CITATION REPORT List of articles citing

A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties

DOI: 10.1021/ie00013a024 Industrial & Samp; Engineering Chemistry Research, 1993, 32, 178-193.

Source: https://exaly.com/paper-pdf/23957688/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1219	Application of MOSCED To Predict Limiting Activity Coefficients, Hydration Free Energies, Henrys Constants, Octanol/Water Partition Coefficients, and Isobaric Azeotropic VaporLiquid Equilibrium.		
1218	Excess enthalpies of dibromoalkane + tetrachloromethane mixtures. Measurement and analysis in terms of group contributions (DISQUAC). 1993 , 91, 281-290		15
1217	CLASSIFICATION OF REACTIVE DISTILLATION PROCESSES BY DIMENSIONLESS NUMBERS. 1994 , 127, 151-167		36
1216	Excess enthalpies and excess heat capacities of the ternary system ethanol + tetrahydrofuran + cyclohexane at 298.15 K. 1994 , 247, 293-313		34
1215	Excess enthalpies of 1-nonene-n-nonane, 1-hexanol-2-hexyn-1-ol, 1-nonene- 2-hexyn-1-ol-n-nonane, and 1-hexanol-2-hexyn-1-ol-n-nonane at 298.15 K. 1994 , 237, 43-47		6
1214	Phasengleichgewichtsmodelle zur Synthese und Auslegung von Trennprozessen. 1994 , 66, 792-808		15
1213	Liquid[]quid equilibria in chemical reactive systems. 1994 , 49, 2544-2549		16
1212	Vapor-liquid equilibria of methyl or ethyl acetate with 1-chloropentane or 1-chlorohexane at 101.32kPa pressure 1994 , 27, 351-356		4
1211	Experimental and Predicted Isobaric Vapour-Liquid Equilibrium for the Binary Systems 1,2-Dibromoethane with Isomeric Butanols 1995 , 28, 721-726		3
121 0	Vapor-Liquid Equilibria for Mixtures of Several Butyl Esters (Methanoate to Butanoate) and 1-Propanol at 101.32kPa 1995 , 28, 765-771		9
1209	Infinite-dilution activity coefficients by comparative ebulliometry: Measurements and group contribution calculations for some binary mixtures ether + n-alkane and ether + alcohol. 1995 , 50, 2957-	2962	16
1208	Excess enthalpies and excess heat capacities of the ternary system ethanol + N,N-dimethyl-formamide + cyclohexane at 298.15 K. 1995 , 105, 93-107		25
1207	Excess enthalpies and excess heat capacities of the ternary system ethanol + N,N-dimethylformamide + tetrahydrofuran at 298.15 K. 1995 , 108, 255-268		7
1206	Solid-liquid equilibria in binary mixtures of organic compounds. 1995 , 113, 117-126		87
1205	A data bank for azeotropic data Btatus and applications. 1995 , 103, 51-76		41
1204	Isobaric VLE data for the binary systems dibromomethane with isomeric butanols at 40.0 and 101.3 kPa. 1995 , 108, 185-198		15
1203	Experimental values and analysis of mixing heats of the binary mixtures formed by alkyl benzoates and n-alkanes. 1995 , 108, 121-133		40

1202	From UNIFAC to modified UNIFAC to PSRK with the help of DDB. 1995 , 107, 1-29	42
1201	Study on the binary mixtures of alkyls alfa, omega-dihalogenated (chlorine, bromine, iodine) with n-alkanes. An improvement by considering the variation of the interaction parameter with the chain length. 1995 , 109, 205-225	11
1200	Modeling of thermodynamic properties of associated solutions with equilibrium constants defined on activities. 1995 , 112, 101-123	2
1199	DISQUAC calculation of thermodynamic properties of ether + 1-alkanol systems. Comparison with UNIFAC calculation. 1995 , 113, 1-19	42
1198	Phase equilibria of phenol + tetrahydrofuran + water system and its thermodynamic description. 1995 , 109, 113-129	13
1197	A method for the prediction of vapour-liquid equilibria of refrigerant mixtures at low and moderate pressure. 1995 , 18, 550-556	10
1196	Prediction of excess enthalpies of ketone-alkane systems from infinite dilution activity coefficients. 1995 , 258, 19-31	9
1195	Vapor-Liquid Equilibria for the Ternary System Acetone + Methanol + Chlorobenzene at 101.325 kPa. 1995 , 40, 1203-1205	6
1194	Vapor-Liquid Equilibria and Excess Enthalpies for Octane + N-Methylacetamide, Cyclooctane + N-Methylacetamide, and Octane + Acetic Anhydride at 125 .degree.C. 1995 , 40, 1228-1232	17
1193	Vapor-Liquid Equilibria and Densities for Propyl Butanoate + Normal Alcohols at 101.32 kPa. 1995 , 40, 699-703	20
1192	Experimental and predicted excess enthalpies of the 2,2,2-trifluoroethanol water terraethylene glycol dimethyl ether terrary system using binary mixing data. 1995 , 91, 2071-2079	20
1191	Densities and Isobaric Vapor-Liquid Equilibria of Butyl Esters (Methanoate to Butanoate) with Ethanol at 101.32 kPa. 1995 , 40, 1178-1183	33
1190	VLE Measurements of Binary Mixtures of Methanol, Ethanol, 2-Methoxy-2-methylpropane, and 2-Methoxy-2-methylbutane at 101.32 kPa. 1996 , 41, 718-723	54
1189	Liquidliquid Equilibria for Mixtures of Diisobutyl Ketone + an Alkanol + Water at 298.15 K. 1996 , 41, 701-706	4
1188	Liquid[liquid Equilibria for Mixtures of Butanal + an Alkanol + Water at 298.15 K. 1996 , 41, 707-712	4
1187	Densities and Isobaric Vaporliquid Equilibria for the Mixtures Formed by Four Butyl Esters and 1-Butanol. 1996 , 41, 53-58	34
1186	Isobaric Vapor[liquid Equilibria of Methanol + Methyl Ethanoate, + Methyl Propanoate, and + Methyl Butanoate at 141.3 kPa. 1996 , 41, 566-570	20
1185	Isobaric Vapor I liquid Equilibria of Tetrachloroethylene + 1-Propanol and +2-Propanol at 20 and 100 kPa. 1996 , 41, 1361-1365	9

1184	Densities and Vaporliquid Equilibria in Binary Mixtures Formed by Propyl Methanoate + Ethanol, +Propan-1-ol, and +Butan-1-ol at 160.0 kPall 1996, 41, 859-864	10
1183	Prediction of Infinite-Dilution Activity Coefficients in Binary Mixtures with UNIFAC. A Critical Evaluation. <i>Industrial & Evaluation Chemistry Research</i> , 1996 , 35, 1438-1445	53
1182	SolidLiquid Equilibria for Different Heptanones with Benzene, Cyclohexane, and Ethanol. 1996 , 41, 1431-143	3 26
1181	Prediction of Vaporlliquid Equilibria of Associating Mixtures with UNIFAC Models That Include Association. <i>Industrial & Description and Section Secti</i>	14
1180	Azeotropic Data for Binary and Ternary Systems at Moderate Pressures. 1996 , 41, 202-209	55
1179	Compilation and Correlation of Limiting Activity Coefficients of Nonelectrolytes in Water. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 1044-1058	88
1178	Vaporlliquid Equilibria and Enthalpies of Mixing for the Binary System Water +N-Methyl-2-pyrrolidone in the Temperature Range 80¶40 °C. 1996 , 41, 1434-1438	26
1177	Vapour-Liquid Equilibrium of the Ternary System (Benzene + Cyclohexane + Hexane) at 40.0 kPa AND 101.3 kPa. 1996 , 31, 21-31	3
1176	Thermodynamic properties of n-alcoholfi-alkane mixtures. A comparative study of some group contribution theories. 1996 , 92, 3565-3577	5
1175	Modeling solubility of biological compounds in supercritical fluids. 1996 , 12, 265-270	2
1174	Packed column distillation simulation with a rate-based method 1996 , 29, 307-314	10
1173	Thermodynamic factors derived from group contribution activity coefficient models 1996 , 29, 396-398	38
1172	Vapor-liquid equilibria at 101.32kPa mixtures of butyl esters and propan-2-ol 1996 , 29, 294-299	9
1171	Prediction of Excess Enthalpy and Excess Entropy Using Modified UNIFAC Group Contribution Methods 1996 , 29, 881-884	1
1170	Application of a purely physical model (DISQUAC) to binary mixtures of phenol and organic solvents. 1996 , 100, 1746-1751	22
1169	Evaluation of a model for the prediction of phase equilibria from general molecular parameters II: Binary liquid-liquid equilibria at low pressures. 1996 , 51, 141-148	1
1168	Evaluation of a model for the prediction of phase equilibria from general molecular parameters I: Vapour-liquid equilibria and enthalpy at low pressures. 1996 , 51, 127-140	2
1167	Prediction of excess enthalpies for 1-alkanol + n-alkane systems from infinite dilution activity coefficients. 1996 , 273, 69-83	2

Prediction of enthalpies of mixing and vapor-liquid equilibria for mixtures containing organic carbonates + n-alkanes using several versions of the unifac model. 1996 , 286, 321-332	20
1165 Comparison of two predictive gE models for vapour[Iquid equilibrium calculations. 1996 , 61, 21	1-26
Measurement and correlation of the solubility of 1-alkanols (C14, C16), in n-alkanes (C7?C16). 1 114, 175-188	1996, 16
$_{1163}$ Isobaric vapor-liquid equilibria for methyl esters + butan-2-ol at different pressures. 1996 , 118,	, 249-270 12
Thermodynamics of branched alcohols I. Extension of DISQUAC to tert-alcohols-n-alkanes or tert-alcohols-cyclohexane mixtures. 1996 , 119, 81-96	22
Calorimetric measurements for modeling thermodynamic properties of pure fluids and fluid mixtures. 1996 , 116, 373-384	2
1160 Excess free energy mixing rules for cubic equations of state. 1996 , 116, 454-464	19
1159 Vapor-liquid equilibria for the system water + tertpentanol at 4 temperatures. 1996 , 120, 143	3 -165 8
1158 Modeling multicomponent equilibria from binary equilibrium data for reacting systems. 1996 , 3	35, 363-371 2
Vapor-liquid equilibria at 101.32 kPa in mixtures formed by the first four butyl alkanoates and butan-2-ol. 1996 , 124, 161-175	11
1156 Isobaric vapor-liquid equilibria of the system at 70.5 and 94.0 kPa. 1996 , 126, 105-113	9
Estimation of DISQUAC interchange energy parameters for linear secondary alcohols + n-alkan + cyclohexane mixtures. 1996 , 123, 39-57	nes or 20
The performance of UNIFAC and related group contribution models part I. Prediction of infinite dilution activity coefficients. 1996 , 287, 235-249	e 3
EXCESS ENTHALPIES FOR TERNARY MIXTURES PHENOL-3-METH YLPHENOL-1 -HEX ANOL, 3-METHYLPHENOL-1-HEXANOL- CYCLOHEXANOL AND THEIR CONSTITUENT BINARIES AT 318. 1996, 146, 139-147	. 15 K. 8
Isobaric VLE Data of the Ternary System (1-Butanol+n-Hexane+1-Butylamine) and the Three Constituent Binary Mixtures at 101.3kPa 1997 , 30, 484-490	13
Measurement of Activity Coefficients at Infinite Dilution Using GasIliquid Chromatography. 6. Results for Systems Exhibiting GasIliquid Interface Adsorption with 1-Octanol. 1997 , 42, 882-88	85 33
Isothermal Vaporlliquid Equilibria of 2-Methoxy-2-methylbutane (TAME) + n-Alcohol (C1l14) Mixtures at 323.15 and 333.15 K. 1997 , 42, 517-522	40
Analysis of the UNIFAC-Type Group-Contribution Models at the Highly Dilute Region. 1. Limital of the Combinatorial and Residual Expressions. <i>Industrial & amp; Engineering Chemistry Researce</i> 1997 , 36, 4965-4972	

1148	Isobaric Vapor Liquid Equilibrium of Binary Mixtures of 1-Butanol + Chlorobenzene and 2-Butanol + Chlorobenzene at 20 and 100 kPa. 1997 , 42, 374-378	10
1147	Vaporliquid Equilibria for the Binary Systems of Methylcyclohexane with 1-Propanol, 2-Propanol, 1-Butanol, and 2-Butanol at 101.3 kPa. 1997 , 42, 914-918	17
1146	Solid l iquid Equilibria of Viscous Binary Mixtures with Alcohols. 1997 , 42, 1170-1175	21
1145	Vaporliquid Equilibria for the Binary Systems of 1-Butanol with Some Halohydrocarbons at 40.0 and 101.3 kPa. 1997 , 42, 132-136	14
1144	Vaporliquid Equilibria of 2-Methoxy-2-methylbutane + Methanol + Water at 101.32 kPa. 1997 , 42, 434-437	
1143	Vaporliquid Equilibria and Densities for Ethyl Esters (Ethanoate to Butanoate) and Alkan-2-ol (C3 [14) at 101.32 kPa. 1997 , 42, 1090-1100	34
1142	ON THE SIMULTANEOUS REPRESENTATION OF VAPOR-LIQUID EQUILIBRIA AND EXCESS ENTHALPIES OF 1-ALKANOL + n-ALKANE MIXTURES. 1997 , 159, 1-15	1
1141	Measurement and Prediction of Ternary Solid[liquid Equilibria. 1997 , 42, 886-889	7
1140	An Assessment of Thermodynamic Consistency Tests for Vapor-Liquid Equilibrium Data. 1997 , 35, 1-58	69
1139	Vaporliquid Equilibria and Enthalpies of Mixing for Binary Mixtures of N-Methylacetamide with Aniline, Decane, Ethylene Glycol, Naphthalene, Phenol, and Water. 1997 , 42, 875-881	15
1138	Estimation of Enthalpies of Fusion, Melting Temperatures, Enthalpies of Transition, and Transition Temperatures of Pure Compounds from Experimental Binary SolidLiquid Equilibrium Data of Eutectic Systems. 1997 , 42, 1176-1180	12
1137	Residue curve maps for heterogeneously catalysed reactive distillation of fuel ethers MTBE and TAME. 1997 , 52, 993-1005	63
1136	Prediction of the solubility and gas-liquid equilibria for gas-water and light hydrocarbon?water systems at high temperatures and pressures with a group contribution equation of state. 1997 , 131, 107-118	28
1135	A new GE-mixing-rule using the Dohrn-Prausnitz equation of state for the prediction of phase equilibria of nonideal mixtures. 1997 , 131, 37-49	4
1134	Solubility of long-chain n-alkanols in dipropyl and dibutyl ether. 1997 , 133, 145-154	4
1133	Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K. 1997 , 133, 213-227	167
1132	UNIFAC prediction of infinite dilution activity coefficients and enthalpies of mixing of chlorophenols in aqueous and 1-octane-ol solutions. 1997 , 139, 37-46	1
1131	Synthesis of ETBE: Residue curve maps for the heterogeneously catalysed reactive distillation process. 1997 , 66, 181-191	40

1130	DISQUAC behaviour close to critical points application to methanol + alkane mixtures. 1997 , 101, 219-227	16
1129	Measurement of Activity Coefficients at Infinite Dilution Using GasIliquid Chromatography. 5. Results for N-Methylacetamide, N,N-Dimethylacetamide, N,N-Dibutylformamide, and Sulfolane as Stationary Phases. 1997 , 42, 35-40	124
1128	Isothermal vapor-liquid equilibria of bromochloroalkanes with heptane or cyclohexane: Measurement and analysis in terms of group contributions. 1997 , 26, 355-368	6
1127	Fluid phase equilibria modified UNIFAC application to thermodynamic properties of binary mixtures containing sulfolane. 1997 , 128, 137-147	9
1126	Vapor-liquid equilibrium measurements and data analysis of tert-butanol?isobutanol and tert-butanol?water binaries at 94.9 kPa. 1997 , 131, 287-295	15
1125	Isobaric vapor-liquid equilibria of chloroform + ethanol and chloroform + ethanol + calcium chloride at 94.0 kPa. 1997 , 131, 259-267	10
1124	Limiting activity coefficients in the 1-alkanol + n-alkane systems: survey, critical evaluation and recommended values, interpretation in terms of association models. 1997 , 133, 73-87	24
1123	Estimation of parameters of Nitta-Chao model for linear monoether + 1-alkanol mixtures. 1997 , 133, 57-72	13
1122	Application of the extended real associated solution model to predict thermodynamic properties of n-alcohol + linear monoether mixtures. 1997 , 133, 193-211	5
1121	Isobaric vapor-liquid equilibrium of binary mixtures of 1-propanol + chlorobenzene and 2-propanol + chlorobenzene. 1997 , 134, 151-161	17
1120	Experimental and predicted excess enthalpies of the working pairs (methanol or trifluoroethanol + polyglycol ethers) for absorption cycles. 1997 , 133, 229-238	26
1119	Vapour-liquid equilibrium for the binary systems of 2-methyl-1-propanol with some halohydrocarbons at 40.0 and 101.3 kPa. 1997 , 134, 163-174	15
1118	Molecular shape effects on limiting activity coefficients: normal, branched and cyclic alkanes in 1-propanol or 2-propanol. 1997 , 137, 133-140	13
1117	Compilation of group-contribution prediction of VLE and excess enthalpy. 1997 , 136, 63-77	2
1116	Water + ethanol + 2-methoxy-2-methylbutane: Properties of mixing at 298.15 K and isobaric vapour-liquid equilibria at 101.32 kPa. 1997 , 141, 207-220	15
1115	Isobaric vapour-liquid equilibrium for the binary systems of 2-butanol with some halohydrocarbons at 40.0 and 101.3 kPa. 1997 , 306, 85-92	4
1114	Synthesis of lovastatin with immobilized Candida rugosa lipase in organic solvents: Effects of reaction conditions on initial rates. 1997 , 56, 671-80	20
1113	Thermodynamic properties of (an ethyl ester + andn-alkane). IX.HmEandVmEfor {xCH3(CH2)uCOOCH2CH3+ (1☑)CH3(CH2)2v + 1CH3} withu= 0 to 5, andv= 1 to 7. 1997 , 29, 47-74	33

1112	Excess molar enthalpies and excess molar heat capacities of (chloroform + tetrahydrofuran + cyclohexane) at the temperature 298.15 K. 1997 , 29, 865-877	9
1111	Waste water treatment using reverse osmosis: real osmotic pressure and chemical functionality as influencing parameters on the retention of carboxylic acids in multi-component systems. 1997 , 110, 213-222	21
1110	Thermodynamic Properties of Alkanediols+Acetates at 298.15 K. 1998 , 52, 915-932	28
1109	Solid-liquid equilibria in n-alkanol+n-alkane systems. Prediction by several group-contribution theories. 1998 , 102, 25-31	6
1108	Modified UNIFAC parameters for mixtures with isocyanates. 1998 , 53, 2395-2401	4
1107	Present status of group-contribution methods for the synthesis and design of chemical processes. 1998 , 144, 37-47	51
1106	Linear alkyl@lkanoates+cyclohexane mixtures. Excess enthalpies measurements and DISQUAC analysis of thermodynamic properties. 1998 , 145, 99-114	11
1105	Measurement and prediction of isobaric vapourliquid equilibrium data of the system ethanol+methanol+2-methoxy-2-methylpropane. 1998 , 146, 139-153	13
1104	Thermodynamic properties of binary mixtures containing n-alkylamines. 1998 , 152, 243-254	7
1103	Vapor l iquid equilibrium of binary mixtures of chlorobenzene with 3-methyl-1-butanol, 3-methyl-2-butanol and 2-methyl-2-butanol, at 100 kPa. 1998 , 153, 265-277	4
1102	X. Mixing enthalpies of (methyl, or ethyl acrylate + ann-alkane). 1998 , 30, 805-813	15
1101	Excess molar enthalpies of (Ædichloroalkane + pentanol, or hexanol) atT=298.15 K. 1998 , 30, 1061-1068	13
1100	Isobaric (vapour+liquid) equilibrium of (ethanol+methanol+2-methoxy-2-methylbutane). 1998 , 30, 1363-1372	1
1099	Modeling infinite dilution activity coefficients of organic-aqueous systems using a modified regular solution equation and cubic equations-of-state. 1998 , 76, 94-103	4
1098	Revision and Extension of the Group Contribution Method Modified UNIFAC (Dortmund). 1998 , 21, 245-248	15
1097	Characterization of Porous Media by Digital Image Processing. 1998 , 21, 248-253	2
1096	Characteristic parameters of the Tassios, Larsen and Gmehling versions of the UNIFAC model for enthalpies of mixing in organic anhydrides + N-alkanes mixtures. 1998 , 317, 59-64	5
1095	Vaporlīquid equilibria of iso-propanol+iso-butanol and iso-propanol+iso-butanol+calcium chloride at 93.6 kPa. 1998 , 37, 295-300	

1094	Prediction of vaporllquid equilibria in non-polymer and polymer solutions using an ASOG-based equation of state (PRASOG). 1998 , 144, 59-68		13	
1093	Application of UNIFAC models to partition coefficients of biochemicals between water and n-octanol or n-butanol. 1998 , 144, 87-95		8	
1092	Prediction of infinite dilution activity coefficients in aqueous solutions by group contribution models. A critical evaluation. 1998 , 144, 97-112		30	
1091	Prediction and correlation of triglyceride solvent solid I quid equilibria with activity coefficient models. 1998 , 145, 53-68		8	
1090	Experimental VLE at 101.32 kPa in binary systems composed of ethyl methanoate and alkan-1-ols or alkan-2-ols and treatment of data using a correlation with temperature-dependent parameters. 1998 , 146, 351-370		22	
1089	Estimation of parameters of Nittathao model for ester+1-alkanol mixtures. 1998 , 148, 49-68		20	
1088	Excess molar enthalpies and excess molar heat capacities of the quaternary system: ethanol+N,N-dimethylformamide+tetrahydrofuran+cyclohexane at 298.15 K. Predictions by empirical and semiempirical rules. 1998 , 149, 261-276		5	
1087	Prediction of infinite dilution activity coefficients for systems including water based on the group contribution model with mixture-type groups. 1998 , 149, 27-40		10	
1086	Viscosities of the ternary mixture (1-butanol+n-hexane+1-chlorobutane) at 298.15 K and 313.15 K. 1998 , 152, 133-148		25	
1085	On the role of Transition-State Substrate Desolvation in Enzymatic Enantioselectivity in Aqueous-Organic Mixtures. 1998 , 16, 233-248		11	
1084	Group-Contribution Equation of State for the Prediction of Vaporliquid Equilibria of Mixtures Containing Hydrofluorocarbons and Alkanes. <i>Industrial & Discourse Engineering Chemistry Research</i> , 1998 , 37, 3105-3111	3.9	5	
1083	Solid[liquid Equilibria of Several Binary Systems with Organic Compounds. 1998, 43, 856-860		18	
1082	Vaporliquid Equilibria of the Systems Ethyl Ethanoate + 2-Methyl-2-butanol, 2-Methyl-1-propanol + 3-Methyl-1-butanol, and Cyclohexanol + Benzyl Alcohol at 101.32 KPa. 1998 , 43, 763-769		22	
1081	Measurement and Prediction of Reid Vapor Pressure of Gasoline in the Presence of Additives. 1998 , 43, 386-392		31	
1080	Densities and Vaporliquid Equilibrium Values for Binary Mixtures Composed of Methanol + an Ethyl Ester at 141.3 kPa with Application of an Extended Correlation Equation for Isobaric VLE Data. 1998 , 43, 638-645		38	
1079	Measurement of Activity Coefficients at Infinite Dilution Using Gaslliquid Chromatography. 7. Results for Various Solutes with N-Methyl-2-piperidone as Stationary Phase. 1998 , 43, 226-229		19	
1078	A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4876-4882	3.9	273	
1077	Isothermal Vaporliquid Equilibria at 333.15 K and Excess Molar Volumes at 298.15 K of Ethyltert-Butyl Ether (ETBE) + Alcoh-1-ol (C1[14]) Mixtures. 1998 , 43, 1009-1013		69	

	aporlliquid Equilibria at 101.32 kPa of the Ternary Systems 2-Methoxy-2-methylpropane + Methanol + Water and 2-Methoxy-2-methylpropane + Ethanol + Water. 1998 , 43, 708-713		10
	rediction of Vaporlliquid Equilibria at Low and High Pressures from UNIFAC Activity Coefficients t Infinite Dilution. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 1173-1180	3.9	23
	ynthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank. Industrial & Manuary & Chemistry Research, 1998 , 37, 3112-3123	3.9	95
	apor l liquid Equilibria at 413.65 K and Excess Enthalpies at 323.15, 363.15, and 413.15 K for fixtures of Benzene, Toluene, Phenol, and Benzaldehyde. 1998 , 43, 941-948		15
	inary Azeotropic Data at Different Pressures for Systems with 2-Ethoxyethanol, -Methyl-1-butanol, and Dimethyl Carbonate. 2. 1998 , 43, 230-232		4
	rediction of octanol-water partition coefficients, Henry coefficients and water solubilities using NIFAC. 1998 , 65, 57-86		40
1070 S	urface properties of diluted aqueous solutions of 1,2-pentanediol. 1999 , 111, 3233-3236		36
	obaric vapourliquid equilibrium of binary mixtures of some cyclic ethers with chlorobenzene at 0.0 and 101.3 kPa. 1999 , 336, 85-92		15
	roximity effects and cyclization in oxaalkanes+CCl4 mixtures DISQUAC characterization of the lD interactions. Comparison with Dortmund UNIFAC results. 1999 , 154, 11-31		36
1067 1	othermal vapor��quid equilibria of bromochloromethane or -bromo-2-chloroethane+tetrachloromethane or benzene. Experimental measurements and nalysis in terms of group contributions. 1999 , 154, 223-239		11
	apor l lquid equilibria of the binary mixtures formed by nitromethane with five alkyl alkanoates at 01.3 kPa. 1999 , 155, 287-296		7
	hermodynamic properties of binary mixtures {an alkoxyethanol+n-octane}. Excess molar nthalpies and excess molar heat capacities at 298.15 K. 1999 , 156, 137-147		22
1064 T	hermodynamic properties of binary mixtures containing n-alkylamines. 1999 , 163, 231-242		4
	iscosities of the ternary mixture (cyclohexane+tetrahydrofuran+chlorocyclohexane) at 298.15 and 13.15 K. 1999 , 164, 143-155		18
	obaric VLE data of the binary mixture (n-hexane+1-chlorobutane) and the ternary system I-butanol+n-hexane+1-chlorobutane) at 101.3 kPa. 1999 , 164, 195-207		11
	apor l iquid equilibrium of binary mixtures of trichloroethylene with 1-pentanol, -methyl-1-butanol and 3-methyl-1-butanol at 100 kPa. 1999 , 155, 229-239		9
	hermodynamic behaviour of ethanol+methanol+2-ethoxy-2-methylpropane system. Physical roperties and phase equilibria. 1999 , 165, 121-139		12
1059 {>	hermodynamic properties of (an ethyl ester+ann-alkane). XI.HEmandVEmvalues for CH3(CH2)uCOOCH2CH3+ (1 -x)CH3(CH2)2v+1CH3} withu=6, 7, 8, 10, 12, and 14, andv=(1 to 7).		14

