, 277-286.	2.1	31
165	Approximation Schemes for a Class of Subset Selection Problems. Lecture Notes in Computer Science, 2004, , 203-211.	1.0	2
166	STOCHASTIC APPROXIMATE SCHEDULING BY NEURODYNAMIC LEARNING. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 355-360.	0.4	1
167	Optimal preemptive scheduling on a fixed number of identical parallel machines. Operations Research Letters, 2005, 33, 143-150.	0.5	12
168	Machine scheduling with earliness, tardiness and non-execution penalties. Computers and Operations Research, 2005, 32, 683-705.	2.4	26
169	Heuristic methods for the identical parallel machine flowtime problem with set-up times. Computers and Operations Research, 2005, 32, 2479-2491.	2.4	36
170	Terminal penalty rolling scheduling based on an initial schedule for single-machine scheduling problem. Computers and Operations Research, 2005, 32, 3059-3072.	2.4	13
171	A meta-heuristic approach to single machine scheduling problems. International Journal of Advanced Manufacturing Technology, 2005, 25, 772-776.	1.5	17
172	An intensive search evolutionary algorithm for single-machine total-weighted-tardiness scheduling problems. International Journal of Advanced Manufacturing Technology, 2005, 26, 1150-1156.	1.5	10
173	A graph-oriented approach for the minimization of the number of late jobs for the parallel machines scheduling problem. European Journal of Operational Research, 2005, 165, 649-656.	3.5	7
174	Single machine preemptive scheduling with fixed jobs to minimize tardiness related criteria. European Journal of Operational Research, 2005, 164, 851-855.	3 . 5	12
175	Randomized On-Line Scheduling Similar Jobs to Minimize Makespan on Two Identical Processors. Acta Mathematicae Applicatae Sinica, 2005, 21, 485-488.	0.4	0
176	Maximizing Weighted number of Just-in-Time Jobs on Unrelated Parallel Machines. Journal of Scheduling, 2005, 8, 453-460.	1.3	33
177	Pre-Emptive Scheduling Problems with Controllable Processing Times. Journal of Scheduling, 2005, 8, 233-253.	1.3	32
178	A heuristic approach to minimize expected makespan in open shops subject to stochastic processing times and failures. Flexible Services and Manufacturing Journal, 2005, 17, 201-226.	0.4	24
179	Stability of Optimal Line Balance with Given Station Set. , 2005, , 135-149.		4
180	Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 2005, 56, 88-101.	2.1	76
181	Design and control of a flexible orderâ€picking system (FOPS). Journal of Manufacturing Technology Management, 2005, 16, 18-35.	3.3	16

#	ARTICLE	IF	CITATIONS
182	Minimizing Makespan in No-Wait Job Shops. Mathematics of Operations Research, 2005, 30, 817-831.	0.8	22
183	Constraint Handling and Stochastic Ranking in ACO., 0,,.		7
184	Algorithms with performance guarantees for flow shops with regular objective functions. IIE Transactions, 2005, 37, 1107-1111.	2.1	18
185	APPROXIMATION ALGORITHMS FOR FLEXIBLE JOB SHOP PROBLEMS. International Journal of Foundations of Computer Science, 2005, 16, 361-379.	0.8	13
186	A GRASP for Parallel Machine Scheduling with Time Windows. INFORMS Journal on Computing, 2005, 17, 32-51.	1.0	48
187	An Efficient Proactive-Reactive Scheduling Approach to Hedge Against Shop Floor Disturbances. , 2005, , 223-246.		13
188	A Scheduling model based on Group Decision Support. , 0, , .		3
189	Provable Algorithms for Parallel Sweep Scheduling on Unstructured Meshes. , 0, , .		1
190	An approach to collaborative scheduling through group decision support. , 0, , .		3
192	Higherâ€Dimensional Packing with Order Constraints. SIAM Journal on Discrete Mathematics, 2006, 20, 1056-1078.	0.4	5
193	On a Single Machine Due Date Assignment and Scheduling Problem with the Rate-Modifying Activity. , 2006, , 679-684.		1
194	Job Shop Scheduling with Unit Processing Times. Mathematics of Operations Research, 2006, 31, 381-389.	0.8	13
195	ENDOSCOPIES SCHEDULING PROBLEM: A CASE STUDY. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 635-640.	0.4	8
196	Two-machine flowshop scheduling with conditional deteriorating second operations. International Transactions in Operational Research, 2006, 13, 91-98.	1.8	8
197	Single machine scheduling with controllable release and processing parameters. Discrete Applied Mathematics, 2006, 154, 2178-2199.	0.5	34
198	Reinforcement learning in a distributed market-based production control system. Advanced Engineering Informatics, 2006, 20, 279-288.	4.0	45
199	Permutation flowshop scheduling problems with maximal and minimal time lags. Computers and Operations Research, 2006, 33, 1540-1556.	2.4	67
200	Performance guarantees for flowshop heuristics to minimize makespan. European Journal of Operational Research, 2006, 169, 865-872.	3.5	8

#	Article	IF	CITATIONS
201	A review of TSP based approaches for flowshop scheduling. European Journal of Operational Research, 2006, 169, 816-854.	3 . 5	83
202	Lower bounds and heuristic algorithms for the ki-partitioning problem. European Journal of Operational Research, 2006, 171, 725-742.	3.5	13
203	Utilizing unreliable public resources for higher profit and better SLA compliance in computing utilities. Journal of Parallel and Distributed Computing, 2006, 66, 796-806.	2.7	10
204	On the Complexity of Adjacent Resource Scheduling. Journal of Scheduling, 2006, 9, 49-62.	1.3	36
205	Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times. Journal of Intelligent Manufacturing, 2006, 17, 85-97.	4.4	143
206	The asymptotic performance ratio of an on-line algorithm for uniform parallel machine scheduling with release dates. Mathematical Programming, 2006, 106, 137-157.	1.6	32
207	Energetic reasoning and bin-packing problem, for bounding a parallel machine scheduling problem. 4or, 2006, 4, 297-317.	1.0	8
208	Design and control of an AS/RS. International Journal of Advanced Manufacturing Technology, 2006, 28, 766-774.	1.5	55
209	Action variety of planners: Cognitive load and requisite variety. Journal of Operations Management, 2006, 24, 813-821.	3.3	56
210	Problems column. ACM Transactions on Algorithms, 2006, 2, 130-134.	0.9	0
211	Approximation Algorithms for the Job Interval Selection Problem and Related Scheduling Problems. Mathematics of Operations Research, 2006, 31, 730-738.	0.8	56
212	Scheduling multi-operation jobs in partially overlapping systems. International Journal of Computer Integrated Manufacturing, 2006, 19, 453-462.	2.9	11
213	A Branch-and-Bound Algorithm for the Permutation Flow Shop Scheduling Problem Subject to Release Dates and Delivery Times. , 2006, , .		2
214	Multi-Objective Evolutionary Job-Shop Scheduling Using Jumping Genes Genetic Algorithm. , 2006, , .		11
215	Heuristics for Minimizing Total Completion Time on Single Machine with Release Time. Advanced Materials Research, 2007, 18-19, 347-352.	0.3	5
216	Development of a new model for the flowshop problem. , 2007, , .		0
217	Scheduling Cross Docking Logistics Optimization Problem with Multiple Inbound Vehicles and One Outbound Vehicle. , 2007, , .		14
218	Loading and Rendering Optimization for Networked Virtual Worlds. , 2007, , .		4

