Absence of androgen receptors in LHRH immunoreactiv

Brain Research 624, 309-311 DOI: 10.1016/0006-8993(93)90094-4

Citation Report

#	Article	IF	CITATIONS
1	Steroid binding and metabolism in the luteinizing hormone-releasing hormone-producing neuronal cell line GT1-1 Endocrinology, 1994, 135, 2623-2628.	1.4	76
2	Androgen receptor immunoreactivity in somatostatin neurons of the periventricular nucleus but not in the bed nucleus of the stria terminalis in male rats. Brain Research, 1994, 652, 291-296.	1.1	23
3	Presence of nuclear androgen receptor-like immunoreactivity in neurokinin B-containing neurons of the adult male rat. Neuroscience Letters, 1994, 182, 193-196.	1.0	56
4	Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons: A new tool for dissecting the molecular and cellular basis of LHRH physiology. Cellular and Molecular Neurobiology, 1995, 15, 43-78.	1.7	80
5	Amplitude and frequency modulation of pulsatile luteinizing hormone-releasing hormone release. Cellular and Molecular Neurobiology, 1995, 15, 117-139.	1.7	39
6	A Subgroup of LHRH Neurons in Guinea Pigs with Progestin Receptors Is Centrally Positioned within the Total Population of LHRH Neurons. Neuroendocrinology, 1995, 61, 265-275.	1.2	59
7	Sexual dimorphism in the mammalian limbic system. Progress in Neurobiology, 1995, 45, 275-333.	2.8	180
8	GABAergic neuronal activity and mRNA levels for both forms of glutamic acid decarboxylase (GAD65) Tj ETQq1 Research, 1996, 733, 46-55.	1 0.78431 1.1	4 rgBT /Over 73
9	Hormonal and neurotransmitter regulation of GnRH gene expression and related reproductive behaviors. Behavior Genetics, 1996, 26, 241-277.	1.4	78
10	Influence of Testosterone on LHRH Release, LHRH mRNA and Proopiomelanocortin mRNA in Male Sheep. Journal of Neuroendocrinology, 1996, 8, 113-121.	1.2	32
11	Hypothalamic Sites of Action for Testosterone, Dihydrotestosterone, and Estrogen in the Regulation of Luteinizing Hormone Secretion in Male Sheep1. Endocrinology, 1997, 138, 3686-3694.	1.4	52
12	Chapter 1 Molecular aspects of GnRH gene expression. Advances in Molecular and Cellular Endocrinology, 1997, , 1-30.	0.1	1
13	Immunocytochemical Localization of Androgen Receptors in Brains of Developing and Adult Male Rhesus Monkeys. Endocrine, 1998, 8, 51-60.	2.2	47
14	5α-Reductase Isozymes in the Central Nervous System. Steroids, 1998, 63, 246-251.	0.8	97
15	Regulation of Gonadotropin-Releasing Hormone (GnRH) Gene Expression by 5α-Dihydrotestosterone in GnRH-Secreting GT1–7 Hypothalamic Neurons ¹ . Endocrinology, 1998, 139, 1108-1114.	1.4	70
16	Activin-A stimulates hypothalamic gonadotropin-releasing hormone release by the explanted male rat hypothalamus: interaction with inhibin and androgens. Journal of Endocrinology, 1998, 156, 269-274.	1.2	36
17	Evidence that the CAG repeat in the androgen receptor gene is associated with the age-related decline in serum androgen levels in men. Journal of Endocrinology, 1999, 162, 137-142.	1.2	167
18	Androgen-activating enzymes in the central nervous systemProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998 Journal of Steroid Biochemistry and Molecular Biology, 1999, 69, 117-122.	1.2	53