1058	Thermodynamic properties of (a propyl ester+ann-alkane). XII. Excess molar enthalpies and excess molar volumes for $\{xCH3(CH2)u\mathbb{I}COO(CH2)2CH3+(1\mathbb{N})CH3(CH2)2v+1CH3\}$ withu=(1to 3), andv=(1to 7). 1999 , 31, 1025-1044		27
1057	Extractive distillation of 2-methoxy-2-methylpropane + ethanol using 1-butanol as entrainer: Equilibria and simulation. 1999 , 77, 1135-1140		12
1056	Infinite dilution activity coefficients from ab initio solvation calculations. 1999 , 45, 2606-2618		56
1055	Prediction of Vapor-Liquid Equilibria Using Peng-Robinson and Soave-Redlich-Kwong Equations of State. 1999 , 22, 379-399		31
1054	Vapor l iquid Equilibria at 453.25 K and Excess Enthalpies at 363.15 K and 413.15 K for Mixtures of Benzene, Toluene, Phenol, Benzaldehyde, and Benzyl Alcohol with Benzyl Benzoate. 1999 , 44, 303-308		9
1053	Excess molar volumes of methanol or ethanol + n-polyethers at 298.15 K. 1999 , 77, 1608-1616		32
1052	Binary Solid I iquid Equilibria of Organic Systems Containing Different Amides and Sulfolane. 1999 , 44, 727-730		29
1051	MTBE and alkylate co-production: fundamentals and operating experience. 1999 , 52, 307-319		25
1050	Water Solubility, Vapor Pressure, and Activity Coefficients of Terpenes and Terpenoids. 1999 , 44, 56-62		103
1049	Experimental Determination of Densities and Isobaric Vaporliquid Equilibria of Binary Mixtures Formed by a Propyl Alkanoate (Methanoate to Butanoate) + An Alkan-2-ol (C3, C4). 1999 , 44, 772-783		30
1048	A Cubic Equation of State with Group Contributions for the Calculation of Vaporlliquid Equilibria of Mixtures of Hydrofluorocarbons and Lubricant Oils. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2110-2118	.9	21
1047	Pressure and Temperature Dependence of Excess Enthalpies of Methanol + Tetraethylene Glycol Dimethyl Ether and Methanol + Polyethylene Glycol Dimethyl Ether 250. 1999 , 44, 1409-1413		7
1046	Comparative Study of Semitheoretical Models for Predicting Infinite Dilution Activity Coefficients of Alkanes in Organic Solvents. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 4104-4109	.9	28
1045	Excess Properties of Some Methanol + Amide Systems Proposed as Working Fluids for Absorption Machines. 1999 , 44, 309-313		17
1044	Isobaric Vaporlliquid Equilibrium in the Systems 3-Methylpentane + Ethyl 1,1-Dimethylethyl Ether, + Diisopropyl Ether, and + Tetrahydrofuran. 1999 , 44, 583-587		12
1043	Liquid⊡iquid Equilibria for Mixtures of Acetonitrile + a Carboxylic Acid + Heptane at 298.15 K. 1999 , 44, 1183-1186		10
1042	Thermodynamic Study of Binary Mixtures Containing an Isobutylalkanol and an Alkyl (Ethyl to Butyl) Alkanoate (Methanoate to Butanoate), Contributing with Experimental Values of Excess Molar Enthalpies and Volumes, and Isobaric Vaporliquid Equilibria. 1999 , 44, 757-771		32
1041	Improved Recovery of an Ester Flavor Compound by Pervaporation Coupled with a Flash Condensation. <i>Industrial & Description Condensation Condensation</i> 38, 4458-4469	.9	28

1040	Vaporliquid Equilibrium of Binary Mixtures of Tetrachloroethylene with 1-Pentanol, 3-Methyl-1-butanol, and 2-Methyl-1-butanol. 1999 , 44, 286-290	3
1039	Vaporliquid Equilibria for the Ternary System Acetone + Methanol + Water at 101.325 kPa. 1999 , 44, 661-665	25
1038	Infinite-Dilution Activity Coefficients by the Inert Gas Stripping Method: Saturated Hydrocarbons in N,N-Dimethylformamide. 1999 , 209, 159-170	15
1037	Extraction Equilibria of Formic, Levulinic and Acetic Acids Using (Alamine 336/Diluent) and Conventional Solvent Systems: Modeling Considerations 1999 , 32, 717-731	35
1036	Estimation of Physical Properties. 2000,	1
1035	Isobaric Vapour - Liquid Equilibrium for the Binary Systems Cycloalkane and Benzene with 1,3-Dioxolane. 2000 , 38, 369-380	3
1034	Excess Molar Enthalpies of the Ternary System {x1CH3CH2COOCH2CH3+x2CH3(CH2)4CH3+(1-x1-x2)CH3CH2CH2OH} at 298.15 K, and Prediction Using Different Theoric Methods. 2000 , 38, 481-493	2
1033	Temperature dependence of the excess molar volume of (dimethyl carbonate, or diethyl carbonate+ toluene) fromT= 278.15 K to 323.15 K. 2000 , 32, 743-754	35
1032	Thermodynamic properties of (a butyl ester + ann-alkane). XIII.HmEandVmEfor {xCH3(CH2)udCO2(CH2)3CH3+(1 ☑)CH3(CH2)2 v+1CH3}, whereu= 1 to 3 andv= 1 to 7. 2000 , 32, 1013-1036	23
1031	Temperature dependence of excess properties in alcohols+ethers mixtures 2000 , 362, 169-177	19
1030	Isobaric vapour[Iquid equilibrium of binary mixtures of some cyclic ethers with chlorocyclohexane at 40.0 and 101.3 kPa. 2000 , 362, 153-160	14
1029	Untypical surface properties of aqueous solutions of 1,5-pentanediol. 2000 , 162, 233-238	20
1028	Thermodynamic study on binary mixtures of propyl ethanoate and an alkan-1-ol (C2🖸4). Isobaric vaporliquid equilibria and excess properties. 2000 , 170, 87-111	42
1027	Analysis of the molecular interactions of organic anhydride+alkane binary mixtures using the Nitta©hao model. 2000 , 170, 69-85	4
1026	Viscosities of the ternary mixture (2-butanol+n-hexane+1-butylamine) at 298.15 and 313.15 K. 2000 , 169, 277-292	39
1025	LiquidIlquid equilibria for quaternary mixtures of water, ethanol, and 2,2,4-trimethylpentane with fuel additives. 2000 , 171, 115-126	14
1024	Phase equilibria involved in extractive distillation of 2-methoxy-2-methylpropane+methanol using 1-butanol as entrainer. 2000 , 171, 207-218	8
1023	A UNIFAC model for phase equilibrium calculations in aqueous and nonaqueous sugar solutions. 2000 , 173, 39-55	48

(2000-2000)

1022	Vaporliquid equilibria for binary mixtures of nitroethane with aliphatic alcohols (C1f14) at 101.3 kPa. 2000 , 175, 139-152	15
1021	Thermodynamics of mixtures with strongly negative deviations from Raoult's Law. 2000, 168, 31-58	133
1020	Experimental and theoretical investigation of the vaporliquid equilibrium of ethyl acetatell-propyl acetate and tetrahydrofuranlicetonitrile binaries at 93.8 kPa. 2000 , 39, 107-111	О
1019	Use of supercritical fluids for different processes including new developments review. 2000, 39, 19-28	140
1018	Equation of state associated with activity coefficient models to predict low and high pressure vaporliquid equilibria. 2000 , 79, 87-101	7
1017	Extraction equilibria of formic and levulinic acids using Alamine 308/diluent and conventional solvent systems. 2000 , 21, 165-179	28
1016	Excess Molar Enthalpies of the Ternary Systems (Acetonitrile+methyl Isobutyrate+Toluene) and (Propionitrile+methyl Isobutyrate+ethylbenzene) at 298.15 K. 2000 , 61, 377-388	6
1015	Compatibility Range in Polymer Mixtures. An approach using analogue calorimetry and group contribution procedures. 2000 , 62, 135-151	4
1014	Modeling and simulation of Sulfur Hexafluoride (SF6) purification process. 2000 , 17, 252-256	1
1013	Measurement of infinite-dilution activity coefficients of alcohols in water using relative gas-liquid chromatographic method. 2000 , 17, 502-505	9
1012	Viscosities and Viscosity Predictions of the Ternary Mixture Cyclohexane + 1-3-Dioxolane + 1-Butanol at 298.15 and 313.15 K 2000 , 33, 740-746	19
1011	Synthesis of reactive and extractive distillation units using distillation line diagrams. 2000 , 8, 985-990	1
1010	Enzymatic Production of Alkyl Esters Through Lipase-Catalyzed Transesterification Reactions in Organic Solvents: Solvent Effects and Prediction Capabilities of Equilibrium Conversions. 2000 , 18, 259-269	4
1009	Thermodynamics of mixtures with strongly negative deviations from Raoult's law. Part 3. Application of the DISQUAC model to mixtures of triethylamine with alkanols. Comparison with Dortmund UNIFAC and ERAS results. 2000 , 78, 1272-1284	42
1008	Excess Enthalpies and Volumes of Ternary Mixtures Containing 1-Propanol or 1-Butanol, an Ether (Diisopropyl Ether or Dibutyl Ether), and Heptane. 2000 , 45, 124-130	38
1007	Liquid[liquid Equilibria for Binary Mixtures of Water + Acetophenone, + 1-Octanol, + Anisole, and + Toluene from 370 K to 550 K. 2000 , 45, 846-850	39
1006	Tuning Solvents for Sustainable Technology. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4615-4621	83
1005	Measurement of Activity Coefficients at Infinite Dilution Using Gas[liquid Chromatography. 12. Results for Various Solutes with the Stationary Phases N-Ethylacetamide, N,N-Diethylacetamide, Diethylphthalate, and Glutaronitrile. 2000 , 45, 771-775	10

1004	Viscosity Measurements for the Binary Mixtures of 1,2-Dichloroethane or 1,2-Dibromoethane with Isomeric Butanols. 2000 , 45, 86-91	33
1003	Experimental Determination of the Vaporliquid Equilibrium at 101.32 kPa of the Ternary System 1-Butanol + Methanol + TAME. 2000 , 45, 1112-1115	5
1002	Experimental Viscosities and Viscosity Predictions of the Ternary Mixture (Cyclohexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. 2000 , 45, 751-755	41
1001	Prediction of Phase Equilibria for Binary and Ternary Mixtures Involving tert-Butyl Methyl Ether and tert-Amyl Methyl Ether. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 767-774	3
1000	Vaporlliquid Equilibria in Ethanol + (Butyl Methyl Ether or Dipropyl Ether) Systems at 308.15, 323.15, and 338.15 K. 2000 , 45, 169-172	6
999	Surface properties of diluted aqueous solutions of solutes containing isopropyl hydrophobic group. 2001 , 114, 5702-5706	16
998	Some chemical engineering applications of quantum chemical calculations. 2001 , 28, 313-351	2
997	Ternary and Quaternary LiquidIiquid Equilibria for Fuel Additives of the Water + Methanol + Toluene and Water + Methanol + Toluene + Methyl tert-Butyl Ether or tert-Amyl Methyl Ether Systems at 298.15 K. 2001 , 46, 1381-1386	26
996	Enzymatic Reactions in Non-Conventional Media: Prediction of Solvent Water Content for Optimum Water Activity. 2001 , 19, 99-118	3
995	From UNIFAC to Modified UNIFAC (Dortmund) Industrial & amp; Engineering Chemistry Research, 2001 , 40, 957-964	85
994	Vaporlliquid Equilibria and Enthalpies of Mixing in a Temperature Range from 298.15 to 413.15 K for the Further Development of Modified UNIFAC (Dortmund). <i>Industrial & Dortmund</i> 3.9 <i>Chemistry Research</i> , 2001 , 40, 5831-5838	32
993	Binary Solid[liquid Equilibria of Organic Systems Containing ECaprolactone. 2001, 46, 1490-1493	21
992	Modelling thermodynamic properties of iodoalkane + alkane systems using group contribution models. 2001 , 3, 5006	2
991	Excess Enthalpy Data for Seven Binary Systems at Temperatures between 50 and 140 °C. 2001 , 46, 208-211	21
990	Prediction of Critical Micelle Concentrations of Nonionic Surfactants in Aqueous and Nonaqueous Solvents with UNIFAC. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 2362-2366	19
989	Vaporliquid Equilibria and Excess Properties of Cyclohexanell,1-Dimethylpropyl Methyl Ether (TAME) Mixtures. <i>Industrial & Dimethylpropyl</i> Methyl Ether (TAME) Mixtures. <i>Industrial & Dimethylpropyl</i> Methyl Ether (3.9)	7
988	The Effect of the Liquid-Phase Activity Model on the Simulation of Ethyl Acetate Production by Reactive Distillation. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 3639-3646	9
987	Phase Equilibria of the Ternary System Benzene + Cyclohexane + 1-Pentanol at 101.3 kPa. 2001 , 46, 410-413	3 5

(2001-2001)

986	A Model-Free Approach Data Treatment of Vaporlliquid Equilibrium Data in Ternary Systems. 2. Applications. <i>Industrial & Data & </i>	13
985	Solid[liquid Equilibria for Seven Binary Systems. 2001 , 46, 333-336	15
984	Binary Solid l iquid Equilibria of N,N-Dimethylacetamide with 1,2-Dichloroethane, Dichloromethane, and 1-Propanol. 2001 , 46, 1190-1192	4
983	Modified UNIFAC (Dortmund). Reliable Model for the Development of Thermal Separation Processes 2001 , 34, 43-54	37
982	Surface properties of diluted solutions of n-heptane, n-octanol and n-octanoic acid in nitromethane. 2001 , 272, 119-126	20
981	Isothermal vaporliquid equilibria for mixtures composed of 1,2-dimethoxybenzene, 2-methoxyphenol, and diphenylmethane. 2001 , 178, 209-223	10
980	Infinite-dilution activity coefficients for several solutes in hexadecane and in n-methyl-2-pyrrolidone (NMP): experimental measurements and UNIFAC predictions. 2001 , 179, 117-129	23
979	Experimental and predicted excess molar volumes and excess molar enthalpies for di-n-butyl ether + 1-propanol + n-octane at 298.15 and 308.15 K. 2001 , 179, 363-383	7
978	Experimental and predicted viscosities of the binary system (n-hexane + 1,3-dioxolane) and for the ternary system (n-hexane + 1,3-dioxolane + 1-butanol) at 298.15 and 313.15 K. 2001 , 180, 211-220	16
	FT-IR spectroscopic investigations of hydrogen bonding in alcoholBydrocarbon solutions. 2001 ,	
977	186, 1-25	119
977 976		119
	186, 1-25	
976	Vapour[Iquid equilibrium of octane-enhancing additives in gasolines. 2001, 182, 241-255 Excess molar volumes and enthalpies for the ternary system [butyl butyrate + 1-octanol + octane]	18
976 975	Vapour[Iquid equilibrium of octane-enhancing additives in gasolines. 2001, 182, 241-255 Excess molar volumes and enthalpies for the ternary system [butyl butyrate + 1-octanol + octane] at the temperature 308.15 K. 2001, 182, 265-277 Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K.	18
976 975 974	Vapourllquid equilibrium of octane-enhancing additives in gasolines. 2001, 182, 241-255 Excess molar volumes and enthalpies for the ternary system [butyl butyrate + 1-octanol + octane] at the temperature 308.15 K. 2001, 182, 265-277 Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K. 2001, 182, 279-288	18 5 8
976 975 974 973	Vapour lquid equilibrium of octane-enhancing additives in gasolines. 2001, 182, 241-255 Excess molar volumes and enthalpies for the ternary system [butyl butyrate + 1-octanol + octane] at the temperature 308.15 K. 2001, 182, 265-277 Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K. 2001, 182, 279-288 Analysis of infinite dilution activity coefficients of solutes in hydrocarbons from UNIFAC. 2001, 181, 163-186 Measurement and prediction of temperature and pressure effect on wax content in a partially	18 5 8 20
976 975 974 973	Vapourliquid equilibrium of octane-enhancing additives in gasolines. 2001, 182, 241-255 Excess molar volumes and enthalpies for the ternary system [butyl butyrate + 1-octanol + octane] at the temperature 308.15 K. 2001, 182, 265-277 Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K. 2001, 182, 279-288 Analysis of infinite dilution activity coefficients of solutes in hydrocarbons from UNIFAC. 2001, 181, 163-186 Measurement and prediction of temperature and pressure effect on wax content in a partially frozen paraffinic system. 2001, 187-188, 71-82 Thermophysical properties for 1-butanol+ethanol+2-methoxy-2-methylbutane ternary system.	18 5 8 20 40

968	Thermodynamics of binary mixtures containing organic carbonates: Part XI. SLE measurements for systems of diethyl carbonate with long n-alkanes: comparison with DISQUAC and modified UNIFAC predictions. 2001 , 190, 15-31	11
967	About Analysis of the molecular interactions of organic anhydride + alkane binary mixtures using the NittaChao modelLby: L. Lugo, E.R. Lpez, J. Garc-a, M.J.P. Comues, J. FernEdez [Fluid Phase Equilib. 170 (2000) 69B5]. 2001 , 189, 193-195	2
966	Reply to the letter to the editor by J. Gmehling and J. Lohmann about the paper Analysis of the molecular interactions of organic anhydride + alkane binary mixtures using the NittaII hao model [Fluid Phase Equilib. 170 (2000) 6985]. 2001 , 189, 197-201	
965	Isobaric vapour[Iquid equilibrium for the binary mixtures of 2-methyl-2-propanol with some halohydrocarbons at 40.0 and 101.3 kPa. 2001 , 192, 49-61	10
964	Excess enthalpies of alkanediamines+benzene or + toluene mixtures. 2001 , 369, 1-7	5
963	Thermodynamics of mixtures containing ethers PART II. 2001 , 373, 161-171	11
962	Analysis of residue curve maps of reactive and extractive distillation units. 2001, 25, 635-642	14
961	(Liquid + liquid) equilibria for (acetonitrile+ a carboxylic acid + cyclohexane) atT= 298.15 K. 2001 , 33, 1643-16	53 ₇
960	Thermodynamic properties of (a pentyl ester + an-alkane). XIV. The HmEand VmEfor (an ester + an-alkane). 2001 , 33, 689-710	17
959	Isobaric (vapour + liquid) equilibrium of (1,3-dioxolane, or 1,4-dioxane+ 1-butanol, or 2-butanol) at 40.0 kPa and 101.3 kPa. 2001 , 33, 1361-1373	20
958	Thermodynamic excess properties for binary mixtures of (butanenitrile + a carboxylic acid) atT= 298.15 K. 2001 , 33, 1499-1509	8
957	Phase equilibria for liquid mixtures of (benzonitrile + a carboxylic acid+ water) atT= 298.15 K. 2001 , 33, 1555-1565	32
956	Critical Micelle Concentrations of Nonionic Surfactants in Organic Solvents: Approximate Prediction with UNIFAC. 2001 , 240, 277-283	26
955	Continuous reactive chromatography. 2001 , 56, 269-291	120
954	Prediction of Infinite Dilution Volatilities of Aroma Compounds in Water. 2001 , 66, 447-452	9
953	Calorimetric Behaviour of Primary Bromobutanes with Isomeric Butanols. 2001 , 215,	11
952	Vapor l liquid Equilibria for Binary Systems Composed of a Propyl Ester (Ethanoate, Propanoate, Butanoate) + an n-Alkane (C7, C9). 2001 , 46, 904-912	33
951	VAPOR-LIQUID EQUILIBRIA OF TOLUENE + n-BUTANOL AND TOLUENE + n-BUTANOL + CALCIUM CHLORIDE AT 94.0kPa. 2001 , 184, 23-33	

(2002-2001)

950	DISQUAC predictions on thermodynamic properties of ternary and higher multicomponent mixtures. II. Results for HE of ternary mixtures containing nonpolar components, or one polar compound, two polar compounds, or one alcohol and hydrocarbons, or CCl4. 2001 , 79, 1447-1459		11
949	Molar excess enthalpies for some systems containing the OH and (or) O groups in the same or in different molecules. 2002 , 80, 292-301		16
948	Vaporliquid Equilibrium Data for Methyl tert-Butyl Etherlethanol Mixtures at 90.0 and 101.3 kPa. 2002 , 37, 229-243		1
947	Thermodynamics of Piperazine/Methyldiethanolamine/Water/Carbon Dioxide. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 604-612	3.9	148
946	Solvent Effects on Equilibrium Position and Initial Rate of Lipase-catalyzed Esterification Reactions in Organic Solvents: Experimental Results and Prediction Capabilities. 2002 , 20, 101-109		9
945	Isobaric Vapour-Liquid Equilibrium of Some Cyclic Ethers with Bromobenzene at Several Pressures. 2002 , 40, 715-725		7
944	Phase Equilibria of the Binary Systems 1-Hexene with o-Xylene, m-Xylene, p-Xylene, Toluene, and Ethylbenzene at 101.3 kPa. 2002 , 47, 867-871		24
943	Isobaric Vaporliquid Equilibrium for the Binary Mixtures (2-Butanol + n-Hexane) and (2-Butanol + 1-Butylamine) and for the Ternary System (2-Butanol + n-Hexane + 1-Butylamine) at 101.3 kPa. 2002 , 47, 405-410		11
942	Determination of Excess Molar Enthalpies of #Dichloroalkane + 1-Butanol or 1-Heptanol Mixtures at 298.15 K. Analysis and Comparison with Predicted Values of UNIFAC. 2002 , 47, 411-415		9
941	Thermodynamics of Binary Mixtures Containing Organic Carbonates. 12. SLE and LLE Measurements for Systems of Dimethyl Carbonate with Long n-Alkanes. Comparison with DISQUAC and Modified UNIFAC Predictions [Industrial & Engineering Chemistry Research, 2002, 41, 3253-325]	3.9 9	4
940	Efficient Combinatorial Optimization under Uncertainty. 2. Application to Stochastic Solvent Selection. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1285-1296	3.9	39
939	Isobaric Vapor l iquid Equilibria of the Binary Systems Cyclohexane with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 101.3 kPa. 2002 , 47, 1154-1158		10
938	Vaporliquid Equilibria for the Binary System Hexane + 1,1-Dimethylpropyl Methyl Ether at 298.15, 308.15, 318.15, and 328.15 K. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1364-1369	3.9	6
937	Limiting Partial Molar Excess Enthalpies of Selected Organic Compounds in Water at 298.15 K. 2002 , 47, 954-959		6
936	The Production of Butyl Acetate and Methanol via Reactive and Extractive Distillation. I. Chemical Equilibrium, Kinetics, and Mass-Transfer Issues. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 6663-6669	3.9	60
935	Thermophysical Properties of Acetone or Methanol + n-Alkane (C9 to C12) Mixtures. 2002 , 47, 887-893		50
934	A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 899-913	3.9	564
933	A Modified UNIFAC (Dortmund) Model. 4. Revision and Extension. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1678-1688	3.9	160