#	ARTICLE	IF	CITATIONS
219	On-line scheduling with delivery time on a single batch machine. Theoretical Computer Science, 2007, 374, 49-57.	0.5	26
220	Different behaviour of a double branch-and-bound algorithm on and problems. Computers and Operations Research, 2007, 34, 938-953.	2.4	35
221	Heuristic stability: A permutation disarray measure. Computers and Operations Research, 2007, 34, 3187-3208.	2.4	1
222	Two-machine open shop problem with controllable processing times. Discrete Optimization, 2007, 4, 175-184.	0.6	11
223	Scheduling in an assembly-type production chain with batch transfer. Omega, 2007, 35, 143-151.	3 . 6	35
224	The worst absolute surplus loss in the problem of commons: random priority versus average cost. Economic Theory, 2007, 34, 69-84.	0.5	24
225	The ratio of the extreme to the sum in a random sequence. Extremes, 2007, 10, 249-266.	0.5	3
226	Stability of a combinatorial vector partition problem. Cybernetics and Systems Analysis, 2007, 43, 462-465.	0.4	2
227	An exact method for problem. Computers and Operations Research, 2007, 34, 2840-2848.	2.4	21
228	Strategies to create platforms for differentiated services from dedicated and opportunistic resources. Journal of Parallel and Distributed Computing, 2007, 67, 1119-1134.	2.7	5
229	Single machine scheduling models with deterioration andÂlearning: handling precedence constraints viaApriorityÂgeneration. Journal of Scheduling, 2008, 11, 357-370.	1.3	74
230	Maximizing the minimum completion time on parallel machines. 4or, 2008, 6, 375-392.	1.0	17
231	Grouping Techniques for Scheduling Problems: Simpler and Faster. Algorithmica, 2008, 51, 183-199.	1.0	14
232	Preemptive Scheduling on Uniform Parallel Machines with Controllable Job Processing Times. Algorithmica, 2008, 51, 451-473.	1.0	14
233	Preemptive scheduling and antichain polyhedra. Discrete Applied Mathematics, 2008, 156, 3267-3275.	0.5	0
234	Metaheuristics and Scheduling. , 0, , 33-68.		2
235	New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 2008, 59, 1373-1386.	2.1	27
236	Proportional scheduling, split-proofness, and merge-proofness. Games and Economic Behavior, 2008, 63, 567-587.	0.4	23

#	Article	IF	CITATIONS
237	Offline and Online Aspects of Defragmenting the Module Layout of a Partially Reconfigurable Device. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16, 1210-1219.	2.1	9
238	(Acyclic) Job Shops are Hard to Approximate., 2008,,.		15
239	Modeling industrial lot sizing problems: a review. International Journal of Production Research, 2008, 46, 1619-1643.	4.9	266
240	Ant colony optimization algorithm to parallel machine scheduling problem with setups. , 2008, , .		13
241	SINGLE MACHINE SCHEDULING WITH FORBIDDEN INTERVALS AND JOB DELIVERY TIMES. Asia-Pacific Journal of Operational Research, 2008, 25, 317-325.	0.9	17
242	An improved approximation algorithm for the two-machine open shop scheduling problem with family setup times. IIE Transactions, 2008, 40, 478-493.	2.1	3
243	Single machine scheduling with time deteriorating job values. Journal of the Operational Research Society, 2008, 59, 105-118.	2.1	11
244	Minimizing total busy time in parallel scheduling with application to optical networks. , 2009, , .		20
245	On scheduling models: An overview., 2009,,.		3
246	Scheduling splittable tasks on multi-purpose parallel machines with release dates and deadlines. , 2009, , .		0
247	A branch-and-bound algorithm for minimizing the total completion time in two-machine flowshop problem subject to release dates. , 2009, , .		3
248	A unified approach to scheduling on unrelated parallel machines. Journal of the ACM, 2009, 56, 1-31.	1.8	32
249	Single Machine Precedence Constrained Scheduling Is aÂVertex Cover Problem. Algorithmica, 2009, 53, 488-503.	1.0	29
250	On-line scheduling on an unbounded parallel batch machine toÂminimize makespan of two families of jobs. Journal of Scheduling, 2009, 12, 91-97.	1.3	17
251	Online scheduling on <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>m</mml:mi></mml:math> uniform machines to minimize total (weighted) completion time. Theoretical Computer Science, 2009, 410, 3875-3881.	0.5	2
252	Online scheduling to minimize modified total tardiness with an availability constraint. Theoretical Computer Science, 2009, 410, 5039-5046.	0.5	10
253	Minimizing makespan in two-stage hybrid cross docking scheduling problem. Computers and Operations Research, 2009, 36, 2066-2073.	2.4	89
254	A hybrid heuristic to solve the parallel machines job-shop scheduling problem. Advances in Engineering Software, 2009, 40, 118-127.	1.8	28

#	Article	IF	CITATIONS
255	Fifty years of scheduling: a survey of milestones. Journal of the Operational Research Society, 2009, 60, S41-S68.	2.1	150
256	MINIMIZING TOTAL WEIGHTED COMPLETION TIME ON A SINGLE BATCH PROCESSING MACHINE. Production and Operations Management, 1997, 6, 57-73.	2.1	66
257	A REVIEW OF FLOWSHOP SCHEDULING RESEARCH WITH SETUP TIMES. Production and Operations Management, 2000, 9, 262-282.	2.1	148
258	SCHEDULING HYBRID FLOWSHOPS IN PRINTED CIRCUIT BOARD ASSEMBLY LINES*. Production and Operations Management, 2002, 11, 216-230.	2.1	62
259	Games and Mechanism Design in Machine Schedulingâ€"An Introduction. Production and Operations Management, 2007, 16, 437-454.	2.1	60
260	Single machine scheduling with sequence-dependent family setups to minimize maximum lateness. Journal of the Operational Research Society, 2010, 61, 1181-1189.	2.1	16
261	Structural properties of optimal schedules with preemption. Journal of Applied and Industrial Mathematics, 2010, 4, 455-474.	0.1	1
262	Scheduling parallel machines with inclusive processing set restrictions and job release times. European Journal of Operational Research, 2010, 200, 702-710.	3.5	27
263	Minimizing total busy time in parallel scheduling with application to optical networks. Theoretical Computer Science, 2010, 411, 3553-3562.	0.5	51
264	Parallel batch scheduling of equal-length jobs with release andÂdue dates. Journal of Scheduling, 2010, 13, 463-477.	1.3	22
265	A two-stage Ant Colony Optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 2010, 21, 693-701.	4.4	126
266	Improving the preemptive bound for the single machine dynamic maximum lateness problem. Operations Research Letters, 2010, 38, 589-591.	0.5	4
267	Scheduling problems with partially ordered jobs. Automation and Remote Control, 2010, 71, 2029-2037.	0.4	1
268	Preemptive scheduling of independent jobs on identical parallel machines subject to migration delays. Automation and Remote Control, 2010, 71, 2093-2101.	0.4	3
269	Analysis of Revenue Maximization Under Two Movieâ€Screening Policies. Production and Operations Management, 2010, 19, 111-124.	2.1	10
270	Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud. , 2010, , .		19
271	A novel agent bidding based optimization approach in manufacturing planning and scheduling. , 2010, , .		1
272	Performance analysis of rotation schedule and improved strategy for open shop problem to minimise makespan. International Journal of Systems Science, 2011, 42, 1143-1153.	3.7	6

