On concentration of positive bound states of nonlinear

Communications in Mathematical Physics 153, 229-244 DOI: 10.1007/bf02096642

Citation Report

#	Article	IF	CITATIONS
1	Laser diodes made of PbSnTe emitting in the 5-15 μ range. Soviet Journal of Quantum Electronics, 1976, 6, 1217-1219.	0.1	5
2	Giant magnetostriction. Uspekhi Fizicheskikh Nauk, 1983, 26, 518-542.	0.3	39
3	Perturbation theory for resolvents as applied to problems in radiation theory. Uspekhi Fizicheskikh Nauk, 1991, 34, 167-184.	0.3	6
4	Existence of multi-bumb solutions for nonlinear schrödinger equations via variational method. Communications in Partial Differential Equations, 1996, 21, 787-820.	2.2	161
5	Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and Partial Differential Equations, 1996, 4, 121-137.	1.7	609
6	Handbook on the physical properties of Ge, Si, GaAs and InP by A Dargys and J Kundrotas. Physics-Uspekhi, 1996, 39, 757-757.	2.2	8
7	On Concentration of Positive Bound States of Nonlinear SchrĶdinger Equations with Competing Potential Functions. SIAM Journal on Mathematical Analysis, 1997, 28, 633-655.	1.9	150
8	Semi-classical States for Nonlinear Schrödinger Equations. Journal of Functional Analysis, 1997, 149, 245-265.	1.4	239
9	Multi-peak bound states for nonlinear Schrödinger equations. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 1998, 15, 127-149.	1.4	242
10	On nonlinear SchrĶdinger equations with totally degenerate potentials. Comptes Rendus Mathematique, 1998, 326, 691-696.	0.5	10
11	Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential. Nonlinear Analysis: Theory, Methods & Applications, 1998, 34, 979-989.	1.1	23
12	Multi-peak periodic semiclassical states for a class of nonlinear SchrĶdinger equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1998, 128, 1249-1260.	1.2	34
13	Classification of blow-up points and multiplicity of solutions for H-systems. Communications in Partial Differential Equations, 1999, 25, 1259-1325.	2.2	2
14	From femtosecond to attosecond pulses. Physics-Uspekhi, 1999, 42, 54-61.	2.2	34
15	Existence and Multiplicity Results for Heteroclinic Orbits of Second Order Hamiltonian Systems. Journal of Differential Equations, 1999, 158, 211-250.	2.2	12
16	Existence and Symmetry of Multi-bump Solutions for Nonlinear SchrĶdinger Equations. Journal of Differential Equations, 1999, 159, 102-137.	2.2	52
17	Multiple Positive Solutions to Nonlinear Schrödinger Equations with Competing Potential Functions. Journal of Differential Equations, 2000, 160, 118-138.	2.2	178
18	Existence and semi-classical limit of the least energy solution to a nonlinear Schr¶dinger equation with electromagnetic fields. Nonlinear Analysis: Theory, Methods & Applications, 2000, 41, 763-778.	1.1	109

ARTICLE IF CITATIONS # Existence of positive solutions for an equation involving supercritical exponent in. Nonlinear 19 1.1 2 Analysis: Theory, Methods & Applications, 2000, 42, 573-581. Multiple positive solutions for a nonlinear SchrĶdinger equation. Zeitschrift Fur Angewandte 1.4 108 Mathematik Und Physik, 2000, 51, 366-384. Stability of standing waves for nonlinear SchrĶdinger equations with unbounded potentials. 21 1.4 62 Zeitschrift Fur Angewandte Mathematik Und Physik, 2000, 51, 498-503. On Positive Multipeak Solutions of a Nonlinear Elliptic Problem. Journal of the London Mathematical 59 Society, 2000, 62, 213-227. Existence, multiplicity and concentration of bound states for a quasilinear elliptic field equation. 23 1.7 6 Calculus of Variations and Partial Differential Equations, 2001, 12, 223-258. Multiplicity Results for some Nonlinear¶Schr¶dinger Equations with Potentials. Archive for Rational 2.4 Mechanics and Analysis, 2001, 159, 253-271. Local mountain-pass for a class of elliptic problems in involving critical growth. Nonlinear Analysis: 25 1.1 54 Theory, Methods & Applications, 2001, 46, 495-510. On a Class of Nonlinear SchrĶdinger Equations in R2 Involving Critical Growth. Journal of Differential Equations, 2001, 174, 289-311. 26 ORBITAL STABILITY OF STANDING WAVES FOR THE NONLINEAR SCHRÃ-DINGER EQUATION WITH POTENTIAL. 27 1.7 8 Reviews in Mathematical Physics, 2001, 13, 1529-1546. NONLINEAR SCHRÃ-DINGER EQUATIONS WITH STEEP POTENTIAL WELL. Communications in Contemporary 1.2 288 Mathematics, 2001, 03, 549-569. SEMI-CLASSICAL LIMIT FOR THE ONE DIMENSIONAL NONLINEAR SCHRÃ-DINGER EQUATION. Communications 29 1.2 17 in Contemporary Mathematics, 2002, 04, 481-512. An elementary construction of complex patterns in nonlinear Schr\$ouml\$dinger equations. 1.4 Nonlinearity, 2002, 15, 1653-1671. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure and Applied Analysis, 2002, 1, 417-431. $\mathbf{31}$ 0.8 34 The Semiclassical Limit of the Nonlinear SchrĶdinger Equation in a Radial Potential. Journal of 2.2 Differential Equations, 2002, 184, 109-138. Standing Waves with a Critical Frequency for Nonlinear SchrÄgdinger Equations. Archive for Rational 33 2.4 215 Mechanics and Analysis, 2002, 165, 295-316. Semi-classical states of nonlinear SchrĶdinger equations: a variational reduction method. 34 1.4 154 Mathematische Annalen, 2002, 324, 1-32. Positive solutions of \hat{A} -Delta_{p}u + u^{p-1}-q(x)u^{alpha}=0; {m in};mathbb{R}^{N} . Nonlinear 35 0.8 6 Differential Equations and Applications, 2002, 9, 1-14. Standing wave solutions of the nonlinear SchrĶdinger equation in â"•N. Annali Di Matematica Pura Ed Applicata, 2002, 181, 73-83.

#	Article	IF	CITATIONS
37	Solutions, concentrating on spheres, to symmetric singularly perturbed problems. Comptes Rendus Mathematique, 2002, 335, 145-150.	0.3	12
38	Concentration around a sphere for a singularly perturbed Schrödinger equation. Nonlinear Analysis: Theory, Methods & Applications, 2002, 49, 947-985.	1.1	42
39	Standing waves for nonlinear SchrĶdinger equations with a radial potential. Nonlinear Analysis: Theory, Methods & Applications, 2002, 50, 1135-1151.	1.1	8
40	On the number of single-peak solutions ofÂthe nonlinear Schrödinger equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2002, 19, 261-280.	1.4	72
41	Existence and instability of spike layer solutions to singular perturbation problems. Journal of Functional Analysis, 2002, 196, 211-264.	1.4	58
42	Clustering layers and boundary layers in spatially inhomogeneous phase transition problems. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2003, 20, 107-143.	1.4	41
43	Uniqueness of positive multi-lump bound states of nonlinear Schr�dinger equations. Mathematische Zeitschrift, 2003, 243, 599-642.	0.9	39
44	Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part I. Communications in Mathematical Physics, 2003, 235, 427-466.	2.2	173
45	Standing waves with a critical frequency for nonlinear Schr�dinger equations, II. Calculus of Variations and Partial Differential Equations, 2003, 18, 207-219.	1.7	189
46	Semiclassical stationary states of Nonlinear Schrödinger equations with an external magnetic field. Journal of Differential Equations, 2003, 188, 52-79.	2.2	87
47	Spike solutions for a class of singularly perturbed quasilinear elliptic equations. Nonlinear Analysis: Theory, Methods & Applications, 2003, 54, 1307-1336.	1.1	7
48	On Existence and Concentration of Solutions for a Class of Hamiltonian Systems in â"< sup>N. Advanced Nonlinear Studies, 2003, 3, 161-180.	1.7	15
49	Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calculus of Variations and Partial Differential Equations, 2004, 21, 287.	1.7	137
50	Positive solutions of a Schrödinger equation with critical nonlinearity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 592-605.	1.4	39
51	Multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. Journal of Differential Equations, 2004, 203, 292-312.	2.2	42
52	On a class of singularly perturbed elliptic equations in divergence form: existence and multiplicity results. Journal of Differential Equations, 2004, 207, 229-266.	2.2	15
53	Spike solutions of a nonlinear Schrödinger equation with degenerate potential. Journal of Mathematical Analysis and Applications, 2004, 295, 276-286.	1.0	2
54	On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. Journal of Mathematical Analysis and Applications, 2004, 296, 563-577.	1.0	33