932	The Production of Butyl Acetate and Methanol via Reactive and Extractive Distillation. II. Process Modeling, Dynamic Simulation, and Control Strategy. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 6735-6744	3.9	60
931	Vaporliquid Equilibrium of the Ternary System Ethyl Acetate + Hexane + Acetone at 101.32 kPa. 2002 , 47, 849-854		32
930	Thermodynamics of mixtures containing a very strongly polar compound. Part II. Solid-liquid equilibria for sulfolane + nitrile systems and characterization of the sulfolane-nitrile and sulfolane-1-alkyne interactions in terms of DISQUAC. 2002 , 80, 476-482		11
929	Semi-empirical strategies for predicting adhesion. 2002 , 1-73		4
928	Vaporliquid equilibrium data for the 2-methoxy-2-methylpropane (MTBE) Ethanol, MTBE Ethanol Calcium chloride, and MTBE Ethanol Copper chloride. 2002 , 37, 1911-1926		3
927	Excess molar enthalpies of mixtures of methyl derivatives of polyethylene glycol with 1-alkanol at 298.15 K and 101.3 kPa. 2002 , 80, 462-466		14
926	Prediction of physico-chemical properties for PCs/DFs using the UNIFAC model with an alternative approximation for group assignment. 2002 , 49, 135-42		8
925	Kinetic Study on 2-Methyl-1-Butanol Dehydration Catalysed by Ion Exchange Resin 2002 , 35, 436-442		8
924	Measurement of Activity Coefficients at Infinite Dilution Using Gaslliquid Chromatography. 13. Results for Various Solutes with the Stationary Phases 1-Ethylpyrrolidin-2-one and 1,5-Dimethylpyrrolidin-2-one. 2002 , 47, 906-910		8
923	Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes. 2002 , 26, 147-163		19
922	Fast solvent screening via quantum chemistry: COSMO-RS approach. 2002 , 48, 369-385		1127
921	COSMOSPACE: Alternative to conventional activity-coefficient models. 2002 , 48, 2332-2349		114
920	Experimental and theoretically estimated excess molar enthalpies for (ethyl propionate+n -hexane + 1-pentanol) atT= 298.15 K. 2002 , 34, 961-972		5
919	Calculation of solubilities of the pesticides diuron and monuron in organic nonelectrolyte solvents using UNIFAC and modified UNIFAC (dortmund) models. 2002 , 80, 530-535		
918	High pressure vapor I quid equilibria in the ternary system orange peel oil (limonene)+ethanol+carbon dioxide. 2002 , 23, 103-111		5
917	Laboratory and pilot-scale study on dehydration of benzene by pervaporation. 2002 , 203, 127-136		38
916	Phase equilibria for liquid mixtures of (butanenitrile + a carboxylic acid + water) at 298.15K. 2002 , 193, 123-133		68
915	Prediction of infinite dilution activity coefficients for systems including water based on the group contribution model with mixture-type groups. 2002 , 198, 15-27		8

(2003-2002)

914	Thermodynamic excess properties for binary mixtures of (benzonitrile + a carboxylic acid) at T = 298.15 K. 2002 , 198, 257-266	50
913	Vaporllquid equilibria and excess properties of octane + 1,1-dimethylpropyl methyl ether (TAME) mixtures. 2002 , 200, 41-51	7
912	Modification of PSRK mixing rules and results for vaporliquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. 2002 , 200, 411-429	60
911	Vapor liquid equilibrium for the binary systems 2-methylpentane + 2-butanol at 329.2 K and n-hexane + 2-butanol at 329.2 and 363.2 K with a static apparatus. 2002 , 201, 343-358	43
910	Determination of temperature dependence of limiting activity coefficients for a group of moderately hydrophobic organic solutes in water. 2002 , 201, 135-164	49
909	Extraction equilibria of valeric acid using (Alamine 336/diluent) and conventional solvent systems. Modeling considerations. 2002 , 41, 681-692	19
908	Angular dependence in the transmittance from self-organized striped pattern of refractive indices in photopolymer. 2002 , 40, 216-225	11
907	DISQUAC characterization of mixtures containing alkynes and alkanes or 1-alkanols. Comparison with ERAS model. 2002 , 381, 103-117	9
906	Solvent improvement for separating C4 with ACN. 2002 , 26, 1213-1221	14
905	Thermodynamics of mixtures containing organic carbonates. 2002 , 200, 349-374	25
904	A thermodynamic study on binary and ternary mixtures of acetonitrile, water and butyl acetate. 2002 , 203, 83-98	59
903	Isobaric vapour[]quid equilibrium of binary and ternary mixtures containing cyclohexane, n-hexane, 1,3-dioxolane and 1-butanol at 40.0 and 101.3 kPa. 2002 , 88, 1-9	14
902	Phase equilibria behaviour of n-heptane with o-xylene, m-xylene, p-xylene and ethylbenzene at 101.3 kPa. 2002 , 34, 1975-1984	19
901	Computer simulation and optimization of pervaporation process. 2002 , 145, 187-192	12
900	Food Process Engineering: The Last 25 Years and Challenges Ahead. 2003 , 2, 42-81	57
899	Prediction of phase equilibria and excess properties for systems with sulfones. 2003 , 49, 530-537	17
898	Sorption effect on kinetics of etherification of tert-amyl alcohol and ethanol. 2003, 58, 2065-2077	22

896	The QCHB model of fluids and their mixtures. 2003 , 35, 349-381	39
895	(Vapour+liquid) equilibrium of (DIPE+IPA+water) at 101.32kPa. 2003 , 35, 871-884	27
894	Application of IR-spectroscopy in thermodynamic investigations of associating solutions. 2003 , 205, 195-21	4 21
893	Excess molar volume and viscosity study for the ternary system tetrahydrofuran (1) + 1-chlorobutane (2) + 1-butanol (3) at 283.15, 298.15 and 313.15 K. 2003 , 207, 193-207	15
892	Vapor l Iquid equilibria for the ternary systems of methyl tert-butyl ether + methanol + benzene and methyl tert-butyl ether + methanol + toluene and constituent binary systems at 313.15 K. 2003 , 209, 215-228	19
891	Limiting activity coefficients in binary mixtures of 1-alkanols and toluene. 2003 , 209, 265-280	12
890	Experimental data, correlation and prediction of isobaric VLE for the ternary mixture (2-butanol + n-hexane + 1-chlorobutane) at 101.3 kPa. 2003 , 211, 179-188	11
889	Vaporliquid equilibrium of octane-enhancing additives in gasolines. 2003 , 212, 81-95	15
888	Vaporliquid equilibria for the binary system hexan-1-ol + tert-butyl methyl ether (MTBE) at 298.15, 318.15, and 338.15 K. 2003 , 208, 115-121	8
887	Vaporliquid and Vaporliquidliquid Equilibria for Mixtures Containing Water, Ethanol, and Ethyl Benzoate. <i>Industrial & Demostry Research</i> , 2003 , 42, 4234-4240	9
886	Modeling of Liquid Phase Equilibria in Aqueous Solutions of Poly(ethylene glycol) with a UNIFAC-Based Model. <i>Industrial & amp; Engineering Chemistry Research</i> , 2003 , 42, 5399-5408	10
885	Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach. 2003, 102, 251-9	97
884	Modeling the formation of secondary organic aerosol in coastal areas: Role of the sea-salt aerosol organic layer. 2003 , 108,	5
883	Measurements, Correlations, and Predictions of Viscosities for the Ternary Mixture (2-Butanol + Hexane + 1-Chlorobutane) at 298.15 K and 313.15 K. 2003 , 48, 302-307	13
882	Isobaric Vaporliquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert-Butanol and a New Approach to VLE Data Processing. 2003 , 48, 916-924	20
881	Equation-of-State Models and Quantum Mechanics Calculations. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1495-1507	28
88o	Preferential Solvation in Ternary Solutions Containing Methylbenzoate. A Kirkwood B uff Fluctuation Theory Study. 2003 , 107, 13478-13486	18
879	Vaporliquid Equilibrium and Volumetric Measurements for Binary Mixtures of 1,4-Dioxane with Isomeric Chlorobutanes. 2003 , 48, 887-891	20

(2004-2003)

878	Infinite Dilution Activity Coefficients of Hydrocarbons in Triethylene Glycol and Tetraethylene Glycol. 2003 , 48, 1109-1112		10
877	Isobaric Vaporliquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane. 2003 , 48, 1183-1190		48
876	Experimental and Theoretical Analysis of Phase Equilibria in a Two-phase System Used for Biocatalytic Esterifications. 2003 , 21, 115-121		13
875	Thermodynamics of mixtures containing a very strongly polar compound: IV hpplication of the DISQUAC, UNIFAC and ERAS models to DMSO+ organic solvent systems. 2003 , 41, 583-597		17
874	Thermodynamics of binary mixtures containing a very strongly polar compound Part 3: DISQUAC characterization of NMP + organic solvent mixtures. 2003 , 81, 1451-1461		29
873	Prediction of Infinite Dilution Activity Coefficients Using COSMO-RS. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 3635-3641	3.9	74
872	Onset of Rayleigh-Bflard convection in a ternary liquid system and the Onsager law with generalized thermal diffusion. 2003 , 83, 2033-2038		2
871	Vapor l iquid equilibria of propan-1-ol + 1,1-dimethylethyl methyl ether (MTBE) mixtures. Experimental results and modeling. 2003 , 5, 2858-2861		4
870	Vapor[liquid Equilibrium of the Ethanol + 2-Methyl-1-butanol System. 2003, 48, 14-17		9
869	Liquid l iquid Extraction of Isovaleric Acid Using Alamine 308/Diluent and Conventional Solvent Systems: Effect of Diluent and Acid Structure. 2003 , 21, 853-879		7
868	Estimation of Separation Factor for Analogues in CCC Using UNIFAC. 2003, 26, 1431-1447		5
867	Solvent Selection for a Reactive and Extractive Distillation Process by Headspace Gas Chromatography. 2003 , 38, 21-37		5
866	UNIFAC calculation of thermodynamic properties of binary 1-chloroalkane + alkane and 田ichloroalkane + alkane mixtures: Comparison with Nitta?Chao and DISQUAC predictions. 2003 , 81, 392-405		2
865	Emission and fate assessment of methyl tertiary butyl ether in the Boston area airshed using a simple multimedia box model: comparison with urban air measurements. 2003 , 53, 1426-35		6
864	Isobaric Vapour-Liquid Equilibrium of Ternary Mixtures Cyclohexane (or n -Hexane) Plus 1,3-Dioxolane Plus 2-Butanol at 40.0 and 101.3 kPa. 2003 , 41, 1-13		6
863	Property Calculation and Prediction for Selecting Solvent Systems in CCC. 2003 , 26, 1397-1415		15
862	Limiting activity coefficients of aqueous flavour systems at 298 K by the group contribution solvation (GCS) model. 2004 , 102, 235-241		5
861	Models for Liquid Phase Activity Coefficients - UNIFAC. 2004 , 19, 59-74		3

860	HCToolkit/EOS interface: an open source, multi-platform phase equilibria framework for exploring phase behaviour of complex mixtures. 2004 , 237, 89-98	1
859	Excess Properties and Isobaric VaporDiquid Equilibria for Binary Mixtures of Methyl Esters +tert-Butanol. 2004 , 49, 1602-1612	26
858	Liquid∏iquid Equilibria for Systems of (Water + Carboxylic Acid + Methylcyclohexanol) at 293.15 K: Modeling Considerations. 2004 , 49, 1815-1820	25
857	Isobaric Vaporlliquid Equilibria for the Ternary System of 2-Methyl-1-butanol, 3-Methyl-1-butanol, and Ethylene Glycol at 101.3 kPa. 2004 , 49, 1535-1538	6
856	Viscosimetric Study of Multicomponent Liquid Mixtures Containing Oxygenated Compounds. 2004 , 25, 669-678	4
855	Experimental and Predicted Excess Molar Enthalpies of the Ternary System tert-Butyl Methyl Ether + 1-Pentanol + Decane at 298.15 K. 2004 , 49, 1703-1709	13
854	Correlation and comparison of the infinite dilution activity coefficients in aqueous and organic mixtures from a modified excess Gibbs energy model. 2004 , 217, 205-216	12
853	Predicting vaporliquid equilibria of fatty systems. 2004 , 215, 227-236	83
852	Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. 2004 , 215, 283-294	33
851	Vaporliquid equilibria for the binary system 2,2dimethylbutane + 1,1dimethylpropyl methyl ether (TAME) at 298.15, 318.15, and 338.15 K. 2004 , 221, 1-6	3
850	Predicting infinite dilution activity coefficients with the group contribution solvation model: an extension of its applicability to aqueous systems. 2004 , 221, 127-137	10
849	Excess enthalpy for $\{x \text{ 1-hexanol } + (1 \square) \text{ hexane} \}$ at temperatures from 323 to 513 K, and pressures from 3.5 to 15 MPa. 2004 , 226, 141-148	4
848	Surface tensions for isomeric chlorobutanes with isomeric butanols. 2004 , 275, 284-9	67
847	Phase equilibria for ternary liquid systems of (water+carboxylic acid or alcohol+1-hexanol) at T=293.15 K: modelling considerations. 2004 , 36, 1007-1014	24
846	Thermodynamics of binary mixtures containing N-alkylamides. 2004 , 115, 93-103	30
845	Vaporliquid equilibrium of octane-enhancing additives in gasolines. 2004 , 217, 157-164	15
844	Measurement and correlation of isobaric vapourliquid equilibrium data and excess properties of ethyl methanoate with alkanes (hexane to decane). 2004 , 215, 175-186	26
843	Experimental solid + liquid equilibria and excess molar volumes of alkanol + hexylamine mixtures. 2004 , 216, 135-145	24

842	Thermodynamics of liquid mixtures containing a very strongly polar compound. 2004 , 224, 169-183		65
841	High-pressure phase equilibria of some carbon dioxideBrganicWater systems. 2004, 224, 143-154		48
840	Prediction of the solubility of aromatic components of wine in carbon dioxide. 2004 , 31, 9-25		15
839	(Vapour + liquid) equilibrium of binary mixtures (1,3-dioxolane or 1,4-dioxane + 2-methyl-1-propanol or 2-methyl-2-propanol) at isobaric conditions. 2004 , 36, 87-93		8
838	Thermodynamic properties of (an ester+an alkane). XVI. Experimental HmE and VmE values and a new correlation method for (an alkyl ethanoate+an n-alkane) at 318.15 K. 2004 , 36, 193-209		27
837	Liquid[Iquid equilibria for mixtures of {methyl acetate + methanol + n-alkane (C10[I12)} at several temperatures and 1 atm. 2004 , 36, 237-243		7
836	Vapourllquid equilibrium and azeotropic behaviour of 1,2-dichloroethane with isomeric butanols. 2004 , 225, 77-83		8
835	Effect of Adsorption on Residue Curve Maps for Heterogeneous Catalytic Distillation Systems. <i>Industrial & Distillation Systems Industrial & Distillation Systems</i> .	3.9	5
834	DISQUAC Predictions on Thermodynamic Properties of Ternary and Higher Multicomponent Mixtures. 3. Results forHEof Ternary Mixtures Containing One Alcohol, One Polar Compound, and One Hydrocarbon or Two Alcohols and One Hydrocarbon or a Polar Compound, or Three Alkanols.	3.9	15
833	Industrial & Chemistry Research, 2004, 43, 7622-7634 Experimental and Predicted Solubilities of HFC134a (1,1,1,2-Tetrafluoroethane) in Polyethers. Industrial & Chemistry Research, 2004, 43, 1523-1529	3.9	17
832	Isobaric Vapor Liquid Equilibrium for 2,3-Dimethyl-2-butene + Methanol, + Ethanol, + 2-Propanol, or + 2-Butanol at Atmospheric Pressure. 2004 , 49, 251-255		10
831	Experimental Solid + Liquid Equilibria and Excess Molar Volume of Alkanol + Octylamine Mixtures. Analysis in Terms of ERAS, DISQUAC, and Modified UNIFAC 2004, 49, 101-108		21
830	Effect of Diluent on Amine Extraction of Acetic Acid: Modeling Considerations. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6496-6506	3.9	60
829	Measurement of Activity Coefficients at Infinite Dilution of Benzene, Toluene, Ethanol, Esters, Ketones, and Ethers at Various Temperatures in Water Using the Dilutor Technique. 2004 , 49, 1429-143	32	31
828	Sorptive and Catalytic Properties of Partially Sulfonated Resins. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2658-2668	3.9	15
827	Liquid[liquid Equilibria of Methyl Acetate + Methanol + Octane or Nonane. 2004 , 49, 664-667		3
826	Volumetric and Solid + Liquid Equilibrium Data for Linear 1-Alkanol + Decylamine Mixtures. Analysis in Terms of ERAS, DISQUAC, and Modified UNIFACII <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 7647-7656	3.9	18
825	Solid l iquid Equilibria of Several Systems Containing Acetic Acid. 2004 , 49, 756-759		49

824	Liquid l iquid Equilibria for the Ternary Systems of (Water + Tetrahydrofuran + Polar Solvent) at 298.15 K. 2004 , 49, 1827-1832	8
823	Description of PVT behaviour of hydrofluoroethers using the PC-SAFT EOS. 2004 , 6, 766-770	57
822	Isothermal Vaporliquid Equilibrium and Excess Enthalpy Data for the Binary Systems Water + Sulfolane and Methanol + N-Methyl-2-pyrrolidone 2004, 49, 1499-1503	15
821	Phase Equilibrium Calculations in Aqueous and Nonaqueous Mixtures of Sugars and Sugar Derivatives with a Group-Contribution Model. <i>Industrial & Engineering Chemistry Research</i> , 3.9 2004 , 43, 8391-8399	20
820	Nonrandom Hydrogen-Bonding Model of Fluids and Their Mixtures. 1. Pure Fluids. <i>Industrial & amp; Engineering Chemistry Research</i> , 2004 , 43, 6592-6606	91
819	Predicting LiquidIliquid Equilibria of Amine Extraction of Carboxylic Acid Through Solvation Energy Relation. 2004 , 22, 865-883	9
818	A curved multi-component aerosol hygroscopicity model framework: Part 2 Including organic compounds. 2005 , 5, 1223-1242	148
817	Rigorous dynamic model of a direct methanol fuel cell based on Maxwell®tefan mass transport equations and a Flory⊞uggins activity model: Formulation and experimental validation. 2005 , 145, 435-462	42
816	Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid+liquid) equilibrium and the (vapour+liquid) equilibrium. The modified UNIFAC (Do) model characterization. 2005 , 37, 692-704	33
815	Phase equilibria for ternary liquid systems of (water+levulinic acid+cyclic solvent) at T=298.2 K: Thermodynamic modeling. 2005 , 37, 1104-1110	13
814	Thermodynamic study of (alkyl esters + \blacksquare lkyl dihalides) I: HmE and VmE for 25 binary mixtures {xCu \square H2u \square CO2C2H5 + (1 \square) \blacksquare ClCH2(CH2)v \square CH2Cl}, where u = 1 to 5, \blacksquare 1 and v = \blacksquare 2 to 6. 2005 , 37, 1332-1346	15
813	Systems with ionic liquids: Measurement of VLE and 由ata and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol). 2005 , 37, 603-619	368
812	Vaporliquid equilibria in the binary system (Pbeta-pinene+(+)-fenchone. 2005 , 227, 113-124	4
811	Liquid I quid equilibria of the ternary system water+acetic acid+dimethyl adipate. 2005, 230, 58-63	39
810	Vapor l lquid equilibrium prediction at high pressures using activity coefficients at infinite dilution from COSMO-type methods. 2005 , 231, 231-238	34
809	A relative headspace method for Henry's constants of volatile organic compounds. 2005 , 231, 239-245	29
808	Correlation of the critical micelle concentration for aqueous solutions of nonionic surfactants. 2005 , 232, 37-43	13
807	Thermodynamics of binary mixtures containing N-methyl-2-pyrrolidinone. 2005 , 235, 182-190	10

(2005-2005)

806	Strategies for recovering phenol from wastewater: thermodynamic evaluation and environmental concerns. 2005 , 228-229, 447-457	51
805	Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. 2005 , 227, 197-213	116
804	Measurement and correlation of vaporliquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. 2005 , 231, 38-43	137
803	Solid[Iquid equilibria for binary mixtures of N-phenylacetamide with 4-aminoacetophenone, 3-hydroxyacetophenone and 4-hydroxyacetophenone. 2005 , 232, 182-188	33
802	Isobaric vaporllquid equilibria for systems composed by 2-ethoxy-2-methylbutane, methanol or ethanol and water at 101.32kPa. 2005 , 233, 9-18	8
801	Experimental and predicted vapourliquid equilibrium of 1,4-dioxane with cycloalkanes and benzene. 2005 , 238, 1-6	10
800	Liquid II quid equilibria of the ternary system water+acetic acid+dimethyl succinate. 2005, 238, 33-38	14
799	A general and applied thermodynamic model for the characterisation of saline systems. 2005 , 175, 269-278	2
798	Performance of a Conductor-Like Screening Model for Real Solvents Model in Comparison to Classical Group Contribution Methods. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 1610-1624	131
797	Application of CAMD in separating hydrocarbons by extractive distillation. 2005 , 51, 3114-3121	41
796	Liquid II quid equilibria for ternary systems of (water + carboxylic acid + 1-octanol) at 293.15 K: modeling phase equilibria using a solvatochromic approach. 2005 , 227, 87-96	62
795	Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid[]quid-equilibria for binary systems of alkanes and aromatics with esters. 2005 , 230, 131-142	18
794	Determination of excess molar enthalpies of the ternary system methyl tert-butyl ether + 1-pentanol + nonane at 298.15 K: Analysis and comparison with predicted values of the UNIFAC model and some empirical methods. 2005 , 232, 16-24	15
793	Isobaric vaporllquid equilibria for mixtures of acetone, ethanol, and 2,2,4-trimethylpentane at 101.3 kPa. 2005 , 231, 99-108	21
79²	Thermodynamics of mixtures with strongly negative deviations from Raoult's law: Part 9. VaporIlquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15 K. 2005 , 231, 211-220	25
791	(Vapour+liquid) equilibria for the binary mixtures (1-propanol+dibromomethane, or+bromochloromethane, or+1,2-dichloroethane or+1-bromo-2-chloroethane) at T=313.15 K. 2005 , 37, 7-12	11
790	Thermodynamic properties of (an ester+an alkane). XVII. Experimental and values for (an alkyl propanoate+an alkane) at 318.15K. 2005 , 37, 967-983	5
789	Experimental and predicted enthalpies of mixing of mixtures formed from alcohols and sunflower oil at 298.15 K. 2005 , 82, 141-146	

