Conversion of light to electricity by cis-X2bis(2,2'-bipyr charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCI dioxide electrodes

Journal of the American Chemical Society 115, 6382-6390 DOI: 10.1021/ja00067a063

Citation Report

#	Article	IF	CITATIONS
2	The Hobbling of Coal: Policy and Regulatory Uncertainties. Science, 1978, 200, 153-158.	6.0	17
3	Nanocrystalline Thin-Film PV Cells. MRS Bulletin, 1993, 18, 61-66.	1.7	21
4	Verification of high efficiencies for the GrÃæzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO2 films. Solar Energy Materials and Solar Cells, 1994, 31, 481-488.	3.0	154
5	Design of supramolecular systems for spectral sensitization of semiconductors. Solar Energy Materials and Solar Cells, 1994, 32, 229-244.	3.0	47
6	Towards large-area photovoltaic nanocells: experiences learned from smart window technology. Solar Energy Materials and Solar Cells, 1994, 32, 307-321.	3.0	50
7	Inter-chromophore electronic interactions in ligand-bridged polynuclear complexes: a comparative study of various bridging ligands. Inorganica Chimica Acta, 1994, 226, 213-230.	1.2	74
8	Multiply charged ions of ruthenium(II), rhodium(III) and cobalt(III) complexes in electrospray ionization mass spectrometry. Organic Mass Spectrometry, 1994, 29, 289-294.	1.3	33
9	Sensitisation in photochemistry and photovoltaics. Solar Energy Materials and Solar Cells, 1994, 32, 221-227.	3.0	77
10	Charge carrier separation and charge transport in nanocrystalline junctions. Solar Energy Materials and Solar Cells, 1994, 32, 245-257.	3.0	88
11	Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Solar Energy Materials and Solar Cells, 1994, 32, 259-272.	3.0	317
12	Testing of dye sensitized TiO2 solar cells II: Theoretical voltage output and photoluminescence efficiencies. Solar Energy Materials and Solar Cells, 1994, 32, 273-288.	3.0	83
13	Nanocrystalline solar cells. Renewable Energy, 1994, 5, 118-133.	4.3	29
14	Spectral sensitization of large-band-gap semiconductors (thin films and ceramics) by a carboxylated bis(1,10-phenanthroline)copper(I) complex. Journal of the Chemical Society Dalton Transactions, 1994, , 1649.	1.1	146
16	Nanocrystalline electrochemical solar cells. , 0, , .		2
17	<title>Electron transport properties in nanoporous TiO<formula><inf><roman>2</roman></inf></formula> from analysis of action spectra of dye-sensitized electrodes</title> . , 1994, , .		1
18	Determination of band edge energies for transparent nanocrystalline TiO2_CdS sandwich electrodes prepared by electrodeposition. Solar Energy Materials and Solar Cells, 1995, 39, 83-98.	3.0	36
19	Chlorophyll-sensitized microporous cuprous iodide photocathode. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 91, 59-61.	2.0	12
20	Synthesis and properties of niobia films derived from niobium pentaethoxide. Journal of Sol-Gel Science and Technology, 1995, 5, 219-226.	1.1	15

#	Article	IF	CITATIONS
21	Photoinduced energy―and electronâ€ŧransfer processes in dinuclear ruthenium(II) and/or osmium(II) complexes connected by a linear rigid bisâ€chelating bridge. Recueil Des Travaux Chimiques Des Pays-Bas, 1995, 114, 534-541.	0.0	50
22	Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization. Thin Solid Films, 1995, 261, 307-310.	0.8	43
23	Photosensitization of wide bandgap semiconductors with antenna molecules. Solar Energy Materials and Solar Cells, 1995, 38, 187-198.	3.0	43
24	Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients. Journal of Electroanalytical Chemistry, 1995, 381, 39-46.	1.9	215
25	Preparation and characterization of a PbTiO3 + PbO mixed-oxide photoelectrode. Journal of Electroanalytical Chemistry, 1995, 391, 93-99.	1.9	6
26	Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. Journal of Electroanalytical Chemistry, 1995, 394, 93-102.	1.9	203
27	Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 1995, 396, 27-34.	1.9	299
28	Dinuclear ruthenium(II) and/or osmium(II) complexes of a non-symmetric bis-chelating quaterpyridine ligand. Synthesis, electrochemical behaviour, absorption spectra, luminescence properties and intercomponent energy transfer. Journal of the Chemical Society Dalton Transactions, 1995, , 3601.	1.1	28
29	Photovoltaic conversion efficiency in copper-phthalocyanine/perylene-tetracarboxylic acid benzimidazole heterojunction solar cells. Synthetic Metals, 1995, 71, 2281-2282.	2.1	13
30	Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2films. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	239
31	A dye-sensitized nano-porous solid-state photovoltaic cell. Semiconductor Science and Technology, 1995, 10, 1689-1693.	1.0	419
32	Chapter 3. Electrochemistry (1992–1995). Annual Reports on the Progress of Chemistry Section C, 1995, 92, 23-73.	4.4	3
33	Application of deuteriation to determine the location of the emitting state in mixed-ligand RulIpolypyridyl complexes. Journal of the Chemical Society Dalton Transactions, 1995, , 2705-2706.	1.1	28
34	Photovoltaic properties of a molecular semiconductor modulated by an excitonâ€dissociating film. Applied Physics Letters, 1995, 67, 1271-1273.	1.5	35
35	Directed Photocurrents in Nanostructured SnO2/TiO2/Ru(II)L2(CNS)2 Heterojunctions. , 1996, , 343-370.		0
36	nm-Semiconductor Particles and Molecular Aggregates as Redox Species. , 1996, , 591-608.		0
37	Nanocrystalline Electronic Junctions. , 1996, , 719-732.		1
38	Physical Chemistry of Semiconductorâ^Liquid Interfaces. The Journal of Physical Chemistry, 1996, 100, 13061-13078.	2.9	851

#	Article	IF	CITATIONS
39	Dye-Capped Semiconductor Nanoclusters. Excited State and Photosensitization Aspects of Rhodamine 6G H-Aggregates Bound to SiO2and SnO2Colloids. The Journal of Physical Chemistry, 1996, 100, 11054-11061.	2.9	142
40	Ruthenium(II) Charge-Transfer Sensitizers Containing 4,4â€~-Dicarboxy-2,2â€~-bipyridine. Synthesis, Properties, and Bonding Mode of Coordinated Thio- and Selenocyanates. Inorganic Chemistry, 1996, 35, 4779-4787.	1.9	164
41	Electron Transport in Porous Nanocrystalline TiO2Photoelectrochemical Cells. The Journal of Physical Chemistry, 1996, 100, 17021-17027.	2.9	394
42	Photovoltaic effects in porphyrin polymer films and heterojunctions. Journal of Applied Physics, 1996, 80, 3381-3389.	1.1	60
43	Sensitization of TiO2with phthalocyanines. Part 1.—Photo-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5081-5088.	1.7	69
44	Theoretical study of lithium intercalation in rutile and anatase. Physical Review B, 1996, 53, 159-170.	1.1	208
45	An Acetylacetonate-Based Semiconductorâ^'Sensitizer Linkage. Inorganic Chemistry, 1996, 35, 5319-5324.	1.9	307
46	Ruthenium(II) Bipyridine Complexes: Synthesis and Characterization of Ru(bpy)(CO)2(SCN)2, Ru(dmbpy)(CO)2Cl2, and Ru(dmbpy)(CO)2(NCS)H (bpy = 2,2â€~Bipyridine; dmbpy =) Tj ETQq1 1 0.784314 rgBT	Dverlock	₺0 Tf 50 4
47	Fluorescence and photoelectrochemical behavior of chlorophyllaadsorbed on a nanocrystalline SnO2film. Journal of Applied Physics, 1996, 80, 4637-4643.	1.1	45
48	Effect of Delocalization and Rigidity in the Acceptor Ligand on MLCT Excited-State Decay. Inorganic Chemistry, 1996, 35, 2242-2246.	1.9	229
49	Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. The Journal of Physical Chemistry, 1996, 100, 20056-20062.	2.9	815
50	Efficient dyeâ€sensitized charge separation in a wideâ€bandâ€gappâ€nheterojunction. Journal of Applied Physics, 1996, 80, 4749-4754.	1.1	160
51	Semiconductor-Based Interfacial Electron-Transfer Reactivity:Â Decoupling Kinetics from pH-Dependent Band Energetics in a Dye-Sensitized Titanium Dioxide/Aqueous Solution System. The Journal of Physical Chemistry, 1996, 100, 6867-6870.	2.9	201
52	Fractal dimension of Li insertion electrodes studied by diffusion-controlled voltammetry and impedance spectroscopy. Physical Review B, 1996, 54, 2968-2971.	1.1	28
53	Dye-Sensitizing Effect of TiOPc Thin Film on n-TiO2(001) Surface. The Journal of Physical Chemistry, 1996, 100, 5447-5451.	2.9	70
54	Measurement of Temperature-Independent Femtosecond Interfacial Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor as Acceptor. The Journal of Physical Chemistry, 1996, 100, 16463-16465.	2.9	241
55	Electron Transport Properties in Dye-Sensitized Nanoporousâ^'Nanocrystalline TiO2 Films. The Journal of Physical Chemistry, 1996, 100, 3084-3088.	2.9	111
56	Dye-Capped Semiconductor Nanoclusters. One-Electron Reduction and Oxidation of Thionine and Cresyl Violet H-Aggregates Electrostatically Bound to SnO2Colloids. Langmuir, 1996, 12, 2190-2195.	1.6	27