#	Article	IF	CITATIONS
273	A composite algorithm for multiprocessor scheduling. Journal of Heuristics, 2011, 17, 281-301.	1.1	7
274	Lateral solutions for optimizing holding costs in job shops. International Journal of Advanced Manufacturing Technology, 2011, 56, 261-272.	1.5	0
275	Routing open shop and flow shop scheduling problems. European Journal of Operational Research, 2011, 213, 24-36.	3.5	28
276	Single machine scheduling problem in a Just-in-time environment., 2011,,.		1
277	Setup tasks scheduling during production resettings. International Journal of Production Research, 2011, 49, 6787-6811.	4.9	2
278	A feature model and development approach for schedulers. , 2011, , .		1
279	A DE-Based Hybrid Algorithm for the Flexible Job-Shop Scheduling Problem. Advanced Materials Research, 2012, 630, 502-507.	0.3	0
280	Knowledge-based Technologies for Future Factory Engineering and Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 44-48.	0.4	6
281	Task scheduling in budget-constrained cloud computing systems to maximise throughput. International Journal of Computational Science and Engineering, 2012, 7, 319.	0.4	6
282	The open shop problem with routing at a two-node network and allowed preemption. Journal of Applied and Industrial Mathematics, 2012, 6, 346-354.	0.1	7
283	Stochastic single machine scheduling with random common due date. International Journal of Production Research, 2012, 50, 3560-3571.	4.9	15
284	Hardware pipelining of runtime-detected loops. , 2012, , .		1
285	Optimizing Busy Time on Parallel Machines. , 2012, , .		17
286	Complexity: A Theoretical Analysis with Implications to Self Regulation and Goal Pursuit. SSRN Electronic Journal, 2012, , .	0.4	0
287	Automated knowledge source selection and service composition. Computational Optimization and Applications, 2012, 52, 507-535.	0.9	3
288	Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flowtime in automobile gear manufacturing. International Journal of Advanced Manufacturing Technology, 2012, 60, 1099-1110.	1.5	37
289	A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers and Industrial Engineering, 2012, 62, 917-926.	3.4	105
290	Single machine scheduling with precedence constraints and positionally dependent processing times. Computers and Operations Research, 2012, 39, 1218-1224.	2.4	24

#	Article	IF	Citations
291	Minimization of earliness, tardiness and due date penalties on uniform parallel machines with identical jobs. Computers and Operations Research, 2012, 39, 1919-1926.	2.4	15
292	Two branch-and-bound algorithms for the robust parallel machine scheduling problem. Computers and Operations Research, 2012, 39, 1652-1660.	2.4	31
293	An improved on-line algorithm for single parallel-batch machine scheduling with delivery times. Discrete Applied Mathematics, 2012, 160, 1191-1210.	0.5	16
294	Scheduling jobs with values dependent on their completion times. International Journal of Production Economics, 2012, 135, 231-241.	5.1	10
295	Scheduling jobs in flowshops with the introduction of additional machines in the future. Expert Systems With Applications, 2012, 39, 11219-11227.	4.4	0
296	A tabu search algorithm for unrelated parallel machine scheduling with sequence- and machine-dependent setups: minimizing total tardiness. International Journal of Advanced Manufacturing Technology, 2013, 69, 2081-2089.	1.5	55
297	Two-machine, no-wait job shop problem with separable setup times and single-server constraints. International Journal of Advanced Manufacturing Technology, 2013, 65, 295-308.	1.5	8
298	On-line and semi-online scheduling for flow shop problems on two machines. Optimization, 2013, 62, 499-507.	1.0	1
299	Parallel Machine Scheduling: Impact of Adding Extra Machines. Operations Research, 2013, 61, 1243-1257.	1.2	24
300	A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem. Computers and Operations Research, 2013, 40, 1064-1075.	2.4	60
301	Bin Packing Approximation Algorithms: Survey and Classification., 2013,, 455-531.		150
302	Three-stage hybrid-flowshop model for cross-docking. Computers and Operations Research, 2013, 40, 1109-1121.	2.4	30
303	Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 2013, 20, 102-107.	1.2	18
304	Studying the effect of different combinations of timetabling with sequencing algorithms to solve the no-wait job shop scheduling problem. International Journal of Production Research, 2013, 51, 4942-4965.	4.9	13
305	List Scheduling in Embedded Systems under Memory Constraints. , 2013, , .		2
306	The Velocity Assignment Problem for Conflict Resolution with Multiple Aerial Vehicles Sharing Airspace. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 69, 331-346.	2.0	22
307	An estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. , 2013, , .		1
308	Shortest Paths. Algorithms and Computation in Mathematics, 2013, , 65-102.	0.1	0

#	Article	IF	CITATIONS
309	Efficient approximation algorithms for the routing open shop problem. Computers and Operations Research, 2013, 40, 841-847.	2.4	21
310	Open shop scheduling problem to minimize makespan with release dates. Applied Mathematical Modelling, 2013, 37, 2008-2015.	2.2	24
311	Analysis of multi-stage open shop processing systems. Mathematical Programming, 2013, 142, 331-348.	1.6	1
312	Stretch optimization for virtual screening on multi-user pilot-agent platforms on grid/cloud., 2013, , .		1
313	Genetic local search algorithm for minimizing the total completion time in single machine scheduling problem with release dates and precedence constraints. , $2013, \ldots$		0
314	MIP models for minimizing total tardiness in a two-machine flow shop. Journal of the Operational Research Society, 2013, 64, 690-707.	2.1	10
315	A Universally Stable and Energy-Efficient Scheduling Protocol for Packet Switching Network. , 2013, , .		0
316	A Rolling Horizon Procedure with Terminal Penalty for Large-Scale Single Machine Scheduling Problems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 462-467.	0.4	0
317	Solving a job-shop scheduling problem by an adaptive algorithm based on learning. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 1352-1357.	0.4	2
318	A BEST POSSIBLE ONLINE ALGORITHM FOR SCHEDULING TO MINIMIZE MAXIMUM FLOW-TIME ON BOUNDED BATCH MACHINES. Asia-Pacific Journal of Operational Research, 2014, 31, 1450030.	0.9	4
319	A discrete artificial bee colony algorithm for the assignment and parallel machine scheduling problem in DYO paint company. , 2014, , .		4
320	Let's depart together: Efficient play request dispatching in cloud gaming. , 2014, , .		1
321	An extension of flexible job shop problem (FJSP) and method for solving. , 2014, , .		0
322	Online optimization of busy time on parallel machines. Theoretical Computer Science, 2014, 560, 190-206.	0.5	21
323	Jointly optimal selection and scheduling for lossy transmission of dependent frames with delay constraint. , 2014, , .		6
324	Parallel-Machine Scheduling Problem under the Job Rejection Constraint. Lecture Notes in Computer Science, 2014, , 158-169.	1.0	5
325	A MILP model for an extended version of the Flexible Job Shop Problem. Optimization Letters, 2014, 8, 1417-1431.	0.9	48
326	Algorithm for quadratic semi-assignment problem with partition size coefficients. Optimization Letters, 2014, 8, 1183-1190.	0.9	9

#	Article	IF	Citations
327	The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Algorithmica, 2014, 70, 326-339.	1.0	0
328	Isomorphic scheduling problems. Annals of Operations Research, 2014, 213, 131-145.	2.6	19
329	A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems. European Journal of Operational Research, 2014, 235, 1-16.	3.5	123
330	On dynamic bin packing for resource allocation in the cloud. , 2014, , .		63
331	Parallel-machine scheduling to minimize overtime and waste costs. IIE Transactions, 2014, 46, 601-618.	2.1	9
332	A best possible on-line algorithm for two-machine flow shop scheduling to minimize makespan. Computers and Operations Research, 2014, 51, 251-256.	2.4	3
333	An approximation algorithm for the three-machine scheduling problem with the routes given by the same partial order. Computers and Industrial Engineering, 2014, 76, 347-359.	3.4	3
334	Single parameter analysis of power of preemption on two and three uniform machines. Discrete Optimization, 2014, 12, 26-46.	0.6	8
335	A Co-cooperative Evolutionary Algorithm for Flexible Scheduling Problem under Uncertainty. Procedia Computer Science, 2015, 61, 515-520.	1.2	1
336	Penalty cost constrained identical parallel machine scheduling problem. Theoretical Computer Science, 2015, 607, 181-192.	0.5	26
337	Extending SysPEM's orchestration engine with decision support: Relaxing resources constraints. , 2015, , .		0
338	Minimizing Makespan on Identical Parallel Machines. International Journal of Operations Research and Information Systems, 2015, 6, 19-29.	1.0	8
339	Scheduling a maintenance activity under skills constraints to minimize total weighted tardiness and late tasks. International Journal of Industrial Engineering Computations, 2015, 6, 135-144.	0.4	6
340	Efficient Scheduling for Video Transmissions in Maritime Wireless Communication Networks. IEEE Transactions on Vehicular Technology, 2015, 64, 4215-4229.	3.9	46
341	Diversity Enhanced Optimization Based on Communication Strategy Particles and Pollens., 2015,,.		0
342	Mathematical model applied to single-track line scheduling problem in Brazilian railways. 4or, 2015, 13, 403-441.	1.0	3
343	Partial Solutions and MultiFit Algorithm for Multiprocessor Scheduling. Mathematical Modelling and Algorithms, 2015, 14, 125-143.	0.5	2
344	Decomposition algorithms for submodular optimization with applications to parallel machine scheduling with controllable processing times. Mathematical Programming, 2015, 153, 495-534.	1.6	18