788	Theoretical Modeling of the Size-Dependent Influence of Surface Tension on the Absorptive Partitioning of Semi-Volatile Organic Compounds. 2005 , 50, 139-158	10
787	Liquid[liquid Equilibria of Oxygenate Fuel Additives with Water at 298.15 K: Ternary and Quaternary Aqueous Systems of Diisopropyl Ether and Hydrocarbons with 2-Propanol. 2005 , 34, 1445-1457	4
786	Prediction of liquid-liquid equilibrium using the group solubility parameter model. 2005 , 10, 561-566	
785	A modified UNIFAC model for the prediction of phase equilibrium for polymer solutions. 2005 , 43, 2541-2547	4
784	Thermodynamic fundamentals. 2005 , 1-58	4
783	Thermodynamics of binary mixtures with strongly negative deviations from Raoult's Law. X. linear alkanoate + CHCl3 or + 1,1,2,2-tetrachloroethane. 2005 , 43, 317-332	4
782	Theoretical prediction of the coordination number, local composition, and pressure-volume-temperature properties of square-well and square-shoulder fluids. 2005 , 123, 244505	8
781	Thermodynamics of 1-alkanol+linear alkanoate mixtures. 2005 , 43, 175-194	12
780	Thermodynamics of aqueous piperazine/potassium carbonate/carbon dioxide chare cterized by the electrolyte non-random two-liquid model in aspen plus. 2005 , 1975-1978	9
779	Low Molecular Weight Poly(ethylene glycol) as an Environmentally Benign Solvent for Pharmaceutical Crystallization and Precipitation. 2005 , 5, 85-92	14
778	Vaporliquid Equilibria at 101.32 kPa and Excess Properties of Binary Mixtures of Butyl Esters + tert-Butyl Alcohol. 2005 , 50, 444-454	30
777	Experimental and Predicted Vaporlliquid Equilibrium for Cyclic Ethers with 1-Chloropentane. Industrial & Chemistry Research, 2005, 44, 6981-6988 3.9	13
776	Estimating partition coefficients for fuel-water systems: developing linear solvation energy relationships using linear solvent strength theory to handle mixtures. 2005 , 39, 2702-10	14
775	Liquid [liquid Equilibria of Water + Acetic Acid + Dimethyl Glutarate Ternary System. 2005 , 50, 1539-1542	13
774	Vapor l liquid Equilibria for the Ternary Systems of Methyltert-Butyl Ether + Methanol + Methylcyclohexane and Methyltert-Butyl Ether + Methanol +n-Heptane and Constituent Binary Systems at 313.15 K. 2005 , 50, 1564-1569	10
773	Structures of alkyl benzoate binary mixtures. A Kirkwood-Buff fluctuation theory study using UNIFAC. 2005 , 109, 19908-14	12
772	Ternary and Quaternary Liquid[liquid Equilibria of Water + Methanol + Diisopropyl Ether and Water + Methanol + Diisopropyl Ether + Toluene Mixtures. 2005 , 50, 2031-2034	3
771	Vaporlliquid Equilibrium and Density of the Binary System 1-Phenylethylamine + Toluene. 2005 , 50, 33-35	6

77°	Thermodynamics of organic mixtures containing amines. IV. Systems with aniline. 2005 , 83, 1812-1825	46
769	Experimental and Predicted Viscosities of the Ternary Mixture (Hexane + 1,3-Dioxolane + 2-Butanol) at 298.15 and 313.15 K. 2005 , 50, 722-726	6
768	Characterization and preferential solvation of the hexane/hexan-1-ol/methylbenzoate ternary solvent. 2005 , 109, 6375-85	13
767	Mutual Solubilities of Terpene in Methanol and Water and Their Multicomponent Liquid l iquid Equilibria. 2005 , 50, 2013-2018	34
766	Experimental (Solid + Liquid) and (Liquid + Liquid) Equilibria and Excess Molar Volume of Alkanol + Acetonitrile, Propanenitrile, and Butanenitrile Mixtures 2005, 50, 2035-2044	18
765	Liquid[liquid Equilibria for Mixtures of (Water + Carboxylic Acid + 1-Octanol/Alamine 336) at 293.15 K. 2005 , 50, 713-718	14
764	Improved Genetic Algorithms for Deterministic Optimization and Optimization under Uncertainty. Part II. Solvent Selection under Uncertainty. <i>Industrial & Description of the Mistry Research</i> , 2005 , 44, 7138-7146	33
763	Modeling of Polar Systems with the Perturbed-Chain SAFT Equation of State. Investigation of the Performance of Two Polar Terms. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 6928-6938 ^{3.9}	89
762	Thermodynamics of Binary Mixtures Containing a Very Strongly Polar Compound. 7. Isothermal VLE Measurements for NMP + 2-Propanol or + 2-Butanol Systems. DISQUAC and ERAS Characterization of NMP or N,N-Dialkylamide + 2-Alkanol Mixtures. Comparison with Results from Dortmund	20
761	UNIFAC. Industrial & Discrete Engineering Chemistry Research, 2005, 44, 5795-5804 Measurement and correlation of liquid Iquid equilibria of methanol + 2-butanone + n-alkanes (C10 I 12) ternary mixtures. 2006, 44, 293-301	1
760	Multiple Product Solutions of tert-Butyl Alcohol Dehydration in Reactive Distillation. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2006 , 45, 1613-1621	8
759	Temperature Dependences of Limiting Activity Coefficients and Henry's Law Constants for Nitrobenzene, Aniline, and Cyclohexylamine in Water. 2006 , 51, 1678-1685	18
758	(Liquid + Liquid) Equilibria of Oxygenate Fuel Additives with Water: (Water + Diisopropyl Ether + 2,2,4-Trimethylpentane + Ethanol) and (Water + Diisopropyl Ether + 2,2,4-Trimethylpentane + 2-Propanol). 2006 , 51, 1236-1241	6
757	Correlation and Prediction of Excess Quantities and Vapor [liquid Equilibria of Alkyl Esters + tert-Butyl Alcohol: Experimental Data for Propyl Esters + tert-Butyl Alcohol. 2006 , 51, 730-742	13
756	Solid[liquid Equilibria for Binary Organic Systems Containing 1-Methoxy-2-propanol and 2-Butoxy Ethanol. 2006 , 51, 1873-1876	3
755	Vaporlliquid Equilibrium Data for the Binary Methyl Esters (Butyrate, Pentanoate, and Hexanoate) (1) + Acetonitrile (2) Systems at 93.32 kPa. 2006 , 51, 1536-1540	11
754	VaporDiquid Equilibrium for Binary System of 1-Propanethiol, Thiophene, and Diethyl Sulfide with Toluene at 90.03 kPa. 2006 , 51, 1372-1376	27
753	Vapor⊡iquid Equilibrium for Binary System of Thiophene + n-Hexane at (338.15 and 323.15) K and Thiophene + 1-Hexene at (333.15 and 323.15) K. 2006 , 51, 2203-2208	44

752	Solubilities at High Dilution of Toluene, Ethylbenzene, 1,2,4-Trimethylbenzene, and Hexane in Di-2-ethylhexyl, Diisoheptyl, and Diisononyl Phthalates. 2006 , 51, 1212-1215		34
751	Solid I iquid Equilibria of Naphthalene + Alkanediamine Mixtures. 2006 , 51, 382-385		14
75°	Global Bounds on Optimal Solutions for the Production of 2,3-Dimethylbutene-1. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2261-2271	3.9	10
749	Solubility of Berberine Chloride in Various Solvents. 2006 , 51, 642-644		19
748	LiquidIliquid Phase Equilibrium in GlycerolMethanolMethyl Oleate and GlycerolMonooleinMethyl Oleate Ternary Systems. <i>Industrial & Dolor Engineering Chemistry Research</i> , 2006 , 45, 3693-3696	3.9	96
747	Further Development of Modified UNIFAC (Dortmund): Revision and Extension 5. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7924-7933	3.9	114
746	FlBsig-FlBsig-Extraktion. 907-992		5
745	Verfahrenstechnische Grundlagen zu Stoffaustausch und WEmeBertragung. 187-301		
744	Liquid II quid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol. 2006 , 248, 174-180		16
743	Vapor l Iquid equilibria for binary and ternary mixtures of diisopropyl ether, ethanol, and 2,2,4-trimethylpentane at 101.3kPa. 2006 , 248, 197-205		13
742	Multiplicity of VLLE equations: Case studies. 2006, 61, 6709-6717		2
741	Excess molar volume and viscosity study for the ternary system tetrahydrofuran (1)+1-chlorobutane (2)+2-butanol (3) at 283.15, 298.15 and 313.15K. 2006 , 239, 146-155		14
740	Thermodynamics of 1-alkanol + cyclic ether mixtures. 2006 , 245, 168-184		43
739	Thermodynamics of isomeric hexynes+MTBE binary mixtures. 2006 , 248, 181-190		13
738	Quaternary (liquid+liquid) equilibria for (water+2-propanol+1,1-dimethylethyl methyl ether+diisopropyl ether) at the temperature 298.15K. 2006 , 38, 484-489		3
737	Phase equilibria for ternary liquid systems of (water+tetrahydrofuran+nonprotic aromatic solvent) at T=298.2K. 2006 , 38, 578-584		7
736	Thermodynamic study of (alkyl esters+距lkyl dihalides) III. for 20 binary mixtures {xCufiH2ufiCO2C4H9+(1図)		8
735	Thermodynamics of organic mixtures containing amines. 2006 , 441, 53-68		35

(2007-2006)

734	SolidIquid equilibria and purity determination for binary n-alkane + naphthalene systems. 2006 , 444, 166-172		21
733	Structural and electrostatic properties of atoms and functional groups using AIM theory: Saturated organics with one electronegative atom. 2006 , 770, 31-44		5
732	Comparison of Reactive Distillation with Process Alternatives for the Isobutene Dimerization Reaction. <i>Industrial & Dimerization Reaction Reaction</i>	9	11
731	Process Analysis for Dimerization of Isobutene by Reactive Distillation. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1575-1582	9	20
730	Prediction of Binary VLE for Imidazolium Based Ionic Liquid Systems Using COSMO-RS. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3207-3219	9	143
729	Determination by DSC of solid[]quid diagrams for polyaromatic []4,4[]iaminodiphenylmethane binary systems. 2006 , 84, 47-52		24
728	Design and control of butyl acrylate reactive distillation column system. 2006 , 61, 4417-4431		35
727	Liquid[Iquid equilibria for the system (water + carboxylic acid + chloroform): Thermodynamic modeling. 2006 , 243, 51-56		37
726	Excess enthalpies of binary mixtures of 2-ethoxyethanol with four hydrocarbons at 298.15, 308.15, and 318.15K. 2006 , 245, 89-101		16
725	Thermodynamic study of (alkyl esters + \blacksquare lkyl dihalides) II: HmE and VmE for 25 binary mixtures {xCu \square H2u \square CO2C2H5 + (1 \square) \blacksquare BrCH2(CH2)v \square CH2Br}, where u = 1 to 5, \blacksquare 1 and v = \blacksquare 2 to 6. 2006 , 38, 585-598		14
724	Measurement and prediction of (solid+liquid) equilibria of (alkanediamine+biphenyl) mixtures. 2006 , 38, 1192-1198		22
723	Computer Aided Molecular Design of Solvents for Separation Processes. 2006 , 29, 33-43		10
722	PHASE EQUILIBRIUM FOR TERNARY LIQUID SYSTEMS OF WATER + CARBOXYLIC ACID + CHLORINATED HYDROCARBON: THERMODYNAMIC MODELING THROUGH SERLAS. 2006 , 193, 402-416		4
721	Adhesion promotion of poly(phenylene sulfide) to aluminum treated with silane coupling agents. 2006 , 20, 197-208		4
720	Thermodynamic study of the mixtures (butylbenzene + an alkane or + an alkyl ethanoate): experimental and values. 2007 , 45, 251-259		11
719	Evaluation of Liquid-Liquid Extraction Process for Separating Acrylic Acid Produced From Renewable Sugars. 2007 , 451-461		
718	Refinement of COSMOBAC and the Applications. <i>Industrial & District Research</i> , 2007 , 46, 7275-7288	9	148
717	A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). 2007 , 127, 234903		195

716	Performance of COSMO-RS with Sigma Profiles from Different Model Chemistries. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 6612-6629	55
715	Extractants Design Based on an Improved Genetic Algorithm. <i>Industrial & Empire Empire</i>	10
714	Analysis of a Two-Step, Noncatalytic, Supercritical Biodiesel Production Process with Heat Recovery. 2007 , 21, 339-346	43
713	Solid[liquid Equilibrium of Binary Fatty Acid Mixtures. 2007 , 52, 30-36	118
712	Modeling of Simultaneous Chemical and Phase Equilibria in Esterification of Acetic Acid with Ethanol in High-Pressure Carbon Dioxide. <i>Industrial & Emp; Engineering Chemistry Research</i> , 2007 , 46, 543 ³ -34	45 ⁸
711	Isobaric Vapor[liquid Equilibrium Data and Excess Properties of Binary Systems Comprised of Alkyl Methanoates + Hexane. 2007 , 52, 215-225	25
710	Vaporlliquid Equilibrium Data for the Binary Methyl Esters (Butyrate, Pentanoate, and Hexanoate) (1) + Propanenitrile (2) Systems at 93.32 kPa. 2007 , 52, 871-875	15
709	Isothermal Vapor[liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene). 2007 , 52, 47-55	18
708	Liquid□iquid Equilibria for Ternary Systems of Water + Formic Acid + Dibasic Esters. 2007 , 52, 1889-1893	34
707	Group contribution prediction of surface charge density profiles for COSMO-RS(OI). 2007, 53, 3231-3240	40
706	Isobaric vaporllquid equilibria of 1,1-dimethylethoxy-butane+methanol or ethanol+water at 101.32kPa. 2007 , 259, 57-65	9
705	Vapourliquid equilibrium of cyclic ethers with 1-chlorohexane: Experimental results and UNIFAC predictions. 2007 , 257, 70-77	9
704	QSPR generalization of activity coefficient models for predicting vapor II quid equilibrium behavior. 2007 , 257, 53-62	23
703	COSMO-RS modeling on the extraction of stimulant drugs from urine sample by the double actions of supercritical carbon dioxide and ionic liquid. 2007 , 62, 3940-3950	62
702	Biodegradation of biphenyl in a solid[]quid two-phase partitioning bioreactor. 2007, 36, 195-201	34
701	Extension of the group-contribution lattice-fluid equation of state. 2007 , 260, 135-145	9
700	Application of force field in Gibbs ensemble lattice statistics to model vapor/liquid equilibria. 2007 , 252, 175-188	3
699	Vapor []quid equilibria for binary and ternary mixtures of ethanol, 2-butanone, and 2,2,4-trimethylpentane at 101.3kPa. 2007 , 258, 131-139	26

(2007-2007)

698	Vaporliquid equilibrium for binary system of thiophene+2,2,4-trimethylpentane at 343.15 and 353.15K and thiophene+2-ethoxy-2-methylpropane at 333.15 and 343.15K. 2007 , 261, 115-121	27
697	Investigation of phase equilibria in the ternary system carbon dioxide+1-heptanol+n-pentadecane. 2007 , 261, 337-342	35
696	Isothermal vapour[Iquid equilibria and excess molar enthalpies of hex-2-yne + methyl butyl ether and hex-3-yne + dibutyl ether mixtures. 2007 , 262, 180-186	13
695	Thermodynamics of 1-alkanol+aromatic compound mixtures. Systems with dimethylbenzene, ethylbenzene or trimethylbenzene. 2007 , 133, 77-88	11
694	Vaporliquid equilibrium of polymer+solvent systems: Experimental data and thermodynamic modeling. 2007 , 48, 5646-5652	15
693	Thermodynamic study of (alkyl esters + \blacksquare alkyl dihalides) V. HmEandVmE for 25 binary mixtures {xCuIH2uICO2CH3 + (1 Ix) \blacksquare ClCH2(CH2)vICH2Cl}, where u = 1 to 5, \blacksquare 1 and v = \blacksquare 2 to 6. 2007 , 39, 742-757	7
692	Excess enthalpy, density, and speed of sound determination for the ternary mixture (methyl tert-butyl ether + 1-butanol + n-hexane). 2007 , 39, 1247-1256	16
691	Thermodynamic properties of (an ester+an alkane). XVIII. Experimental values for (an alkyl butanoate+an alkane) at T=318.15K. 2007 , 39, 1514-1529	2
690	(Liquid+liquid) equilibria of (water+propionic acid+dibasic esters) ternary systems. 2007 , 39, 1493-1499	21
689	Analysis of the thermodynamic properties of (1-chloroalkane+1-alkanol) mixtures using the Nittalihao group contribution model. 2007 , 39, 1399-1403	2
688	A method for assessing the choice of polymeric materials for specific applications. 2007, 47, 1220-1227	1
687	B imolecular QSPR: Estimation of the solvation free energy of organic molecules in different solvents. 2007 , 414, 128-131	9
686	Measurement and Correlation for Solubility of Dimethyl-2,6-naphthalene Dicarboxylate in Organic Solvents. 2007 , 15, 215-220	5
685	Experimental and theoretically estimated excess molar enthalpies for tert-butyl methyl ether+ 1-pentanol+octane at 298.15 K. 2007 , 89, 73-79	12
684	Liquid Liquid Equilibria of Oxygenate Fuel Additives with Water: Two Quaternary Aqueous Systems of Diisopropyl Ether + 2,2,4-Trimethylpentane with Methyl tert-Butyl Ether or Toluene. 2007 , 36, 583-594	2
683	Prediction of the Partition Coefficient for Acetic Acid in a Two-Phase System Soybean Oil-Water. 2007 , 84, 669-674	6
682	Evaluation of liquid-liquid extraction process for separating acrylic acid produced from renewable sugars. 2007 , 137-140, 451-61	4
681	Determination and correlation of liquid[]quid equilibria for four binary N,N-dimethylformamide+hydrocarbon systems. 2007 , 260, 81-86	18

680	Measurement of vaporliquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and 即sing modified UNIFAC (Dortmund). 2007 , 258, 168-178	115
679	Liquid I quid equilibrium in the systems furfural + light lubricating oils using UNIFAC. 2007, 259, 201-209	11
678	Thermodynamic study of (alkyl esters + \blacksquare lkyl dihalides) IV: HmEandVmE for 25 binary mixtures {xCullH2ullCO2CH3 + (1 lk) \blacksquare BrCH2(CH2)v \blacksquare CH2Br}, where u = 1 to 5, \blacksquare 1 and v = \blacksquare 2 to 6. 2007 , 39, 128-141	7
677	Molar excess enthalpy for various {alkanolamine (1)+water (2)} systems at T=(298.15, 313.15, and 323.15)K. 2007 , 39, 1439-1451	19
676	Measurement and correlation of vaporliquid equilibria for ethanol+ethyl laurate and ethanol+ethyl myristate systems near critical temperature of ethanol. 2008 , 264, 228-234	25
675	Isobaric vapour[Iquid equilibria of binary 1-propoxy-2-propanol mixtures with water and alcohols at reduced pressure. 2008 , 272, 84-92	28
674	Quantitative solubility relationships and the effect of water uptake in triglyceride/monoglyceride microemulsions. 2008 , 25, 1158-74	15
673	Bioethanol production optimization: a thermodynamic analysis. 2008, 148, 141-9	2
672	Computer-Aided Molecular Design of Environmentally Friendly Solvents for Separation Processes. 2008 , 31, 177-187	18
671	Phase Equilibria for Ternary Liquid Systems of (Water + Carboxylic Acid + 1-Heptanol) at 293.15 K: Modelling Considerations. 2008 , 83, 962-969	2
670	The Effect of Additives and Impurities on the Partition of Ethanol into n-Decanol from Aqueous Solutions. 2008 , 8, 551-569	2
669	Thermodynamics of Aqueous Systems. 141-191	1
668	Study of surface tension and surface properties of binary alcohol/n-alkyl acetate mixtures. 2008 , 328, 385-90	39
667	Excess properties and vapour pressure of (3-diethylaminopropylamine+n-alkanes). 2008, 40, 777-781	7
666	Solvation model for estimating the properties of (vapour+liquid) equilibrium. 2008, 40, 1295-1304	12
665	Thermodynamics of organic mixtures containing amines. VIII. Systems with quinoline. 2008 , 40, 1261-1268	10
664	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling. 2008 , 40, 1253-1260	6
663	Thermodynamics of (1-alkanol + linear monoether) systems. 2008 , 40, 1495-1508	51

662	Thermodynamics of mixtures containing polycyclic aromatic hydrocarbons. 2008 , 143, 134-140	16
661	Overall control strategy of a coupled reactor/columns process for the production of ethyl acrylate. 2008 , 18, 215-231	10
660	Limiting activity coefficients in binary mixtures of 1-alkanols and ethylbenzene. 2008, 263, 64-70	5
659	Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model. 2008 , 264, 235-241	43
658	Isothermal vapor Ilquid equilibria for different binary mixtures involved in the alcoholic distillation. 2008 , 267, 158-162	15
657	Improper matching of solvation energy components in Gex-based mixing rules. 2008, 269, 139-142	10
656	Study of the effect of increasing the chain length of the alkane in excess molar enthalpies of mixtures containing methyl tert-butyl ether, 1-propanol, alkane. 2008 , 271, 6-12	8
655	New approach for the prediction of vaporliquid equilibria in asymmetric systems using GEBOS mixing rules. 2008 , 271, 38-42	3
654	Vapourliquid equilibria of the system 1,1,1,2-tetrafluoroethane+monoethylene-glycol dimethylether from 283.15 to 353.15K: New modified UNIFAC parameters. 2008 , 271, 28-33	11
653	Applying UNIFAC-based models to predict the solubility of solids in subcritical water. 2008 , 46, 245-251	22
653 652	Applying UNIFAC-based models to predict the solubility of solids in subcritical water. 2008, 46, 245-251 Prediction of vaporllquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008, 46, 4-9	18
	Prediction of vapor[]quid equilibria for supercritical alcohol+fatty acid ester systems by SRK	
652	Prediction of vaporllquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008 , 46, 4-9 Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or	18
652 651	Prediction of vaporliquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008 , 46, 4-9 Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or trimethylpyridines. 2008 , 467, 30-43 Heterogeneous extractive batch distillation of chloroformshethanolwater: Feasibility and	18
652 651 650	Prediction of vaporliquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008, 46, 4-9 Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or trimethylpyridines. 2008, 467, 30-43 Heterogeneous extractive batch distillation of chloroformlihethanollwater: Feasibility and experiments. 2008, 63, 78-94 Measurement and prediction of pyrene solubility in pure, binary, ternary and quaternary solvent	18 14 26
652 651 650	Prediction of vaporliquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008, 46, 4-9 Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or trimethylpyridines. 2008, 467, 30-43 Heterogeneous extractive batch distillation of chloroforminethanolwater: Feasibility and experiments. 2008, 63, 78-94 Measurement and prediction of pyrene solubility in pure, binary, ternary and quaternary solvent systems. 2008, 264, 29-44 Vapourliquid equilibria of aroma compounds in hydroalcoholic solutions: Measurements with a	18 14 26
652 651 650 649	Prediction of vaporflquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with WongBandler mixing rule based on COSMO theory. 2008, 46, 4-9 Thermodynamics of mixtures containing amines: VII. Systems containing dimethyl or trimethylpyridines. 2008, 467, 30-43 Heterogeneous extractive batch distillation of chloroformfhethanol@ater: Feasibility and experiments. 2008, 63, 78-94 Measurement and prediction of pyrene solubility in pure, binary, ternary and quaternary solvent systems. 2008, 264, 29-44 Vapourflquid equilibria of aroma compounds in hydroalcoholic solutions: Measurements with a recirculation method and modelling with the NRTL and COSMO-SAC approaches. 2008, 265, 139-154 Vapour pressure and excess Gibbs energy of binary 1,2-dichloroethane + cyclohexanone, chloroform + cyclopentanone and chloroform + cyclohexanone mixtures at temperatures from	18 14 26 7 29