#	Article	IF	CITATIONS
57	Electron Trapping in Porphyrin-Sensitized Porous Nanocrystalline TiO2Electrodes. The Journal of Physical Chemistry, 1996, 100, 19489-19494.	2.9	157
58	Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias. The Journal of Physical Chemistry, 1996, 100, 4900-4908.	2.9	173
59	Photoinduced electron transfer and redox-type photochromism of a TiO2-anchored molecular diad. Chemical Communications, 1996, , 1163-1164.	2.2	37
60	Carboxylic acids and esters. Contemporary Organic Synthesis, 1996, 3, 243.	1.5	1
61	Mesoporous TIO2 Electrodes for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 1996, 431, 129.	0.1	1
62	Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. Journal of the American Chemical Society, 1996, 118, 6716-6723.	6.6	1,312
63	Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film. The Journal of Physical Chemistry, 1996, 100, 1027-1035.	2.9	331
64	Hydrophobic, Highly Conductive Ambient-Temperature Molten Saltsâ€. Inorganic Chemistry, 1996, 35, 1168-1178.	1.9	4,226
65	Photocapacitance of Nanocrystalline Oxide Semiconductor Films:Â Band-Edge Movement in Mesoporous TiO2Electrodes during UV Illumination. The Journal of Physical Chemistry, 1996, 100, 8045-8048.	2.9	95
66	Ion beam analysis of electropolymerized porphyrin layers. Nuclear Instruments & Methods in Physics Research B, 1996, 118, 301-306.	0.6	15
67	Optimization of parameters of an electrochemical photovoltaic regenerative solar cell. Solar Energy Materials and Solar Cells, 1996, 43, 249-262.	3.0	3
68	Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Solar Energy Materials and Solar Cells, 1996, 44, 119-155.	3.0	116
69	Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44, 99-117.	3.0	1,116
70	Bilayer molecular solar cells on spin-coated TiO2 substrates. Chemical Physics Letters, 1996, 258, 376-380.	1.2	65
71	Dinuclear Rull and/or OsII complexes of bis-bipyridine bridging ligands containing adamantane spacers: synthesis, luminescence properties, intercomponent energy and electron transfer processes. Inorganica Chimica Acta, 1996, 242, 281-291.	1.2	66
72	A dye sensitized TiO2 photoelectrochemical cell constructed with polymer solid electrolyte. Solid State Ionics, 1996, 89, 263-267.	1.3	116
73	Transmission electron microscopy studies of nanophase TiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 40, 177-184.	1.7	28
74	Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 94, 217-220.	2.0	92

#	Article	IF	Citations
75	The enhancement of the photocurrent of a methyl violet sensitized cuprous iodide photocathode by β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 96, 167-169.	2.0	6
76	Transient absorption spectroscopy of nanostructured semiconductor films at controlled potentials. An in situ spectroelectrochemical investigation of the photosensitization process. Journal of Electroanalytical Chemistry, 1996, 401, 237-241.	1.9	14
77	Structural and optical characterization of PbxTi1â^'xO2 film prepared by sol-gel method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 41, 67-71.	1.7	16
78	On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Solar Energy Materials and Solar Cells, 1996, 44, 405-438.	3.0	153
79	A Rigid Bis-Bidentate Bridging Ligand: 1,4-Bis(2,2'-bipyrid-4-yl)benzene. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 658-660.	0.4	1
80	Poly[trans-bis{trimethyltin(IV)}-μ-(2,2'-bipyridyl-4,4'-dicarboxylato-O:O':O'':O''')]. A Layered Structure Composed of Sheets Interconnected by Organometallic Moieties. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 829-832.	0.4	11
81	μ-Oxo-bis[(5,10,15,20-tetraphenylporphyrinato)oxomolybdenum(V)]. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 832-835.	0.4	2
82	Rutile Formation in Hydrothermally Crystallized Nanosized Titania. Journal of the American Ceramic Society, 1996, 79, 2185-2188.	1.9	108
83	Photoelectrochromic windows and displays. Nature, 1996, 383, 608-610.	13.7	592
84	Interfacial Electron Transfer in Dye Sensitised Nanocrystalline TiO2 Films. Springer Series in Chemical Physics, 1996, , 433-434.	0.2	3
85	Preparation and Characterization of Transparent Nanocrystalline TiO2 Films Possessing Well-Defined Morphologies. The Journal of Physical Chemistry, 1996, 100, 10732-10738.	2.9	41
86	Novel Low-Cost Solid-State Heterojunction Solar Cell Based on TiO2and Its Modification for Improved Efficiency. Japanese Journal of Applied Physics, 1996, 35, 3334-3342.	0.8	3
87	<title>Photoelectrochromic smart windows</title> ., 1997, 3138, 114.		0
88	All Solid-state Dye-sensitized TiO2 Photo Electrochemical Cell and Its Long-term Stability Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1997, 1997, 484-488.	0.1	4
89	Characterization of excited electronic and vibronic states of platinum metal compounds with chelate ligands by highly frequency-resolved and time-resolved spectra. Topics in Current Chemistry, 1997, , 153-249.	4.0	72
90	Solid State Dye-Sensitized TiO2Solar Cell with Polypyrrole as Hole Transport Layer. Chemistry Letters, 1997, 26, 471-472.	0.7	161
91	New concepts of nano-crystalline organic photovoltaic devices. , 0, , .		3
92	Redox regulation in ruthenium(II) polypyridyl complexes and their application in solar energy conversion. Journal of the Chemical Society Dalton Transactions, 1997, , 4571-4578.	1.1	74

		CITATION REPORT	
#	Article	IF	CITATIONS
93	Photochemical solar cells based on dye-sensitization of nanocrystalline TiO/sub 2/. , 0, , .		4
94	Visible Light Photolysis of Hydrogen Iodide Using Sensitized Layered Metal Oxide Semiconductors:Â The Role of Surface Chemical Modification in Controlling Back Electron Transfer Reactions. Journal of Physical Chemistry B, 1997, 101, 2508-2513.	1.2	129
95	CdTe Thin Films from Nanoparticle Precursors by Spray Deposition. Chemistry of Materials, 1997, 9, 889-900.	3.2	30
96	Visible-Light-Induced and Long-Lived Charge Separation in a Transparent Nanostructured Semiconductor Membrane Modified by an Adsorbed Electron Donor and Electron Acceptor. Journal of Physical Chemistry B, 1997, 101, 10791-10800.	1.2	34
97	Sensitized Electroluminescence on Mesoporous Oxide Semiconductor Filmsâ€. Journal of Physical Chemistry B, 1997, 101, 2558-2563.	1.2	46
98	Li+Ion Insertion in TiO2(Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films. Journal of Physical Chemistry B, 1997, 101, 7710-7716.	1.2	257
99	Characterization of Covalently Immobilized Q-CdS Particles on Au(111) by Scanning Tunneling Microscopy and Tunneling Spectroscopy with High Reproducibility. Langmuir, 1997, 13, 742-746.	1.6	50
100	Photochemical Charge Transfer and Hydrogen Evolution Mediated by Oxide Semiconductor Particles in Zeolite-Based Molecular Assemblies. Journal of Physical Chemistry B, 1997, 101, 2491-2500.	1.2	67
101	Enhancement of the Absorption Coefficient ofcis-(NCS)2Bis(2,2â€~-bipyridyl-4,4â€~-dicarboxylate)ruthenium(II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film. Journal of Physical Chemistry B, 1997, 101, 5153-5157.	1.2	111
102	A New Theoretical Model of a Dye-Sensitized Nanocrystalline Photoelectrochemical Cell. Japanese Journal of Applied Physics, 1997, 36, L886-L888.	0.8	10
103	Formation of Ruthenium Nitrosyl Complexes:Â Reactions of Ru(bpy)(CO)2Cl2and Its Methyl-Substituted Analogues Ru(4,4â€~-dmbpy)(CO)2Cl2and Ru(6,6â€~-dmbpy)(CO)2Cl2in Oxidizing Acidic Solutions. Inorganic Chemistry, 1997, 36, 3794-3797.	1.9	27
104	Photosensitization of Nanocrystalline ZnO Films by Bis(2,2â€~-bipyridine)(2,2â€~-bipyridine-4,4â€~-dicarboxylic)	Tj ETQq1	1 0.784314 147
105	High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes. Journal of Physical Chemistry B, 1997, 101, 2598-2601.	1.2	473
106	Charge Recombination in Dye-Sensitized Nanocrystalline TiO2Solar Cells. Journal of Physical Chemistry B, 1997, 101, 2576-2582.	1.2	930
107	Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2Solar Cells:Â A Study by Intensity Modulated Photovoltage Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 8141-8155.	1.2	851
108	Directed Photocurrents in Nanostructured TiO2/SnO2 Heterojunction Diodes. Journal of Physical Chemistry B, 1997, 101, 1810-1816.	1.2	72
109	Energy Conversion Chemistry: Mechanisms of Charge Transfer at Metal-Oxide Semiconductor/Solution Interfaces. Journal of Chemical Education, 1997, 74, 657.	1.1	30
110	Light-Induced Charge Separation across Ru(II)-Modified Nanocrystalline TiO2Interfaces with Phenothiazine Donors. Journal of Physical Chemistry B, 1997, 101, 2591-2597.	1.2	149