#	Article	IF	CITATIONS
345	Scheduling jobs with release dates, equal processing times, and inclusive processing set restrictions. Journal of the Operational Research Society, 2015, 66, 516-523.	2.1	11
346	Scheduling results applicable to decision-theoretic troubleshooting. International Journal of Approximate Reasoning, 2015, 56, 87-107.	1.9	1
347	List Scheduling in Embedded Systems Under Memory Constraints. International Journal of Parallel Programming, 2015, 43, 1103-1128.	1.1	4
348	Online-List Scheduling on a Single Bounded Parallel-Batch Machine to Minimize Makespan. Asia-Pacific Journal of Operational Research, 2015, 32, 1550028.	0.9	1
349	Evaluating two new heuristics for constructing customer clusters in a VRPTW with multiple service workers. Central European Journal of Operations Research, 2015, 23, 479-500.	1.1	10
350	Classification Framework of MapReduce Scheduling Algorithms. ACM Computing Surveys, 2015, 47, 1-38.	16.1	49
351	Play Request Dispatching for Efficient Virtual Machine Usage in Cloud Gaming. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25, 2052-2063.	5.6	38
352	A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems. Cybernetics and Information Technologies, 2015, 15, 3-22.	0.4	14
353	Optimizing busy time on parallel machines. Theoretical Computer Science, 2015, 562, 524-541.	0.5	21
354	Low-carbon scheduling and estimating for a flexible job shop based on carbon footprint and carbon efficiency of multi-job processing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 328-342.	1.5	54
355	Scheduling Methods for Efficient Stamping Operations at an Automotive Company. Production and Operations Management, 2016, 25, 1902-1918.	2.1	10
356	Comparisons of three mixed integer programming models for parallel machine scheduling. , 2016, , .		1
357	Algorithms for a Satellite Constellation scheduling Problem. , 2016, , .		6
358	CuMAS., 2016,,.		14
359	Robust scheduling strategies for collaborative human-UAV missions. , 2016, , .		0
360	Simulation and optimisation based approach for job shop scheduling problems. , 2016, , . Complexity of problem <mml:math <="" altimg="si1.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td>1</td></mml:math>		1
361	overflow="scroll"> <mml:mrow><mml:mi mathvariant="italic">TF</mml:mi></mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false"> </mml:mo> <mml:mi>v</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>, </mml:mo> <mml:mrow><mml:mi>C</mml:mi></mml:mrow> <mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>/monlamo> l:mi</td><td><neml:mi>c<!--</td--></neml:mi></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	/m o nlamo> l:mi	<neml:mi>c<!--</td--></neml:mi>
362	mathvariant="normal">max<. Information Processing Letters, 201 An Efficient Method for the Open-Shop Scheduling Problem Using Simulated Annealing. Advances in Intelligent Systems and Computing, 2016, , 1183-1193.	0.5	3

#	Article	IF	CITATIONS
363	An Iterative Greedy Insertion Technique for Flexible Job Shop Scheduling Problem. IFAC-PapersOnLine, 2016, 49, 1956-1961.	0.5	5
364	On First Fit Bin Packing for Online Cloud Server Allocation. , 2016, , .		38
365	Routing Open Shop with Unrelated Travel Times. Lecture Notes in Computer Science, 2016, , 272-283.	1.0	6
366	Robust Task Scheduling for Multi-Operator Supervisory Control Missions. Journal of Aerospace Information Systems, 2016, 13, 393-406.	1.0	7
367	Dynamic Bin Packing for On-Demand Cloud Resource Allocation. IEEE Transactions on Parallel and Distributed Systems, 2016, 27, 157-170.	4.0	66
368	A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems. INFORMS Journal on Computing, 2016, 28, 14-30.	1.0	10
369	MP or not MP: that is the question. Journal of Scheduling, 2016, 19, 33-42.	1.3	3
370	No-Wait Flowshop Scheduling Is as Hard as Asymmetric Traveling Salesman Problem. Mathematics of Operations Research, 2016, 41, 247-254.	0.8	3
371	A review on job shop scheduling with setup times. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230, 517-533.	1.5	32
372	Speed Scaling for Maximum Lateness. Theory of Computing Systems, 2016, 58, 304-321.	0.7	4
373	Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem. Journal of Intelligent Manufacturing, 2017, 28, 833-845.	4.4	37
374	Competitiveness of Dynamic Bin Packing for Online Cloud Server Allocation. IEEE/ACM Transactions on Networking, 2017, 25, 1324-1331.	2.6	28
375	Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan. European Journal of Operational Research, 2017, 260, 12-20.	3.5	21
376	Flowshop problem F2 â†'D v= 1,c≥ 1 Cmax revisited. Theoretical Computer Science, 2017, 670, 79-85.	0.5	2
377	Approximation algorithms for scheduling jobs with release times and arbitrary sizes on batch machines with non-identical capacities. European Journal of Operational Research, 2017, 263, 815-826.	3.5	19
378	Minimizing earliness and tardiness costs in scheduling jobs with time windows. Computers and Industrial Engineering, 2017, 113, 871-890.	3.4	8
379	A constraint generation approach for two-machine shop problems with jobs selection. European Journal of Operational Research, 2017, 259, 898-905.	3.5	8
380	Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 2017, 2, 1-30.	0.8	5

#	Article	IF	CITATIONS
381	Parallel batch scheduling with nested processing set restrictions. Theoretical Computer Science, 2017, 689, 117-125.	0.5	3
382	The checkpoint ordering problem. Optimization, 2017, 66, 1699-1712.	1.0	6
383	Vehicular Clouds: Ubiquitous Computing on Wheels. Emergence, Complexity and Computation, 2017, , 435-452.	0.2	8
384	Advances in Hybrid Metaheuristics for Stochastic Manufacturing Scheduling: Part I Models and Methods. Advances in Intelligent Systems and Computing, 2017, , 1063-1077.	0.5	2
385	Resource assignment in vehicular clouds. , 2017, , .		18
386	Coordinating rolling software upgrades for cellular networks. , 2017, , .		4
387	Scheduling multi-task jobs with extra utility in data centers. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, 200.	1.5	3
388	Parallel bat algorithm for optimizing makespan in job shop scheduling problems. Journal of Intelligent Manufacturing, 2018, 29, 451-462.	4.4	92
389	Preemptive models of scheduling with controllable processing times and of scheduling with imprecise computation: A review of solution approaches. European Journal of Operational Research, 2018, 266, 795-818.	3.5	35
390	Scheduling meets n-fold integer programming. Journal of Scheduling, 2018, 21, 493-503.	1.3	35
391	Integration of order picking and vehicle routing in a B2C e-commerce context. Flexible Services and Manufacturing Journal, 2018, 30, 813-843.	1.9	28
392	A survey on how the structure of precedence constraints may change the complexity class of scheduling problems. Journal of Scheduling, 2018, 21, 3-16.	1.3	22
393	Parallel Machine Scheduling with Rejection under Special Conditions. , 2018, , .		2
394	A novel framework and effective scheduling of cross-docking center for multi-objective truck Scheduling Problem. , 2018, , .		1
395	An Imperialist Competitive Algorithm for a Real-World Flexible Job Shop Scheduling Problem. , 2018, , .		0
396	A Modified Symbiotic Organisms Search Algorithm Applied to Flow Shop Scheduling Problems. , 2018, , .		6
397	Collaborative Offloading for Distributed Mobile-Cloud Apps. , 2018, , .		7
398	The Dispatch Problems in Power Distribution Systems. , 2018, , 133-153.		1