#	Article	IF	CITATIONS
55	Spike solutions of a nonlinear Schr�dinger equation with degenerate potential. Journal of Mathematical Analysis and Applications, 2004, , .	1.0	0
56	Existence of Multi-bump Standing Waves with a Critical Frequency for Nonlinear Schrödinger Equations. Communications in Partial Differential Equations, 2005, 29, 1877-1904.	2.2	24
57	Locating the Peaks of Semilinear Elliptic Systems. Advanced Nonlinear Studies, 2005, 5, 441-460.	1.7	0
58	Existence of positive multi-peaked solutions to a nonlinear SchrĶdinger equation arising in nonlinear optics. Nonlinear Analysis: Theory, Methods & Applications, 2005, 62, 925-952.	1.1	1
59	On existence and concentration of positive bound states of p-Laplacian equations in involving critical growth. Nonlinear Analysis: Theory, Methods & Applications, 2005, 62, 777-801.	1.1	19
60	Standing waves for nonlinear Klein–Gordon equations with nonnegative potentials. Applied Mathematics and Computation, 2005, 166, 551-570.	2.2	4
61	Nonlinear SchrĶdinger equations: concentration on weighted geodesics in the semi-classical limit. Comptes Rendus Mathematique, 2005, 341, 223-228.	0.3	3
62	Semi-Classical Limit for Radial Non-Linear Schrïż¼zdinger Equation. Communications in Mathematical Physics, 2005, 256, 411-435.	2.2	6
63	SEMICLASSICAL STATES FOR COUPLED SCHRÃ−DINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE. Mathematical Models and Methods in Applied Sciences, 2005, 15, 141-164.	4 3.3	125
64	A symmetry-breaking phenomenon and asymptotic profiles of least-energy solutions to a nonlinear SchrĶdinger equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135, 357-392.	1.2	3
65	ON THE LOCATION OF SPIKES FOR THE SCHR×DINGER EQUATION WITH ELECTROMAGNETIC FIELD. Communications in Contemporary Mathematics, 2005, 07, 251-268.	1.2	12
66	On Bound States Concentrating on Spheres for the MaxwellSchrĶdinger Equation. SIAM Journal on Mathematical Analysis, 2005, 37, 321-342.	1.9	138
67	Sharp Threshold for Blowup and Global Existence in Nonlinear SchrĶdinger Equations Under a Harmonic Potential. Communications in Partial Differential Equations, 2005, 30, 1429-1443.	2.2	96
68	Existence and uniqueness of multi-bump bound states of nonlinear SchrĶdinger equations with electromagnetic fields. Journal of Differential Equations, 2006, 222, 381-424.	2.2	46
69	Coupled nonlinear SchrĶdinger systems with potentials. Journal of Differential Equations, 2006, 227, 258-281.	2.2	86
70	Layered solutions for a semilinear elliptic system in a ball. Journal of Differential Equations, 2006, 226, 269-294.	2.2	14
71	Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. Journal of Differential Equations, 2006, 229, 538-569.	2.2	108
72	Solitary charged waves interacting with the electrostatic field. Journal of Mathematical Analysis and Applications, 2006, 317, 526-549.	1.0	0

#	Article	IF	CITATIONS
73	Singularly perturbed elliptic systems. Nonlinear Analysis: Theory, Methods & Applications, 2006, 64, 109-129.	1.1	14
74	Standing waves in the Maxwell-SchrĶdinger equation and an optimal configuration problem. Calculus of Variations and Partial Differential Equations, 2006, 25, 105-137.	1.7	59
75	Singular elliptic problems with lack of compactness. Annali Di Matematica Pura Ed Applicata, 2006, 185, 63-79.	1.0	37
76	Existence and concentration of positive solutions for a class of gradient systems. Nonlinear Differential Equations and Applications, 2006, 12, 437-457.	0.8	31
77	Multiple solutions of nonlinear elliptic systems. Nonlinear Differential Equations and Applications, 2006, 12, 459-479.	0.8	34
78	Multi-bump Bound States of Schrödinger Equations with a Critical Frequency. Mathematische Annalen, 2006, 336, 925-948.	1.4	28
79	BOUNDARY CONCENTRATION IN RADIAL SOLUTIONS TO A SYSTEM OF SEMILINEAR ELLIPTIC EQUATIONS. Journal of the London Mathematical Society, 2006, 74, 415-440.	1.0	8
80	The implicit function theorem and multi-bump solutions of periodic partial differential equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2006, 136, 559-583.	1.2	16
81	On the number of positive solutions of singularly perturbed 1D NLS. Journal of the European Mathematical Society, 2006, 8, 253-268.	1.4	6
83	A scaling approach to bumps and multi-bumps for nonlinear partial differential equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2006, 136, 585-614.	1.2	3
84	Existence and Concentration of Positive Solutions For Coupled Nonlinear SchrĶdinger Systems in â"N. Advanced Nonlinear Studies, 2007, 7, 77-95.	1.7	1
85	On a "Zero Mass―Nonlinear Schrödinger Equation. Advanced Nonlinear Studies, 2007, 7, 599-627.	1.7	20
86	Multiplicity and concentration for the nonlinear Schrödinger equation with critical frequency. Nonlinear Analysis: Theory, Methods & Applications, 2007, 66, 151-169.	1.1	7
87	Concentration on curves for nonlinear SchrĶdinger Equations. Communications on Pure and Applied Mathematics, 2007, 60, 113-146.	3.1	135
88	Nodal solutions for singularly perturbed equations with critical exponential growth. Journal of Differential Equations, 2007, 234, 464-484.	2.2	23
89	Standing waves for supercritical nonlinear SchrĶdinger equations. Journal of Differential Equations, 2007, 236, 164-198.	2.2	28
90	New solutions for nonlinear Schrödinger equations with critical nonlinearity. Journal of Differential Equations, 2007, 237, 446-472.	2.2	6
91	Semiclassical states for nonlinear SchrĶdinger equations with sign-changing potentials. Journal of Functional Analysis, 2007, 251, 546-572.	1.4	66

#	Article	IF	CITATIONS
92	Existence and concentration of ground states of coupled nonlinear SchrĶdinger equations. Journal of Mathematical Analysis and Applications, 2007, 332, 846-862.	1.0	10
93	Local mountain pass for a class of elliptic system. Journal of Mathematical Analysis and Applications, 2007, 335, 135-150.	1.0	24
94	Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity. Archive for Rational Mechanics and Analysis, 2007, 185, 185-200.	2.4	176
95	Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation. Mathematische Annalen, 2007, 338, 147-185.	1.4	32
96	Semiclassical states for the nonlinear SchrĶdinger equation with the electromagnetic field. Nonlinear Differential Equations and Applications, 2007, 13, 655-681.	0.8	8
97	Semiclassical symmetric Schrödinger equations: Existence of solutions concentrating simultaneously on several spheres. Zeitschrift Fur Angewandte Mathematik Und Physik, 2007, 58, 778-804.	1.4	20
98	Morse index for solutions of the nonlinear Schrödinger equation in a degenerate setting. Annali Di Matematica Pura Ed Applicata, 2007, 186, 433-453.	1.0	7
99	Solutions of perturbed SchrĶdinger equations with critical nonlinearity. Calculus of Variations and Partial Differential Equations, 2007, 30, 231-249.	1.7	101
100	Solutions with multiple spike patterns for an elliptic system. Calculus of Variations and Partial Differential Equations, 2007, 31, 1-25.	1.7	43
101	Thick clusters for the radially symmetric nonlinear Schrödinger equation. Calculus of Variations and Partial Differential Equations, 2007, 31, 231-261.	1.7	7
102	Clustered solutions around harmonic centers to a coupled elliptic system. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2007, 24, 605-628.	1.4	15
103	Multiple positive solutions for a quasilinear system of Schrödinger equations. Nonlinear Differential Equations and Applications, 2008, 15, 309-334.	0.8	16
104	Approximately invariant manifolds and global dynamics of spike states. Inventiones Mathematicae, 2008, 174, 355-433.	2.5	59
105	Existence and concentration of ground states of coupled nonlinear SchrĶdinger equations with bounded potentials. Chinese Annals of Mathematics Series B, 2008, 29, 247-264.	0.4	2
106	A multiplicity result for singular NLS equations with magnetic potentials. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 3525-3540.	1.1	14
107	Standing pulses in almost periodic channels. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 4575-4584.	1.1	0
108	Orbital Stability of Bound States of Semiclassical Nonlinear SchrĶdinger Equations with Critical Nonlinearity. SIAM Journal on Mathematical Analysis, 2008, 40, 365-381.	1.9	8
109	CROSS-CONSTRAINED VARIATIONAL PROBLEM AND THE NON-LINEAR KLEIN–GORDON EQUATIONS. Glasgow Mathematical Journal, 2008, 50, 467-481.	0.3	1