#	Article	IF	CITATIONS
111	Light-Induced Charge Separation at Sensitized Solâ^'Gel Processed Semiconductors. Chemistry of Materials, 1997, 9, 2341-2353.	3.2	71
112	Electron Injection, Charge Recombination, and Energy Migration in Surface-Modified TiO2 Nanocrystallite Layers. A Laser Photolysis Study. Journal of Physical Chemistry B, 1997, 101, 3136-3146.	1.2	19
113	The photostability of dye-sensitized solid state photovoltaic cells: factors determining the stability of the pigment in a nanoporous n-/cyanidin/p-CuI cell. Semiconductor Science and Technology, 1997, 12, 128-132.	1.0	44
114	Remote Interfacial Electron Transfer from Supramolecular Sensitizers. Inorganic Chemistry, 1997, 36, 2-3.	1.9	129
115	Ultrafast Electron Injection:Â Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2Nanocrystalline Electrode. Journal of Physical Chemistry B, 1997, 101, 9342-9351.	1.2	567
116	Electric Potential Distribution and Short-Range Screening in Nanoporous TiO2Electrodes. Journal of Physical Chemistry B, 1997, 101, 7985-7990.	1.2	259
117	Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells:  Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines. Inorganic Chemistry, 1997, 36, 5937-5946.	1.9	228
118	Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of SnO2/CdS Coupled Nanocrystallites with a Ruthenium Polypyridyl Complex. Journal of Physical Chemistry B, 1997, 101, 7480-7487.	1.2	159
119	FT-EPR Study of Photoinduced Electron Transfer at the Surface of TiO2Nanoparticles. Journal of Physical Chemistry B, 1997, 101, 8914-8919.	1.2	15
120	Dye Capped Semiconductor Nanoclusters. Role of Back Electron Transfer in the Photosensitization of SnO2Nanocrystallites with Cresyl Violet Aggregates. Journal of Physical Chemistry B, 1997, 101, 2583-2590.	1.2	192
121	Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. Chemical Communications, 1997, , 1705-1706.	2.2	502
122	Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. Journal of Physical Chemistry B, 1997, 101, 4490-4493.	1.2	781
123	pH-Dependent Redox Potential Induced in a Sensitizing Dye by Adsorption onto TiO2. Journal of Physical Chemistry B, 1997, 101, 55-57.	1.2	166
124	Nanocrystalline electronic junctions. Studies in Surface Science and Catalysis, 1997, 103, 353-375.	1.5	26
125	Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells. Journal of Physical Chemistry B, 1997, 101, 2564-2575.	1.2	142
126	In situ infrared spectroscopic analysis of the adsorption of ruthenium(II) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions. Chemical Physics Letters, 1997, 266, 451-455.	1.2	111
127	Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synthetic Metals, 1997, 89, 215-220.	2.1	139
128	Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine. Inorganica Chimica Acta, 1997, 261, 129-140.	1.2	68

#	Article	IF	CITATIONS
129	(Photo) anodic decomposition of 3-methyl oxazolidin-2-one An in-situ FTIR study. Journal of Electroanalytical Chemistry, 1997, 433, 187-193.	1.9	7
130	Photoelectrochromic cells and their applications. Endeavour, 1997, 21, 52-55.	0.1	45
131	Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells:  Characterization by Intensity-Modulated Photocurrent Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 10281-10289.	1.2	607
132	Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film. Journal of Physical Chemistry B, 1997, 101, 6799-6802.	1.2	460
133	Electron Transport in the Nanostructured TiO2â^'Electrolyte System Studied with Time-Resolved Photocurrents. Journal of Physical Chemistry B, 1997, 101, 2514-2518.	1.2	303
134	Photochemistry of Nanostructured Materials for Energy Applications. , 1997, 1, 239-272.		70
136	Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion. Ionics, 1997, 3, 356-362.	1.2	100
137	Intercomponent and interfacial electron transfer processes in polynuclear metal complexes anchored on transparent TiO2 films. Journal of Chemical Sciences, 1997, 109, 397-409.	0.7	4
138	Interfacial electron transfer in dye sensitised nanocrystalline TiO2 films. Journal of Chemical Sciences, 1997, 109, 411-414.	0.7	2
139	Experimental results and basic considerations concerning injection and transport of electrons in the dye-sensitized colloidal sponge-type anatase TiO2 electrode. Journal of Chemical Sciences, 1997, 109, 415-428.	0.7	5
140	Photovoltaic performance of injection solar cells and other applications of nanocrystalline oxide layers. Journal of Chemical Sciences, 1997, 109, 447-469.	0.7	24
141	Advances in dye-sensitized solar cell. Science Bulletin, 1997, 42, 1937-1948.	1.7	4
142	Size effects on the luminescence quenching of Tb3+ by Ru(II) tetraammines with alkyl trans-phosphane ligands. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104, 39-43.	2.0	3
143	Ground- and excited-state interactions between the tris(2,2′-bipyridine)ruthenium(2+) ion and phenol in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 129-133.	2.0	11
144	Nanoporous TiO2 photoanode sensitized with the flower pigment cyanidin. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 193-195.	2.0	103
145	A nanoporous solid-state photovoltaic cell sensitized with copper chlorophyllin. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 175-177.	2.0	34
146	An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 1-35.	2.0	3,214
147	Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 47, 33-40.	1.7	261

ARTICLE IF CITATIONS # Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell. International Journal of Hydrogen Energy, 1997, 22, 148 3.8 48 875-882. Characterization of dye-doped TiO2 films prepared by spray-pyrolysis. Applied Surface Science, 1997, 149 3.1 58 113-114, 426-431. Photoelectrochemical behavior of coupled SnO2 | CdSe nanocrystalline semiconductor films. Journal 151 1.9 73 of Electroanalytical Chemistry, 1997, 420, 201-207. Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection. Journal of Electroanalytical Chemistry, 1997, 428, 25-32. The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)-bis-2, 2â€2bipyridine-4, 4â€2-dicarboxylic acid 153 11.1 162 and related sensitizers. Ádvanced Materials, 1997, 9, 904-906. Mesoporous TiO2 films: New catalytic electrode fabricating amperometric biosensors based on oxidases. Electroanalysis, 1997, 9, 1387-1392. 1.5 Adsorption of Mononuclear, Binuclear, and Polymeric Ruthenium Complexes on Mica. Journal of 155 5.0 5 Colloid and Interface Science, 1997, 189, 305-311. The electronic structure of the cis-bis(4,4â€2-dicarboxy-2,2â€2-bipyridine)-bis(isothiocyanato)ruthenium(II) complex and its ligand 2,2′-bipyridyl-4,4′-dicarboxylic acid studied with electron spectroscopy. Chemical 1.2 Physics Letters, 1997, 274, 51-57 Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277, 105-108. 157 1.2 241 Spectroelectrochemical studies of ruthenium(II) diimine complexes with polypyridyl bridging ligands. 1.2 Inorganica Chimica Acta, 1997, 254, 267-272 Spectroelectrochemical studies of some ruthenium(II) complexes with polypyridyl bridging ligands. 159 1.2 30 Inorganica Chimica Acta, 1997, 260, 199-205. Ru(II) polypyridine complexes with a high oxidation power. Comparison between their photoelectrochemistry with transparent SnO2 and their photochemistry with desoxyribonucleic 9.5 103 acids. Coordination Chemistry Reviews, 1998, 168, 233-271. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. 161 9.5 1,359 Coordination Chemistry Reviews, 1998, 177, 347-414. Photoinduced charge separation and recombination in a conjugated polymer-semiconductor 1.2 nanocrystal composite. Chemical Physics Letters, 1998, 290, 297-303 Theoretical study of charge transportation in dye-sensitized nanocrystalline TiO2 electrodes. 163 1.2 31 Chemical Physics Letters, 1998, 292, 223-228. Fractal features of titanium oxide surfaces. Chemical Physics Letters, 1998, 297, 484-490. 164 58 Niobia films: surface morphology, surface analysis, photoelectrochemical properties and 165 1.7 30 crystallization process. Journal of Materials Science, 1998, 33, 2607-2616. Photoelectrochemical properties of sol–gel-derived anatase and rutile TiO2 films. Journal of Materials Science, 1998, 33, 3655-3659.