CITATION REPORT

#	Article	IF	CITATIONS
19	Immunocytochemical detection of two nuclear proteins within the same neuron using light microscopy. Brain Research Protocols, 2000, 5, 39-48.	1.7	9
20	Sex steroid regulation of glutamate decarboxylase mRNA expression in goldfish brain is sexually dimorphic. Journal of Neurochemistry, 2001, 76, 945-956.	2.1	26
21	Effects of Orchidectomy on Levels of the mRNAs Encoding Gonadotropin-Releasing Hormone and Other Hypothalamic Peptides in the Adult Male Rhesus Monkey (Macaca mulatta)1. Journal of Neuroendocrinology, 2001, 12, 167-176.	1.2	51
22	Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys. Journal of Comparative Neurology, 2001, 439, 208-223.	0.9	89
23	Negative Feedback Regulation of the Secretion and Actions of Gonadotropin-Releasing Hormone in Males. Biology of Reproduction, 2001, 64, 735-742.	1.2	130
24	GnRH: The Master Molecule of Reproduction. , 2002, , .		52
25	A Role for Hypothalamic Astrocytes in Dehydroepiandrosterone and Estradiol Regulation of Gonadotropin-Releasing Hormone (GnRH) Release by GnRH Neurons. Neuroendocrinology, 2002, 75, 375-383.	1.2	46
26	Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Progress in Neurobiology, 2002, 67, 421-449.	2.8	34
27	Photoperiod Affects the Ability of Testosterone to Alter Proopiomelanocortin mRNA, but not Luteinizing Hormone-Releasing Hormone mRNA, Levels in Male Sheep. Journal of Neuroendocrinology, 2002, 10, 587-592.	1.2	25
28	Role of glial cells, growth factors and steroid hormones in the control of LHRH-secreting neurons. Domestic Animal Endocrinology, 2003, 25, 101-108.	0.8	5
29	Multiple and Overlapping Combinatorial Codes Orchestrate Hormonal Responsiveness and Dictate Cell-Specific Expression of the Genes Encoding Luteinizing Hormone. Endocrine Reviews, 2004, 25, 521-542.	8.9	100
30	Neuropeptide Y Gene Expression in Male Sheep: Influence of Photoperiod and Testosterone. Neuroendocrinology, 2004, 79, 82-89.	1.2	14
31	In vivo and in vitro sex steroids stimulate seabream gonadotropin-releasing hormone content and release in the protandrous black porgy, Acanthopagrus schlegeli. General and Comparative Endocrinology, 2004, 139, 12-19.	0.8	14
32	Neuroendocrine Consequences of Prenatal Androgen Exposure in the Female Rat: Absence of Luteinizing Hormone Surges, Suppression of Progesterone Receptor Gene Expression, and Acceleration of the Gonadotropin-Releasing Hormone Pulse Generator1. Biology of Reproduction, 2005, 72, 1475-1483.	1.2	145
33	Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2410-2415.	3.3	497
34	Sex Differences and the Development of the Rabbit Brain: Effects of Vinclozolin1. Biology of Reproduction, 2006, 75, 469-476.	1.2	34
35	Androgen receptors in a cichlid fish, <i>Astatotilapia burtoni</i> : Structure, localization, and expression levels. Journal of Comparative Neurology, 2007, 504, 57-73.	0.9	74
36	Gonadotropinâ€releasing hormone: regulation of the <i>GnRH</i> gene. FEBS Journal, 2008, 275, 5458-5478.	2.2	54

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Non-genomic actions of androgens. Frontiers in Neuroendocrinology, 2008, 29, 169-18	31.	2.5	391
38	The Role of Kisspeptins and GPR54 in the Neuroendocrine Regulation of Reproduction. of Physiology, 2008, 70, 213-238.	Annual Review	5.6	215
39	An alternate pathway for androgen regulation of brain function: Activation of estrogen beta by the metabolite of dihydrotestosterone, 5α-androstane-3β,17β-diol. Hormones 53, 741-752.	receptor and Behavior, 2008,	1.0	178
40	Environmental Endocrine Disruption of Brain and Behavior. , 2009, , 1789-1818.			9
41	Prenatal Exposure to Vinclozolin Disrupts Selective Aspects of the Gonadotrophinâ€Re Neuronal System of the Rabbit. Journal of Neuroendocrinology, 2010, 22, 518-526.	leasing Hormone	1.2	6
42	Photoperiod and Reproductive Condition Are Associated with Changes in RFamide-Rela (RFRP) Expression in Syrian Hamsters (<i>Mesocricetus auratus</i>). Journal of Biologi 2010, 25, 176-185.	ited Peptide cal Rhythms,	1.4	74
43	The Role of Kisspeptin Signaling in Reproduction. Physiology, 2010, 25, 207-217.		1.6	117
44	Progesterone Treatment Inhibits and Dihydrotestosterone (DHT) Treatment Potentiate Calcium Currents in Gonadotropin-Releasing Hormone (GnRH) Neurons. Endocrinology 5349-5358.	s Voltage-Gated v, 2010, 151,	1.4	11
45	Chronic exposure to anabolic androgenic steroids alters activity and synaptic function neuroendocrine control regions of the female mouse. Neuropharmacology, 2011, 61, 6	in 553-664.	2.0	27
46	Control of GnRH secretion: One step back. Frontiers in Neuroendocrinology, 2011, 32,	367-375.	2.5	72
47	A potential mechanism for the sexual dimorphism in the onset of puberty and incidenc central precocious puberty in children: sex-specific kisspeptin as an integrator of puber Frontiers in Endocrinology, 2012, 3, 149.	e of idiopathic ty signals.	1.5	37
48	Reproductive neuropeptides: Prevalence of GnRH and KNDy neural signalling compone avian, gallus gallus. General and Comparative Endocrinology, 2013, 190, 134-143.	nts in a model	0.8	16
49	Active immunization against GnRH reduces the synthesis of GnRH in male rats. Theriog 80, 1109-1116.	jenology, 2013,	0.9	23
50	Regulation of Arcuate Neurons Coexpressing Kisspeptin, Neurokinin B, and Dynorphin of Neurokinin 3 and κ-Opioid Receptors in Adult Male Mice. Endocrinology, 2013, 154,	by Modulators 2761-2771.	1.4	122
51	Interactions Between Kisspeptins and Neurokinin B. Advances in Experimental Medicine 2013, 784, 325-347.	e and Biology,	0.8	54
52	Characterizing the neuroendocrine and ovarian defects of androgen receptor-knockou American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E717-E720		1.8	38
53	Hypothalamus as an Endocrine Organ. , 2014, 5, 217-253.			58
54	Interface between metabolic balance and reproduction in ruminants: Focus on the hyp pituitary. Hormones and Behavior, 2014, 66, 15-40.	othalamus and	1.0	46