#	Article	IF	CITATIONS
110	Bound state solutions for a class of nonlinear SchrĶdinger equations. Revista Matematica Iberoamericana, 2008, 24, 297-351.	0.9	41
111	Multiplicity of Positive Solutions for a Mixed Boundary Elliptic System. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.4	2
112	Systems of nonlinear Schrödinger equations. A survey. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 2009, 20, 99-110.	0.6	3
113	SOLUTIONS OF THE SCHRÖDINGER–POISSON PROBLEM CONCENTRATING ON SPHERES, PART I: NECESSARY CONDITIONS. Mathematical Models and Methods in Applied Sciences, 2009, 19, 707-720.	3.3	37
114	Existence of multi-bump standing waves with a critical frequency for nonlinear SchrĶdinger equations with potentials vanishing at infinity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2009, 139, 833-852.	1.2	4
115	ON SCHRÖDINGER EQUATIONS WITH INDEFINITE NONLINEARITIES. Bulletin of the Australian Mathematical Society, 2009, 79, 115-128.	0.5	0
116	Strongly interacting bumps for the Schrödinger–Newton equations. Journal of Mathematical Physics, 2009, 50, .	1.1	142
117	On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><<mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><<mml:msup><<mml:mi< td="">mathvariant="double-struck">R<<mml:mi></mml:mi></mml:mi<></mml:msup></mml:math>. Journal of Difference and the struck of the struck of</mml:math>	2.2	107
118	On singular perturbations, 2009, 246, 1288-1311. On singular perturbations of superlinear elliptic systems. Journal of Mathematical Analysis and Applications, 2009, 352, 246-258.	1.0	18
119	Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear SchrĶdinger equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2009, 26, 1423-1451.	1.4	21
120	Some new entire solutions of semilinear elliptic equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R<mml:mi>n</mml:mi></mml:mi </mml:msup>. Advances in Mathematics, 2009, 221, 1843-1909.</mml:math 	1.1	35
121	Semi-Classical Bound States for SchrĶdinger Equations with Potentials Vanishing or Unbounded at Infinity. Communications in Partial Differential Equations, 2009, 34, 1566-1591.	2.2	56
122	Existence and Concentration of Bound States for a p-Laplacian Equation in â,, ^N . Advanced Nonlinear Studies, 2010, 10, 273-296.	1.7	14
123	On the Symmetry of the Ground States of Nonlinear Schrödinger Equation with Potential. Advanced Nonlinear Studies, 2010, 10, 895-925.	1.7	34
124	Singular perturbed problems in the zero mass case: asymptotic behavior of spikes. Annali Di Matematica Pura Ed Applicata, 2010, 189, 185-225.	1.0	13
125	Semiclassical stationary states for nonlinear SchrĶdinger equations with fast decaying potentials. Calculus of Variations and Partial Differential Equations, 2010, 37, 1-27.	1.7	50
126	Infinitely many positive solutions for the nonlinear SchrĶdinger equations in \$\${mathbb{R}^N}\$\$. Calculus of Variations and Partial Differential Equations, 2010, 37, 423-439.	1.7	104
127	Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calculus of Variations and Partial Differential Equations, 2010, 38, 275-315.	1.7	93

#	Article	IF	CITATIONS
128	Solutions concentrating on higher dimensional subsets for singularly perturbed elliptic equations II. Journal of Differential Equations, 2010, 248, 2746-2767.	2.2	6
129	Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. Journal of Differential Equations, 2010, 249, 1015-1034.	2.2	55
130	Orbital stability of bound states of nonlinear Schrödinger equations with linear and nonlinear optical lattices. Journal of Differential Equations, 2010, 249, 2111-2146.	2.2	1
131	Multi-bump standing waves with critical frequency for nonlinear SchrĶdinger equations. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2010, 27, 1121-1152.	1.4	2
132	Multi-peak bound states for SchrĶdinger equations with compactly supported or unbounded potentials. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2010, 27, 1205-1226.	1.4	17
133	Multiple solutions and their limiting behavior of coupled nonlinear SchrĶdinger systems. Acta Mathematica Scientia, 2010, 30, 1199-1218.	1.0	1
134	Existence and Multiplicity of Positive Solutions to a Class of Quasilinear Elliptic Equations in. Boundary Value Problems, 2010, 2010, 579387.	0.7	0
135	Solutions of perturbed Schrödinger equations with electromagnetic fields and critical nonlinearity. Proceedings of the Edinburgh Mathematical Society, 2011, 54, 131-147.	0.3	12
136	Multiple Solutions for a Nonlinear Schrödinger Equation with Magnetic Fields. Communications in Partial Differential Equations, 2011, 36, 1565-1586.	2.2	72
137	On the number of solutions of NLS equations with magnetics fields in expanding domains. Journal of Differential Equations, 2011, 251, 2534-2548.	2.2	14
138	Infinitely many solutions for nonlinear SchrĶdinger equations with electromagnetic fields. Journal of Differential Equations, 2011, 251, 3500-3521.	2.2	20
139	Bound states of nonlinear SchrĶdinger equations with magnetic fields. Annali Di Matematica Pura Ed Applicata, 2011, 190, 427-451.	1.0	21
140	Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems. Mathematische Zeitschrift, 2011, 268, 605-634.	0.9	12
141	On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on documentclass{article}usepackage{amssymb}egin{document}pagestyle{empty}\$mathbb {R}\$end{document}. Mathematische Nachrichten, 2011, 284, 1784-1795.	0.8	11
142	Locating peaks of a Schrödinger equation with sign-changing nonlinearity. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 1223-1233.	1.1	0
143	Luminescence and photoinduced absorption in ytterbium-doped optical fibres. Quantum Electronics, 2011, 41, 1073-1079.	1.0	24
144	Solutions on a torus for a semilinear equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2011, 141, 371-382.	1.2	0
145	Pointwise Blow-Up Phenomena for a Dirichlet Problem. Communications in Partial Differential Equations, 2011, 36, 1654-1682.	2.2	5

#	Article	IF	CITATIONS
146	ON SEMICLASSICAL GROUND STATES OF A NONLINEAR DIRAC EQUATION. Reviews in Mathematical Physics, 2012, 24, 1250029.	1.7	10
147	Positive solutions of the nonlinear SchrĶdinger equation with the fractional Laplacian. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142, 1237-1262.	1.2	521
148	Existence and concentration of bound states of a class of nonlinear Schrödinger equations in â"2 with potential tending to zero at infinity. Acta Mathematica Sinica, English Series, 2012, 28, 2243-2274.	0.6	1
149	Existence and concentration of ground states for SchrĶdinger-Poisson equations with critical growth. Journal of Mathematical Physics, 2012, 53, 023702.	1.1	105
150	Existence and multiplicity of semiclassical states for a quasilinear SchrĶdinger equation in \$mathbb{R}^N\$. Communications on Pure and Applied Analysis, 2012, 12, 429-449.	0.8	0
151	Standing waves of nonlinear SchrĶdinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2012, 12, 831-850.	0.8	10
152	Bound state for the fractional SchrĶdinger equation with unbounded potential. Journal of Mathematical Physics, 2012, 53, .	1.1	112
153	Solution of perturbed Schrödinger system with critical nonlinearity and electromagnetic fields. Mathematical Methods in the Applied Sciences, 2012, 35, 1690-1699.	2.3	3
154	Semi-classical limits of ground states of a nonlinear Dirac equation. Journal of Differential Equations, 2012, 252, 4962-4987.	2.2	55
155	Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. Journal of Differential Equations, 2012, 253, 2314-2351.	2.2	286
156	Existence of standing waves of nonlinear Schrödinger equations with potentials vanishing at infinity. Journal of Mathematical Analysis and Applications, 2012, 387, 920-930.	1.0	2
157	Existence and concentration of solutions for a class of biharmonic equations. Journal of Mathematical Analysis and Applications, 2012, 390, 274-289.	1.0	26
158	Bound states to critical quasilinear SchrĶdinger equations. Nonlinear Differential Equations and Applications, 2012, 19, 19-47.	0.8	60
159	Positive Solutions for a Quasilinear Schrödinger Equation with Critical Growth. Journal of Dynamics and Differential Equations, 2012, 24, 13-28.	1.9	15
160	Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscripta Mathematica, 2013, 140, 51-82.	0.6	70
161	Bound States of 2-D Nonlinear Schrödinger Equations with Potentials Tending to Zero at Infinity. SIAM Journal on Mathematical Analysis, 2013, 45, 2299-2331.	1.9	4
162	Stationary solutions of the nonlinear Schr¶dinger equation with fast-decay potentials concentrating around local maxima. Calculus of Variations and Partial Differential Equations, 2013, 47, 243-271.	1.7	5
163	Sign-Changing Multi-Peak Solutions for Nonlinear Schrödinger Equations with Compactly Supported Potential. Acta Applicandae Mathematicae, 2013, 127, 137-154.	1.0	5