644	What determines drug solubility in lipid vehicles: is it predictable?. 2008, 60, 638-56		122
643	Vapor-Liquid Equilibrium of Copolymer+Solvent Systems: Experimental Data and Thermodynamic Modeling with New UNIFAC Groups. 2008 , 16, 605-611		4
642	Vaporlliquid Equilibrium for Butane + Methanol, + Ethanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-Propanol (TBA) at 323 K. 2008 , 53, 83-88		13
641	Liquid Liquid Equilibria of the Methyl Oleate Lilycerol Hexane Methanol System. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 443-450	3.9	13
640	Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. 2008 , 108, 1419-55		122
639	Model-Based Calculation of Solid Solubility for Solvent Selection? A Review. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 5234-5242	3.9	65
638	Synthesis of ethyl tert-butyl ether with tert-butyl alcohol and ethanol on various ion exchange resin catalysts. 2008 , 9, 721-727		27
637	Extraction of alcohols from water with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. 2008 , 10, 1301		106
636	Measurements and Correlation of Liquid[liquid Equilibria of (Water + Ethanol + Dimethyl Carbonate + 2,2,4-Trimethylpentane or n-Heptane) and (Water + Dimethyl Carbonate + n-Heptane + Toluene). 2008 , 53, 830-837		18
635	Liquid∏iquid Extraction. 2008 ,		9
635 634	Liquid Liquid Liquid Extraction. 2008, Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008, 53, 973-977		9
	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with		
634	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008 , 53, 973-977 Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system.		12
634	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008, 53, 973-977 Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system. 2008, 112, 11361-73 Liquid Diquid Equilibria of Mixtures Containing Methyl Acetate + Methanol + Hexane or Heptane.		12 38
634 633 632	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008, 53, 973-977 Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system. 2008, 112, 11361-73 LiquidIliquid Equilibria of Mixtures Containing Methyl Acetate + Methanol + Hexane or Heptane. 2008, 53, 89-93		12 38 4
634633632631	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008, 53, 973-977 Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system. 2008, 112, 11361-73 Liquidliquid Equilibria of Mixtures Containing Methyl Acetate + Methanol + Hexane or Heptane. 2008, 53, 89-93 Estimation of Physical Properties. 2008,		12 38 4 3
634633632631630	Phase Equilibrium of Biodiesel Compounds for the Triolein + Palmitic Acid + Methanol System with Dimethyl Ether as Cosolvent. 2008, 53, 973-977 Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system. 2008, 112, 11361-73 LiquidIliquid Equilibria of Mixtures Containing Methyl Acetate + Methanol + Hexane or Heptane. 2008, 53, 89-93 Estimation of Physical Properties. 2008, Structure-composition relationships in ternary solvents containing methylbenzoate. 2008, 112, 3420-31 Isobaric VaporIliquid Equilibria for Binary Systems of Acetone + Isopropenyl Acetate, 2-Butanone +	3.9	12 38 4 3

(2009-2008)

626	Vapor pressure, density, viscosity and refractive index of dimethyl sulfoxide + 1,4-dimethylbenzene system. 2008 , 73, 73-85	24
625	Experimental results of and for binary mixtures (propylbenzene + an alkane or + an alkyl ethanoate). 2008 , 46, 408-416	10
624	Fundamentals of Biocatalysis in Neat Organic Solvents. 1-24	3
623	. 2008,	15
622	. 2008,	60
621	Thermodynamic properties of (ethylbenzene + an alkane or + an alkyl ethanoate): experimental H m E and V m E values. 2009 , 47, 322-334	
620	Factual data banks and their application to the synthesis and design of chemical processes and the development and testing of thermophysical property estimation methods. 2009 , 81, 1745-1768	15
619	Analysis of a concept for predicting missing group interaction parameters of the UNIFAC model using connectivity indices. 2009 , 55, 1614-1625	6
618	Group contribution prediction of surface charge density distribution of molecules for COSMO-SAC. 2009 , 55, 3298-3300	15
617	Buffer interactions: Densities and solubilities of some selected biological buffers in water and in aqueous 1,4-dioxane solutions. 2009 , 46, 334-344	21
616	Bilevel optimization formulation for parameter estimation in liquid I quid phase equilibrium problems. 2009 , 64, 548-559	49
615	Phase equilibria on four binary systems containing 3-methylthiophene. 2009 , 279, 81-86	20
614	Application of stochastic algorithms for parameter estimation in the liquid I quid phase equilibrium modeling. 2009 , 280, 110-119	59
613	Partitioning of Carboxylic Acid between Oil and Water Phases. Experimental, Correlation, and Prediction. 2009 , 86, 513-519	5
612	Measurement and prediction of activity coefficients at infinite dilution (肌 vapor印quid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund). 2009 , 277, 61-67	78
611	Influence of ionic liquids on the separation factor of three standard separation problems. 2009 , 280, 56-60	53
610	Liquid[Iquid equilibrium calculations for methanolgasoline blends using continuous thermodynamics. 2009 , 284, 1-9	6
609	Application of UNIFAC models for prediction of vaporliquid and liquidliquid equilibria relevant to separation and purification processes of crude biodiesel fuel. 2009 , 88, 1472-1477	68

608	Thermodynamic study of (alkyl esters + ⊞alkyl dihalides) VII. HmE and VmE for 20 binary mixtures {xCuIIH2uIICO2C3H7 + (1 Ix)⊞ClCH2(CH2)vIICH2Cl}, where u = 1 to 4,		2	
607	Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene). 2009 , 41, 386-391		37	
606	Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture. 2009 , 41, 564-568		11	
605	Present status and potential of group contribution methods for process development. 2009 , 41, 731-74	7	71	
604	Thermodynamic study of (alkyl esters+⊞alkyl dihalides) VI. and for 20 binary mixtures {xCuŪH2uŪCO2(CH2)3CH3+(1☑)⊞BrCH2(CH2)vŪCH2Br}, where u=1 to 5, ⅓1, and v=⅓2 to 6. 2009 , 41, 1222-1231		3	
603	Bilevel optimization formulation for parameter estimation in vaporliquid(liquid) phase equilibrium problems. 2009 , 64, 1768-1783		40	
602	Kinetic studies of liquid phase ethyl tert-butyl ether (ETBE) synthesis using macroporous and gelular ion exchange resin catalysts. 2009 , 64, 4424-4432		37	
601	Solubility of pyrene in simple and mixed solvent systems. 2009 , 281, 133-143		6	
600	About Phase equilibria on four binary systems containing 3-methylthiophenelby E. Sapei, et al. [Fluid Phase Equilib. 279 (2009) 81B6]. 2009 , 286, 111-112			
599	Excess Molar Enthalpies of Ternary and Binary Mixtures Containing 2-Methoxy-2-methylpropane, 1-Propanol, and Nonane 2009, 54, 1692-1697		6	
598	Excess Enthalpy, Density, and Speed of Sound for the Ternary Mixture Methyl tert-Butyl Ether (1) + Butan-1-ol (2) + Octane (3) (2009, 54, 453-458)		7	
597	Isobaric Vapor[liquid Equilibria for the Binary Systems Benzene + Methyl Ethanoate, Benzene + Butyl Ethanoate, and Benzene + Methyl Heptanoate at 101.31 kPa[] 2009 , 54, 1575-1579		14	
596	Thermodynamic modeling of the duality of linear 1-alcohols as cosurfactants and cosolvents in self-assembly of surfactant molecules. 2009 , 25, 12101-13		42	
595	UNIFAC Model for Ionic Liquids. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2697-2704	3.9	210	
594	Application of COSMO-RS Type Models to the Prediction of Excess Enthalpies. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 8710-8725	3.9	6	
593	Kinetic Study of Dowex 50 Wx8-Catalyzed Esterification and Hydrolysis of Benzyl Acetate. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2519-2532	3.9	32	
592	Application of the Flory Theory and of the Kirkwod B uff Formalism to the Study of Orientational Effects in 1-Alkanol + Linear or Cyclic Monoether Mixtures. <i>Industrial & Discrete Mixtures Research</i> , 2009 , 48, 7417-7429	3.9	18	
591	Surface Tension and Surface Properties of Binary Mixtures of 1,4-Dioxane or N,N-Dimethyl Formamide with n-Alkyl Acetates. 2009 , 54, 3224-3228		26	

(2010-2010)

590	Excess molar enthalpies of diethyl malonate+ (1-butanol, 2-methyl-1-propanol, 1-pentanol, n-heptane, and ethyl acetate) at T= (288.2, 298.2, 313.2, 328.2, 338.2, and 348.2K) and p=101.3kPa. 2010 , 291, 8-12	14
589	QSPR analysis of infinite dilution activity coefficients of chlorinated organic compounds in water. 2010 , 291, 111-116	23
588	Measurements of different thermodynamic properties of systems containing ionic liquids and correlation of these properties using modified UNIFAC (Dortmund). 2010 , 294, 206-212	42
587	Liquid[]quid equilibria for mixtures containing water, methanol, fatty acid methyl esters, and glycerol. 2010 , 299, 180-190	40
586	Thermophysical properties of the binary mixtures (1,8-cineole $+$ 1-alkanol) at T = (298.15 and 313.15) K and at atmospheric pressure. 2010 , 42, 291-303	36
585	(Vapour+liquid) equilibria of ternary systems with ionic liquids using headspace gas chromatography. 2010 , 42, 1036-1038	44
584	Cloud point measurements of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with alcohols. 2010 , 42, 1478-1484	4
583	Vapour-Liquid Equilibrium with a New Ebulliometer: Ester + Alcohol System at 0.5 MPa. 2010 , 18, 1000-1007	16
582	A Dynamic Modeling For Cyclic Total Reflux Batch Distillation. 2010 , 18, 554-561	7
581	Anhydrous ethanol production by extractive distillation: A solvent case study. 2010 , 88, 67-73	79
580	Molar excess enthalpies at T=298.15K for (1-alkanol+dibutylether) systems. 2010 , 42, 17-22	14
579	Measurement and prediction of (solid + liquid) equilibria of gun powder® and propellant® stabilizers mixtures. 2010 , 42, 1050-1055	17
578	(Ternary liquid+liquid) equilibria for (water+acetone+⊕inene, or ⊕inene, or limonene) mixtures. 2010 , 42, 1400-1405	8
577	Measurement and prediction of solubilities of active pharmaceutical ingredients. 2010 , 388, 73-81	77
576	Phase equilibria for reactive distillation of diethyl succinate. 2010 , 290, 63-67	11
575	Isothermal vapourllquid equilibria for 1,2-dichloroethane + nitromethane and + nitroethane binary systems at temperatures between 333.15 and 353.15 K. 2010 , 292, 58-63	11
574	The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. 2010 , 55, 37-42	21
573	Prediction of liquid Iquid equilibrium from the Peng Robinson+COSMOSAC equation of state. 2010 , 65, 1955-1963	32

572	Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. 2010 , 34, 1406-1412		81
571	Measurement and correlation of the saturation concentrations for single and mixed aqueous electrolyte solutions at various temperatures. 2010 , 258, 187-193		4
570	Phase equilibria of binary systems of 3-methylthiophene with four different hydrocarbons. 2010 , 288, 155-160		10
569	Excess properties and isobaric vapor I quid equilibria for four binary systems of alkyl (methyl to butyl) methanoates with decane. 2010 , 291, 18-31		11
568	Improvements of COSMO-SAC for vaporliquid and liquidliquid equilibrium predictions. 2010 , 297, 90-97		191
567	VLE Data of Methyl Acetate + Methanol at 1.0, 3.0 and 7.0 Bar with a New Ebulliometer. 2010 , 43, 650-656		18
566	Chapter 4:Heat Capacities and Related Properties of Liquid Mixtures. 2010 , 54-85		6
565	Vaporlliquid Equilibria for Ethyl Acetate + Methanol at (0.1, 0.5, and 0.7) MPa. Measurements with a New Ebulliometer. 2010 , 55, 5701-5706		20
564	Integrated Process Modeling and Product Design of Biodiesel Manufacturing. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 1197-1213)	69
563	Group-Contribution Method for the Molecular Parameters of the PC-SAFT Equation of State Taking into Account the Proximity Effect. Application to Nonassociated Compounds. <i>Industrial & amp;</i> 3.9 Engineering Chemistry Research, 2010 , 49, 9394-9406)	35
562	Isobaric VaporDiquid Equilibria at 101.32 kPa and Densities, Speeds of Sound, and Refractive Indices at 298.15 K for MTBE or DIPE or TAME + 1-Propanol Binary Systems. 2010 , 55, 92-97		19
561	Measurements of the Excess Properties and Vaporliquid Equilibria at 101.32 kPa for Mixtures of Ethyl Ethanoate + Alkanes (from C5to C10) 2010 , 55, 5519-5533		30
560	Equilibrium Phase Behavior of Triblock Copolymer + Sodium or + Potassium Hydroxides + Water Two-Phase Systems at Different Temperatures. 2010 , 55, 3847-3852		17
559	Surface Tensions of the Ternary Mixtures Containing an Isomeric Butanol +n-Hexane + 1-Chlorobutane at 298.15 K. 2010 , 55, 3532-3537		8
558	Enzymatic Production of Decyl Acetate: Kinetic Study in n-Hexane and Comparison with Supercritical CO2. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7168-7175)	5
557	Solubility and Micronization of Griseofulvin in Subcritical Water. <i>Industrial & amp; Engineering Ghemistry Research</i> , 2010 , 49, 3403-3410)	37
556	COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. 2010 , 1, 101-22		339
555	Chemical Equilibrium Conversion of the tert-Amyl-methyl-ether Synthesis in the Presence of n-Pentane, Tetrahydrofuran, or Benzene. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 441 ²⁻²	419) ²

(2011-2010)

554	Prediction of Infinite-Dilution Activity Coefficients Using UNIFAC and COSMO-SAC Variants. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 7488-7496	3.9	57	
553	Solubility, Solubility Modeling, and Precipitation of Naproxen from Subcritical Water Solutions. <i>Industrial & Samp; Engineering Chemistry Research</i> , 2010 , 49, 9385-9393	3.9	21	
552	Application of Infinite Dilution Activity Coefficients for Determining Binary Equation of State Parameters. <i>Industrial & Dilution Chemistry Research</i> , 2010 , 49, 7646-7653	3.9	15	
551	Thermodynamic Analysis of Systems Formed by Alkyl Esters with #Alkyl Dibromides: New Experimental Information and the Use of a Dense Database to Describe Their Behavior Using the UNIFAC Group Contribution Method and the COSMO-RS Methodology. <i>Industrial & Description</i> 1.	3.9	5	
550	Simultaneous Prediction of Densities and Vaporlliquid Equilibria of Mixtures Containing an Isomeric Chlorobutane and Methyl tert-Butyl Ether Using the VTPR Model. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 14193-14202	3.9	4	
549	Phase Equilibria for Reactive Distillation of Propyl Propanoate. Pure Component Property Data, Vapor Liquid Equilibria, and Liquid Liquid Equilibria. 2011 , 56, 2322-2328		9	
548	Measurements, Correlations, and Mod. UNIFAC (Do) Prediction of (SolidLiquid) Phase Equilibria Diagrams in Binary Systems (Aliphatic Ketone + an Alcohol). 2011 , 56, 881-888		7	
547	Thermodynamics of Mixtures Containing Amines. X. Systems with Cyclic Amines or Morpholine. <i>Industrial & Company: Engineering Chemistry Research</i> , 2011 , 50, 9810-9820	3.9	20	
546	Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations. 2011 , 115, 8763-74		31	
545	Computer Simulation of Fatty Acid Esterification in Reactive Distillation Columns. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 10176-10184	3.9	24	
544	Isothermal Vaporliquid Equilibria for Nitromethane and Nitroethane + 1,3-Dichloropropane Binary Systems at Temperatures between (343.15 and 363.15) K. 2011 , 56, 4665-4671		9	
543	Ebulliometric Determination and Prediction of Vaporliquid Equilibria for Binary Mixtures of Ethanol and Ethyl Hexanoate. 2011 , 56, 5045-5051		16	
542	Liquid Liquid Phase Transition of Mixtures Comprising Squalene, Olive Oil, and Ethyl Lactate: Application to Recover Squalene from Oil Deodorizer Distillates. 2011 , 56, 2148-2152		29	
541	New Group-Interaction Parameters of the UNIFAC Model: Aromatic Carboxyl Binaries. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 4099-4105	3.9	6	
540	Excess Properties and Vapor Pressure of 2-Diethylaminoethylamine + n-Heptane. 2011 , 56, 4972-4977		5	
539	Solvent Effects on Hydration of Cyclohexene over H-ZSM-5 Catalyst. 2011 , 56, 4310-4316		15	
538	First-Principles Prediction of Vaporliquidliquid Equilibrium from the PR+COSMOSAC Equation of State. <i>Industrial & Discourse in Chemistry Research</i> , 2011 , 50, 1496-1503	3.9	14	
537	Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. 2011 , 49, 52-71		25	

536 Complex Fluid Phase Equilibrium Modeling and Calculations. **2011**,

535	Temperature-induced volatility of molecular markers in ambient airborne particulate matter. 2011 , 11, 67-76	16
534	Vapor Pressure and VLE Data Measurements on Ethyl Acetate/Ethanol Binary System at 0.1, 0.5, and 0.7 MPa. 2011 , 44, 155-163	26
533	Determination of ASOG Parameters-Extension and Revision. 2011 , 44, 304-306	6
532	Group Contribution Methodologies for the Prediction of Thermodynamic Properties and Phase Behavior in Mixtures. 2011 , 135-172	3
531	Application of the Kirkwood B uff formalism to CH3(CH2)n 1 OH+polyether mixtures for n=1, 2, 3. 2011 , 525, 103-113	6
530	Isobaric (vapour+liquid) equilibria for sulfolane with toluene, ethylbenzene, and isopropylbenzene at 101.33kPa. 2011 , 43, 1865-1869	7
529	Isothermal vapour[Iquid equilibria and excess enthalpies for the binary mixtures containing an isomeric chlorobutane and diisopropyl ether. 2011 , 308, 8-14	6
528	Prediction of miscibility gaps in water/ether mixtures using COSMO-SAC model. 2011 , 310, 19-24	22
527	Phase equilibria in binary mixtures with monoethyl succinate. 2011 , 309, 121-127	7
526	A new method for evaluation of UNIFAC interaction parameters. 2011 , 309, 68-75	25
525	Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation. 2011 , 310, 166-181	37
524	SolidDquid equilibrium data for the binary system methacrylic acid+methanol in the high methacrylic acid concentration range. 2011 , 312, 14-19	4
523	Finding a suitable thermodynamic model and phase equilibria for hydrodeoxygenation reactions of methyl heptanoate. 2011 , 90, 3315-3322	12
522	Reaction kinetics and mechanism for hydration of cyclohexene over ion-exchange resin and H-ZSM-5. 2011 , 175, 423-432	11
521	Predicting Infinite Dilution Activity Coefficients of Chlorinated Organic Compounds in Aqueous Solution Based on Three-Dimensional WHIM and GETAWAY Descriptors. 2011 , 40, 118-130	5
520	The universal group contribution equation of state VTPR present status and potential for process development. 2011 , 302, 213-219	21
519	Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: Typical results and present status of the modified UNIFAC matrix for ionic liquids. 2011 , 302, 220-225	61

518	Analysis and application of GCPlus models for property prediction of organic chemical systems. 2011 , 302, 274-283	8
517	Thermodynamics of mixtures containing oxaalkanes. 5. Ether+benzene, or +toluene systems. 2011 , 301, 145-155	18
516	A modification of Wong-Sandler mixing rule for the prediction of vapor-liquid equilibria in binary asymmetric systems. 2011 , 28, 1613-1618	
515	Vapour liquid equilibria of carbon dioxide in dilute and concentrated aqueous solutions of piperazine at low to high pressure. 2011 , 300, 145-154	58
514	The solid Dquid phase diagrams of binary mixtures of even saturated fatty alcohols. 2011, 303, 191.e1-191.e8	19
513	Simultaneous prediction of vapourliquid and liquidliquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-胸roup contribution approach. 2011 , 306, 82-96	49
512	LiquidIquid equilibrium of aqueous two-phase systems composed of poly(ethylene oxide) 1500 and different electrolytes ((NH4)2SO4, ZnSO4 and K2HPO4): Experimental and correlation. 2011 , 305, 19-24	40
511	JouleThomson coefficients and JouleThomson inversion curves for pure compounds and binary systems predicted with the group contribution equation of state VTPR. 2011 , 306, 181-189	16
510	A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. 2011 , 172, 1-17	225
509	Experimental study and modelling of saturation molality of NaCl in quaternary aqueous electrolyte solutions at various temperatures. 2011 , 267, 228-232	1
508	Prediction of miscible mixtures flash-point from UNIFAC group contribution methods. 2011 , 300, 70-82	57
507	Calculation of permeabilities and numerical simulation of separations for volatile organic compound vapor through triethylene glycol derivative liquid membranes. 2011 , 369, 448-454	2
506	Solubility of fragrance raw materials in water: Experimental study, correlations, and Mod. UNIFAC (Do) predictions. 2011 , 43, 28-33	2
505	Studies on the Extraction of Phenol from the Wastewater of Multi-generation System. 2011 ,	1
504	Molecular Design of Solvents for Extractive Distillation. 2011, 233-235, 2938-2944	
503	Viscometric and volumetric properties of benzene + methyl acetate, or + methyl propanoate, or + methyl butanoate binary systems at 283.15, 298.15 and 313.15 K. 2011 , 49, 720-728	17
502	Flash-Point Prediction of Binary Partially Miscible Aqueous-Organic Mixtures from UNIFAC Group Contribution Methods. 2012 , 560-561, 1178-1183	4
501	Experimental determination and prediction of (solid+liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids. 2012 , 110, 1383-1389	15

500	Experimental and Theoretical Study of Chemical Equilibria in the Reactive Systems of Acetals Synthesis. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12723-12729	3.9	6
499	Vapor l iquid Equilibria Measurements of Bitter Orange Aroma Compounds Highly Diluted in Boiling Hydro-Alcoholic Solutions at 101.3 kPa. 2012 , 57, 3344-3356		10
498	Application of the Conduct-like Screening Models for Real Solvent and Segment Activity Coefficient for the Predictions of Partition Coefficients and Vaporliquid and Liquidliquid Equilibria of Bio-oil-Related Mixtures. 2012 , 26, 3756-3768		9
497	Molecular simulations of primary alkanolamines using an extendable force field. 2012 , 13, 3866-74		17
496	A self-consistent Gibbs excess mixing rule for cubic equations of state. 2012 , 334, 76-88		16
495	Study of Minimum Flash-point Behavior for Ternary Mixtures of Flammable Solvents. 2012 , 45, 507-511		4
494	Reply to Comments on Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium Industrial & Comparison Comparison Research, 2012, 51, 13541-13543	3.9	2
493	Measurements and Correlations of the Isobaric Vaporliquid Equilibria of Binary Mixtures and Excess Properties for Mixtures Containing an Alkyl (Methyl, Ethyl) Butanoate with an Alkane (Heptane, Nonane) at 101.3 kPa. 2012 , 57, 3210-3224		22
492	Vaporliquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol. 2012 , 57, 3092-3101		14
491	Product Separation after Chemical Interesterification of Vegetable Oils with Methyl Acetate. Part I: Vapor Liquid Equilibrium. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 8087-8094	3.9	8
490	Product Separation after Chemical Interesterification of Vegetable Oils with Methyl Acetate. Part II: Liquid Liquid Equilibrium. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10201-10206	3.9	9
489	Adsorption of Volatile Organic Compounds. Experimental and Theoretical Study. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16697-16708	3.9	17
488	Computer Aided Solvent Scanning for the Separation of 2-Methoxynaphthene and 2-Acetyl-6-methoxynaphthalene. 2012 , 57, 200-203		3
487	Correlation and prediction of mixing thermodynamic properties of ester-containing systems: Ester+alkane and ester+ester binary systems and the ternary dodecane+ethyl pentanoate+ethyl ethanoate. 2012 , 54, 41-48		5
486	Phase equilibria of ternary systems (water+pyruvic acid+high boiling alcohol). Thermodynamic modeling and optimization of extraction. 2012 , 55, 92-101		6
485	Isobaric VLE at 0.6MPa for binary systems Isobutyl Acetate+Ethanol, +1-Propanol or +2-Propanol. 2012 , 331, 12-17		19
484	Comparison of the a Priori COSMO-RS Models and Group Contribution Methods: Original UNIFAC, Modified UNIFAC(Do), and Modified UNIFAC(Do) Consortium. <i>Industrial & Description Chemistry Research</i> , 2012 , 51, 11809-11817	3.9	31
483	F Technische Thermodynamik. 2012 , 925-1021		O

(2012-2012)