#	Article	IF	CITATIONS
399	Bin-Packing. Algorithms and Combinatorics, 2018, , 489-507.	0.6	1
400	An extended flexible job shop scheduling problem with parallel operations. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2018, 18, 46-56.	0.5	14
401	Comparative study of genetic and discrete firefly algorithm for combinatorial optimization. , 2018, , .		8
402	Scheduling maneuvers for the restoration of electric power distribution networks: Formulation and heuristics. Electric Power Systems Research, 2018, 163, 301-309.	2.1	5
403	Online over time processing of combinatorial problems. Constraints, 2018, 23, 310-334.	0.4	3
404	Scheduling parallel identical machines to minimize makespan: A parallel approximation algorithm. Journal of Parallel and Distributed Computing, 2019, 133, 221-231.	2.7	16
405	The single-processor scheduling problem with time restrictions: complexity and related problems. Journal of Scheduling, 2019, 22, 465-471.	1.3	8
406	No-idle, no-wait: when shop scheduling meets dominoes, Eulerian paths and Hamiltonian paths. Journal of Scheduling, 2019, 22, 59-68.	1.3	12
407	Prediction-based Resource Allocation using LSTM and Minimum Cost and Maximum Flow Algorithm. , 2019, , .		26
408	A tabu search-based memetic algorithm for the multi-objective flexible job shop scheduling problem. , 2019, , .		2
409	Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem. European Journal of Operational Research, 2019, 279, 721-731.	3.5	21
410	Scheduling Mutual Exclusion Accesses in Equal-Length Jobs. ACM Transactions on Parallel Computing, 2019, 6, 1-26.	1.2	1
411	Autonomous order dispatching in the semiconductor industry using reinforcement learning. Procedia CIRP, 2019, 79, 391-396.	1.0	38
412	Integrated Route, Charging and Activity Planning for Whole Day Mobility with Electric Vehicles. Lecture Notes in Computer Science, 2019, , 274-289.	1.0	1
413	An effective hybrid imperialist competitive algorithm and tabu search for an extended flexible job shop scheduling problem. , 2019 , , .		1
414	Shop scheduling problems with pliable jobs. Journal of Scheduling, 2019, 22, 635-661.	1.3	4
415	Multi-Objective Flexible Job Shop Scheduling Optimization by Means of Promethee I Method. , 2019, , .		0
416	An Agent-Based Process Mining Architecture for Emergent Behavior Analysis. , 2019, , .		13

#	Article	IF	CITATIONS
417	Bounding Strategies for the Parallel Processors Scheduling Problem With No-Idle Time Constraint, Release Date, and Delivery Time. IEEE Access, 2019, 7, 170392-170405.	2.6	7
418	Elements of Scheduling and Routing Theory. Contributions To Management Science, 2019, , 3-48.	0.4	0
419	Single machine scheduling problem with batch setups involving positional deterioration effects and multiple rate-modifying activities. Engineering Optimization, 2019, 51, 1743-1760.	1.5	8
420	Survey and classification of operational control problems in discrete event logistics systems (DELS). International Journal of Production Research, 2019, 57, 5215-5238.	4.9	8
421	A parallel machine schedule updating game with compensations and clients averse to uncertain loss. Computers and Operations Research, 2019, 103, 148-157.	2.4	5
422	Sufficient Conditions of Polynomial Solvability of the Two-Machine Preemptive Routing Open Shop on a Tree. Communications in Computer and Information Science, 2019, , 97-110.	0.4	1
423	Analysis of irregular three-dimensional packing problems in additive manufacturing: a new taxonomy and dataset. International Journal of Production Research, 2019, 57, 5920-5934.	4.9	59
424	Parallel machine scheduling with job synchronization to enable efficient material flows in hub terminals. Omega, 2019, 89, 110-121.	3.6	12
425	A decentralized solution to the car pooling problem. International Journal of Sustainable Transportation, 2019, 13, 81-92.	2.1	10
426	Online Scheduling on Two Uniform Unbounded Parallel-Batch Machines to Minimize Makespan. Journal of the Operations Research Society of China, 2019, 7, 303-319.	0.9	3
427	Extended Genetic Algorithm for solving open-shop scheduling problem. Soft Computing, 2019, 23, 5099-5116.	2.1	133
428	Parallel-machine group scheduling with inclusive processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration. Journal of Global Optimization, 2020, 78, 717-742.	1.1	11
429	Flow shops with reentry: Reversibility properties and makespan optimal schedules. European Journal of Operational Research, 2020, 282, 478-490.	3.5	11
430	Robust single machine makespan scheduling with release date uncertainty. Operations Research Letters, 2020, 48, 816-819.	0.5	9
431	Deterministic predictive dynamic scheduling for crop-transport co-robots acting as harvesting aids. Computers and Electronics in Agriculture, 2020, 178, 105702.	3.7	28
432	Sample size calculations for the experimental comparison of multiple algorithms on multiple problem instances. Journal of Heuristics, 2020, 26, 851-883.	1.1	8
433	On competitive analysis for polling systems. Naval Research Logistics, 2020, 67, 404-419.	1.4	2
434	A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system. Central European Journal of Operations Research, 2021, 29, 1353-1374.	1.1	11

#	Article	IF	CITATIONS
435	Dispatching-Rule Variants Algorithms for Used Spaces of Storage Supports. Discrete Dynamics in Nature and Society, 2020, 2020, 1-9.	0.5	17
436	Scheduling of Real-Time Tasks With Multiple Critical Sections in Multiprocessor Systems. IEEE Transactions on Computers, 2022, 71, 146-160.	2.4	4
437	Mirror scheduling problems with early work and late work criteria. Journal of Scheduling, 2021, 24, 483-487.	1.3	9
438	Managing Energy Plus Performance in Data Centers and Battery-Based Devices Using an Online Non-Clairvoyant Speed-Bounded Multiprocessor Scheduling. Applied Sciences (Switzerland), 2020, 10, 2459.	1.3	3
439	Power optimized battery swap and recharge strategies for electric aircraft operations. Transportation Research Part C: Emerging Technologies, 2020, 115, 102605.	3.9	24
440	Minimising makespan in job-shops with deterministic machine availability constraints. International Journal of Production Research, 2021, 59, 4403-4415.	4.9	4
441	DCSA: Distributed Channel-Storage Architecture for Flow-Based Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 115-128.	1.9	18
442	Frequency Fitness Assignment: Making Optimization Algorithms Invariant Under Bijective Transformations of the Objective Function Value. IEEE Transactions on Evolutionary Computation, 2021, 25, 307-319.	7.5	3
443	Task scheduling with precedence and placement constraints for resource utilization improvement in multi-user MEC environment. Journal of Systems Architecture, 2021, 114, 101970.	2.5	28
444	A Self-Adaptive Differential Evolution Algorithm for Scheduling a Single Batch-Processing Machine With Arbitrary Job Sizes and Release Times. IEEE Transactions on Cybernetics, 2021, 51, 1430-1442.	6.2	146
445	The Concept of Merging Arrival Flows in PMS for an Example Airport. Lecture Notes in Intelligent Transportation and Infrastructure, 2021, , 131-145.	0.3	0
446	A New Integer Programming Formulation of the Graphical Traveling Salesman Problem. Lecture Notes in Computer Science, 2021, , 458-472.	1.0	0
447	New controllable processing time scheduling with subcontracting strategy for no-wait job shop problem. International Journal of Production Research, 2022, 60, 2254-2274.	4.9	7
448	An optimal solution for the budgets assignment problem. RAIRO - Operations Research, 2021, 55, 873-897.	1.0	16
449	The parallel machine job splitting and allocation. , 2021, , .		0
450	Four decades of research on the open-shop scheduling problem to minimize the makespan. European Journal of Operational Research, 2021, 295, 399-426.	3.5	44
451	An EPTAS for scheduling fork-join graphs with communication delay. Theoretical Computer Science, 2021, 861, 66-79.	0.5	3
452	Minimizing makespan under data prefetching constraints for embedded vision systems: a study of optimization methods and their performance. Operational Research, 0, , 1.	1.3	О