#	Article	IF	CITATIONS
164	Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in \$\${mathbb{R}^N}\$\$. Annali Di Matematica Pura Ed Applicata, 2013, 192, 783-804.	1.0	29
165	Multiple solutions to nonlinear Schrödinger equations with critical growth. Boundary Value Problems, 2013, 2013, .	0.7	0
166	Solutions of perturbed p-Laplacian equations with critical nonlinearity. Journal of Mathematical Physics, 2013, 54, .	1.1	6
167	Multi-bump solutions for nonlinear SchrĶdinger equations with electromagnetic fields. ESAIM - Control, Optimisation and Calculus of Variations, 2013, 19, 91-111.	1.3	5
168	Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. Journal of the European Mathematical Society, 2013, 15, 1859-1899.	1.4	36
169	Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33, 2911-2938.	0.9	6
170	Hamiltonian elliptic systems: a guide to variational frameworks. Portugaliae Mathematica, 2014, 71, 301-395.	0.4	46
171	Standing waves for nonlinear Schrödinger equations involving critical growth. Journal of the London Mathematical Society, 2014, 90, 827-844.	1.0	41
172	Multiplicity of solutions of perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity in R N. Boundary Value Problems, 2014, 2014, .	0.7	0
173	Final report on COOMET.QM-S1 (COOMET project no 483/RU/09): Supplementary comparison of primary standard gas mixtures: Nitrogen monoxide in nitrogen (50 µmol/mol). Metrologia, 2014, 51, 08001-08001.	1.2	Ο
174	Solutions of semiclassical states for perturbed p-Laplacian equation with critical exponent. Boundary Value Problems, 2014, 2014, .	0.7	1
175	Concentration behavior of standing waves for almost mass critical nonlinear SchrĶdinger equations. Journal of Differential Equations, 2014, 256, 2079-2100.	2.2	16
176	Concentrating standing waves for the fractional nonlinear SchrĶdinger equation. Journal of Differential Equations, 2014, 256, 858-892.	2.2	180
177	On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 19-40.	1.4	16
178	Infinitely many positive solutions for nonlinear equations with non-symmetric potentials. Calculus of Variations and Partial Differential Equations, 2014, 51, 761-798.	1.7	32
179	Existence and concentration behavior of positive solutions for a quasilinear Schrödinger equation. Journal of Mathematical Analysis and Applications, 2014, 414, 334-356.	1.0	8
180	Semi-classical bound states of SchrĶdinger equations. Mathematical Proceedings of the Cambridge Philosophical Society, 2014, 156, 167-181.	0.4	1
181	On numerical methods for nonlinear singularly perturbed Schrödinger problems. Applied Numerical Mathematics, 2014, 86, 22-42.	2.1	3

#	Article	IF	CITATIONS
182	Existence of semiclassical ground state solutions for a generalized Choquard equation. Journal of Differential Equations, 2014, 257, 4133-4164.	2.2	103
183	Multiplicity and concentration of solutions for a quasilinear Choquard equation. Journal of Mathematical Physics, 2014, 55, .	1.1	37
184	Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities. Archive for Rational Mechanics and Analysis, 2014, 213, 931-979.	2.4	185
185	Ground states for nonlinear Kirchhoff equations with critical growth. Annali Di Matematica Pura Ed Applicata, 2014, 193, 473-500.	1.0	64
186	On the Mass Concentration for Bose–Einstein Condensates with Attractive Interactions. Letters in Mathematical Physics, 2014, 104, 141-156.	1.1	138
187	The existence and concentration of weak solutions to a class of p-Laplacian type problems in unbounded domains. Science China Mathematics, 2014, 57, 1927-1952.	1.7	11
188	Solutions for perturbed biharmonic equations with critical nonlinearity. Mathematical Methods in the Applied Sciences, 2014, 37, 882-893.	2.3	2
189	The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth. Journal of Mathematical Physics, 2014, 55, .	1.1	23
190	Semiclassical solutions of perturbed p -Laplacian equations with critical nonlinearity. Journal of Mathematical Analysis and Applications, 2014, 413, 438-449.	1.0	11
191	On a class of semilinear SchrĶdinger equations with indefinite linear part. Journal of Mathematical Analysis and Applications, 2014, 414, 710-724.	1.0	10
192	Existence and concentration of ground states to a quasilinear problem with competing potentials. Nonlinear Analysis: Theory, Methods & Applications, 2014, 102, 120-132.	1.1	14
193	Bound States with Clustered Peaks for Nonlinear Schrödinger Equations with Compactly Supported Potentials. Advanced Nonlinear Studies, 2014, 14, 463-481.	1.7	4
194	Concentrating Bound States for Kirchhoff Type Problems in â" ³ Involving Critical Sobolev Exponents. Advanced Nonlinear Studies, 2014, 14, 483-510.	1.7	152
195	Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration. Journal of Mathematical Physics, 2015, 56, .	1.1	21
196	Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35, 2921-2948.	0.9	1
197	Existence of Standing Waves Solution for a Nonlinear SchrĶdinger Equation in ℕN. Journal of Elliptic and Parabolic Equations, 2015, 1, 231-241.	0.9	4
198	Nodal solutions of an NLS equation concentrating on lower dimensional spheres. Boundary Value Problems, 2015, 2015, .	0.7	2
199	Concentrating standing waves for the fractional Schrödinger equation with critical nonlinearities. Boundary Value Problems, 2015, 2015, .	0.7	7

#	Article	IF	CITATIONS
200	Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems. Hiroshima Mathematical Journal, 2015, 45, .	0.3	7
201	Semi-classical standing waves for nonlinear SchrĶdinger systems. Calculus of Variations and Partial Differential Equations, 2015, 54, 2287-2340.	1.7	13
202	Multiple positive solutions for semilinear SchrĶdinger equations with critical growth in â,,∢i>N. Journal of Mathematical Physics, 2015, 56, .	1.1	2
203	Multiple positive solutions for a class of quasilinear problems with distinct potentials. Applicable Analysis, 2015, 94, 2211-2232.	1.3	0
204	On semiclassical ground state solutions for Hamiltonian elliptic systems. Applicable Analysis, 2015, 94, 1380-1396.	1.3	9
205	Multiple perturbations of a singular eigenvalue problem. Nonlinear Analysis: Theory, Methods & Applications, 2015, 119, 37-45.	1.1	29
206	Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity, 2015, 28, 927-949.	1.4	15
207	Radial sign-changing solutions to biharmonic nonlinear Schrödinger equations. Boundary Value Problems, 2015, 2015, .	0.7	0
208	Localized Concentration of Semi-Classical States for Nonlinear Dirac Equations. Archive for Rational Mechanics and Analysis, 2015, 216, 415-447.	2.4	25
209	Multiple semiclassical states for coupled SchrĶdinger-Poisson equations with critical exponential growth. Journal of Mathematical Physics, 2015, 56, .	1.1	18
210	Existence of solutions for perturbed elliptic system with critical exponents. Boundary Value Problems, 2015, 2015, .	0.7	0
211	Standing waves for a class of Kirchhoff type problems in \$\${mathbb {R}^3}\$\$ R 3 involving critical Sobolev exponents. Calculus of Variations and Partial Differential Equations, 2015, 54, 3067-3106.	1.7	103
212	Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity, 2015, 28, 1937-1961.	1.4	90
213	Positive solutions for a class of quasilinear problems with critical growth in â,, <i>^N</i> . Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2015, 145, 411-444.	1.2	3
214	Uniqueness of positive bound states with multi-bump for nonlinear SchrĶdinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54, 4037-4063.	1.7	45
215	Solutions concentrating around the saddle points of the potential for critical SchrĶdinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54, 4119-4142.	1.7	21
216	On somep-Laplacian equation with electromagnetic fields and critical nonlinearity in â"N. Journal of Mathematical Physics, 2015, 56, 041504.	1.1	1
217	Standing waves for nonlinear Schrödinger equations involving critical growth of Trudinger–Moser type. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 3049-3060.	1.4	16