#	Article	IF	CITATIONS
167	Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2Films. Journal of Physical Chemistry B, 1998, 102, 4156-4164.	1.2	117
168	Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. Chemical Communications, 1998, , 719-720.	2.2	173
169	Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395, 583-585.	13.7	3,353
170	Accumulation of persistent organochlorine compounds in mountains of western Canada. Nature, 1998, 395, 585-588.	13.7	401
171	The obstructed diffusion of the I3â^' ion in mesoscopic TiO2 membranes. Solar Energy Materials and Solar Cells, 1998, 51, 291-303.	3.0	44
172	Evaluation of parameters for anodic polarisation curve from the experimentally measured U–I dependence for an electrochemical photovoltaic regenerative solar cell. Solar Energy Materials and Solar Cells, 1998, 51, 155-169.	3.0	4
173	Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998, 55, 267-281.	3.0	355
174	Photovoltaic properties of novel conjugated oligomer/n-Si(111) heterostructrues. Thin Solid Films, 1998, 327-329, 415-418.	0.8	15
175	Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Applied Catalysis B: Environmental, 1998, 16, 19-29.	10.8	341
176	Heterosupramolecular Chemistry: Synthetic strategies for the covalent and noncovalent assembly and organization of nanocrystals and molecules. Helvetica Chimica Acta, 1998, 81, 902-915.	1.0	16
177	Construction of One-Dimensional Multicomponent Molecular Arrays: Control of Electronic and Molecular Motions. European Journal of Inorganic Chemistry, 1998, 1998, 1-14.	1.0	124
178	Photosensitization of Thin SnO2 Nanocrystalline Semiconductor Film Electrodes with Metalloporphyrins and Alkyl-substituted Metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 1998, 02, 123-131.	0.4	15
179	Photoelectrical performance of nanocrystalline TiO2 film electrode sensitized by Ru(II)-bipyridine complexes. Science Bulletin, 1998, 43, 473-476.	1.7	1
180	Ruthenium bipyridine complexes: synthesis and characterisation of Ru(tmbpy)(CO)2Cl2, Ru(dmbpy)(CO)2Cl2 and [Ru(dmbpy)(CO)2Cl]2. Journal of Organometallic Chemistry, 1998, 552, 205-211.	0.8	25
181	The influence of new binding state of dye-molecules to TiO2 electrode surface on IPCE performance. Journal of Physics and Chemistry of Solids, 1998, 59, 911-914.	1.9	4
182	Effect of electron and hole acceptors on the photoelectrochemical behaviour of nanocrystalline microporous TiO2 electrodes. Journal of Electroanalytical Chemistry, 1998, 442, 99-105.	1.9	54
183	Redox properties of nanoporous TiO2 (anatase) surface modified with phosphotungstic acid. Thin Solid Films, 1998, 323, 141-145.	0.8	23
184	Electrical, optical and photovoltaic effect in pyronine G (Y) based thin film sandwich devices. Thin Solid Films, 1998, 333, 176-184.	0.8	49

#	Article	IF	CITATIONS
185	Characterization of a composite film prepared by deposition of TiO2 on porous Si. Solar Energy, 1998, 64, 61-66.	2.9	16
186	Photosensitization effects of porphyrin on n-Si(111) and n-GaAs(100). Journal of Photochemistry and Photobiology A: Chemistry, 1998, 112, 225-229.	2.0	6
187	Absorption and electrochemical properties of ruthenium(II) dyes, studied by semiempirical quantum chemical calculations. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114, 117-124.	2.0	82
188	4-Phenylpyridine as ancillary ligand in ruthenium(II) polypyridyl complexes for sensitization of n-type TiO2 electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115, 239-242.	2.0	33
189	Heterogeneous electron transfer reactions at liquid/liquid interfaces studied by time-resolved absorption spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 117, 27-33.	2.0	12
190	Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 117, 137-142.	2.0	77
191	Photosensitization of nanocrystalline TiO2 thin films by a polyimide bearing pendent substituted-Ru(bpy)3+2groups. Journal of Photochemistry and Photobiology B: Biology, 1998, 43, 232-238.	1.7	9
192	Minimizing the dark current at the dye-sensitized TiO2 electrode. Solar Energy Materials and Solar Cells, 1998, 52, 141-154.	3.0	15
193	An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 1998, 53, 29-54.	3.0	253
194	Synergetic effect of carboxylic acid functional groups and fractal surface characteristics for efficient dye sensitization of titanium oxide. Solar Energy Materials and Solar Cells, 1998, 53, 163-175.	3.0	109
195	Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole. Solar Energy Materials and Solar Cells, 1998, 55, 113-125.	3.0	157
196	Education and solar conversion:. Solar Energy Materials and Solar Cells, 1998, 55, 157-178.	3.0	170
197	Development of a new self-powered electrochromic device for light modulation without external power supply. Solar Energy Materials and Solar Cells, 1998, 54, 405-410.	3.0	33
198	Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film. Solar Energy Materials and Solar Cells, 1998, 56, 75-84.	3.0	40
199	Small-angle X-ray scattering studies of nanophase TiO2 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 54, 174-181.	1.7	11
200	Improvement in photoelectric conversion of a phthalocyanine-sensitized TiO2 electrode by doping with porphyrin. Chemical Physics, 1998, 231, 95-103.	0.9	41
201	New binding state useful for attachment of dye-molecules onto TiO2 surface. Applied Surface Science, 1998, 125, 217-220.	3.1	10
202	The mixed effect of phthalocyanine and porphyrin on the photoelectric conversion of a nanostructured TiO2 electrode. Synthetic Metals, 1998, 92, 269-274.	2.1	17

ARTICLE IF CITATIONS Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under 203 1.2 334 Externally Applied Bias. Journal of Physical Chemistry B, 1998, 102, 1745-1749. Scanning Probe Microscopic Characterization of Surface-Modified n-TiO2 Single-Crystal Electrodes. 204 1.6 Langmuir, 1998, 14, 3405-3410. Photoelectrochemical Properties of a Porous Nb2O5Electrode Sensitized by a Ruthenium Dye. 205 3.2 490 Chemistry of Materials, 1998, 10, 3825-3832. Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface. Journal of Physical 206 Chemistry B, 1998, 102, 452-460. Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis[(4,4â€-carboxy-2,2â€-bipyridine)(thiocyanato)]ruthenium(II). 207 3.2 247 Chemistry of Materials, 1998, 10, 2533-2541. Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4â€~-dicarboxy-2,2â€~-bipyridine)2(NCS)2] by Infrared Transient Absorption. Journal of Physical Chemistry B, 1998, 102, 6455-6458. 208 1.2 292 Unusual properties of ruthenium(II) diphenylcyanamide complexes: chemistry and application as 209 1.4 17 sensitizers of nanocrystalline TiO2. New Journal of Chemistry, 1998, 22, 25-31. Chloride oxidation catalysis by a polymeric oxide derived from [Ru(4,4′-dimethyl-2,2′-bipyridine)(Cl)3(H2O)]. Journal of the Chemical Society, Faraday Transactions, 1998, 1.7 94, 2827-2833. Synthesis and characterization of dichloro(2,2â€²-bipyridyl-4,4â€²-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 427 Td (dicarboxylate)bis(trip 211 1.4 6 New Journal of Chemistry, 1998, 22, 557-558. A transparent nanostructured semiconductor membrane modified by an adsorbed electron donor and electron acceptor. Journal of Materials Chemistry, 1998, 8, 105-110. Ruthenium(II) thiocyanate complexes containing 4â€²-(4-phosphonatophenyI)-2,2â€²:6â€²,2â€²â€²-terpyridine: synthesis, photophysics and photosensitization tonanocrystalline TiO2 electrodes. Journal of Materials 213 41 6.7 Chemistry, 1998, 8, 2055-2060. Visible light-induced long-lived charge separation across a sensitised nanostructured TiO2–polyviologen membrane. Journal of Materials Chemistry, 1998, 8, 2033-2036. Nanoporous n-/selenium/p-CuCNS photovoltaic cell. Journal Physics D: Applied Physics, 1998, 31, 215 1.3 83 2326-2330. Spectral Characterization of the One-Electron Oxidation Product ofcis-Bis(isothiocyanato)bis(4,4â€~-dicarboxylato-2,2â€~-bipyridyl) Ruthenium(II) Complex Using Pulse Radiolysis. Journal of Physical Chemistry B, 1998, 102, 8954-8957. 1.2 Potentiostatic Modulation of the Direction of Light-Induced Electron Transfer in a 217 1.2 26 Heterosupermolecule. Journal of Physical Chemistry B, 1998, 102, 10272-10278. Charge Carrier Transport in Nanostructured Anatase TiO2Films Assisted by the Self-Doping of 111 Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 7820-7828. Spectroscopic and electrochemical studies of a series of copper(I) and rhenium(I) complexes with 219 substituted dipyrido[3,2-a:2â€²,3â€²-c]phenazine ligandsâ€Sâ€. Journal of the Chemical Society Dalton 1.1 73 Transactions, 1998, , 609-616. Photoelectrochemistry of a Substituted-Ru(bpy)32+-Labeled Polyimide and Nanocrystalline SnO2 1.1 Composite Formulated as a Thin-Film Electrode. Journal of Physical Chemistry A, 1998, 102, 5333-5340.