482	Vapor-Liquid Equilibrium of Ethyl Acetate + CnH2n+1OH (n= 1,2,3) Binary Systems at 0.3 MPa. 2012 , 20, 723-730	9
481	Liquid[Liquid Phase Behaviors of Geraniol in Aqueous Alcohol Mixtures. 2012 , 57, 148-154	11
480	Perturbed-chain SAFT as a versatile tool for thermodynamic modeling of binary mixtures containing isoquinolinium ionic liquids. 2012 , 116, 8191-200	31
479	Methodologies for Fuel Cell Process Engineering. 2012, 597-644	4
478	Bibliometric Analysis of Thermodynamic Research: A Science Citation Index Expanded-Based Analysis. 2012 ,	5
477	Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. 2012 , 116, 5002-18	88
476	Thermophobicity of liquids: heats of transport in mixtures as pure component properties. 2012 , 109, 065901	39
475	Prediction of vaporliquid equilibria of alcohol+hydrocarbon systems by 1H NMR spectroscopy. 2012 , 74, 211-218	11
474	Introduction of the amine group at cycloaliphatic hydrocarbon (c-CHNH2) for the modified UNIFAC (Dortmund) model and validation in multicomponent systems containing cyclohexylamine. 2012 , 314, 169-179	8
473	Predictions of high pressure phase equilibria of CO2-containing mixtures with the NRCOSMO model. 2012 , 313, 203-210	1
472	Isobaric vaporliquid equilibrium for four binary systems of thiophene. 2012 , 315, 84-90	9
47 ¹	Isobaric vaporllquid equilibrium for four binary systems of 3-methylthiophene. 2012 , 320, 26-31	13
470	Thermodynamic prediction of vaporllquid equilibrium of supercritical CO2 or CHF3+ionic liquids. 2012 , 66, 29-35	17
469	Ebulliometric determination and prediction of (vapor + liquid) equilibria for binary and ternary mixtures containing alcohols (C1tt4) and dimethyl carbonate. 2012 , 44, 84-96	3
468	(Liquid+liquid) equilibrium for binary systems of N-formylmorpholine with alkanes. 2012 , 47, 228-233	10
467	Solubility of high-value compounds in ethyl lactate: Measurements and modeling. 2012 , 48, 93-100	42
466	Experimental and predicted properties of the binary mixtures containing an isomeric chlorobutane and butyl ethyl ether. 2012 , 51, 150-158	6
465	Partial solvation parameters and LSER molecular descriptors. 2012 , 51, 172-189	25

464	Isobaric (vapour+liquid) equilibria for N-formylmorpholine with ethylbenzene, n-butylbenzene, iso-propylbenzene and 1,2,4-trimethylbenzene at 101.33kPa. 2012 , 53, 9-15	5
463	Ternary (liquid + liquid) equilibria for 毗itronellol in aqueous alcohol at different temperatures. 2012 , 53, 16-22	11
462	Experimental and theoretical excess molar enthalpies of ternary and binary mixtures containing 2-Methoxy-2-Methylpropane, 1-propanol, heptane. 2013 , 66, 95-101	4
461	Vaporliquid equilibrium of isoamyl alcohol + isoamyl propionate and propionic acid + isoamyl propionate systems at 50.00, 101.33 and 150.00 kPa. 2013 , 356, 56-62	10
460	Isothermal Vaporliquid Equilibria of n-Tetradecane + Ethyl Hexanoate, Ethyl Decanoate, and Ethyl Tetradecanoate. 2013 , 58, 492-498	17
459	Solubilities of p-coumaric and caffeic acid in ionic liquids and organic solvents. 2013 , 62, 69-78	27
458	Multiproperty Correlation of Experimental Data of the Binaries Propyl Ethanoate + Alkanes (Pentane to Decane). New Experimental Information for Vaporliquid Equilibrium and Mixing Properties. 2013 , 58, 686-706	12
457	Prediction of surface tension and surface properties of organic binary mixtures. 2013 , 183, 64-71	5
456	Liquid II quid equilibrium of fatty systems: A new approach for adjusting UNIFAC interaction parameters. 2013 , 360, 379-391	26
455	Excess molar enthalpies of $\{\text{diethyl oxalate+(methanol, +ethanol, +1-propanol, and +2-propanol)}\}\ $ at T=(288.2, 298.2, 313.2, and 328.2)K and p=101.3kPa. 2013 , 64, 167-171	4
454	Solubility of some phenolic acids contained in citrus seeds in supercritical carbon dioxide: Comparison of mixing rules, influence of multicomponent mixture and model validation. 2013 , 47, 381-387	6
453	Flash points of partially miscible aqueousBrganic mixtures predicted by UNIFAC group contribution methods. 2013 , 345, 45-59	16
452	Model Comparison for the Prediction of the Solubility of Green Tea Catechins in Ethanol/Water Mixtures. <i>Industrial & Demostry Research</i> , 2013 , 52, 6039-6048	9
451	Kinetic study of methyl-butenes dimerization and trimerization in liquid-phase over a macroreticular acid resin. 2013 , 234, 266-275	14
450	Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures. 2013 , 42, 2071-2086	22
449	Improved QSPR generalized interaction parameters for the nonrandom two-liquid activity coefficient model. 2013 , 339, 20-30	13
448	ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 9. Extensible thermodynamic constraints for pure compounds and new model developments. 2013 , 53, 3418-30	23
447	Thermodynamics of ketone+amine mixtures. Part IX. Excess molar enthalpies at 298.15K for dipropylamine, or dibutylamine+2-alkanone systems and modeling of linear or aromatic amine+2-alkanone mixtures in terms of DISQUAC and ERAS. 2013 , 343, 1-12	12

(2013-2013)

446	Experimental Determination of Densities and Isobaric Vaporliquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa. 2013 , 34, 1906-1917	2
445	Experimental Determination of Vaporliquid Equilibria. Binary Systems of Methyl Acetate, Ethyl Acetate, and Propyl Acetate with 1-Propanol at 0.6 MPa. 2013 , 58, 2861-2867	5
444	Thermodynamics of ketone+amine mixtures. Part X. Excess molar enthalpies at 298.15K for N,N,N-triethylamine+2-alkanone systems. Characterization of tertiary amine+2-alkanone, and of amino-ketone+n-alkane mixtures in terms of DISQUAC. 2013 , 356, 117-125	13
443	Thermodynamics of alkanone+aromatic hydrocarbon mixtures. 2013 , 337, 125-136	13
442	Isothermal vaporliquid equilibria and excess Gibbs free energies in some binary nitroalkane+chloroalkane mixtures at temperatures from 298.15K to 318.15K. 2013 , 338, 16-22	7
441	Vapor l Iquid equilibrium of the ethanol + 3-methyl-1-butanol system at 50.66, 101.33 and 151.99 kPa. 2013 , 338, 128-134	11
440	Experimental and VTPR-predicted volumetric properties of branched hexanes. 2013, 338, 141-147	5
439	Isothermal (vapour+liquid) equilibria for (nitromethane or nitroethane+1,4-dichlorobutane) binary systems at temperatures between (343.15 and 363.15)K. 2013 , 56, 32-37	15
438	Prediction of different thermodynamic properties for systems of alcohols and sulfate-based anion lonic Liquids using modified UNIFAC. 2013 , 338, 135-140	19
437	Optimum extraction equilibria of the systems (water+carboxylic acid+1-hexanol/Alamine): Thermodynamic modeling. 2013 , 360, 77-87	7
436	Surface study of binary mixtures containing chlorinated and oxygenated compounds. 2013, 181, 1-7	22
435	LLE for the systems ethyl palmitate (palmitic acid)(1) + ethanol(2) + glycerol (water)(3). 2013 , 354, 147-155	18
434	Liquid[liquid Equilibria for Mixtures of (Water + Pyruvic Acid + Alcohol/Alamine). Modeling and Optimization of Extraction. 2013 , 58, 528-536	14
433	Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone + methanol. 2013 , 340, 27-30	20
432	Multiproperty modeling for a set of binary systems. Evaluation of a model to correlate simultaneously several mixing properties of methyl ethanoate + alkanes and new experimental data. 2013 , 341, 105-123	12
43 ¹	Activity model and consistent thermodynamic features for acetic acidiboamyl alcoholiboamyl acetatelwater reactive system. 2013 , 345, 68-80	12
430	Phase diagram of ibuprofen with fatty acids. 2013 , 112, 317-320	15
429	Molecular structure-based methods of property prediction in application to lipids: A review and refinement. 2013 , 357, 2-18	30

428	A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects. 2013, 22, 604-620		69
427	A Review on Property Estimation Methods and Computational Schemes for Rational Solvent Design: A Focus on Pharmaceuticals. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 6869-689	39	19
426	Measurement and Modeling of Vapor Liquid Equilibria for Systems Containing Alcohols, Water, and Imidazolium-Based Phosphate Ionic Liquids. 2013 , 58, 1641-1649		10
425	Functional-Segment Activity Coefficient Model. 1. Model Formulation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 11159-11171	3.9	28
424	Study of Two Different Types of Minimum Flash-Point Behavior for Ternary Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7579-7585	3.9	20
423	Esterification of Palm Fatty Acid Distillate Using Heterogeneous Sulfonated Microcrystalline Cellulose Catalyst and Its Comparison with H2SO4 Catalyzed Reaction. <i>Industrial & District Research</i> , 2013 , 52, 7316-7326	3.9	38
422	Extension of modified UNIFAC (Dortmund) matrix to piperidinium ionic liquids. 2013 , 353, 115-120		18
421	Biodiesel Production by Esterification of Hydrolyzed Soybean Oil with Ethanol in Reactive Distillation Columns: Simulation Studies. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 9461-	² 9469	9 ²⁰
420	Excess properties and vapour pressure of 2-diethylaminoethylamine+cyclohexane. 2013 , 56, 1-5		
419	Thermodynamics of mixtures containing amines. XI. Liquid + liquid equilibria and molar excess enthalpies at 298.15 K for N-methylaniline + hydrocarbon systems. Characterization in terms of DISQUAC and ERAS models. 2013 , 56, 89-98		25
418	Computer-aided solvent screening for biocatalysis. 2013 , 85-86, 200-213		20
417	Volumetric study of the mixtures n-hexane + isomeric chlorobutane: experimental characterization and volume translated Peng-Robinson predictions. 2013 , 117, 10284-92		4
416	VaporLiquid Equilibrium for Ternary and Binary Mixtures of 2-Isopropoxypropane, 2-Propanol, and N,N-Dimethylacetamide at 101.3 kPa. 2013 , 58, 357-363		12
415	Experimental and Predicted Viscosities of Binary Mixtures Containing Chlorinated and Oxygenated Compounds. 2013 , 34, 34-46		13
414	Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters. 2013 , 112, 229-235		25
413	Extension of Thermodynamic Insights on Batch Extractive Distillation to Continuous Operation. 2. Azeotropic Mixtures with a Light Entrainer. <i>Industrial & Distributed Chemistry Research</i> , 2013 , 52, 4623-4637	3.9	39
412	Solid-liquid equilibrium of triolein with fatty alcohols. 2013 , 30, 33-43		28
411	Performance of predictive models in phase equilibria of complex associating systems: PC-SAFT and CEOS/GE. 2013 , 30, 75-82		1

(2014-2013)

410	Thermodynamic modeling of ternary liquid-liquid systems with forming immiscibility islands. 2013 , 56, 1034-1042		3
409	Assessing the reliability of predictive activity coefficient models for molecules consisting of several functional groups. 2013 , 30, 1-11		26
408	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014 , 140, 054107		174
407	SAFER SOLVENTS AND PROCESSES. 2014 , 635-785		2
406	Structures and Interactions of Ionic Liquids. 2014 ,		30
405	Generalized Interaction Parameter for the Modified Nonrandom Two-Liquid (NRTL) Activity Coefficient Model. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 20247-20257	3.9	7
404	Structures and Thermodynamic Properties of Ionic Liquids. 2014 , 107-139		8
403	Two industrial examples of coupling experiments and simulations for increasing quality and yield of distilled beverages. 2014 , 92, 343-354		9
402	Liquid II quid equilibrium for systems of glycerol and glycerol tert-butyl ethers. 2014 , 365, 50-57		11
401	Contribution to study of the thermodynamics properties of mixtures containing 2-methoxy-2-methylpropane, alkanol, alkane. 2014 , 73, 224-231		7
400	(Liquid+liquid) equilibria of the (water+carboxylic acid+dibasic esters mixture (DBE-2)) ternary systems. 2014 , 370, 19-23		6
399	Prediction and measurement of phase equilibria for the extraction of BTX from naphtha reformate using BMIMPF6 ionic liquid. 2014 , 363, 248-262		16
398	Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids. 2014 , 371, 82-92		56
397	Calorimetric study of the selected nitroalkane+chloroalkane binary systems. 2014, 116, 119-127		1
396	Isothermal vaporliquid equilibrium and excess molar enthalpies of the binary mixtures furfural+methyl isobutyl ketone, +2-butanol and +2-methyl-2-butanol. 2014 , 372, 85-99		9
395	Phase equilibrium properties of binary mixtures containing 2,5-dimethylfuran and furfuryl alcohol or methyl isobutyl ketone at several temperatures. 2014 , 70, 233-238		12
394	(Vapor-liquid) equilibria and excess Gibbs free energy functions of (ethanol+glycerol), or (water+glycerol) binary mixtures at several temperatures. 2014 , 69, 165-171		25
393	Isobaric Vapor⊡iquid Equilibrium for the Binary System (Ethane-1,2-diol + Butan-1,2-diol) at (20, 30, and 40) kPa. 2014 , 59, 825-831		18

392	Improvements in the Experimentation and the Representation of Thermodynamic Properties (iso-p VLE and yE) of Alkyl Propanoate + Alkane Binaries. 2014 , 59, 125-142		20
391	Phase equilibria and excess molar enthalpies study of the binary systems (pyrrole+hydrocarbon, or an alcohol) and modeling. 2014 , 361, 116-129		15
390	Thermophysical properties of {R-fenchone+ethanol} at several temperatures and pressures. 2014 , 69, 48-55		6
389	Experimentation and thermodynamic representations of binaries containing compounds of low boiling points: Pentane and alkyl methanoates. 2014 , 363, 167-179		10
388	Engineering Simulations. 2014 , 117-148		
387	Liquid Phase Equilibria of the Water + Acetic Acid + Dimethyl Carbonate Ternary System at Several Temperatures. 2014 , 59, 3353-3358		7
386	Selection of Solvents or Solvent Mixtures for Liquid Liquid Extraction Using Predictive Thermodynamic Models or Access to the Dortmund Data Bank. <i>Industrial & Data Bank</i> . <i>I</i>	3.9	34
385	The Crystal-T algorithm: a new approach to calculate the SLE of lipidic mixtures presenting solid solutions. 2014 , 16, 16740-54		18
384	Liquid II quid equilibria of water+acetic acid+2-ethyl hexyl acetate ternary system. 2014 , 379, 206-211		4
383	Vaporlliquid Equilibrium and Physical Properties for Distillation. 2014 , 45-95		1
382	Solubility and Solubility Modeling of Polycyclic Aromatic Hydrocarbons in Subcritical Ethanol and Water Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 10238-10248	3.9	11
381	Extractive distillation with ionic liquids: A review. 2014 , 60, 3312-3329		215
380	An Improvement to COSMO-SAC for Predicting Thermodynamic Properties. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 8265-8278	3.9	65
379	MPP-UNIFAC, a predictive activity coefficient model for polyphenols. 2014 , 384, 82-88		3
378	Isothermal Vapor[liquid Equilibrium Data for the 1,1,2,2-Tetrafluoroethene + 1,1,2,3,3,3-Hexafluoroprop-1-ene Binary System: Measurement and Modeling from (248 to 283) K.		7
	2014 , 59, 82-88		
377			1
377 376	2014, 59, 82-88 Isobaric Vapor [liquid Equilibria of Binary Systems (Propyl Acetate + 2-Methylbutan-1-ol), (Propyl	3.9	3

374	Standardized Critical Point-Based Numerical Solution of Statistical Association Fluid Theory Parameters: The Perturbed Chain-Statistical Association Fluid Theory Equation of State Revisited. 3.9 Industrial & Chemistry Research, 2014, 53, 14127-14141	70
373	Algorithmic Framework for Quality Assessment of Phase Equilibrium Data. 2014 , 59, 2283-2293	27
372	A Review of Flash Point Prediction Models for Flammable Liquid Mixtures. <i>Industrial & amp; Engineering Chemistry Research</i> , 2014 , 53, 12553-12565	46
371	Generalized Nonrandom Two-Liquid (NRTL) Interaction Model Parameters for Predicting Liquid Equilibrium Behavior. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12445-1245	14
370	Experimental Vaporliquid Equilibria Data of Methyl Acetate or Ethyl Acetate with 2-Butanol at 0.3 MPa and 0.6 MPa. Quality Assessment and Predictions. 2014 , 59, 2763-2772	2
369	VLE and LLE in ternary systems of two associating components (water, aniline, and cyclohexylamine) and a hydrocarbon (cyclohexane or methylcyclohexane). 2014 , 369, 95-108	7
368	Phase Equilibrium of Binary Mixtures of n-Hexane + Branched Chlorobutanes: Experimental Results and Group Contribution Predictions. 2014 , 59, 3017-3024	4
367	Generalized binary interaction parameters for the PengRobinson equation of state. 2014 , 383, 156-173	32
366	Liquid Phase Equilibria of Water + Formic Acid + Dimethyl Carbonate Ternary System at Several Temperatures. 2014 , 59, 2781-2787	14
365	Equilibrium of the simultaneous etherification of isobutene and isoamylenes with ethanol in liquid-phase. 2014 , 92, 644-656	8
364	Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol). 2014 , 68, 332-342	4
363	Measurements of activity coefficients at infinite dilution in vegetable oils and capric acid using the dilutor technique. 2014 , 361, 215-222	15
362	Isothermal vaporliquid equilibria of binary systems containing green solvents derived from biomass: (Furfuryl alcohol+toluene), (furfuryl alcohol+ethanol), or (furfural+toluene). 2014 , 122, 247-253	14
361	Determination and thermodynamic evaluation of isobaric VLE of methyl acetate or ethyl acetate with 2-propanol at 0.3 and 0.6MPa. 2014 , 375, 1-10	9
360	Separation of ethyl acetateBooctane mixture by heteroazeotropic batch distillation. 2014, 92, 995-1004	9
359	On the solid I quid equilibrium of binary mixtures of fatty alcohols and fatty acids. 2014 , 366, 88-98	50
358	Flash-point estimation for binary partially miscible mixtures of flammable solvents by UNIFAC group contribution methods. 2014 , 375, 275-285	20
357	ChinaB research in chemical engineering journals in Science Citation Index Expanded: a bibliometric analysis. 2014 , 98, 119-136	25

356	Group Contribution Methodologies for the Prediction of Thermodynamic Properties and Phase Behavior in Mixtures. 2014 , 135-172	1
355	Molecular thermodynamics of LNA:LNA base pairs and the hyperstabilizing effect of 5?-proximal LNA:DNA base pairs. 2015 , 61, 2711-2731	4
354	Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures. 2015 , 15, 447-493	31
353	Intrinsic Kinetics of Esterification of Fatty Acids Catalyzed by Supported Ionic Liquid Catalysts. 2015 , 38, 1416-1424	7
352	Describing the sorption characteristics of a ternary system of benzene (1) and alcohol (2) in a nonporous polymer membrane (3) by the FloryHuggins model. 2015 , 55, 1187-1195	4
351	Development of a thermodynamic model of aqueous solution suited for foods and biological media. Part B: Prediction of standard formation properties. 2015 , 93, 465-470	2
350	Numerical Investigation on the Effects of Water/Methanol Injection as Knock Suppressor to Increase the Fuel Efficiency of a Highly Downsized GDI Engine. 2015 ,	33
349	Excess molar enthalpies of R-fenchone+propan-1-ol or +propan-2-ol. Modeling with COSMO-RS and UNIFAC. 2015 , 89, 93-97	3
348	New modified UNIFAC parameters using critically evaluated phase equilibrium data. 2015 , 388, 128-141	42
347	Thermodynamics of semicontinuous n-alcohol/ultra-low sulfur diesel blends. 2015 , 401, 9-15	5
346	Liquid II quid equilibria measurements of ternary systems (acetonitrile + a carboxylic acid + dodecane) at 303.15 K. 2015 , 388, 1-5	8
345	Prediction of CO2 solubility in ionic liquids using the PSRK model. 2015 , 100, 184-193	20
344	Vaporllquid equilibrium measurements of the binary mixtures CO2 + acetone and CO2 + pentanones. 2015 , 100, 160-166	13
343	Phase equilibrium properties of binary mixtures containing 1,3-pentanediamine (or 1,5-diamino-2-methylpentane) and water at several temperatures. 2015 , 84, 81-86	6
342	Effect of water addition on the simultaneous liquid-phase etherification of isobutene and isoamylenes with ethanol over amberlyst \$\text{IB5}\$. 2015 , 256, 336-346	5
341	Phase equilibrium and excess Gibbs energy functions of acetophenone with 1,1,2-trichloroethene and cyclohexane binary mixtures by using NRTL, UNIQUAC, UNIFAC and VANLAAR models at a local atmospheric pressure of 95.3kPa. 2015 , 202, 107-114	6
340	Flash points measurements and prediction for binary miscible mixtures. 2015, 34, 56-64	16
339	Liquid[liquid Equilibrium for Cottonseed Biodiesel + Water + Alcohol (Methanol/Ethanol) Systems at (293.15 and 313.15) K: Experimental Data and Thermodynamic Modeling. 2015 , 60, 707-713	6

(2015-2015)

338	Thermodynamics of mixtures containing a very strongly polar compound. 11. 1-Alkanol+alkanenitrile systems. 2015 , 605, 121-129	4
337	Solutions of alkyl methanoates and alkanes: Simultaneous modeling of phase equilibria and mixing properties. Estimation of behavior by UNIFAC with recalculation of parameters. 2015 , 402, 38-49	8
336	Determination and prediction of solubilities of active pharmaceutical ingredients in selected organic solvents. 2015 , 406, 116-123	28
335	Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol. 2015 , 402, 18-29	17
334	Liquid II quid equilibrium of binary and ternary systems composed by palm oil or palm oil fractions with methanol/ethanol and water. 2015 , 404, 17-25	11
333	Simplified Conceptual Design Methodology for Double-Feed Extractive Distillation Processes. Industrial & Engineering Chemistry Research, 2015, 54, 5481-5493	0
332	Solubility of polycyclic aromatic hydrocarbons in sub-critical water: A predictive approach using EoS/GE models. 2015 , 399, 22-29	4
331	Phase equilibria measurements of ternary mixtures (sulfolane+a carboxylic acid+pentane) at 303.15K. 2015 , 404, 26-31	3
330	Isobaric (vapour+liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil. 2015 , 87, 141-146	10
329	Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation. 2015 , 1393, 47-56	9
328	Phase equilibrium and bioproduction of the aroma compound 2-phenylethanol in a biphasic aqueous system. 2015 , 240, 1177-1186	11
327	Measurement, correlation and prediction of isothermal vaporliquid equilibria of different systems containing vegetable oils. 2015 , 395, 15-25	10
326	Kinetics of Esterification of Acetic Acid and Ethanol with a Homogeneous Acid Catalyst. 2015 , 57, 177-196	8
325	(Liquid + liquid) equilibria for (water + 1-propanol or acetone + 駐itronellol) at different temperatures. 2015 , 86, 20-26	9
324	Excess properties from pl data for n-heptane + isomeric chlorobutane mixtures. 2015 , 614, 100-109	3
323	Group Contribution Methods for Phase Equilibrium Calculations. 2015 , 6, 267-92	29
322	Thermodynamic equilibrium for the dehydration of 1-butanol to di-n-butyl ether. 2015 , 102, 186-195	1
321	High pressure vapor l iquid equilibria of methyl acetate or ethyl acetate with 2-propanol at 1.5 MPa. Experimental data and predictions. 2015 , 102, 337-344	4