#	Article	IF	Citations
218	Ground state solutions for asymptotically periodic Schrödinger equations with indefinite linear part. Mathematical Methods in the Applied Sciences, 2015, 38, 113-122.	2.3	8
219	Multiplicity of positive solutions of nonlinear SchrĶdinger equations concentrating at a potential well. Calculus of Variations and Partial Differential Equations, 2015, 53, 413-439.	1.7	13
220	Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 747-769.	1.4	50
221	<pre><mml:math altimg="si1.gir" display="inline" overflow="scroll<br">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math></pre>	1.7	2
222	An Anne Stoff Antip//www.elsevier.com/xm/common/table/dtd xminsisb= n. Nonlinear Analysis: Real On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions. Calculus of Variations and Partial Differential Equations, 2015, 54, 99-118.	1.7	30
223	Intermediate reduction method and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials. Calculus of Variations and Partial Differential Equations, 2015, 53, 473-523.	1.7	28
224	Non-linear Schr¶dinger equation with non-local regional diffusion. Calculus of Variations and Partial Differential Equations, 2015, 54, 75-98.	1.7	19
225	A critical nonlinear fractional elliptic equation with saddle-like potential in â"N. Journal of Mathematical Physics, 2016, 57, 081501.	1.1	6
226	Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space. Journal of Mathematical Physics, 2016, 57, .	1.1	15
227	Existence and concentration of ground state solutions for a critical nonlocal SchrAydinger equation in <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>2.2 nl:msup> <</td><td>96 /mml:math>.</td></mml:mrow></mml:msup></mml:math>	2.2 nl:msup> <	96 /mml:math>.
228	Existence and concentration of solution for a class of fractional elliptic equation in \$\$mathbb {R}^N\$\$ R N via penalization method. Calculus of Variations and Partial Differential Equations, 2016, 55, 1.	1.7	105
229	Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity. Journal of Differential Equations, 2016, 261, 6178-6220.	2.2	43
230	Concentrating patterns of reaction-diffusion systems: A variational approach. Transactions of the American Mathematical Society, 2016, 369, 97-138.	0.9	8
231	Existence of semiclassical states for a quasilinear Schrödinger equation on ℕN with exponential critical growth. Acta Mathematica Sinica, English Series, 2016, 32, 1279-1296.	0.6	3
232	Multi-peak solutions for a nonlinear Schrödinger-Poisson system including critical growth in R 3 \$mathbb{R}^{3}\$. Advances in Difference Equations, 2016, 2016, .	3.5	2
233	Concentration of Positive Ground State Solutions for Schrödinger–Maxwell Systems with Critical Growth. Advanced Nonlinear Studies, 2016, 16, 389-408.	1.7	13
234	Semiclassical ground state solutions for a SchrĶdinger equation in with critical exponential growth. Mathematische Nachrichten, 2016, 289, 727-747.	0.8	7
235	Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2016, 33, 809-828.	1.4	92

#	Article	IF	CITATIONS
236	Existence and concentration behavior of sign-changing solutions for quasilinear SchrĶdinger equations. Science China Mathematics, 2016, 59, 1095-1112.	1.7	9
237	Existence of a Positive Solution for a Nonlinear Elliptic Equation with Saddle-like Potential and Nonlinearity with Exponential Critical Growth in \$\${mathbb{R}^{2}}\$ R 2. Milan Journal of Mathematics, 2016, 84, 1-22.	1.1	10
238	Concentration for a bi-harmonic Schrödinger equation with critical nonlinearity. Journal of Mathematical Analysis and Applications, 2016, 435, 380-401.	1.0	1
239	Standing waves of a weakly coupled Schrödinger system with distinct potential functions. Journal of Differential Equations, 2016, 260, 1830-1864.	2.2	15
240	Optimal magnetic Sobolev constants in the semiclassical limit. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2016, 33, 1199-1222.	1.4	2
241	Existence of solutions for a perturbed <i>p</i> -Laplacian system with critical exponent in. Applicable Analysis, 2017, 96, 1885-1905.	1.3	2
242	Existence of solutions for an NSE with discontinuous nonlinearity. Journal of Fixed Point Theory and Applications, 2017, 19, 917-937.	1.1	8
243	Multiplicity of semiclassical solutions to nonlinear Schrödinger equations. Journal of Fixed Point Theory and Applications, 2017, 19, 987-1010.	1.1	7
244	Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	11
245	Singular perturbed Kirchhoff type problem with critical exponent. Journal of Mathematical Analysis and Applications, 2017, 454, 144-180.	1.0	9
246	Concentration for a biharmonic Schrödinger equation. Pacific Journal of Mathematics, 2017, 289, 469-487.	0.5	1
247	Singularly perturbed critical Choquard equations. Journal of Differential Equations, 2017, 263, 3943-3988.	2.2	110
248	Existence of Multi-peak Solutions for a Class of Quasilinear Problems in Orlicz-Sobolev Spaces. Acta Applicandae Mathematicae, 2017, 151, 171-198.	1.0	3
249	Multiple standing waves for the nonlinear Helmholtz equation concentrating in the high frequency limit. Annali Di Matematica Pura Ed Applicata, 2017, 196, 2023-2042.	1.0	2
250	Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calculus of Variations and Partial Differential Equations, 2017, 56, 1.	1.7	57
251	On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator. Calculus of Variations and Partial Differential Equations, 2017, 56, 1.	1.7	16
252	Local Uniqueness and Refined Spike Profiles of Ground States for Two-Dimensional Attractive Bose-Einstein Condensates. SIAM Journal on Mathematical Analysis, 2017, 49, 3671-3715.	1.9	33
253	Existence and concentration result for a quasilinear Schrödinger equation with critical growth. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	7

#	Article	IF	CITATIONS
254	Existence and concentration of positive solutions for fractional nonlinear SchrĶdinger equation with critical growth. Journal of Mathematical Physics, 2017, 58, 081502.	1.1	0
255	Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Journal of Mathematical Physics, 2017, 58, .	1.1	6
256	Ground state solutions for a fractional Schrödinger equation with critical growth. Asymptotic Analysis, 2017, 105, 159-191.	0.5	13
257	The existence and concentration of ground-state solutions for a class of Kirchhoff type problems in R 3 \${mathbb{R}^{3}}\$ involving critical Sobolev exponents. Boundary Value Problems, 2017, 2017, .	0.7	3
258	Standing waves with a critical frequency for nonlinear Choquard equations. Nonlinear Analysis: Theory, Methods & Applications, 2017, 161, 87-107.	1.1	19
259	Multiâ€peak standing waves for nonlinear Schrödinger equations involving critical growth. Mathematische Nachrichten, 2017, 290, 1588-1601.	0.8	1
260	Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth. ESAIM - Control, Optimisation and Calculus of Variations, 2017, 23, 1515-1542.	1.3	53
261	Multiplicity of concentrating positive solutions for Schrödinger–Poisson equations with critical growth. Nonlinear Analysis: Theory, Methods & Applications, 2018, 170, 142-170.	1.1	24
262	On concentration of least energy solutions for magnetic critical Choquard equations. Journal of Mathematical Analysis and Applications, 2018, 464, 402-420.	1.0	12
263	Multiplicity and concentration of positive solutions for fractionalp-Laplacian problem involving concave–convex nonlinearity. Nonlinear Analysis: Real World Applications, 2018, 42, 387-408.	1.7	6
264	Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31, 957-979.	1.4	65
265	Existence and concentration of bound states for a Kirchhoff type problem with potentials vanishing or unbounded at infinity. Mathematical Methods in the Applied Sciences, 2018, 41, 3018-3043.	2.3	4
266	Multiplicity and concentration behaviour of positive solutions for SchrA¶dinger-Kirchhoff type equations involving the p-Laplacian in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.gif" overflow="scroll"><mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">mathwariant="double-struck">R<mml:msup><mml:mi Mathwariant="double-struck">R<mml:mi>N</mml:mi></mml:mi </mml:msup></mml:math>. Acta Mathematica Scientia, 2018, 38, 391-418.</mml:math>	1.0	7
267	Threshold behavior and uniqueness of ground states for mass critical inhomogeneous SchrĶdinger equations. Journal of Mathematical Physics, 2018, 59, .	1.1	9
268	Existence and concentration of ground states for saturable nonlinear SchrĶdinger equations with intensity functions in R2. Nonlinear Analysis: Theory, Methods & Applications, 2018, 173, 19-36.	1.1	8
269	An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations. Calculus of Variations and Partial Differential Equations, 2018, 57, 1.	1.7	9
270	Multiplicity of solutions of the bi-harmonic Schrödinger equation with critical growth. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	7
271	Existence of positive ground state solutions for fractional Schrödinger equations with a general nonlinearity. Applicable Analysis, 2018, 97, 1154-1171.	1.3	7