#	ARTICLE	IF	CITATIONS
55	Initiation of active immunization against testosterone during early puberty alters negative feedback regulation of the hypothalamic-pituitary-testicular axis in rabbits. Domestic Animal Endocrinology, 2014, 48, 126-135.	0.8	3
56	Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology, 2017, 97, 89-97.	0.9	19
57	Gonadotropin-Inhibitory Hormone, the Piscine Ortholog of LPXRFa, Participates in 17β-Estradiol Feedback in Female Goldfish Reproduction. Endocrinology, 2017, 158, 860-873.	1.4	15
58	Polycystic ovary syndrome: Understanding the role of the brain. Frontiers in Neuroendocrinology, 2017, 46, 1-14.	2.5	63
59	Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure. Endocrinology, 2017, 158, 3943-3953.	1.4	32
60	Control of GnRH Secretion. Endocrinology, 2017, , 3-33.	0.1	1
61	Long-Term Recordings of Arcuate Nucleus Kisspeptin Neurons Reveal Patterned Activity That Is Modulated by Gonadal Steroids in Male Mice. Endocrinology, 2017, 158, 3553-3564.	1.4	34
62	Environmental Endocrine Disruption of Brain and Behavior. , 2017, , 63-88.		1
63	The Role of Central Androgen Receptor Actions in Regulating the Hypothalamic-Pituitary-Ovarian Axis. Neuroendocrinology, 2018, 106, 389-400.	1.2	38
64	Prepubertal Development of GABAergic Transmission to Gonadotropin-Releasing Hormone (GnRH) Neurons and Postsynaptic Response Are Altered by Prenatal Androgenization. Journal of Neuroscience, 2018, 38, 2283-2293.	1.7	53
65	Kisspeptin system in ovariectomized mice: Estradiol and progesterone regulation. Brain Research, 2018, 1688, 8-14.	1.1	14
66	Female Reproductive Behavior. Current Topics in Behavioral Neurosciences, 2018, 43, 1-44.	0.8	9
67	Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation. Neuroendocrinology, 2018, 107, 133-146.	1.2	14
68	Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nature Medicine, 2018, 24, 834-846.	15.2	289
69	The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Medical Sciences (Basel, Switzerland), 2019, 7, 84.	1.3	40
70	The Mechanism of Androgen Actions in PCOS Etiology. Medical Sciences (Basel, Switzerland), 2019, 7, 89.	1.3	38
71	Pathological pulses in PCOS. Molecular and Cellular Endocrinology, 2019, 498, 110561.	1.6	59
72	Neurotransmitter, neuropeptide and gut peptide profile in PCOS-pathways contributing to the pathophysiology, food intake and psychiatric manifestations of PCOS. Advances in Clinical Chemistry, 2020, 96, 85-135.	1.8	15

CITATION REPORT

ARTICLE IF CITATIONS # Intertwined reproductive endocrinology: Puberty and polycystic ovary syndrome. Current Opinion in 73 0.6 7 Endocrine and Metabolic Research, 2020, 14, 127-136. Prenatal Androgenization Alters the Development of GnRH Neuron and Preoptic Area RNA Transcripts 74 1.4 in Female Mice. Endocrinology, 2020, 161, . The Role of Kisspeptin in the Ovarian Cycle, Pregnancy, and Fertility., 0, , . 75 0 Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome. Endocrinology, 2021, 162, . Aspects of Hormonal Steroid Metabolism in the Nervous System., 1999, , 97-123. 77 6 Androgens and ovarian function: translation from basic discovery research to clinical impact. Journal of Endocrinology, 2019, 242, R23-R50. 1.2 64 The effects of supraphysiological levels of testosterone on neural networks upstream of gonadotropin-releasing hormone neurons. Iranian Journal of Basic Medical Sciences, 2019, 22, 79 1.0 1 1065-1072. Control of GnRH Secretion. Endocrinology, 2016, , 1-31. 0.1 81 Male Behaviors IV: Ageing Brain., 2017, , 349-362. 0 Effects of abnormal levels of testosterone on hypothalamic expression of kisspeptin in male rats. Pars 0.1 of Jahrom University of Medical Sciences, 2017, 15, 43-49. The pathogenic role of androgen excess in PCOS., 2022, , 55-71. 83 0 Daughters of polycystic ovary syndrome pregnancies and androgen levels in puberty: a Meta-analysis. Gynecological Endócrinology, 2022, 38, 822-830. Recovery of hypothalamic–pituitary–gonadal function with low dose testosterone treatment in a 85 1.0 1 male with congenital hypogonadotropic hypogonadism. Andrologia, 2022, 54, . Variation in Hypothalamic GnIH Expression and Its Association with GnRH and Kiss1 during Pubertal 1.0 Progression in Male Rhesus Monkeys (Macaca mulatta). Animals, 2022, 12, 3533.

CITATION REPORT