320	A crossover-UNIQUAC model for critical and noncritical LLE calculations. 2015 , 61, 3094-3103	5
319	Optimization and modeling of extraction equilibria of the type 2 ternary systems containing (water + isovaleric acid + solvent). 2015 , 91, 211-224	5
318	Isothermal and Isobaric Vaporliquid Equilibrium and Excess Molar Enthalpy of the Binary Mixtures of 2-Methoxy-2-methylpropane + 2-Methyl-2-butanol or + 2-Butanol. 2015 , 60, 2655-2664	2
317	Reaction Equilibrium for the Liquid-Phase Simultaneous Decomposition of Methyl tert-Butyl Ether and tert-Butyl Alcohol over Ion-Exchange Resin. <i>Industrial & Engineering Chemistry Research</i> , 3.9 2015 , 54, 8448-8455	
316	New Virtual Special Issue of Most-Cited Papers Posts: All-Time Greats and Contemporary Favorites. Industrial & Contemporary Favorites. 3-9	0
315	Prediction of surface tension, surface mole fraction and thickness of the surface layer in the ionic liquid binary mixtures. 2015 , 203, 52-58	17
314	Hansen solubility parameters as a useful tool in searching for solvents for soy proteins. 2015 , 5, 1890-1892	19
313	Eutectic mixtures of sugar alcohols for thermal energy storage in the 5000 °C temperature range. 2015 , 134, 215-226	90
312	Direct and Indirect Applications of Sub- and Supercritical Water in Food-Related Analysis. 2015, 269-302	
311	Isobaric (vapor+liquid) equilibrium for n-propyl acetate with 1-butanol or 2-butanol. Binary mixtures at 0.15 and 0.6MPa. 2015 , 385, 196-204	11
310	Liquid II quid equilibrium data for binary systems containing o-dichlorobenzene and nitrobenzene. 2015 , 385, 175-181	6
309	Thermodynamic Study of Molecular Interactions in Eutectic Mixtures Containing Camphene. 2016 , 129, 12928-12936	10
308	Kinetic study of 1-butanol dehydration to di-n-butyl ether over Amberlyst 70. 2016 , 62, 180-194	3
307	Phase equilibrium data for binary mixtures of carbon dioxide with {1,1,2,3,3,3-hexafluoro-1-propene or 2,2,3-trifluoro-3-(trifluoromethyl)oxirane} at temperatures between (233 and 273) K. 2016 , 425, 114-119	2
306	Thermal energy storage for low and medium temperature applications using phase change materials [A review. 2016 , 177, 227-238	570
305	Measurement and prediction of solid[Iquid phase equilibria for systems containing biphenyl in binary solution with long-chain n-alkanes. 2016 , 125, 793-801	10
304	Thermodynamics of aromatic polar compound (alkanone, alkanal or alkanoate) + hydrocarbon mixtures. 2016 , 421, 49-58	7
303	Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. 2016 , 61, 2738-2748	65

(2016-2016)

302	Modeling phase equilibria of ternary systems (water´+´formic acid´+´ester or alcohol) through UNIFAC-original, SERLAS, NRTL, NRTL-modified, and three-suffix Margules: Parameter estimation using genetic algorithm. 2016 , 429, 254-265	23
301	Review of pre-combustion capture and ionic liquid in carbon capture and storage. 2016 , 183, 1633-1663	154
300	A novel characterization of furfural-extract oil from vacuum gas oil and its application in solvent extraction process. 2016 , 152, 356-366	5
299	Application of the UNIFAC models for prediction and description of excess molar enthalpies for binary mixtures of n-propanol, acetic acid, n-propyl acetate, and water. 2016 , 427, 202-208	4
298	Liquid Liquid Equilibrium Data for the Pseudoternary Model System of Refined Sunflower Seed Oil + (n-Hexanal, or 2-Nonenal, or 2,4-Decadienal) + Anhydrous Ethanol at 298.15 K. 2016 , 61, 3069-3076	8
297	Solubility modelling for phytochemicals of Misai Kucing in different solvents. 2016 , 427, 246-258	2
296	Determination of the phase diagram and main thermophysical properties of the erythritolUrea eutectic mixture for its use as a phase change material. 2016 , 157, 894-906	15
295	Activity coefficients and excess Gibbs energy functions of acetophenone with 1,2-dichloroethane and 1,1,2,2-tetrachloroethane binary mixtures by using NRTL, UNIQUAC, UNIFAC and VAN LAAR models at a local atmospheric pressure of 95.3 kPa. 2016 , 2, 211-218	2
294	Biodiesel Production by Hydroesterification: Simulation Studies. 2016 , 327-357	
293	A Critical Evaluation on the Performance of COSMO-SAC Models for Vaporliquid and Liquidliquid Equilibrium Predictions Based on Different Quantum Chemical Calculations. <i>Industrial</i> 3.9 & *amp; Engineering Chemistry Research, 2016 , 55, 9312-9322	43
292	An experimental and numerical study of the evaporation and pyrolysis characteristics of lubricating oil droplets in the natural gas engine conditions. 2016 , 103, 646-660	14
291	Correlation of Liquidliquid Equilibria for Alkane+Methanol+Aromatics Ternary Systems by Using Modified Wilson Equation with Parameters Estimated from Pure-Component Properties. 2016 , 49, 885-893	1
290	Vapor-liquid equilibria, density and sound velocity measurements of (water or methanol or ethanol + 1,3-propanediol) binary systems at different temperatures. 2016 , 642, 111-123	10
289	Practical Applications of a Pure Prediction Method for Binary VLE to the Establishment of a High-Precision UNIFAC. 2016 , 61, 4236-4244	2
288	Separation Characteristics of a Modified Petlyuk Process for Ternary Separations. 2016 , 49, 79-83	1
287	A modified UNIFAC-ZM model and phase equilibrium prediction of silicone polymers with ABE solution. 2016 , 6, 53643-53650	
286	Phase equilibrium properties of binary mixtures containing a diesel compound (n-dodecane) + biodiesel compounds (ethyl hexanoate, ethyl decanoate and ethyl tetradecanoate). 2016 , 126, 845-854	8
285	Vaporliquid Equilibria Measurements for the Five Linear C6 Esters with n-Octane. 2016 , 61, 2353-2362	8

284	Correlation of solubility and prediction of the mixing properties of rosmarinic acid in different pure solvents and in binary solvent mixtures of ethanol + water and methanol + water from (293.2 to 318.2) K. 2016 , 216, 370-376		12
283	(Liquid + liquid) equilibria measurements for ternary systems (sulfolane + a carboxylic acid + n -heptane) at $T = 303.15$ K and at 0.1 MPa. 2016 , 96, 169-174		4
282	Design of Hybrid Fuels Using a Modeling Study of the Miscibility of Ethanol B iodiesel H ydrocarbon Systems. 2016 , 37, 1		1
281	Experimental and computational study on the compatibility of biodiesel/diesel/methanol blended fuel. 2016 , 173, 52-59		14
280	Contributions to the modeling and behavior of solutions containing ethanoates and hydrocarbons. New experimental data for binaries of butyl ester with alkanes (C5110). 2016 , 412, 79-93		7
279	Modeling study of a pervaporation membrane reactor for improving oxime hydrolysis reaction. 2016 , 497, 410-420		8
278	A Study on Alkane + Ester + Ester Systems. Physicochemical Behavior of Binaries and Ternaries of Octane or Iso-octane with Methyl Esters (Ethanoate, Butanoate, Pentanoate). 2016 , 61, 1177-1191		5
277	Diethyl carbonate: critical review of synthesis routes, catalysts used and engineering aspects. 2016 , 6, 32624-32645		66
276	SolidIquid equilibrium of binary and ternary systems formed by ethyl laurate, ethyl palmitate and n-decane: Experimental data and thermodynamic modeling. 2016 , 426, 83-94		7
275	Using MD Simulations To Calculate How Solvents Modulate Solubility. 2016 , 12, 1930-41		27
274	Flash point prediction of tailor-made green diesel blends containing B5 palm oil biodiesel and alcohol. 2016 , 175, 287-293		19
273	Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model. 2016 , 37, 1		8
272	A Comparative Study of QSPR Generalized Activity Coefficient Model Parameters for VaporLiquid Equilibrium Mixtures. <i>Industrial & Equilibrium Mixtures</i> . <i>Industrial & Industrial & Industr</i>	3.9	8
271	(Solid´+1iquid) equilibrium phase diagrams in binary mixtures containing terpenes: New experimental data and analysis of several modelling strategies with modified UNIFAC (Dortmund) and PC-SAFT equation of state. 2016 , 422, 66-77		19
270	Vapor�liquid Equilibria, Excess Enthalpy, and Density of Aqueous ₽Valerolactone Solutions 2016 , 61, 881-890		30
269	Measurement and Modeling of High Pressure Vapor l liquid Equilibrium for Methyl Acetate or Ethyl Acetate with 2-Butanol. Isobaric Data at 1.5 MPa. 2016 , 61, 1136-1145		2
268	Optimization of liquid II quid equilibria of the type 2 ternary systems (water '+ 'valeric acid '+ 'aromatic solvent): Modeling through SERLAS. 2016 , 415, 110-124		6
267	Modeling Effects of Mass Transfer Rate and Catalyst Concentration on Biodiesel Production in Batch Reactors. 2016 , 203, 1116-1124		2

266	Thermodynamic Analysis of the Experimental Equilibria for the Liquid-Phase Etherification of Isobutene with C1 to C4 Linear Primary Alcohols. 2016 , 61, 1054-1064	5
265	Computer simulation of biodiesel production by hydro-esterification. 2016 , 103, 37-45	15
264	Modelling the phase and chemical equilibria of aqueous solutions of alkanolamines and carbon dioxide using the SAFT-野W group contribution approach. 2016 , 407, 280-297	25
263	Experimental and predicted vapourliquid equilibrium of the binary mixtures n-heptane´+´chlorobutane isomers. 2016 , 409, 72-77	1
262	The development of unlike induced association-site models to study the phase behaviour of aqueous mixtures comprising acetone, alkanes and alkyl carboxylic acids with the SAFT-∰ie group contribution methodology. 2016 , 407, 39-57	24
261	Multicomponent phase behavior predictions using QSPR-generalized NRTL and UNIQUAC models. 2016 , 409, 318-326	10
260	Mathematical Modeling of Biodiesel Production under Intense Agitation. 2016, 14, 445-451	
259	Solid-liquid equilibrium of binary and ternary systems formed by ethyl laurate, ethyl palmitate and dodecylcylohexane: Experimental data and thermodynamic modeling. 2016 , 409, 157-170	8
258	Adsorption of C1II4 Alcohols, C4II5 Isoolefins, and their Corresponding Ethers over AmberlystIB5. 2017 , 40, 889-899	6
257	Vapor�iquid Equilibrium of	8
256	LiquidIliquid Equilibria for Systems Containing 4-Phenylbutan-2-one or Benzyl Ethanoate and Selected Alkanes. 2017 , 62, 988-994	7
255	Evaporation of pure and blended droplets of diesel and alcohols (C2🗓9) under diesel engine conditions. 2017 , 71, 311-326	8
254	Solid��iquid Equilibria in the Binary Systems of Saturated Fatty Acids or Triglycerides (C12 to C18) + Hexadecane. 2017 , 62, 35-43	10
253	Phase equilibrium data and modeling of ethylic biodiesel, with application to a non-edible vegetable oil. 2017 , 203, 633-641	6
252	Surface tension and density of the binary mixtures toluene + methyl propanoate, toluene + methyl pentanoate, toluene + methyl heptanoate and toluene + methyl octanoate at atmospheric pressure and 288.15, 298.15 and 308.15 K. 2017 , 9-10, 125-133	3
251	Isobaric vapor-liquid equilibrium of 2-propanone+2-butanol system at 101.325 kPa: Experimental and molecular dynamics simulation. 2017 , 34, 2011-2018	1
250	Isobaric VaporDiquid Equilibrium for the Binary Systems Dimethyl Disulfide + C1©4 n-Alkanol at 40.000 and 101.325 kPa. 2017 , 62, 2037-2043	1
249	Orientational effects in mixtures of organic carbonates with alkanes or 1-alkanols. 2017 , 449, 91-103	3

248	Dynamic and Static Extraction Efficiency. 2017,	О
247	Phase equilibrium measurements and thermodynamic modeling of binary mixtures containing a diesel compound n -dodecane + biodiesel compounds: Ethyl dodecanoate and ethyl octanoate. 2017 , 113, 107-115	
246	Phase Equilibria for Quaternary Systems of Water + Methanol or Ethanol + Ethyl Methyl Carbonate + Octane at T = 298.15 K. 2017 , 46, 1337-1348	3
245	Orientational effects in alkanone, alkanal or dialkyl carbonate + alkane mixtures and in alkanone + alkanone or + dialkyl carbonate systems. 2017 , 233, 517-527	4
244	Solubility behavior of mixtures containing refined soybean oil and low-toxic solvents at different temperatures. 2017 , 442, 87-95	8
243	Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. 2017 , 31, 4096-4121	39
242	Calculation and prediction of binary mixture flash point using correlative and predictive local composition models. 2017 , 440, 95-102	8
241	A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. 2017 , 8, 115-137	15
240	Solid-liquid equilibria of eicosane, tetracosane or biphenyl´+ 1-octadecanol, or´+ 1-eicosanol mixtures. 2017 , 442, 28-37	3
239	Dissipative particle dynamics (DPD) study of the interfacial tension for alkane/water systems by using COSMO-RS to calculate interaction parameters. 2017 , 246, 131-139	13
238	Development of alternative methanol/dimethyl carbonate separation systems by extractive distillation [A holistic approach. 2017 , 127, 189-214	16
237	Vapor-liquid equilibria of monoacylglicerol + monoacylglicerol or alcohol or fatty acid at subatmospheric pressures. 2017 , 452, 135-142	8
236	Measurements and Modeling of VLE Data for Butyl Acetate with 2-Propanol or 2-Butanol. Binary Systems at 0.15 and 0.6 MPa. 2017 , 62, 2296-2306	6
235	A rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLE. 2017 , 63, 5125-5148	12
234	Predicting Solid[liquid Equilibrium of Fatty Acid Methyl Ester and Monoglyceride Mixtures as Biodiesel Model Fuels. 2017 , 94, 1087-1094	7
233	Investigation on vapor liquid equilibrium for strongly-zeotropic ternary mixture of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) + trifluoromethane (R23) + tetrafluoromethane (R14). 2017 , 114, 1135-1145	3
232	The Effect of Monoglyceride Polymorphism on Cold-Flow Properties of Biodiesel Model Fuel. 2017 , 94, 1095-1100	5
231	Modeling the Vapor Diquid Equilibria of Ionic Liquids Containing Perfume Raw Materials. 2017 , 62, 2787-2798	4

230	Phase Diagrams in Representative Terpenoid Systems: Measurements and Calculations with Leading Thermodynamic Models. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 9753-9761 ^{3.9}	6
229	Vaporliquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N-Dimethylacetamide. 2017 , 62, 2776-2786	1
228	Molecular interactions in methanoate/alkanol solutions. Computation of mixing properties and characterization by FTIR/ATR spectroscopy. 2017 , 248, 725-737	
227	Optimization of reaction conditions and the donor substrate in the synthesis of hexyl-毗-galactoside. 2017 , 58, 128-136	10
226	Prediction of vapor-liquid equilibria for the alcohol + glycerol systems using UNIFAC and modified UNIFAC (Dortmund). 2017 ,	1
225	Retention of poly(N-isopropylacrylamide) on 3-aminopropyltriethoxysilane. 2017 , 12, 02C405	5
224	Terpenes solubility in water and their environmental distribution. 2017 , 241, 996-1002	36
223	The correlation and prediction of infinite dilution activity coefficients of compounds in water at 298.15 K. 2017 , 449, 117-129	9
222	Prediction of limiting activity coefficients for binary vapor-liquid equilibrium using neural networks. 2017 , 433, 174-183	15
221	Vaporliquid Equilibria Measurements for Di-n-Propyl Ether and Butyl Ethyl Ether with n-Heptane. 2017 , 62, 204-209	3
220	Liquid Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass. 2017 , 62, 243-252	7
219	Vaporliquid Equilibrium for Binary Mixtures of Acetates in the Direct Esterification of Fusel Oil. 2017 , 62, 11-19	9
218	Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. 2017 , 159, 106-130	17
217	Kinetic modeling of the simultaneous etherification of ethanol with C4 and C5 olefins over AmberlystIB5 using model averaging. 2017 , 307, 122-134	8
216	Equilibrium study for ternary mixtures of biodiesel. 2017 , 273, 012008	1
215	Correlation of Liquidliquid Equilibria for Quaternary Systems Containing Alkane, Methanol and Aromatics by Using Modified Wilson Equation with Parameters Estimated from Pure-Component Properties. 2017 , 50, 1-3	3
214	Experimental measurement and prediction by the UNIFAC and the DISQUAC models of the solid[]quid equilibrium diagrams of piperidine + benzene and piperidine + n-octane systems. 2018 , 132, 1183-1188	2
213	Predicting Limiting Activity Coefficients and Phase Behavior from Molecular Structure: Expanding MOSCED to Alkanediols Using Group Contribution Methods and Electronic Structure Calculations. 2018 , 63, 2586-2598	10

212	Strategy for the Management of Thermodynamic Data with Application to Practical Cases of Systems Formed by Esters and Alkanes through Experimental Information, Checking-Modeling, and Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3410-3429	3.9	6
211	Description of Adsorption in Liquid Chromatography under Nonideal Conditions. 2018 , 34, 5655-5671		4
210	Theoretical Evaluation of Two-Phase Flow in a Chromatographic Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 5639-5652	3.9	
209	Isothermal Vapor Liquid Equilibria and Excess Gibbs Energies for Binary Mixtures of Cyclic Ethers with 1,2-Dichloroethane. 2018 , 63, 1568-1577		2
208	Minimum flash point behavior of ternary solutions with three minimum flash point binary constituents. 2018 , 217, 626-632		5
207	Excess molar enthalpies of R-fenchone + butan-1-ol or + pentan-1-ol. Modeling with COSMO-RS and UNIFAC. 2018 , 120, 13-20		2
206	The design of optimal mixtures from atom groups using Generalized Disjunctive Programming. 2018 , 116, 401-421		16
205	Application of MOSCED To Predict Limiting Activity Coefficients, Hydration Free Energies, Henry Constants, Octanol/Water Partition Coefficients, and Isobaric Azeotropic Vapor Diquid Equilibrium. 2018 , 63, 352-364		16
204	Vaporliquid Equilibrium of Ethyl Lactate Highly Diluted in EthanollWater Mixtures at 101.3 kPa. Experimental Measurements and Thermodynamic Modeling Using Semiempirical Models. 2018 , 63, 365-3	379	9
203	Experimental data and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: Ethyl esters and n-hexadecane. 2018 , 220, 303-317		7
202	Measurement and Prediction of Vaporlliquid Equilibria in Ternary Systems Containing an Organic Component, Cyclohexylamine, and Cyclohexanol. 2018 , 63, 119-126		3
201	Assessment and Revision of the MOSCED Parameters for Water: Application to Limiting Activity Coefficients and Binary Liquid Liquid Equilibrium. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 1689-1695	3.9	6
200	Thermodynamics of mixtures containing a very strongly polar compound. 12. Systems with nitrobenzene or 1-nitroalkane and hydrocarbons or 1-alkanols. 2018 , 471, 24-39		6
199	Thermodynamic modeling of phase equilibria of clathrate hydrates formed from CH4, CO2, C2H6, N2 and C3H8, with different equations of state. 2018 , 117, 180-192		20
198	Thermodynamics of mixtures containing aromatic nitriles. 2018 , 116, 259-272		6
197	Vapor pressure, vapor-liquid equilibria, liquid-liquid equilibria and excess enthalpy of the system consisting of isophorone, furfural, acetic acid and water. 2018 , 176, 19-34		13
196	The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water. 2018 , 455, 1-5		4
195	Cyclic operation as optimal control reflux policy of binary mixture batch distillation. 2018, 108, 98-111		3

194	Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds from approaches based on the COSMO-SAC model. 2018 , 133, 318-329	8
193	GC-MOSCED: A group contribution method for predicting MOSCED parameters with application to limiting activity coefficients in water and octanol/water partition coefficients. 2018 , 470, 232-240	11
192	Improvement of predictive tools for vapor-liquid equilibrium based on group contribution methods applied to lipid technology. 2018 , 470, 249-258	7
191	The maximum flammable content for binary aqueousBrganic mixtures not to flash and their maximum flash points. 2018 , 64, 263-271	1
190	Low-temperature behavior of diesel/biodiesel blends. 2018 , 131, 1615-1624	8
189	Dampf-Fl\(\bar{B}\)sigkeits-Gleichgewichte von Mehrkomponenten-Gemischen. 2018 , 1-18	
188	VAPOR-LIQUID EQUILIBRIUM CALCULATION FOR SIMULATION OF BIOETHANOL CONCENTRATION FROM SUGARCANE. 2018 , 35, 341-352	2
187	Azeotropy: A Limiting Factor in Separation Operations in Chemical Engineering - Analysis, Experimental Techniques, Modeling and Simulation on Binary Solutions of Ester-Alkane. 2018 ,	
186	Modeling liquid-liquid equilibrium of quaternary systems with Integrated Quadratic Solvation Relationship (IQSR) in conjunction with the boundary constraints identified by ternary subsystems. 2018 , 478, 58-74	3
185	On the database-based strategy of candidate extractant generation for de-phenol process in coking wastewater treatment. 2018 , 26, 1570-1580	1
184	Activity of water in pyrolysis oilExperiments and modelling. 2018, 135, 260-270	10
183	Experimental study and modeling of citric acid solubility in alcohol mixtures. 2018 , 237, 96-102	11
182	Phase Equilibria for Systems Containing Refined Soybean Oil plus Cosolvents at Different Temperatures. 2018 , 63, 1937-1945	6
181	Experimental Binary VLE Data of Morpholine with 1-Butanol and 3-Methyl-1-butanol Systems. 2018 , 63, 3215-3226	1
180	Phase Equilibrium Involving Xylitol, Water, and Ethylene Glycol or 1,2-Propylene Glycol: Experimental Data, Activity Coefficient Modeling, and Prediction with Artificial Neural 3.9 Network-Molecular Descriptors. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 10675-10683	5
179	Simulation of spirits distillation for a better understanding of volatile aroma compounds behavior: Application to Armagnac production. 2018 , 112, 31-62	15
178	Measurement and Modelization of VLE for Butyl Acetate with Methanol, Ethanol, 1-Propanol, and 1-Butanol. Experimental Data at 0.15 MPa. 2018 , 63, 2228-2242	3
177	Vaporlliquid Equilibria of Binary Systems with Long-Chain Organic Compounds (Fatty Alcohol, Fatty Ester, Acylglycerol, and n-Paraffin) at Subatmospheric Pressures. 2018 , 63, 2840-2847	3

176	Solid Liquid Equilibrium of Binary Systems Containing Fatty Acids and Fatty Alcohols Using Differential Scanning Calorimetry. 2019 , 64, 5017-5027		4
175	Differential Scanning Calorimetric Study of Solidification Behavior of Monoacylglycerols to Investigate the Cold-Flow Properties of Biodiesel. 2019 , 96, 979-987		3
174	Vapor-liquid equilibrium and excess properties of the binary mixtures formed by ethyl isobutyrate and n-alkanols. 2019 , 139, 105884		О
173	Ion dissociation in aqueous 1-alkyl-3-methyl-imidazolium chlorides and the impact of microstructure formation. 2019 , 117, 3509-3517		5
172	The Parametrization Problem in the Modeling of the Thermodynamic Behavior of Solutions. An Approach Based on Information Theory Fundamentals. <i>Industrial & Description of Solutions of Solutions of Solutions and Parameters of Solutions of Solutions and Parameters of Solutions of</i>	3.9	4
171	Insights into Cage Occupancies during Gas Exchange in CH4+CO2 and CH4+N2+CO2 Mixed Hydrate Systems Relevant for Methane Gas Recovery and Carbon Dioxide Sequestration in Hydrate Reservoirs: A Thermodynamic Approach. <i>Industrial & Dioxide Sequestration Research</i> , 2019, 58, 144	3.9 62-14	²⁷ 475
170	Interactions of Oil Drops Induced by the Lateral Capillary Force and Surface Tension Gradients. 2019 , 35, 14967-14973		O
169	Further Advance to a Practical Methodology To Assess Vaporlliquid Equilibrium Data: Influence on Binaries Rectification. 2019 , 64, 3933-3944		O
168	Experimental Measurements and Thermodynamic Modeling of Melting Temperature of the Binary Systems n-C11H24B-C14H30, n-C12H26B-C13H28, n-C12H26B-C14H30, and n-C13H28B-C15H32 for Cryogenic Thermal Energy Storage. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2019 , 58, 1502	3.9 5-150 3	6 35
167	Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature. 2019 , 145, 118770		35
166	Experimental Measurements and Thermodynamic Modeling of VLE for Strong-Zeotropic Ternary System of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) + Ethane (R170) + Tetrafluoromethane (R14). <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2333-2342	3.9	О
165	Characterization of Aqueous 1-Ethyl-3-Methylimidazolium Ionic Liquids for Calculation of Ion Dissociation. 2019 , 123, 1348-1358		11
164	Experimental Data of Fluid Phase Equilibria- Correlation and Prediction Models: A Review. 2019 , 7, 277		12
163	Hybrid QSPR models for the prediction of the free energy of solvation of organic solute/solvent pairs. 2019 , 21, 13706-13720		19
162	Investigation of surface tension and surface properties of alkanolamine \exists lcohol mixtures at T = 313.15 K and P = 90.6 kPa. 2019 , 287, 110924		11
161	Selecting Excipients Forming Therapeutic Deep Eutectic Systems-A Mechanistic Approach. 2019 , 16, 3091-3099		14
160	Liquid II quid equilibria of systems containing linseed oil biodiesel + methanol + glycerol: Experimental data and thermodynamic modeling. 2019 , 253, 460-473		9
159	Liquid-liquid equilibria for (2-hydroxy benzaldehyde + n-alkane) mixtures. Intermolecular and proximity effects in systems containing hydroxyl and aldehyde groups. 2019 , 135, 359-368		О