#	Article	IF	CITATIONS
221	The Limiting Role of Iodide Oxidation incis-Os(dcb)2(CN)2/TiO2Photoelectrochemical Cells. Journal of Physical Chemistry B, 1998, 102, 7577-7581.	1.2	103
222	Efficient Lateral Electron Transport inside a Monolayer of Aromatic Amines Anchored on Nanocrystalline Metal Oxide Films. Journal of Physical Chemistry B, 1998, 102, 1498-1507.	1.2	186
223	Reply to Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ruâ^'Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical Chemistry B, 1998, 102, 3651-3652.	1.2	41
224	Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ruâ^'Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical Chemistry B, 1998, 102, 3649-3650.	1.2	114
225	Efficient Light-to-Electrical Energy Conversion with Dithiocarbamateâ^'Ruthenium Polypyridyl Sensitizers. Inorganic Chemistry, 1998, 37, 4533-4537.	1.9	120
226	Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLLâ€~NCS/CuSCN: Initiation and Potential Mechanisms. Chemistry of Materials, 1998, 10, 1501-1509.	3.2	189
227	Catalytic Electrochemical Synthesis Using Nanocrystalline Titanium Dioxide Cathodes in Microemulsions. Langmuir, 1998, 14, 7027-7033.	1.6	21
228	Interfacial Electron Transfer between Fe(II)(CN)64-and TiO2Nanoparticles:Â Direct Electron Injection and Nonexponential Recombination. Journal of Physical Chemistry B, 1998, 102, 10208-10215.	1.2	181
229	Sensitization of Nanocrystalline TiO2by Electropolymerized Thin Films. Chemistry of Materials, 1998, 10, 1748-1750.	3.2	17
230	Redox Properties of Ground and Electronically Excited States:Â [Ru(bpy)2Qbpy]2+Monolayers. Journal of Physical Chemistry B, 1998, 102, 10004-10012.	1.2	39
231	Effect of pH on Photopolymerization Reaction of Aniline Derivatives with the Tris(2,2â€~-bipyridyl)ruthenium Complex and the Methylviologen System. Macromolecules, 1998, 31, 6783-6788.	2.2	31
232	Stepwise Assembly of Tris-Heteroleptic Polypyridyl Complexes of Ruthenium(II). Inorganic Chemistry, 1998, 37, 5251-5259.	1.9	102
233	Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter. Journal of Chemical Education, 1998, 75, 752.	1.1	268
234	Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir, 1998, 14, 3153-3156.	1.6	566
235	Photosensitization of TiO2by [FeII(2,2â€~-bipyridine-4,4â€~-dicarboxylic acid)2(CN)2]: Band Selective Electron Injection from Ultra-Short-Lived Excited States. Journal of the American Chemical Society, 1998, 120, 843-844.	6.6	309
236	Heterosupramolecular chemistry. Journal of Materials Chemistry, 1998, 8, 2157-2164.	6.7	20
237	Role of Iodide in Photoelectrochemical Solar Cells. Electron Transfer between Iodide Ions and Ruthenium Polypyridyl Complex Anchored on Nanocrystalline SiO2 and SnO2 Films. Journal of Physical Chemistry B, 1998, 102, 4944-4951.	1.2	107
238	Electron Transfer Processes in Nanostructured Semiconductor Thin Films. , 0, , 207-233.		13

#	Article	IF	CITATIONS
239	Heterosupramolecular Chemistry. , 0, , 371-388.		0
240	Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of the SnO2/TiO2Coupled System with a Ruthenium Polypyridyl Complex. Journal of Physical Chemistry B, 1998, 102, 10047-10056.	1.2	130
241	Structure and Energetics of Water Adsorbed atTiO2Anatase (101) and (001) Surfaces. Physical Review Letters, 1998, 81, 2954-2957.	2.9	883
242	Charge Dynamics following Dye Photoinjection into a TiO2 Nanocrystalline Network. Journal of Physical Chemistry B, 1998, 102, 766-769.	1.2	55

243 Vibrational Spectroscopic Study of the Coordination of (2,2â€⁻-Bipyridyl-4,4â€⁻-dicarboxylic) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 582 1

244	Colloidal Quantum Dots of III-V Semiconductors. MRS Bulletin, 1998, 23, 24-30.	1.7	63
245	Nano-porous solid-state photovoltaic cell sensitized with tannin. Semiconductor Science and Technology, 1998, 13, 134-138.	1.0	32
246	Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide. Applied Physics Letters, 1998, 72, 650-652.	1.5	34
247	Barrier lowering in dye-sensitized porous- TiO2 solar cells. Applied Physics Letters, 1998, 73, 1901-1903.	1.5	21
248	Zirconium Phosphonate Multilayers of Organic Redox Couples on Nanocrystalline TiO ₂ Semiconductor Electrode. Molecular Crystals and Liquid Crystals, 1998, 316, 401-406.	0.3	3
250	Photosensitization of Porous TiO2Semiconductor Electrode with Xanthene Dyes. Chemistry Letters, 1998, 27, 753-754.	0.7	80
251	Fabrication of Quasi-solid-state Dye-sensitized TiO2Solar Cells Using Low Molecular Weight Gelators. Chemistry Letters, 1998, 27, 1241-1242.	0.7	70
252	Efficient Photosensitization of Nanocrystalline TiO2Films by a New Class of Sensitizer: cis-Dithiocyanato bis(4,7-dicarboxy-1,10-phenanthroline)ruthenium(II). Chemistry Letters, 1998, 27, 1005-1006.	0.7	42
256	Photocatalytic Dechlorination of Air Free Aqueous Carbon Tetrachloride Solutions in TiO ₂ Layer Systems. A Chain Reaction Mechanism. Zeitschrift Fur Physikalische Chemie, 1998, 1, 313-318.	1.4	1
257	Kinetic Modeling of Electron Transfer Processes in Colloidal Semiconductor Photocatalysis. Comprehensive Chemical Kinetics, 1999, , 281-368.	2.3	3
258	Structural Control of Porous Nano-Space in Dye-Sensitized TiO ₂ Solar Cells*. Zeitschrift Fur Physikalische Chemie, 1999, 212, 31-38.	1.4	10
259	Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films, 1999, 351, 220-224.	0.8	264
260	RU(II) sensitized Nb 2 O 5 solar cell made by the sol-gel process. Thin Solid Films, 1999, 351, 290-294.	0.8	114

#	Article	IF	CITATIONS
261	Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films, 1999, 350, 269-275.	0.8	85
262	Preparation, fractal surface morphology and photocatalytic properties of TiO 2 films. Thin Solid Films, 1999, 357, 173-178.	0.8	109
263	Preparation and photoelectrochemical properties of Ti1â^'xVxO2 solid solution thin film photoelectrodes with gradient bandgap. Thin Solid Films, 1999, 340, 125-131.	0.8	37
264	Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid and Interface Science, 1999, 4, 314-321.	3.4	184
265	Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell. Solar Energy Materials and Solar Cells, 1999, 56, 153-165.	3.0	118
266	Donor–acceptor interaction between non-aqueous solvents and I2 to generate lâ~'3, and its implication in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 1999, 57, 259-275.	3.0	150
267	Study on squarylium cyanine dyes for photoelectric conversion. Solar Energy Materials and Solar Cells, 1999, 58, 173-183.	3.0	77
268	A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Solar Energy Materials and Solar Cells, 1999, 58, 321-336.	3.0	262
269	Synthesis, characterization and photoconversion study of [Ru(II)(dcbpy)(terpy)Cl]Cl.3H2O, [Ru(II)(dcbpy)(terpy)SCN]SCN.3H2O and [Ru(II)(dcbpy)(terpy)CN]CN.3H2O systems. Solar Energy Materials and Solar Cells, 1999, 59, 199-209.	3.0	8
270	Enhanced photoresponse of poly(3-methylthiophene) supported on TiO2. Electrochemistry Communications, 1999, 1, 262-265.	2.3	12
271	Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochemistry Communications, 1999, 1, 576-580.	2.3	158
272	Photophysical and acid–base properties of bis(2,2′-bipyridine) (3,3′-dicarboxy-2,2′-bipyridine) rutheniur chloride. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 122, 169-174.	n(II) 2.0	7
273	Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 125, 119-125.	2.0	79
274	Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/p-lâ^'/l3â^' (or Cul)]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 126, 111-115.	2.0	33
275	Breaking the nanosecond barrier in FTIR time-resolved spectroscopy. Vibrational Spectroscopy, 1999, 19, 131-141.	1.2	18
276	Dye-sensitization of n-TiO2 single-crystal electrodes with vapor-deposited oxometal phthalocyanines. Applied Surface Science, 1999, 143, 23-29.	3.1	33
277	Titanium dioxide films for photovoltaic cells derived from a sol–gel process. Solar Energy Materials and Solar Cells, 1999, 56, 167-174.	3.0	93
278	Heat losses in GrÃæel solar cells. Solar Energy Materials and Solar Cells, 1999, 57, 359-371.	3.0	6