#	ARTICLE	IF	CITATIONS
453	NPSCS: Non-Preemptive Stochastic Coflow Scheduling With Time-Indexed LP Relaxation. IEEE Transactions on Network and Service Management, 2021, 18, 2377-2387.	3.2	2
454	Irreducible bin packing and normality in routing open shop. Annals of Mathematics and Artificial Intelligence, 2021, 89, 899-918.	0.9	1
455	A parallel randomized approximation algorithm for non-preemptive single machine scheduling with release dates and delivery times. Computers and Operations Research, 2021, 130, 105238.	2.4	1
456	A new algorithm for the two-machine open shop and the polynomial solvability of a scheduling problem with routing. Journal of Scheduling, 2021, 24, 405-412.	1.3	4
457	Solving job shop scheduling problems without using a bias for good solutions. , 2021, , .		3
458	Innovative System for Scheduling Production Using a Combination of Parametric Simulation Models. Sustainability, 2021, 13, 9518.	1.6	6
459	Diffusions and Brownian Processes. , 2021, , 102-122.		0
460	Queues and Their Simulations, Birth and Death Queues. , 2021, , 3-15.		0
462	Control in Balanced Heavy Traffic. , 2021, , 270-304.		0
463	Product-Form Queueing Networks. , 2021, , 125-142.		0
466	Scaling of G/G/1 and G/G/â^ž. , 2021, , 83-101.		0
467	The Basic Probability Functional Limit Theorems. , 2021, , 71-82.		0
468	Load Balancing in the Supermarket Model. , 2021, , 360-384.		0
469	Processing Networks with Infinite Virtual Queues. , 2021, , 219-235.		0
470	Multi-Class QueueingNetworks, Instability, and MarkovRepresentations., 2021,, 159-174.		0
473	Many Servers with Abandonment. , 2021, , 346-359.		0
474	Join the Shortest Queue in Parallel Servers. , 2021, , 259-269.		0
475	Optimal Control of Transient Networks. , 2021, , 236-256.		0

#	Article	IF	CITATIONS
476	MCQN with Discretionary Routing. , 2021, , 305-320.		0
478	The G/G/1 Queue., 2021,, 61-70.		0
479	Asymptotics under Halfin.Whitt Regime. , 2021, , 330-345.		0
480	Stability of MCQN via Fluid Limits. , 2021, , 175-196.		O
485	Parallel Servers with Skill-Based Routing. , 2021, , 385-412.		0
486	Generalized Jackson Networks. , 2021, , 143-156.		0
487	Infinite Servers Revisited., 2021,, 323-329.		0
488	The M/G/1 Queue., 2021, , 16-41.		0
490	Processing Networks and Maximum Pressure Policies. , 2021, , 197-218.		0
492	Scheduling ortsfester Gebrauchsfaktoren. VDI-Buch, 2021, , 297-609.	0.1	0
493	A best possible algorithm for an online scheduling problem with position-based learning effect. Journal of Industrial and Management Optimization, 2021, .	0.8	0
494	Stochastic Reactive Production Scheduling by Multi-agent Based Asynchronous Approximate Dynamic Programming. Lecture Notes in Computer Science, 2005, , 388-397.	1.0	6
495	Preemptive Scheduling of Independent Jobs on Identical Parallel Machines Subject to Migration Delays. Lecture Notes in Computer Science, 2005, , 580-591.	1.0	6
496	Higher-Dimensional Packing with Order Constraints. Lecture Notes in Computer Science, 2001, , 300-312.	1.0	7
498	Grouping Techniques for Scheduling Problems: Simpler and Faster. Lecture Notes in Computer Science, 2001, , 206-217.	1.0	6
499	Lower Bounds for On-Line Single-Machine Scheduling. Lecture Notes in Computer Science, 2001, , 338-350.	1.0	4
500	Polynomial Time Approximation Schemes for General Multiprocessor Job Shop Scheduling. Lecture Notes in Computer Science, 2000, , 878-889.	1.0	3
501	Preemptive Scheduling with Rejection. Lecture Notes in Computer Science, 2000, , 268-277.	1.0	17

#	Article	IF	Citations
502	Scheduling Broadcasts in Wireless Networks. Lecture Notes in Computer Science, 2000, , 290-301.	1.0	32
503	Restarts Can Help in the On-Line Minimization of the Maximum Delivery Time on a Single Machine. Lecture Notes in Computer Science, 2000, , 427-436.	1.0	3
504	Job Shop Scheduling Problems with Controllable Processing Times. Lecture Notes in Computer Science, 2001, , 107-122.	1.0	6
505	A $(2+\hat{l}\mu)$ -Approximation Algorithm for Generalized Preemptive Open Shop Problem with Minsum Objective. Lecture Notes in Computer Science, 2001, , 361-369.	1.0	2
506	The Asymptotic Performance Ratio of an On-Line Algorithm for Uniform Parallel Machine Scheduling with Release Dates. Lecture Notes in Computer Science, 2001, , 45-59.	1.0	4
507	Online Scheduling for Sorting Buffers. Lecture Notes in Computer Science, 2002, , 820-832.	1.0	29
508	Polynomial Time Approximation Schemes for the Multiprocessor Open and Flow Shop Scheduling Problem. Lecture Notes in Computer Science, 2000, , 455-465.	1.0	13
510	The Lazy Bureaucrat Scheduling Problem. Lecture Notes in Computer Science, 1999, , 122-133.	1.0	4
511	Approximation Schemes for Scheduling on Uniformly Related and Identical Parallel Machines. Lecture Notes in Computer Science, 1999, , 151-162.	1.0	18
512	Scheduling unit jobs with compatible release dates on parallel machines with nonstationary speeds. Lecture Notes in Computer Science, 1995, , 307-320.	1.0	14
513	Scheduling jobs that arrive over time. Lecture Notes in Computer Science, 1995, , 86-97.	1.0	50
514	Optimal on-line algorithms for single-machine scheduling. Lecture Notes in Computer Science, 1996, , 404-414.	1.0	77
515	An approximation algorithm for stacking up bins from a conveyer onto pallets. Lecture Notes in Computer Science, 1997, , 440-449.	1.0	4
516	Competitive analysis of on-line stack-up algorithms. Lecture Notes in Computer Science, 1997, , 402-415.	1.0	4
517	Computer-Aided Way to Prove Theorems in Scheduling. Lecture Notes in Computer Science, 1998, , 502-513.	1.0	12
518	Non-approximability Results for Scheduling Problems with Minsum Criteria. Lecture Notes in Computer Science, 1998, , 353-366.	1.0	37
519	Cost Allocation in Combinatorial Optimization Games. Springer Optimization and Its Applications, 2008, , 217-247.	0.6	10
520	Overview of Scheduling Models. , 2014, , 45-74.		1