#	Article	IF	CITATIONS
272	Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term. Nonlinear Analysis: Real World Applications, 2018, 40, 377-402.	1.7	4
273	Blow-up behavior of ground states for a nonlinear SchrĶdinger system with attractive and repulsive interactions. Journal of Differential Equations, 2018, 264, 1411-1441.	2.2	8
274	Complex Dynamics in One-Dimensional Nonlinear Schrödinger Equations with Stepwise Potential. Complexity, 2018, 2018, 1-17.	1.6	1
275	Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz–Sobolev spaces without Ambrosetti–Rabinowitz condition. Journal of Elliptic and Parabolic Equations, 2018, 4, 389-416.	0.9	2
276	Existence and concentration of positive solutions for a SchrĶdinger logarithmic equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	28
277	Multi-peak solutions to Kirchhoff equations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:miow><mml:mi mathvariant="double-struck">R<mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><td>2.2 nl:msup> <</td><td>19 /mml:math></td></mml:mrow></mml:mi </mml:miow></mml:msup></mml:math 	2.2 nl:msup> <	19 /mml:math>
278	With general nonlinearity. Journal of Offerential Equations, 2018, 205, 3587-3617 Singularly Perturbed Fractional SchrĶdinger Equations with Critical Growth. Advanced Nonlinear Studies, 2018, 18, 587-611.	1.7	2
279	Existence and Concentration of Positive Solutions for Nonlinear Kirchhoff-Type Problems with a General Critical Nonlinearity. Proceedings of the Edinburgh Mathematical Society, 2018, 61, 1023-1040.	0.3	12
280	On the semiclassical solutions of a two-component elliptic system in \$\$mathbb {R}^4\$\$ R 4 with trapping potentials and Sobolev critical exponent: the repulsive case. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1. crianal Schrödtinger equation in small math	1.4	3
281	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi </mml:mrow><mml:mrow><mml:mi>N</mml:mi>the Ambrosettiâ€"Rabinowitz condition. lournal of Mathematical Analysis and Applications. 2018. 466.</mml:mrow></mml:msup>	:msup> <td>nml!math>v</td>	nml!math>v
282	498-522 Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth. Advances in Nonlinear Analysis, 2019, 8, 1184-1212.	2.6	78
283	Concentrating standing waves for the Gross–Pitaevskii equation in trapped dipolar quantum gases. Journal of Differential Equations, 2019, 266, 600-629.	2.2	7
284	Concentrating solutions for a class of nonlinear fractional Schrödinger equations in \$mathbb R^N\$. Revista Matematica Iberoamericana, 2019, 35, 1367-1414.	0.9	28
285	Localized nodal solutions for quasilinear SchrĶdinger equations. Journal of Differential Equations, 2019, 267, 7411-7461.	2.2	17
286	A note on uniqueness of the ground state for nonlinear Schrödinger equations. Applied Mathematics Letters, 2019, 96, 115-121.	2.7	0
287	Spiked vector solutions of coupled SchrĶdinger systems with critical exponent and solutions concentrating on spheres. Calculus of Variations and Partial Differential Equations, 2019, 58, 1.	1.7	2
288	A monotone property of the ground state energy to the scalar field equation and applications. Journal of the London Mathematical Society, 2019, 100, 804-824.	1.0	8
289	The concentration behavior of ground state solutions for a critical fractional Schrödinger–Poisson system. Mathematische Nachrichten, 2019, 292, 1837-1868.	0.8	9

#	Article	IF	CITATIONS
290	Ground states of two-component attractive Bose-Einstein condensates II: Semi-trivial limit behavior. Transactions of the American Mathematical Society, 2019, 371, 6903-6948.	0.9	23
291	Mass concentration and local uniqueness of ground states for \$\$L^2\$\$ L 2 -subcritical nonlinear Schrödinger equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	7
292	Multiplicity and concentration of solutions for fractional Schrödinger systems via penalization method. Atti Della Accademia Nazionale Dei Lincei, Classe Di Scienze Fisiche, Matematiche E Naturali, Rendiconti Lincei Matematica E Applicazioni, 2019, 30, 543-581.	0.6	5
293	Note on semiclassical states for the SchrĶdinger equation with nonautonomous nonlinearities. Applied Mathematics Letters, 2019, 88, 149-155.	2.7	0
294	Spikes of the two-component elliptic system in \$\${mathbb {R}}^4\$\$ R 4 with the critical Sobolev exponent. Calculus of Variations and Partial Differential Equations, 2019, 58, 1.	1.7	8
295	Existence of normalized solutions for nonlinear fractional SchrĶdinger equations with trapping potentials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2019, 149, 617-653.	1.2	16
296	Spikes of sign-changing solutions to the critical Schrödinger equations with trapping potentials. Applicable Analysis, 2019, 98, 1027-1041.	1.3	1
297	Singularly perturbed quasilinear Schrödinger equations with negative parameters. Applicable Analysis, 2019, 98, 2239-2251.	1.3	2
298	Existence of positive solutions for a Schrödinger-Poisson system with critical growth. Applicable Analysis, 2020, 99, 1827-1864.	1.3	2
299	Existence and concentration of solutions for singularly perturbed doubly nonlocal elliptic equations. Communications in Contemporary Mathematics, 2020, 22, 1850074.	1.2	1
300	Multiplicity of solutions for fractional SchrĶdinger systems in â"N. Complex Variables and Elliptic Equations, 2020, 65, 856-885.	0.8	11
301	Existence and concentration properties of ground state solutions for elliptic systems. Complex Variables and Elliptic Equations, 2020, 65, 1257-1286.	0.8	3
302	Existence and concentration of positive solutions for non-autonomous Schrödinger-Poisson systems. Complex Variables and Elliptic Equations, 2020, 65, 1672-1697.	0.8	2
303	Bound states for logarithmic SchrĶdinger equations with potentials unbounded below. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	17
304	Ground State Solutions for a Class of Strongly Indefinite Choquard Equations. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43, 3271-3304.	0.9	6
305	Existence and concentration of positive solutions for a logarithmic SchrĶdinger equation via penalization method. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	27
306	Existence of Solutions to Nonlinear SchrĶdinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity. Acta Mathematica Sinica, English Series, 2020, 36, 1151-1170.	0.6	4
307	Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	12

#	Article	IF	CITATIONS
308	Limiting profile of solutions for Schrödinger equations with shrinking self-focusing core. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	3
309	Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	1.4	6
310	On a class of nonlinear Schrödinger–Poisson systems involving a nonradial charge density. Revista Matematica Iberoamericana, 2020, 36, 1021-1070.	0.9	8
311	The Nonexistence of Vortices for Rotating Bose–Einstein Condensates with Attractive Interactions. Archive for Rational Mechanics and Analysis, 2020, 238, 1231-1281.	2.4	16
312	Fractional double-phase patterns: concentration and multiplicity of solutions. Journal Des Mathematiques Pures Et Appliquees, 2020, 142, 101-145.	1.6	50
313	Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation. Calculus of Variations and Partial Differential Equations, 2020, 59, 1.	1.7	31
314	Least energy solutions to semi-linear elliptic problems on metric graphs. Journal of Mathematical Analysis and Applications, 2020, 491, 124297.	1.0	9
315	Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz–Sobolev spaces without Ambrosetti–Rabinowitz condition via penalization method. Journal of Elliptic and Parabolic Equations, 2020, 6, 473-506.	0.9	1
316	Multiplicity and Concentration Results for a Magnetic Schrödinger Equation With Exponential Critical Growth in â"2. International Mathematics Research Notices, 2022, 2022, 862-897.	1.0	17
317	Localized nodal solutions of higher topological type for nonlinear Schrödinger–Poisson system. Nonlinear Analysis: Theory, Methods & Applications, 2020, 198, 111896.	1.1	4
318	Existence of semiclassical solutions for some critical Schrödinger–Poisson equations with potentials. Nonlinear Analysis: Theory, Methods & Applications, 2020, 198, 111874.	1.1	5
319	Existence of a positive solution for a logarithmic SchrĶdinger equation with saddle-like potential. Manuscripta Mathematica, 2021, 164, 555-575.	0.6	8
320	Multiple bound states of higher topological type for semi-classical Choquard equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2021, 151, 329-355.	1.2	5
321	Multiplicity and concentration behavior of solutions of the critical Choquard equation. Applicable Analysis, 2021, 100, 167-190.	1.3	3
322	Non-degeneracy of the ground state solution on nonlinear Schrödinger equation. Applied Mathematics Letters, 2021, 111, 106634.	2.7	2
323	Standing waves for a class of fractional p â€Laplacian equations with a general critical nonlinearity. Mathematical Methods in the Applied Sciences, 2021, 44, 960-984.	2.3	0
324	Local uniqueness and the number of concentrated solutions for nonlinear SchrĶdinger equations with non-admissible potential. Nonlinearity, 2021, 34, 705-724.	1.4	1
325	Multiple solutions of higher topological type for semiclassical nonlinear SchrĶdinger equations. Nonlinear Differential Equations and Applications, 2021, 28, 1.	0.8	2