#	Article	IF	CITATIONS
279	Electron transfer via organic dyes for solar conversion. Solar Energy Materials and Solar Cells, 1999, 59, 137-143.	3.0	41
280	Rigorous solutions of light scattering of neighboring TiO2 particles in nanocrystalline films. Solar Energy Materials and Solar Cells, 1999, 59, 163-166.	3.0	51
281	Nanocrystalline electrochromic displays. Displays, 1999, 20, 137-144.	2.0	123
282	Synthesis and photophysical properties of trans-dithiocyanato bis(4,4′-dicarboxylic acid-2,2′-bipyridine) ruthenium(II) charge transfer sensitizer. Inorganica Chimica Acta, 1999, 296, 250-253.	1.2	35
283	User controllable photochromic (UCPC) devices. Electrochimica Acta, 1999, 44, 3017-3026.	2.6	25
284	Aspects of the photoelectrochemistry of nanocrystalline systems. Electrochimica Acta, 1999, 45, 549-560.	2.6	82
285	Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2. Langmuir, 1999, 15, 7047-7054.	1.6	315
286	Electron Accumulation in Nanostructured TiO2(Anatase) Electrodes. Journal of Physical Chemistry B, 1999, 103, 7860-7868.	1.2	189
287	Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization. Journal of Physical Chemistry B, 1999, 103, 4693-4700.	1.2	355
288	Structure and Electrochemical Properties of Species Formed as a Result of Cu(II) Ion Adsorption onto TiO2 Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 1308-1315.	1.2	41
289	Preparation of Coordinatively Asymmetrical Ruthenium(II) Polypyridine Complexes. Inorganic Chemistry, 1999, 38, 2267-2278.	1.9	34
290	Electroluminescence of the Dye-Sensitized Solar Cell. Journal of Physical Chemistry B, 1999, 103, 1905-1910.	1.2	29
291	Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science, 1999, 285, 692-698.	6.0	1,105
292	Selective Formation ofcis(X)- andtrans(X)-Ru(dmbpy)(CO)2X2 Complexes (X = Cl, Br, I, SCN) from Monomeric and Dimeric Ru–mono(dmbpy) Carbonyl Complexes (Dmbpy = 4,4′-Dimethyl-2,2′-bipyridine). European Journal of Inorganic Chemistry, 1999, 1999, 101-106.	1.0	20
293	Synthesis, Spectroscopy and Photophysical Properties of Ruthenium Triazole Complexes and Their Application as Dye-Molecules in Regenerative Solar Cells. European Journal of Inorganic Chemistry, 1999, 1999, 2309-2317.	1.0	30
294	Efficient Near-IR Sensitization of Nanocrystalline TiO ₂ Films by Zinc and Aluminum Phthalocyanines. Journal of Porphyrins and Phthalocyanines, 1999, 03, 230-237.	0.4	188
295	Long-Lived Photoinduced Charge Separation and Redox-Type Photochromism on Mesoporous Oxide Films Sensitized by Molecular Dyads. Journal of the American Chemical Society, 1999, 121, 1324-1336.	6.6	253
296	Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell. Journal of Physical Chemistry B, 1999, 103, 8940-8943.	1.2	504

#	Article	IF	CITATIONS
297	Electron Injection Dynamics of Rull(4,4â€~-dicarboxy-2,2â€~-bipyridine)2cis(NCS)2Adsorbed on MoS2Nanoclusters. Journal of Physical Chemistry B, 1999, 103, 11176-11180.	1.2	12
298	Dye-Sensitized TiO2Solar Cells:Â Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4. Journal of Physical Chemistry B, 1999, 103, 3308-3314.	1.2	355
299	Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. Journal of Materials Chemistry, 1999, 9, 2971-2972.	6.7	343
300	Luminescent Homoatomic Exciplexes in Dicyanoargentate(I) Ions Doped in Alkali Halide Crystals. 2. "Exciplex Tuning―by Varying the Dopant Concentration. Journal of Physical Chemistry B, 1999, 103, 3845-3853.	1.2	45
301	Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2Films with a Polymer Electrolyte. Chemistry of Materials, 1999, 11, 2474-2477.	3.2	96
302	Influence of the Attaching Group and Substituted Position in the Photosensitization Behavior of Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 1999, 38, 6320-6322.	1.9	47
303	Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 1999, 11, 2657-2667.	3.2	205
305	Electrochemical and spectroscopic studies on the reduction of the cis-(Et2-dcbpy)2RuX2 series of photovoltaic sensitizer precursor complexes (Et2-dcbpyâ€=â€diethyl 2,2′-bipyridine-4,4′-dicarboxylate,)	Tji ETQq1	1 ®. 784314
306	Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO2. Journal of Applied Physics, 1999, 86, 6915-6923.	1.1	45
307	Absorption and emission behavior of bis(2,2′-bipyridine)[2-(2-pyridyl)benzimidazole]ruthenium(ii) doped in silica gel matrices. Journal of Materials Chemistry, 1999, 9, 3041-3044.	6.7	5
308	Structure, spectroscopic and electrochemical properties of novel binuclear ruthenium(II) copper(I) complexes with polypyridyl bridging ligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 2669-2673.	1.1	28
309	Synthesis and photoelectrochemical properties of a fullerene–azothiophene dyad. Journal of Materials Chemistry, 1999, 9, 2743-2750.	6.7	28
310	An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999, , 15-16.	2.2	288
311	Nanostructured ZnO electrodes for photovoltaic applications. Scripta Materialia, 1999, 12, 487-490.	0.5	148
312	Solid-state photoelectrochemical device using poly(o-methoxy aniline) as sensitizer and an ionic conductive elastomer as electrolyte. Synthetic Metals, 1999, 105, 23-27.	2.1	46
313	Charge Transport Properties in Dye-Sensitized Nanostructured TiO2 Thin Film Electrodes Studied by Photoinduced Current Transients. Journal of Physical Chemistry B, 1999, 103, 1078-1083.	1.2	143
314	Nanocrystalline Mesoporous Strontium Titanate as Photoelectrode Material for Photosensitized Solar Devices:  Increasing Photovoltage through Flatband Potential Engineering. Journal of Physical Chemistry B, 1999, 103, 9328-9332.	1.2	258
315	Acidâ~'Base Equilibria of (2,2â€~-Bipyridyl-4,4â€~-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999, 38, 6298-6305.	1.9	1,020

#	Article	IF	CITATIONS
316	XPS studies of Ru-polypyridine complexes for solar cell applications. Journal of Chemical Physics, 1999, 111, 2744-2750.	1.2	88
317	Evaluation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2Solar Cells. Journal of Physical Chemistry B, 1999, 103, 782-791.	1.2	394
318	Spectroscopic and electrochemical properties of ruthenium(II) polypyridyl complexes. Journal of the Chemical Society Dalton Transactions, 1999, , 4217-4221.	1.1	55
319	Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell. Journal of Physical Chemistry B, 1999, 103, 5743-5746.	1.2	146
320	Photoinduced Charge Injection from Vibronically Hot Excited Molecules of a Dye Sensitizer into Acceptor States of Wide-Bandgap Oxide Semiconductors. Zeitschrift Fur Physikalische Chemie, 1999, 212, 85-92.	1.4	49
321	Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2in Solution and on Nanocrystalline TiO2and Al2O3Thin Films. Journal of Physical Chemistry B, 1999, 103, 3110-3119.	1.2	385
322	Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999, 121, 7445-7446.	6.6	195
323	Heterosupramolecular optical write–read–erase device. Journal of Materials Chemistry, 1999, 9, 2297-2299.	6.7	47
324	Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells. Journal of Physical Chemistry B, 1999, 103, 692-698.	1.2	189
325	Synthesis and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S Semiconductor Colloidal Nanoparticles. Journal of Physical Chemistry A, 1999, 103, 10194-10201.	1.1	143
326	Static and Time-Resolved Spectroscopic Studies of Low-Symmetry Ru(II) Polypyridyl Complexes. Journal of Physical Chemistry A, 1999, 103, 7032-7041.	1.1	55
327	Raman Resonance Effect in a Monolayer of Polypyridyl Ruthenium(II) Complex Adsorbed on Nanocrystalline TiO2via Phosphonated Terpyridyl Ligands. Journal of Physical Chemistry B, 1999, 103, 9569-9575.	1.2	32
328	Adsorption of bi-isonicotinic acid on rutile TiO2(110). Journal of Chemical Physics, 1999, 110, 5913-5918.	1.2	165
329	Photocatalytic Dechlorination of Aqueous Carbon Tetrachloride Solutions in TiO2Layer Systems:Â A Chain Reaction Mechanism. Journal of Physical Chemistry B, 1999, 103, 8524-8531.	1.2	28
330	Ethanol Photocatalysis on TiO2-Coated Optical Microfiber, Supported Monolayer, and Powdered Catalysts:Â An in Situ NMR Study. Journal of Physical Chemistry B, 1999, 103, 11152-11160.	1.2	79
331	Sensitization of TiO2 by Phosphonate-Derivatized Proline Assemblies. Inorganic Chemistry, 1999, 38, 3665-3669.	1.9	76
332	Potentiostatic Modulation of the Lifetime of Light-Induced Charge Separation in a Heterosupermolecule. Journal of Physical Chemistry B, 1999, 103, 8067-8079.	1.2	66
333	Multiple-Exponential Electron Injection in Ru(dcbpy)2(SCN)2Sensitized ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry B, 1999, 103, 6643-6647	1.2	103