#	Article	IF	CITATIONS
521	A Study of On-Line Scheduling Two-Stage Shops. Nonconvex Optimization and Its Applications, 1995 , , $97-107$.	0.1	8
522	Scheduling Multiprocessor Flow Shops. Nonconvex Optimization and Its Applications, 1994, , 1-8.	0.1	13
524	Stability Radius of an Optimal Schedule: A Survey and Recent Developments. Applied Optimization, 1998, , 72-108.	0.4	31
526	Irreducible Bin Packing: Complexity, Solvability and Application to the Routing Open Shop. Lecture Notes in Computer Science, 2020, , 106-120.	1.0	2
527	On the Optima Localization for the Three-Machine Routing Open Shop. Lecture Notes in Computer Science, 2020, , 274-288.	1.0	3
528	Deterministic Models: Preliminaries. , 2016, , 13-32.		5
530	Breaking \$\$1 - 1/e\$\$ Barrier for Non-preemptive Throughput Maximization. Lecture Notes in Computer Science, 2017, , 292-304.	1.0	2
531	Advances in Hybrid EDA for Manufacturing Scheduling with Uncertainty: Part I. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 939-954.	0.4	2
533	The Four-Level Model of Planning and Decision Making. Studies in Systems, Decision and Control, 2019, , 347-406.	0.8	9
534	Approximation Algorithms for Scheduling Jobs with Chain Precedence Constraints. Lecture Notes in Computer Science, 2004, , 105-112.	1.0	6
535	Improved Results for Data Migration and Open Shop Scheduling. Lecture Notes in Computer Science, 2004, , 658-669.	1.0	7
536	Multicoloring: Problems and Techniques. Lecture Notes in Computer Science, 2004, , 25-41.	1.0	14
537	Integrating ACO and Constraint Propagation. Lecture Notes in Computer Science, 2004, , 166-177.	1.0	40
538	Scheduling and Production & Control: MA. Studies in Fuzziness and Soft Computing, 2004, , 655-680.	0.6	5
539	Hybrids of Constructive Metaheuristics and Constraint Programming: A Case Study with ACO. Studies in Computational Intelligence, 2008, , 151-183.	0.7	11
540	Multi-objective Simulated Annealing for Permutation Flow Shop Problems. Studies in Computational Intelligence, 2009, , 101-150.	0.7	4
541	Improved Bounds for Flow Shop Scheduling. Lecture Notes in Computer Science, 2009, , 677-688.	1.0	3
542	Integrality Property in Preemptive Parallel Machine Scheduling. Lecture Notes in Computer Science, 2009, , 38-46.	1.0	2

#	ARTICLE	IF	CITATIONS
543	The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders. Lecture Notes in Computer Science, 2009, , 84-97.	1.0	4
544	Online Optimization of Busy Time on Parallel Machines. Lecture Notes in Computer Science, 2012, , 448-460.	1.0	11
545	Speed Scaling for Maximum Lateness. Lecture Notes in Computer Science, 2012, , 25-36.	1.0	6
546	Knowledge-Based Technologies for Future Factory Engineering and Control. Studies in Computational Intelligence, 2013, , 355-374.	0.7	20
547	An Optimal Control Formulation of Large-Scale Multiclass Machine Scheduling Problems. Lecture Notes in Economics and Mathematical Systems, 1997, , 423-440.	0.3	2
548	Scheduling Bidirectional Traffic on a Path. Lecture Notes in Computer Science, 2015, , 406-418.	1.0	11
549	Complexity on Parallel Machine Scheduling: A Review. Lecture Notes in Mechanical Engineering, 2012, , 373-381.	0.3	5
551	An Effective Markov Random Fields based Estimation of Distribution Algorithm and Scheduling of Flexible Job Shop Problem. IEEJ Transactions on Electronics, Information and Systems, 2014, 134, 796-805.	0.1	4
552	An Approach to Collaborative Scheduling Through Group Decision Support. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2006, 10, 479-485.	0.5	1
553	Solving Two Production Scheduling Problems with Sequence-Dependent Set-Up Times. SSRN Electronic Journal, O, , .	0.4	3
554	Performance Analysis of List Scheduling Algorithms by Random Synthetic DAGs. SSRN Electronic Journal, 0, , .	0.4	5
555	Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job Shop Scheduling Problem – Analysis of Test Results. Cybernetics and Information Technologies, 2019, 19, 26-44.	0.4	11
556	Train-Scheduling Optimization Model for Railway Networks with Multiplatform Stations. Sustainability, 2020, 12, 257.	1.6	7
557	A survey of single machine scheduling to minimize weighted number of tardy jobs. Journal of Industrial and Management Optimization, 2014, 10, 219-241.	0.8	40
558	A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2015, 12, 703-717.	0.8	6
559	Scheduling Coflows With Dependency Graph. IEEE/ACM Transactions on Networking, 2022, 30, 450-463.	2.6	6
560	Linear Time Approximation Schemes for Shop Scheduling Problems. Nonconvex Optimization and Its Applications, 2000, , 338-346.	0.1	0
562	A Framework for Designing Approximation Algorithms for Scheduling Problems. Lecture Notes in Computer Science, 2003, , 253-260.	1.0	0

#	Article	IF	CITATIONS
564	A Branch-and-Check Algorithm for Minimizing the Sum of the Weights of the Late Jobs on a Single Machine with Release Dates. SSRN Electronic Journal, 0 , , .	0.4	0
565	Minimum Makespan on Unrelated Machines. , 2008, , 539-541.		0
566	System Survivability., 2008, , 113-145.		2
567	Event-Time Models for Supply Chain Scheduling. Springer Optimization and Its Applications, 2009, , 255-275.	0.6	0
568	ReCoNodesâ€"Optimization Methods for Module Scheduling and Placement on Reconfigurable Hardware Devices. , 2010, , 199-221.		3
570	Bin-Packing. Algorithms and Combinatorics, 2012, , 471-488.	0.6	4
571	Scheduling Service Tickets in Shared Delivery. Lecture Notes in Computer Science, 2012, , 79-95.	1.0	2
572	The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem. Lecture Notes in Computer Science, 2012, , 556-567.	1.0	0
573	Outline of Scheduling. , 2013, , 15-38.		0
575	Logistik in der Betriebswirtschaftslehre. , 1997, , 213-237.		0
576	A Scheduling Prototype for Factory Automation: Matching OR Methodologies to Actual Industrial Needs., 1999,, 183-198.		0
578	Single-Machine Scheduling with Mixed Precedence Constraints. , 1999, , 552-561.		0
579	Stochastic Machine Scheduling: Performance Guarantees for LP-Based Priority Policies. Lecture Notes in Computer Science, 1999, , 144-155.	1.0	1
581	Online Non-preemptive Scheduling to Optimize Max Stretch on a Single Machine. Lecture Notes in Computer Science, 2016, , 483-495.	1.0	3
582	Optimization of Take-Off Runway Sequences for Airports Under a CDM Framework., 2017, , 161-183.		0
583	Automatic Scheduling of Dependency-Based Workflows. Advances in Intelligent Systems and Computing, 2018, , 309-317.	0.5	0
584	Bin-Packing. , 2018, , 517-535.		0
585	Towards Elastic Resource Management. , 2019, , 105-127.		2