#	Article	IF	CITATIONS
326	Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discrete and Continuous Dynamical Systems, 2021, 41, 5551.	0.9	8
327	Fractional Schrödinger Equations with Rabinowitz Condition. Frontiers in Mathematics, 2021, , 195-254.	0.3	3
328	Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth. Topological Methods in Nonlinear Analysis, 0, , 1.	0.2	1
329	Existence and Concentration Behavior of Solutions of the Critical Schrödinger–Poisson Equation in R3. Mathematics, 2021, 9, 464.	2.2	0
330	Existence and concentration of ground state solutions for a class of fractional SchrĶdingerÂequations. Asymptotic Analysis, 2021, , 1-25.	0.5	0
331	Semi-classical states for logarithmic SchrĶdinger equations. Nonlinearity, 2021, 34, 1900-1942.	1.4	6
332	Concentration phenomena for nonlinear magnetic SchrĶdinger equations with critical growth. Israel Journal of Mathematics, 2021, 241, 465-500.	0.8	11
333	Multi-peak solutions to fractional nonlinear Schrödinger equation with general nonlinearity. Complex Variables and Elliptic Equations, 0, , 1-26.	0.8	0
334	Constraint minimizers of inhomogeneous mass subcritical minimization problems. Mathematical Methods in the Applied Sciences, 2021, 44, 10062-10075.	2.3	0
335	Existence and multiplicity of semiclassical states for Gross–Pitaevskii equation in dipolar quantum gases. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1.	1.2	0
336	Multi-Bump Standing Waves for Nonlinear SchrĶdinger Equations with a General Nonlinearity: The Topological Effect of Potential Wells. Advanced Nonlinear Studies, 2021, 21, 369-396.	1.7	2
337	Multiple solutions for singularly perturbed nonlinear magnetic SchrĶdinger equations. Asymptotic Analysis, 2022, 128, 239-272.	0.5	4
338	A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrödinger equations. Science China Mathematics, 2021, 64, 1391-1410.	1.7	13
339	Existence of solutions for a weakly coupled Schrödinger system with critical growth. Mathematical Methods in the Applied Sciences, 0, , .	2.3	2
340	Gluing higher-topological-type semiclassical states for nonlinear Schrödinger equations. Annali Di Matematica Pura Ed Applicata, 2022, 201, 589-616.	1.0	0
341	Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations. Journal of Geometric Analysis, 2021, 31, 12411-12445.	1.0	4
342	Symmetry and Monotonicity of a Nonlinear Schrödinger Equation Involving the Fractional Laplacian. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44, 4109.	0.9	1
343	Semiclassical states for nonlinear Dirac equations with singular potentials. Calculus of Variations and Partial Differential Equations, 2021, 60, 1.	1.7	2

#	Article	IF	CITATIONS
344	Existence and concentration of positive solutions for a critical <i>p</i> & <i>q</i> equation. Advances in Nonlinear Analysis, 2021, 11, 243-267.	2.6	10
345	Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calculus of Variations and Partial Differential Equations, 2021, 60, 1.	1.7	15
346	A multiplicity result for a (p,Âq)-Schrödinger–Kirchhoff type equation. Annali Di Matematica Pura Ed Applicata, 2022, 201, 943-984.	1.0	8
347	Concentrating standing waves for Davey–Stewartson systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 0, , 1-40.	1.2	Ο
348	On Ambrosetti-Malchiodi-Ni conjecture on two-dimensional smooth bounded domains: Clustering concentration layers. Journal of Functional Analysis, 2021, 281, 109220.	1.4	2
349	Multiplicity and concentration of solutions to a fractional (p,p1)-Laplace problem with exponential growth. Journal of Mathematical Analysis and Applications, 2022, 506, 125667.	1.0	3
350	Ground States for a Superlinear Fractional Schrödinger Equation with Potentials. Frontiers in Mathematics, 2021, , 145-194.	0.3	0
351	Existence of semiclassical solutions for some critical Dirac equation. Journal of Mathematical Physics, 2021, 62, 011501.	1.1	2
352	An Introduction to Nonlinear Functional Analysis and Elliptic Problems. Progress in Nonlinear Differential Equations and Their Application, 2011, , .	0.9	41
353	Ground states of nonlinear SchrĶdinger equation on star metric graphs. Journal of Mathematical Analysis and Applications, 2018, 459, 661-685.	1.0	12
354	Semiclassical states for Choquard type equations with critical growth: critical frequency case [*] . Nonlinearity, 2020, 33, 6695-6728.	1.4	38
355	Multiple positive symmetric solutions of a singularly perturbed elliptic equation. Topological Methods in Nonlinear Analysis, 2001, 18, 17.	0.2	2
356	Concentration behavior of semiclassical solutions for Hamiltonian elliptic system. Advances in Nonlinear Analysis, 2020, 10, 233-260.	2.6	6
357	On the Fractional NLS Equation and the Effects of the Potential Well's Topology. Advanced Nonlinear Studies, 2021, 21, 1-40.	1.7	7
358	Existence and concentration of bound states of nonlinear SchrĶdinger equations with compactly supported and competing potentials. Pacific Journal of Mathematics, 2010, 244, 261-296.	0.5	15
359	On Concentration Phenomena of Least Energy Solutions to Nonlinear SchrĶdinger Equations with Totally Degenerate Potentials. Tokyo Journal of Mathematics, 2017, 40, .	0.1	1
360	A result on singularly perturbed elliptic problems. Communications on Pure and Applied Analysis, 2005, 4, 341-356.	0.8	1
361	Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2016, 15, 599-622.	0.8	17

#	Article		CITATIONS
362	Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure and Applied Analysis, 2017, 16, 493-512.	0.8	26
363	Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete and Continuous Dynamical Systems, 2007, 19, 255-269.		29
364	Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2015, 36, 731-762.	0.9	8
365	Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete and Continuous Dynamical Systems, 2015, 36, 917-939.	0.9	6
366	Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete and Continuous Dynamical Systems, 2016, 36, 7137-7168.	0.9	6
367	Asymptotic properties of standing waves for mass subcritical nonlinear SchrĶdinger equations. Discrete and Continuous Dynamical Systems, 2017, 37, 1749-1762.	0.9	10
368	Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete and Continuous Dynamical Systems, 2017, 37, 3749-3786.	0.9	20
369	Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete and Continuous Dynamical Systems, 2017, 37, 5561-5601.	0.9	5
370	Existence and Concentration of Solutions for a Class of Elliptic Problems with Discontinuous Nonlinearity in \$mathbf{R}^{N}\$. Mathematica Scandinavica, 2013, 112, 129.		12
371	Sharp Trudinger–Moser Inequality and Ground State Solutions to Quasi-Linear Schrödinger Equations with Degenerate Potentials in â" ^{<i>n</i>} . Advanced Nonlinear Studies, 2021, 21, 733-749.	1.7	21
372	Uniqueness of positive bound states with multiple bumps for SchrĶdinger–Poisson system. Calculus of Variations and Partial Differential Equations, 2021, 60, .		2
373	MULTILUMP SOLUTIONS OF THE NON-LINEAR SCHRÖDINGER EQUATION — A SCALING APPROACH. , 2005, , .		0
374	Non-degeneracy of perturbed solutions of semilinear partial differential equations. Annales Academiae Scientiarum Fennicae Mathematica, 2010, 35, 75-86.	0.7	1
375	The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure and Applied Analysis, 2012, 11, 587-626.	0.8	0
376	MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO PERTURBED SCHRÃ-DINGER SYSTEM WITH MAGNETIC FIELDS. Bulletin of the Korean Mathematical Society, 2012, 49, 1311-1326.	0.3	0
377	Standing wave concentrating on compact manifolds for nonlinear SchrĶdinger equations. Communications on Pure and Applied Analysis, 2015, 14, 825-842.	0.8	2
378	Nontrivial solutions for a mixed boundary problem for SchrĶdinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 2015, 46, 329.	0.2	2
379	Concentrating ground-state solutions for a class of Schödinger-Poisson equations in \$mathbb{R}^3\$ involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2015, 15, 103-125.	0.8	2