158	Conceptual design of production of eco-friendly polyoxymethylene dimethyl ethers catalyzed by acid functionalized ionic liquids. 2019 , 206, 10-21		10
157	Partial solvation parameters in conservation science for works of art. 2019 , 39, 1-12		3
156	CASE STUDIES ON THE USE OF DISTILLATION IN THE PHARMACEUTICAL INDUSTRY. 2019 , 787-797		1
155	New phase equilibrium data at ambient and high pressure for strongly asymmetric mixtures containing menthol. 2019 , 286, 110819		1
154	Model Performances Evaluated for Infinite Dilution Activity Coefficients Prediction at 298.15 K. <i>Industrial & Engineering Chemistry Research</i> , 2019 ,	3.9	11
153	Isobaric Vapor Liquid Equilibria for Binary Mixtures of Isoamyl Acetate + Ethyl Acetate at 50 and 100 kPa. 2019 , 64, 2110-2115		1
152	Modelling and experimental validation of dimethyl carbonate solvent recovery from an aroma mixture by batch distillation. 2019 , 147, 1-17		1
151	Phase Diagrams of Fatty Acids as Biosourced Phase Change Materials for Thermal Energy Storage. 2019 , 9, 1067		8
150	Computer-aided reaction solvent design based on transition state theory and COSMO-SAC. 2019 , 202, 300-317		23
149	Theoretical description and numerical modelling of dehydration of tert-butanol via reactive distillation at concurrent flow of liquid and vapor phases. 2019 , 200, 73-79		1
148	Isothermal vaporliquid equilibria at 383.15413.15 K for the binary system methanol + dimethyl carbonate and the pressure dependency of the azeotropic point. 2019 , 492, 101-109		6
147	Phase Equilibrium Involving Xylose, Water, and Ethylene Glycol or 1,2-Propylene Glycol at Different Temperatures. 2019 , 64, 2163-2169		1
146	SUBSTITUTION OF SOLVENTS BY SAFER PRODUCTS. 2019 , 1455-1634		2
145	Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and -Butyl Alcohol as a Cosolvent. 2019 , 73, 247-259		2
144	Improved infrared thermography method for fast estimation of complex phase diagrams. 2019 , 675, 84-91		8
143	Batch distillation of spirits: experimental study and simulation of the behaviour of volatile aroma compounds. 2019 , 125, 268-283		8
142	Modified UNIFAC Parameters. 2019 , 747-751		
141	Influence of Additives (Isoamyl Laurate or Isoamyl Nonanoate) in the Solidliquid Equilibrium of Fatty Acid Ethyl Esters. 2019 , 64, 2062-2074		4

140	Solid Diquid Equilibria and Characterization of the Reaction Mixture To Produce Sucrose Palmitate in Solvent-Free Media. 2019 , 64, 2052-2061		Ο
139	Prediction of Flash-Point Temperature of Alcohol/Biodiesel/Diesel Fuel Blends. <i>Industrial & amp;</i> Engineering Chemistry Research, 2019 , 58, 6860-6869	9	19
138	(Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry. 2019 , 137, 2017-2028		4
137	AirWater Partitioning of C5 and C6 Alkanones: Measurement, Critical Compilation, Correlation, and Recommended Data. 2019 , 64, 5765-5774		
136	Modified UNIFAC (Dortmund) Parameters for the Interaction between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. <i>Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. <i>Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. <i>Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. <i>Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. Industrial & Document Between the Amino Group at Cycloaliphatic Hydrocarbon and the Hydroxyl Group. <i>Industrial & Document Between the Amino Group at Cycloaliphatic Hydroxyl Group at </i></i></i></i></i>	9	1
135	Review of extractive distillation. Process design, operation, optimization and control. 2019 , 141, 229-271		81
134	Systematic kinetic modeling of the propyl tert-butyl ether synthesis reaction. 2019 , 356, 219-226		3
133	On the mixing rules matter: The VLE predictions for binary systems. 2019 , 484, 1-14		1
132	Correlation of vapor-liquid equilibrium data of amines in organic and aqueous mixtures with the F-SAC model. 2019 , 484, 15-25		3
131	Polyoxymethylene dimethyl ethers as clean diesel additives: Fuel freezing and prediction. 2019 , 237, 833-839		21
130	Experimental determination and thermodynamic modeling of solid-liquid equilibrium of binary systems containing representative compounds of biodiesel and fossil fuels: Ethyl esters and n-dodecane. 2019 , 237, 1132-1140		5
129	Solid□iquid Equilibrium in Food Processes. 2019 , 335-384		3
128	Classical Models Part 2: Activity Coefficient Models and Applications. 2019 , 103-162		
127	Liquid□iquid and Vapor□iquid□iquid Equilibrium in Food Processes. 2019 , 275-334		
126	Liquid-liquid equilibria and density data for pseudoternary systems of refined soybean oil + (hexanal, or heptanal, or butyric acid, or valeric acid, or caproic acid, or caprylic acid) + dimethyl sulfoxide at 298.15 K. 2019 , 131, 149-158		5
125	Air-drying with ionic liquids. 2019 , 65, 479-482		17
124	Liquid-liquid equilibrium for mixtures of hexadecane + xylenes + pyrene + solvent at 373.15 K. 2019 , 129, 166-173		1
123	Activity coefficients at infinite dilution of organic solutes, using novel N-(2?, 3?-epoxypropyl)-N-methyl-2-oxopyrrolidinium chloride ionic liquid by GLC. 2020 , 505, 112362		5

122	Flash point of binary mixtures of chlorinated hydrocarbons with toluene and their predictability with existing mixing rule. 2020 , 39, e12127		1
121	Predictive models for physical properties of fats, oils, and biodiesel fuels. 2020 , 508, 112440		13
120	Comprehensive development, uncertainty and sensitivity analysis of a model for the hydrolysis of rapeseed oil. 2020 , 133, 106631		4
119	Implementation of the UNIQUAC model in the OpenCalphad software. 2020, 507, 112398		3
118	Flash point prediction with UNIFAC type models of ethylic biodiesel and binary/ternary mixtures of FAEEs. 2020 , 281, 118717		9
117	Kinetic modeling of heterogeneous esterification reaction using initial reaction rate analysis: data extraction and evaluation of mass transfer criteria. 2020 , 31, 106027		1
116	Development of a method to model the mixing energy of solutions using COSMO molecular descriptors linked with a semi-empirical model using a combined ANN-QSPR methodology. 2020 , 224, 115764		4
115	Maximum flash point behavior of ternary mixtures with single and two maximum flash point binary constituents. 2020 , 143, 293-303		4
114	Active learning-driven quantitative synthesis Structure Property relations for improving performance and revealing active sites of nitrogen-doped carbon for the hydrogen evolution reaction. 2020 , 5, 2134-2147		8
113	New Advances in the Modeling and Verification of Experimental Information for EsterAlkane Solutions: Application to a Batch-Distillation Case. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8346-8360	3.9	1
112	Temperature-dependent vapor[Iquid equilibria and solvation free energy estimation from minimal data. 2020 , 66, e16976		5
111	Xylitol solubility in DMF + ethylene glycol or 1,2-propylene glycol: Measurement and modeling with PC-SAFT and CPA equations of state and UNIFAC activity coefficient model. 2020 , 519, 112651		2
110	Simplified COSMO-SAC-based phase equilibria predictions for extractive distillation of tolueneBeptane mixtures using ionic liquids. 2020 , 15, e2513		7
109	Phase equilibria of binary and ternary polymer solutions using modified UNIQUAC-based local composition model. 2020 , 142, 1493-1510		1
108	Thermodynamics of amine mixtures. Systems formed by alkyl-amine and ether, or N,N-dialkylamide, or ethanenitrile. 2020 , 306, 112907		
107	Experimental Data on Chemical Equilibrium in the System with Ethyl Formate Synthesis Reaction at 298.15 K. 2020 , 65, 2578-2582		2
106	Bibliography. 2020 , 431-442		
105	Systematic Green Solvent Selection for the Hydroformylation of Long-Chain Alkenes. 2020 ,		2

104	A Benchmark Open-Source Implementation of COSMO-SAC. 2020 , 16, 2635-2646	32
103	Expanding the Solubility Parameter Method MOSCED to Pyridinium-, Quinolinium-, Pyrrolidinium-, Piperidinium-, Bicyclic-, Morpholinium-, Ammonium-, Phosphonium-, and Sulfonium-Based Ionic Liquids. 2020 , 5, 3863-3877	7
102	Improved Prediction of Phase Behaviors of Ionic Liquid Solutions with the Consideration of Directional Hydrogen Bonding Interactions. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 3550-3559	2
101	Multiphase equilibria of binary and ternary mixtures containing water, propylene glycol methyl ether, and propylene glycol methyl ether propionate. 2020 , 515, 112589	4
100	VLE and viscosity modeling of N-methyl-2-pyrrolidone (NMP) + water (or 2-propanol or 2-butanol) mixtures by cubic-plus-association equation of state. 2020 , 307, 112980	6
99	Applications of an infrared thermography method for solid-liquid equilibria modeling of organic binary systems. 2020 , 687, 178580	2
98	Experimental Data and Thermodynamic Modeling of Liquidliquid Equilibrium for Valeric Acid Extraction from Aqueous Solutions with Methyl Ethyl Ketone and Methyl Isobutyl Ketone at Several Temperatures. 2020 , 65, 2422-2434	4
97	Experimental Binary Vaporlliquid Equilibrium Data of Morpholine with Methanol, 1-Propanol, and 2-Ethoxyethanol. 2021 , 66, 178-188	1
96	Solid-liquid equilibrium of binary and ternary systems formed by ethyl laurate, ethyl palmitate and decylbenzene. 2021 , 530, 112874	3
95	Predictions of the vapor-liquid equilibrium data for low-GWP Hydrofluorocarbons + polyethylene-glycol dimethylether solvents by modified UNIFAC model. 2021 , 267, 02052	
95 94		
	polyethylene-glycol dimethylether solvents by modified UNIFAC model. 2021 , 267, 02052 Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. <i>Industrial & Description of Computation of Computation and Experimental Investigation and Exp</i>	
94	polyethylene-glycol dimethylether solvents by modified UNIFAC model. 2021, 267, 02052 Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. Industrial & Experimental Chemistry Research, 2021, 60, 2314-2325 SolidIliquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction	7
94	polyethylene-glycol dimethylether solvents by modified UNIFAC model. 2021, 267, 02052 Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. Industrial & Experimental Chemistry Research, 2021, 60, 2314-2325 Solid Liquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction with DISQUAC and UNIFAC Models. 2021, 42, 1 Physicochemical Characterization and Simulation of the Solid-Liquid Equilibrium Phase Diagram of	7
94 93 92	polyethylene-glycol dimethylether solvents by modified UNIFAC model. 2021, 267, 02052 Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. Industrial & Samp; Engineering Chemistry Research, 2021, 60, 2314-2325 SolidIliquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction with DISQUAC and UNIFAC Models. 2021, 42, 1 Physicochemical Characterization and Simulation of the Solid-Liquid Equilibrium Phase Diagram of Terpene-Based Eutectic Solvent Systems. 2021, 26, Optimization of Solvent and Extractive Distillation Sequence Considering Its Integration with	
94 93 92 91	Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. <i>Industrial & Description of Material & Material </i>	2
94 93 92 91 90	Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. <i>Industrial & Design</i> , Engineering Chemistry Research, 2021, 60, 2314-2325 Solidlliquid Equilibria of Binary Systems Containing Amines: Experimental Data and Prediction with DISQUAC and UNIFAC Models. 2021, 42, 1 Physicochemical Characterization and Simulation of the Solid-Liquid Equilibrium Phase Diagram of Terpene-Based Eutectic Solvent Systems. 2021, 26, Optimization of Solvent and Extractive Distillation Sequence Considering Its Integration with Reactor. 2021, 9, 565 Design, Simulation, and Pilot Verification of a Coupled Azeotropic and Extractive Distillation Process for the Production of Propylene Oxide with High Purity. <i>Industrial & Design</i> , Engineering Chemistry Research, 2021, 60, 7385-7396	0

86	Isobaric Vaporlliquid Equilibria of Binary Systems Containing Cyclohexane for the Separation of Phenolic Compounds from Biomass Fast Pyrolysis Oils. 2021 , 66, 2374-2382		1
85	Thermodynamics of mixtures with strong negative deviations from Raoult law. XVIII: Excess molar enthalpies for the (1-alkanol + cyclohexylamine) systems at 298.15 K and modelling. 2021 , 157, 106395		2
84	Pervaporation of dichloromethane-cyclopentane and methylal-cyclopentane mixtures through membranes from chloroprene rubber. 2021 , 138, 51320		1
83	Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+DMETEG, R152a+DMETEG, and R161+DMETEG) for absorption refrigeration systems. 2021 , 224, 120082		4
82	Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction. 2021 , 35, 180-188		O
81	Solid-liquid equilibria for dibenzofuran or Xanthene + Heavy Hydrocarbons: Experimental measurements and modelling. 2021 , 335, 116536		1
80	Thermodynamics of mixtures containing a fluorinated benzene and a hydrocarbon. 2021 , 335, 116506		1
79	Development of the NRTL functional activity coefficient (NRTL-FAC) model using high quality and critically evaluated phase equilibria data. 1. 2021 , 541, 113088		O
78	Shortcut Method for the Prediction of the Cocrystal Solubility Line.		5
77	Experimental Study on the Liquid-Phase Adsorption Equilibrium of n-Butanol over Amberlyst 15 and Contribution of Diffusion Resistances.		
76	Predicting Activity Coefficients at Infinite Dilution for Varying Temperatures by Matrix Completion. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	2
75	Suitable Experimentation-Modeling Binomial to Design the Extraction of an Alkanol with Water in Aqueous Ternary Solutions of Ester-Akanol. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 13938-13949	3.9	
74	PharmaPy: An object-oriented tool for the development of hybrid pharmaceutical flowsheets. 2021 , 153, 107408		3
73	Flash point investigation of ternary mixtures of 1-butanol/2-pentanol + acetic acid + ethylbenzene. 2021 , 154, 131-141		2
72	Phase equilibria of mixtures involving fatty acid ethyl esters and fat alcohols between 4 and 27 kPa for bioproduct production. 2021 , 306, 121304		1
71	Isobaric vaporlīquid equilibria and distillation process design for separating ketones in biomass pyrolysis oil. 2022 , 164, 106622		O
70	Thermodynamic fundamentals. 2022 , 1-63		
69	Phase Equilibria in Fluid Systems. 173-321		1

68	Estimation of liquid-liquid equilibrium of type 2 systems (water + valeric acid + monobasic ester or dibasic ester or alcohol) using SERLAS, SERLAS-modified, and SERLAS-integrated. 2018 , 96, 815-828	6
67	Microbial Processes. 2007, 575-597	2
66	Technische Thermodynamik. 2007 , F1-F95	1
65	Solvent Selection in Homogeneous Catalysis Optimization of Kinetics and Reaction Performance. 2021 , 11, 590-594	6
64	Salt effect of KBr on the liquid-liquid equilibrium of the water/ethanol/1-pentanol system. 2000 , 17, 721-734	15
63	Prediction of electrolyte vapor-liquid equilibrium by UNIFAC-Dortmund. 2001 , 18, 127-137	16
62	Vapor-liquid equilibrium measurements for the binary system methyl acetate+ethanol at 0.3 and 0.7 MPa. 2011 , 28, 325-332	7
61	Solubility of Bioactive Substances in Ethyl Lactate + Water Mixtures: Ferulic Acid and Caffeine. 2016 , 10, 50-58	6
60	Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures.	1
59	Coefficients of Activity in Tetrachloroethylenefi-Alkane Systems. 2021 , 95, 1990-1995	
58	Technische Thermodynamik. 2000 , 787-862	
57	Thermodynamics of Ether Production. 2004,	
56	Bioreactor Analysis and Design. 2006 , 479-514	
55	Bioethanol Production Optimization: A Thermodynamic Analysis. 2008, 659-667	
54	Temperature-induced volatility of molecular markers in ambient airborne particulate matter.	
53	The Prediction of Vapor-Liquid Equilibrium Data for Ethanol/3-methyl-1-butanol System at Constant Temperature. 2013 , 14, 2055-2061	
52	Extension of Modified UNIFAC to Refrigerant Mixtures. 1999 , 98-105	
51	Solubility of Organics in Triethylene Glycol: Phase Equilibrium Modelling Using the Dortmund and LYNGBY Modified UNIFAC Models. 2015 , 3, 202-207	

50	Introduction to properties of ionic liquid mixtures. 2016 , 1-53		
49	Measurement and Prediction of Liquidus Curves of Saturated Fatty Acids and Triglycerides Plus Fuel Oil A Systems. 2018 , 44, 54-58		
48	Stoffmodelle der Technischen Thermodynamik. 2019 , 1-29		
47	D5.1 Dampf-FlBsigkeits-Gleichgewichte von Mehrkomponenten-Gemischen. 2019 , 603-620		
46	Estudo termoquínico assistido por computador para a produß de biodiesel. 2019 , 32, 77-84		0
45	Extraction of aromatic and polyaromatic compounds with NMP: experimental and model description. 2021 , 113293		2
44	Solid[liquid Phase Behaviors of Binary Mixtures of Various Partial Acylglycerols by Differential Scanning Calorimetry. 2100092		O
43	New Group Interaction Parameters of the UNIFAC (Dortmund) Model: Aromatic Dicarboxylic Acid Isomer and Methyl Benzoic Acid Isomer Binaries. <i>Industrial & Dicarporate Chemistry Research</i> , 2020 , 59, 22619-22625	3.9	
42	Modeling the fluid phase behavior of amines, aromatic amines and their mixtures using the modified group-contribution PC-SAFT. 2022 , 551, 113274		1
41	Stoffmodelle. F18-F34		
40	Cubic Equations of State. 2021 , 41-107		
39	Chemical equilibria in the quaternary reactive mixtures and liquid phase splitting: a system with n-amyl acetate synthesis reactions at 318.15 K and 101.3 kPa. 2021 , 118246		1
38	Predictive molecular thermodynamic models for ionic liquids.		2
37	Thermodynamics of chlorobenzene, or bromobenzene, or 1-chloronaphthalene or 1,2,4-trichlorobenzene + alkane mixtures. 2022 , 348, 118282		
36	Measurement and correlation of the vapor-liquid equilibria related to the extraction of phenols from tar with mono-ethanolamine. 2022 , 556, 113372		
35	Predicting Solvent Effects on Homogeneity and Kinetics of the Hydroaminomethylation: A Thermodynamic Approach Using PC-SAFT. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 2323-2332	3.9	Ο
34	The precision-complexity binomial to achieve the best mathematical-thermodynamic modelling on the Gibbs-function and its effect on the separation processes design. 2022 ,		
33	Prediction of solidification behavior of biodiesel containing monoacylglycerols above the solubility limit. 2022 , 315, 123204		1

32	Graph Neural Networks for the prediction of infinite dilution activity coefficients.		1
31	Fabricating a ZIFB@Polydimethylsiloxane(PDMS)/PVDF mixed matrix composition membrane for separation of ethanol from aqueous solution via vapor permeation.		O
30	Enhanced n-butanol permselective vapor permeation by incorporating ZIF-8 into a polydimethylsiloxane composite membrane: Effect of filler loading contents.		0
29	Thermodynamics of mixtures containing amines. XVII. HmE and VmE. 2022 , 558, 113460		
28	Predicted Mutual Solubilities in Water + C5-C12 Hydrocarbon Systems. Results at 298 K. 2021 , 5, 89		O
27	Extended Specific Ion Theory (ESIT): Theoretical development and application to Harned rule.		O
26	Isobaric vapour-liquid equilibrium of Eterpineol highly diluted in hydroalcoholic mixtures at 101.3 kPa: Experimental measurements and thermodynamic modeling. 2022 , 171, 106806		1
25	Determination of Thermodynamic Properties for the Esterification of Levulinic Acid with 1-Butene. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	O
24	Evaluation of VLEs for Binaries of Five Compounds Involved in the Production Processes of Cyclohexanone. 2022 , 6, 42		0
23	Vaporliquid Equilibrium Study of the Monochlorobenzene4,6-Dichloropyrimidine Binary System. 2022 , 7, 17670-17678		
22	Flash point study of ternary mixtures comprising binary constituents that exhibit maximum flash point behavior and minimum flash point behavior. 2022 , 713, 179246		O
21	The effect of different solvents on the production of rose concrete and rose absolute, experimental study and thermodynamic aspects using the UNIFAC model. 2022 , 184, 326-337		
20	Highly efficient separation of benzene + cyclohexane mixtures by extraction combined extractive distillation using imidazolium-based dicationic ionic liquids. 2022 ,		
19	Evaluation of Predictive Solubility Models in Pharmaceutical Process Development-an Enabling Technologies Consortium Collaboration.		
18	Viscosity of Binary Aqueous Solutions Involving Malonic, Maleic, Malic, Tartaric, and Citric Acids in the Temperature Range between 303 and 363 K: Experimental Data and Modeling.		
17	Stoffmodelle der Technischen Thermodynamik. 2022 , 485-513		O
16	Oleochemical Processing Technology: From Process Engineering and Intensification Techniques to Property Models for the Exploitation of Residual Marine Oils.		0
15	Modeling of Vapor-Liquid Equilibrium for Electrolyte Solutions Based on COSMO-RS Interaction. 2022 , 2022, 1-13		2

CITATION REPORT

14	Deactivation of macroporous ion-exchange resins by acetonitrile and inhibition by water in the simultaneous synthesis of ethyl tert-butyl ether (ETBE) and tert-amyl ethyl ether (TAEE).	O
13	Elements and Chemical Bonds Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. 2022 , 10, 2141	1
12	Exploration of two types of maximumthinimum flash point behavior of ternary mixtures. 2022, 80, 104915	0
11	EDamascenone Highly Diluted in Hydroalcoholic Mixtures: Phase Equilibrium Measurements, Thermodynamic Modeling, and Simulation of a Batch Distillation. 2022 , 61, 18127-18137	O
10	How Important Is the Internal Hydrophobicity of Metal Drganic Frameworks for the Separation of Water/Alcohol Mixtures?. 2022 , 38, 15672-15682	О
9	New interaction parameters from VLE data for group contribution (GC-NRTL) model.	O
8	THERMODYNAMICS OF BICYCLIC COMPOUND + n-ALKANE MIXTURES. 2023 , 121179	O
7	Experimental data and Modeling of Solid-Liquid Equilibria of Binary Systems Containing Dibenzofuran and Long Chain n-alkanes.	O
6	Purification of monoethylene glycol by melt crystallization. 2023 , 272, 118601	O
5	A novel bio-based phase change material of methyl palmitate and decanoic acid eutectic mixture: Thermodynamic modeling and thermal performance. 2023 , 10, 100111	O
4	Predicting Multi-Component Phase Equilibria of Polymers using Approximations to Flory⊞uggins Theory. 2300001	О
3	Correlating Pure Component Properties with MOSCED Solubility Parameters: Enthalpy of Vaporization and Vapor Pressure. 2023 , 7, 25	O
2	New Model to Predict Infinite Dilution Activity Coefficients Based on (内/図)T,x -Ю. 2023 , 8, 12439-12444	0
1	Extraction of valuable chemicals from food waste via computational solvent screening and experiments. 2023 , 316, 123719	Ο