#	Article	IF	CITATIONS
586	History-Aware Dynamic Process Fragmentation for Risk-Aware Resource Allocation. Lecture Notes in Computer Science, 2019, , 533-551.	1.0	3
587	A Polynomial Time Algorithm for Scheduling on Processing Time Constraints. , 2019, , .		1
588	Equity Data Distribution Algorithms on Identical Routers. Advances in Intelligent Systems and Computing, 2020, , 297-305.	0.5	17
589	New Heuristic For Single Machine Semi-online Total Completion Time Minimization. IFAC-PapersOnLine, 2020, 53, 10676-10681.	0.5	1
590	An Improved Approximation Algorithm for the Coupled-Task Scheduling Problem with Equal Exact Delays. Lecture Notes in Computer Science, 2020, , 265-273.	1.0	0
591	Mode generation rules to define activity flexibility for the integrated project staffing problem with discrete time/resource trade-offs. Annals of Operations Research, 2020, 292, 133-160.	2.6	3
593	A Polynomial-Time Algorithm for the Routing Flow Shop Problem with Two Machines: An Asymmetric Network with a Fixed Number of Nodes. Lecture Notes in Computer Science, 2020, , 301-312.	1.0	1
594	African Buffalo Optimization for Solving Flow Shop Scheduling Problem to Minimize Makespan. IOP Conference Series: Materials Science and Engineering, 0, 982, 012061.	0.3	3
595	CONVJSSP: Convolutional Learning for Job-Shop Scheduling Problems. , 2020, , .		2
596	Job Shop Scheduling Approach for Managing Tasks' Allocation Time in Factory. , 2020, , .		0
597	Multicriteria Flow-Shop Scheduling Problem. Advances in Business Information Systems and Analytics Book Series, 0, , 211-233.	0.3	1
598	Formulations, Relaxations, Approximations, and Gaps in the World of Scheduling., 2005, , 19-36.		0
600	A Lower Bound for the On-Line Preemptive Machine Scheduling with â,, p Norm. Lecture Notes in Computer Science, 2008, , 661-669.	1.0	0
601	Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period. Lecture Notes in Computer Science, 2021, , 512-526.	1.0	1
602	Semi-online Scheduling for Minimizing the Total Completion Time with Known Release Dates. IFAC-PapersOnLine, 2021, 54, 653-658.	0.5	0
603	Modelling and condition-based control of a flexible and hybrid disassembly system with manual and autonomous workstations using reinforcement learning. Journal of Intelligent Manufacturing, 2022, 33, 575-591.	4.4	18
604	Neural Combinatorial Optimization for Production Scheduling with Sequence-Dependent Setup Waste. , 2020, , .		6
605	Scheduling with Communication Delays via LP Hierarchies and Clustering. , 2020, , .		4

#	Article	IF	CITATIONS
606	Approximation algorithms for batch scheduling with processing set restrictions. Journal of Scheduling, 0 , 1 .	1.3	3
607	Optimal dual cycling operations in roll-on roll-off terminals. Transportation Research, Part E: Logistics and Transportation Review, 2022, 159, 102646.	3.7	5
608	Cost-aware scheduling on uniform parallel machines. Computers and Industrial Engineering, 2022, 167, 107845.	3.4	0
609	A new hybridization of adaptive large neighborhood search with constraint programming for open shop scheduling with sequence-dependent setup times. Computers and Industrial Engineering, 2022, 168, 108128.	3.4	13
610	Np-Complete Problems and Proof Methodology. , 2001, , 1774-1782.		0
612	Simultaneous scheduling of replacement and repair of common components in operating systems. Annals of Operations Research, 2023, 322, 147-165.	2.6	1
613	An Auto-MILP Model for Flexible Job Shop Scheduling Problem. IFAC-PapersOnLine, 2022, 55, 137-142.	0.5	4
614	Fast Simulation-Based Order Sequence Optimization Assisted by Pre-Trained Bayesian Recurrent Neural Network. IEEE Robotics and Automation Letters, 2022, 7, 7818-7825.	3.3	4
615	A graph neural networks-based deep Q-learning approach for job shop scheduling problems in traffic management. Information Sciences, 2022, 607, 1211-1223.	4.0	10
616	A new integer programming formulation of the graphical traveling salesman problem. Mathematical Programming, 2023, 197, 877-902.	1.6	3
617	A strawberry harvestâ€aiding system with cropâ€transport collaborative robots: Design, development, and field evaluation. Journal of Field Robotics, 2022, 39, 1231-1257.	3.2	12
618	Biâ€objective optimization of the tactical allocation of job types to machines: mathematical modeling, theoretical analysis, and numerical tests. International Transactions in Operational Research, 2023, 30, 3479-3507.	1.8	3
619	Unrelated parallel machine scheduling with multiple time windows: An application to earth observation satellite scheduling. Computers and Operations Research, 2023, 149, 106010.	2.4	15
620	Hybrid Ant Colony Optimization Algorithms—Behaviour Investigation Based onÂlntuitionistic Fuzzy Logic. Studies in Computational Intelligence, 2022, , 39-60.	0.7	1
621	The Constrained Parallel-Machine Scheduling Problem with Divisible Processing Times and Penalties. Lecture Notes in Computer Science, 2022, , 83-95.	1.0	0
622	Efficient algorithms for scheduling equal-length jobs with processing set restrictions on uniform parallel batch machines. Mathematical Biosciences and Engineering, 2022, 19, 10731-10740.	1.0	21
623	Compact Learning Model for Dynamic Off-Chain Routing in Blockchain-Based IoT. IEEE Journal on Selected Areas in Communications, 2022, 40, 3615-3630.	9.7	12
624	Solving a stochastic hierarchical scheduling problem by VNS-based metaheuristic with locally assisted algorithms. Applied Soft Computing Journal, 2022, 130, 109719.	4.1	1

#	Article	IF	CITATIONS
625	Accounting for large jobs for a single-processor online model. , 2022, , .		2
626	A variable neighborhood search and mixed-integer programming models for a distributed maintenance service network scheduling problem. International Journal of Production Research, 0, , 1-20.	4.9	6
627	On theÂComplexity ofÂScheduling Problems withÂaÂFixed Number ofÂParallel Identical Machines. Lecture Notes in Computer Science, 2023, , 192-206.	1.0	0
628	Aergia., 2022, , .		5
629	SPT optimality (mostly) via linear programming. Operations Research Letters, 2022, , .	0.5	1
630	Online scheduling of two-machine flowshop with lookahead and incompatible job families. Journal of Combinatorial Optimization, 2023, 45, .	0.8	1
631	Reducing Average Job Completion Time for DAG-style Jobs by Adding Idle Slots. , 2022, , .		0
632	Solving the Traveling Salesperson Problem using Frequency Fitness Assignment. , 2022, , .		1
633	Energieoptimierte Produktionsplanung. ZWF Zeitschrift Fuer Wirtschaftlichen Fabrikbetrieb, 2023, 118, 133-137.	0.2	0
634	Research on Transmission Task Static Allocation Based on Intelligence Algorithm. Applied Sciences (Switzerland), 2023, 13, 4058.	1.3	2
637	Approximation Algorithms forÂTwo-Machine Proportionate Routing Open Shop onÂaÂTree. Lecture Notes in Computer Science, 2023, , 197-211.	1.0	0
641	A Guaranteed Approximation Algorithm for Scheduling Fork-Joins with Communication Delay. , 2023, , .		0
642	An Algebraic Approach to the Solutions of the Open Shop Scheduling Problem. , 2023, , .		0
643	A Constructive Heuristic "MDSA―Solving the Flexible Job Shop Scheduling Problem. Lecture Notes in Networks and Systems, 2023, , 296-306.	0.5	0
644	An Approximation for Job Scheduling on Cloud with Synchronization and Slowdown Constraints. , 2023, , .		0
645	Simulation ofÂSwarm Intelligence forÂFlexible Job-Shop Scheduling withÂSwarmFabSim: Case Studies withÂArtificial Hormones andÂanÂAnt Algorithm. Lecture Notes in Networks and Systems, 2023, , 133-155.	0.5	0
652	Digital-Twin-Enabled Framework for Training and Deploying AI Agents for Production Scheduling. , 2024, , 147-179.		0