ARTICLE IF CITATIONS The Very Useful Linear Indefinite Equations in Applied Sciences., 2016,,. 380 0 Infinitely many solutions for a nonlinear SchrÄgdinger equation with non-symmetric electromagnetic fields. Discrete and Continuous Dynamical Systems, 2016, 36, 7081-7115. Concentrating solitary waves for a class of singularly perturbed quasilinear SchrĶdinger equations 382 1.1 1 with a general nonlinearity. Mathematical Control and Related Fields, 2016, 6, 551-593. Existence and concentration for Kirchhoff type equations around topologically critical points of the 0.8 potential. Communications on Pure and Applied Analysis, 2017, 16, 1641-1671. Infinitely many solutions for nonlinear SchrÄgdinger equations with slow decaying of potential. 384 0.9 3 Discreté and Ćontinuous Dynamical Systems, 2017, 37, 1707-1731. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete and Continuous Dynamical Systems - Series S, 2017, 10, 1095-1106. 1.1 Existence and concentration of positive solutions for a system of coupled saturable SchrĶdinger 386 1.1 2 equations. Nonlinear Analysis: Theory, Methods & Applications, 2020, 197, 111841. Multiple solitary waves for a generalized Kadomtsev–Petviashvili equation with a potential. Journal of Differential Equations, 2022, 308, 40-56. Multiplicity of Semiclassical States Solutions for a Weakly Coupled SchrĶdinger System with Critical 388 0.9 0 Growth in Divergent Form. Potential Analysis, 0, , 1. Semiclassical States for Coupled Nonlinear SchrĶdinger System with Competing Potentials. Journal 389 1.0 of Geometric Analysis, 2022, 32, 1. Normalized multi-bump solutions of nonlinear SchrĶdinger equations via variational approach. 390 3 1.7 Calculus of Variations and Partial Differential Equations, 2022, 61, 1. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double 0.8 potentials. Communications on Pure and Applied Analysis, 2022, 21, 2495. On the <i>p</i>-Laplacian Kirchhoffâ€"Schrödinger equation with potentials vanishing or unbounded 392 1.1 0 at infinity in R3. Journal of Mathematical Physics, 2022, 63, 031503. Concentrated solution of Kirchhoff-type equations. Applicable Analysis, 2023, 102, 3091-3109. 1.3 Nodal Multi-peak Standing Waves of Fourth-Order SchrĶdinger Equations with Mixed Dispersion. 394 1.0 3 Journal of Geometric Analysis, 2022, 32, . On existence of multiple normalized solutions to a class of elliptic problems in whole \$\${mathbb 1.4 13 {R}}^N\$\$. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1. On the Critical Kirchhoff Problems with Super-linear Nonlinearities and Variable Potentials. Bulletin 398 1.0 0 of the Iranian Mathematical Society, 0, , 1. Double phase problems with competing potentials: concentration and multiplication of ground 399 states. Mathematische Zeitschrift, 2022, 301, 4037-4078.

#	Article	IF	CITATIONS
400	Existence and concentration of positive solutions to a fractional system with saturable term. Stochastics and Dynamics, 0, , .	1.2	0
401	Existence and Asymptotical Behavior of Multiple Solutions for the Critical Choquard Equation. Journal of Geometric Analysis, 2022, 32, .	1.0	1
402	Higher Topological Type Semiclassical States for Sobolev Critical Dirac Equations with Degenerate Potential. Journal of Geometric Analysis, 2022, 32, .	1.0	1
403	Concentration of solutions for fractional Kirchhoff equations with discontinuous reaction. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, .	1.4	6
404	On interacting bumps of semi-classical states of nonlinear SchrĶdinger equations. , 2000, 5, .		65
405	Semiclassical limit for a quasilinear elliptic field equation: one-peak and multipeak solutions. , 2001, 6,		3
406	Concentration of solutions of a semilinear PDE with slow spatial dependence. , 2009, 14, .		0
407	Orbital stability of standing waves of semiclassical nonlinear SchrĶdinger-Poisson equation. , 2009, 14, .		2
408	Existence and concentration of ground state solutions for alogarithmic Schrödinger equation with the critical exponent. Scientia Sinica Mathematica, 2022, 52, 1377.	0.2	1
409	Concentration behaviour of normalized ground states of the mass critical fractional Schrödinger equations with ring-shaped potentials. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2023, 153, 1993-2024.	1.2	2
410	Concentration phenomenon of semiclassical states to reaction–diffusion systems. Annali Di Matematica Pura Ed Applicata, 0, , .	1.0	1
411	Existence and Concentration Results for the General Kirchhoff-Type Equations. Journal of Geometric Analysis, 2023, 33, .	1.0	2
412	Infinitely many localized semiclassical states for nonlinear Kirchhoff-type equation. Advances in Nonlinear Analysis, 2023, 12, .	2.6	1
413	Concentration of solutions for a fractional relativistic Schrödinger–Choquard equation with critical growth. Nonlinear Analysis: Theory, Methods & Applications, 2023, 230, 113233.	1.1	0
414	Local uniqueness of concentrated solutions and some applications on nonlinear Schrödinger equations with very degenerate potentials. Journal of Functional Analysis, 2023, 284, 109921.	1.4	0
415	Multiplicity and concentration of solutions to fractional anisotropic SchrĶdinger equations with exponential growth. Manuscripta Mathematica, 2024, 173, 499-554.	0.6	0
416	Semiclassical states for coupled nonlinear Schrödinger equations with critical frequency. Asymptotic Analysis, 2023, , 1-28.	0.5	0
417	Localized solutions of higher topological type for semiclassical generalized quasilinear SchrĶdinger equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2023, 74, .	1.4	0

#	Article	IF	CITATIONS
418	Localization of normalized solutions for saturable nonlinear SchrĶdinger equations. Science China Mathematics, 0, , .	1.7	0
419	Concentration phenomenon for a fractional Schrödinger equation with discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - Series S, 2023, 16, 2919-2944.	1.1	1
420	Singleâ€peak solutions for a subcritical Schrödinger equationÂwith nonâ€power nonlinearity. Mathematische Nachrichten, 2023, 296, 3459-3480.	0.8	1
421	Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems. , 2023, 1, 07.		8
422	Semi-classical states for elliptic system near saddle points of potentials. Nonlinearity, 2023, 36, 3125-3157.	1.4	1
423	Existence and multiplicity of positive solutions of certain nonlocal scalar field equations. Mathematische Nachrichten, 2023, 296, 3816-3855.	0.8	0
424	Asymptotic Behaviour of Infinitely Many Solutions for the Finite Case of a Nonlinear Schrödinger Equation with Critical Frequency. Differential Equations and Dynamical Systems, 0, , .	1.0	0
425	A Deformation Theory in Augmented Spaces and Concentration Results for NLS Equations Around Local Maxima. Trends in Mathematics, 2023, , 309-331.	0.1	1
426	The nonlinear (p,q)-Schrödinger equation with a general nonlinearity: Existence and concentration. Journal Des Mathematiques Pures Et Appliquees, 2023, 178, 141-184.	1.6	1
427	Perturbation theory for nonlinear Schrödinger equations. Nonlinearity, 2023, 36, 6048-6070.	1.4	0
428	Normalized solutions to fractional SchrĶdinger equation with potentials. Discrete and Continuous Dynamical Systems - Series S, 2023, 16, 3194-3211.	1.1	0
429	Existence and concentration of positive ground states for Schrodinger-Poisson equations with competing potential functions. , 2023, 2020, 78.		0
430	Period functions and critical periods of piecewise linear system. , 2023, 2020, .		1
431	Single Peak Solutions for a Schrödinger Equation with Variable Exponent. Acta Mathematica Sinica, English Series, 2023, 39, 2207-2218.	0.6	0
432	A singular perturbation problem for a nonlinear Schrödinger system with three wave interaction. Nonlinear Differential Equations and Applications, 2024, 31, .	0.8	0
433	On existence and concentration of positive solutions for a fractional Kirchhoff equation with critical exponential growth. Complex Variables and Elliptic Equations, 0, , 1-23.	0.8	Ο
434	The limiting profile of solutions for semilinear elliptic systems with a shrinking self-focusing core. Acta Mathematica Scientia, 2024, 44, 583-608.	1.0	0
435	Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth. Advances in Nonlinear Analysis, 2024, 13, .	2.6	1

		CITATION REPORT		
#	Article	IF	CITATIONS	
436	Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in $\pm R^{N}$, Nonlinear Differential Equations and Applications, 2024, 31, .	0.8	0	