#	Article	IF	CITATIONS
334	Spatial Extensions of Excited States of Metal Complexes. Tunability by Chemical Variation. Inorganic Chemistry, 1999, 38, 5820-5831.	1.9	38
335	Effects of Surface Charges and Surface States of Chemically Modified Cadmium Sulfide Nanoparticles Immobilized to Gold Electrode Substrate on Photoinduced Charge Transfers. Langmuir, 1999, 15, 2714-2718.	1.6	22
336	Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces. Journal of Physical Chemistry B, 1999, 103, 7671-7675.	1.2	111
337	Electrochemical and Spectroscopic Studies on the Oxidation of thecis-(Et2-dcbpy)2RuX2Series of Photovoltaic Sensitizer Precursor Complexes (Et2-dcbpy = 2,2â€⁻-Bipyridine-4,4â€⁻-diethoxydicarboxylic) Tj ETQqI	l 1.0. 784:	31 4 5rgBT /0
338	TiO2 Coating Films Prepared from Alkoxy-Derived Nanocrystalline Anatase Suspensions Journal of the Ceramic Society of Japan, 1999, 107, 47-53.	1.3	7
339	Photoelectrochemical Kinetics at Semiconductor Electrodes. Comprehensive Chemical Kinetics, 1999, 37, 223-280.	2.3	7
341	Photocatalytic Dechlorination of Air Free Aqueous Carbon Tetrachloride Solutions in TiO2 Layer Systems. A Chain Reaction Mechanism. Zeitschrift Fur Physikalische Chemie, 1999, 213, 93-98.	1.4	1
342	Femtosecond Electron Transfer from the Excited State of Chemically Anchored Chromophores into the Empty Conduction Band of Nanocrystalline Spong-like TiO ₂ Films*. Zeitschrift Fur Physikalische Chemie, 1999, 212, 67-75.	1.4	21
343	Screen-Printed Dye-Sensitized Large Area Nanocrystalline Solar Cell. Materials Research Society Symposia Proceedings, 1999, 581, 653.	0.1	2
344	Ladungstransfer — chemisch, physikalisch und biologisch betrachtet. Nachrichten Aus Der Chemie, 1999, 47, 641-647.	0.0	0
345	Dye-Sensitized Photocells with Meso-Macroporous TiO2Film Electrodes. Bulletin of the Chemical Society of Japan, 2000, 73, 2609-2614.	2.0	35
346	Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells. Chemistry Letters, 2000, 29, 316-317.	0.7	59
347	Fabrication and Characterization of Meso-Macroporous Anatase TiO2Films. Bulletin of the Chemical Society of Japan, 2000, 73, 1933-1938.	2.0	20
348	Dual Electron Injection from Charge-Transfer Excited States of TiO2-Anchored Ru(II)-4,4′-Dicarboxy-2,2′-biquinoline Complex. Chemistry Letters, 2000, 29, 490-491.	0.7	28
349	Novel Triad Dyes with Wide Spectral Response for SnO2Nanoporous Electrode. Chemistry Letters, 2000, 29, 778-779.	0.7	9
350	Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics: Research and Applications, 2000, 8, 171-185.	4.4	634
351	Electronic absorption, resonance Raman and excited-state resonance Raman spectroscopy of rhenium(I) and copper(I) complexes, with substituted dipyrido[3,2-a : 2′,3′-c]phenazine ligands, and their electron reduced products. Journal of Raman Spectroscopy, 2000, 31, 243-253.	1.2	40
352	Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochimica Acta, 2000, 45, 4543-4551.	2.6	211

#	Article	IF	CITATIONS
353	Variation of carboxylate-functionalized cyanine dyes to produce efficient spectral sensitization of nanocrystalline solar cells. Electrochimica Acta, 2000, 45, 4553-4557.	2.6	55
354	Ultrafast dynamics of light-induced electron injection from a molecular donor into the wide conduction band of a semiconductor as acceptor. Electrochimica Acta, 2000, 45, 4565-4575.	2.6	62
355	Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes. Electrochimica Acta, 2000, 45, 1595-1605.	2.6	43
356	Synthesis and photoelectric studies of Ru(II) polypyridyl sensitizers. Inorganica Chimica Acta, 2000, 308, 73-79.	1.2	23
357	Highly efficient polypyridyl-ruthenium(II) photosensitizers with chelating oxygen donor ligands: β-diketonato-bis(dicarboxybipyridine)ruthenium. Inorganica Chimica Acta, 2000, 310, 169-174.	1.2	55
358	Electrochemical, spectroelectrochemical and theoretical studies on the reduction and deprotonation of the photovoltaic sensitizer [(H3-tctpy)Rull(NCS)3]â^' (H3-tctpy=2,2′:6′,2′′-terpyridine-4,4′,4′′-tricarboxylic acid). Journal of Electroanalytical Chemi 490, 7-16.	stry, 2000	,4
359	Thermal stability of cis-dithiocyanato(2,2′-bipyridyl4,4′dicarboxylate) ruthenium(II) photosensitizer in the free form and on nanocrystalline TiO2 films. Thermochimica Acta, 2000, 348, 105-114.	1.2	57
360	The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. Journal of Molecular Catalysis A, 2000, 151, 205-216.	4.8	131
361	Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation. Electrochemistry Communications, 2000, 2, 262-266.	2.3	62
362	Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1-21.	5.6	6,961
363	Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A, 2000, 161, 205-212.	4.8	1,110
364	Spectral response and IV-characterization of dye-sensitized nanocrystalline TiO 2 solar cells. Solar Energy Materials and Solar Cells, 2000, 62, 399-410.	3.0	67
365	Semiconductor-sensitized solar cells based on nanocrystalline In 2 S 3 /In 2 O 3 thin film electrodes. Solar Energy Materials and Solar Cells, 2000, 62, 441-447.	3.0	108
366	Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Solar Energy Materials and Solar Cells, 2000, 64, 73-83.	3.0	108
367	Electrochemical and photoelectrochemical investigation of new carboxylatobipyridine(bis-bipyridine)ruthenium(II) complexes for dye-sensitized TiO2 electrodes. Solar Energy Materials and Solar Cells, 2000, 64, 97-114.	3.0	24
368	Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells, 2000, 64, 115-134.	3.0	527
369	Characterization by resonance Raman spectroscopy of sol–gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application. Solar Energy Materials and Solar Cells, 2000, 64, 167-184.	3.0	77
370	High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films. Solar Energy Materials and Solar Cells, 2000, 64, 385-392.	3.0	64

#	Article	IF	CITATIONS
371	A photoelectrochemical solar cell based on ZnO/dye/polypyrrole film electrode as photoanode. Solar Energy Materials and Solar Cells, 2000, 60, 349-359.	3.0	49
372	Charge transport properties in the nanostructured ZnO thin film electrode – electrolyte system studied with time resolved photocurrents. Solar Energy Materials and Solar Cells, 2000, 60, 181-193.	3.0	43
373	Electrochromic tungsten oxide films: Review of progress 1993–1998. Solar Energy Materials and Solar Cells, 2000, 60, 201-262.	3.0	1,293
374	A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte. Solar Energy Materials and Solar Cells, 2000, 61, 135-141.	3.0	84
375	Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films. Solar Energy Materials and Solar Cells, 2000, 61, 339-351.	3.0	180
376	A theoretical simulation of light scattering of nanocrystalline films in photoelectrochemical solar cells. Solar Energy Materials and Solar Cells, 2000, 62, 239-246.	3.0	37
377	Mesoporous electrodes having tight agglomeration of single-phase anatase TiO2 nanocrystallites: Application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2000, 61, 427-441.	3.0	94
378	Nanocrystalline Ti-oxide-based solar cells made by sputter deposition and dye sensitization: Efficiency versus film thickness. Solar Energy Materials and Solar Cells, 2000, 62, 259-263.	3.0	43
379	Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Solar Energy Materials and Solar Cells, 2000, 62, 265-273.	3.0	307
380	Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 115-120.	2.0	81
381	Identification of H-aggregate in a monolayer amphiphilic porphyrin–TiO2 nanoparticle heterostructure assembly and its influence on the photoinduced charge transfer. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134, 1-7.	2.0	17
382	Photosensitization of nanocrystalline TiO2 electrodes by squarylium cyanine incorporated with a ruthenium bipyridyl complex. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 135, 235-240.	2.0	15
383	Preparation and application of new ruthenium(II) polypyridyl complexes as sensitizers for nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132, 91-98.	2.0	56
384	Experimental insight into the performance characteristics of Ni-mesh semiconductor photo-electrochemical cells. Solar Energy Materials and Solar Cells, 2000, 62, 43-49.	3.0	9
385	Binding of bi-isonicotinic acid to anatase TiO2 (101). Solar Energy Materials and Solar Cells, 2000, 63, 139-148.	3.0	50
386	Photophysical and photoelectrochemical properties of the bis(2,2′-bipyridine)(4,4′-dimethylthio-2,2′-bipyridine)ruthenium(II) complex. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 135, 185-191.	d2.0	16
387	Synthesis, spectroscopic and a ZINDO study of cis - and trans -(X 2)bis(4,4′-dicarboxylic) Tj ETQq0 0 0 rgBT /Ov 2000, 208, 213-225.	verlock 10 9.5	Tf 50 107 T 110
388	Energy conversion: from the ligand field photochemistry to solar cells. Coordination Chemistry Reviews, 2000, 196, 219-247.	9.5	64

# 389	ARTICLE Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 2000, 45, 2363-2376.	IF 2.6	CITATIONS 611
390	Nanostructured materials in solid state ionics. Solid State Ionics, 2000, 135, 5-19.	1.3	164
391	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 18, 259-267.	1.1	3
392	Mesoporous Nb2O5 Films: Influence of Degree of Crystallinity on Properties. Journal of Sol-Gel Science and Technology, 2000, 19, 175-180.	1.1	31
393	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 239-245.	1.1	19
394	Title is missing!. Journal of Materials Science: Materials in Electronics, 2000, 11, 355-362.	1.1	88
395	Oxide semiconductor materials for solar light energy utilization. Research on Chemical Intermediates, 2000, 26, 145-152.	1.3	41
396	Low-Temperature Sintering of TiO2Colloids:Â Application to Flexible Dye-Sensitized Solar Cells. Langmuir, 2000, 16, 5626-5630.	1.6	228
397	Cooperative Effect of Adsorbed Cations and Iodide on the Interception of Back Electron Transfer in the Dye Sensitization of Nanocrystalline TiO2. Journal of Physical Chemistry B, 2000, 104, 1791-1795.	1.2	341
398	Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry, 2000, 10, 1-25.	6.7	1,582
399	Femtosecond Excited-State Dynamics of an Iron(II) Polypyridyl Solar Cell Sensitizer Model. Journal of the American Chemical Society, 2000, 122, 4092-4097.	6.6	281
400	Molecular Photovoltaics. Accounts of Chemical Research, 2000, 33, 269-277.	7.6	2,625
401	Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2Solar Cells:A A Study by Electrical Impedance and Optical Modulation Techniques. Journal of Physical Chemistry B. 2000, 104, 2044-2052.	1.2	777
402	Chemical treatments of the nanocrystalline porous TiO2 electrodes. Science Bulletin, 2000, 45, 1956-1959.	1.7	6
403	Properties and applications of nanocrystalline electronic junctions. , 2000, , 527-553.		7
404	Charge recombination and transport in dye sensitised TiO/sub 2/ photovoltaic devices. , 0, , .		1
405	N 1s x-ray absorption study of the bonding interaction of bi-isonicotinic acid adsorbed on rutile TiO2(110). Journal of Chemical Physics, 2000, 112, 3945-3948.	1.2	68
406	Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector. Applied Physics Letters, 2000, 77, 2367-2369.	1.5	87

#	Article	IF	CITATIONS
407	Ultrafast interfacial charge separation processes from the singlet and triplet MLCT states of Ru(bpy)2(dcbpy) adsorbed on nanocrystalline SnO2 under negative applied bias. Journal of Chemical Physics, 2000, 113, 3366-3373.	1.2	58
408	Relaxation and electron transfer dynamics in bare and DTDCI sensitized MoS[sub 2] nanoclusters. Journal of Chemical Physics, 2000, 113, 5448.	1.2	15
410	One-Pot Synthesis and Characterization of a Chromophoreâ	1.9	48
411	The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2000, 104, 6-10.	1.2	153
412	Flexible photoelectrochemical devices based on conducting polymers. Synthetic Metals, 2000, 108, 151-157.	2.1	45
413	Studies on polyaniline and colloidal TiO2 composites. Materials Letters, 2000, 45, 262-268.	1.3	54
414	Photosensitization of Thin SnO2Nanocrystalline Semiconductor Film Electrodes with Metallodiporphyrin. Journal of Physical Chemistry B, 2000, 104, 7644-7651.	1.2	48
415	Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. Journal of Physical Chemistry B, 2000, 104, 8989-8994.	1.2	1,082
416	A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II). Dalton Transactions RSC, 2000, , 2817-2822.	2.3	86
417	Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 7239-7253.	1.2	321
418	Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2Solar Cells. Journal of Physical Chemistry B, 2000, 104, 949-958.	1.2	564
419	Time-Resolved Electroluminescence of Dye Sensitized Solar Cells. Journal of Physical Chemistry B, 2000, 104, 308-312.	1.2	16
420	Surfactant-Templated TiO2 (Anatase):  Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures. Journal of Physical Chemistry B, 2000, 104, 12012-12020.	1.2	222
421	Catechol as an efficient anchoring group for attachment of ruthenium–polypyridine photosensitisers to solar cells based on nanocrystalline TiO2 films. New Journal of Chemistry, 2000, 24, 651-652.	1.4	115
422	Bridge Length-Dependent Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 11957-11964.	1.2	207
423	Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 2000, 29, 87-96.	18.7	259
424	Recent Advances in Thin Film Solar Cells. , 2000, , 311-362.		1
425	New Materials: Semiconductors for Solar Cells 0 715-769		1 _

#	Article	IF	CITATIONS
426	Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. Journal of Physical Chemistry B, 2000, 104, 538-547.	1.2	613
427	Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate. Chemical Communications, 2000, , 2063-2064.	2.2	171
428	Bipyridine–porphyrin conjugates with a conjugated connection. Chemical Communications, 2000, , 747-748.	2.2	17
429	Highly efficient charge transfer from a trans-ruthenium bipyridine complex to nanocrystalline TiO2 particles. New Journal of Chemistry, 2000, 24, 567-568.	1.4	38
430	Metal-to-ligand charge-transfer excited-states in binuclear copper(I) complexes. Tuning MLCT excited-states through structural modification of bridging ligands. A resonance Raman study. Dalton Transactions RSC, 2000, , 121-127.	2.3	13
431	New platinum(II) polypyridyl photosensitizers for TiO2 solar cells. New Journal of Chemistry, 2000, 24, 343-345.	1.4	72
432	Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chemical Communications, 2000, , 1173-1174.	2.2	299
433	Effect of steric hindrance on photoinduced electron transfer of self-assembled monolayers of three isomeric Ru(II)-bipyridine complexes on ITO electrode. Physical Chemistry Chemical Physics, 2000, 2, 1333-1337.	1.3	4
434	Regioselective SN2 opening of α,β-ethylenic epoxides by RLi–BF3 combination. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3352-3353.	1.3	17
435	Redox and photochemical behaviour of ruthenium(II) complexes with H2dcbpy ligand (H2dcbpyâ€=â€2,2′-bipyridine-4,4′-dicarboxylic acid). Dalton Transactions RSC, 2000, , 2745-2752.	2.3	65
436	Photoredox behavior of methylviologen doped in silica gel matrices. Journal of Materials Chemistry, 2000, 10, 2765-2768.	6.7	1
437	Synthesis of novel multi-chromophoric soluble perylene derivatives and their photosensitizing properties with wide spectral response for SnO2 nanoporous electrode. Journal of Materials Chemistry, 2000, 10, 2708-2715.	6.7	94
438	Photoelectrochromic heterosupramolecular assemblies. Journal of Materials Chemistry, 2000, 10, 685-692.	6.7	39
439	New Photosensitizers Based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = Substituted 2,2â \in -Bipyridine):â \in ‰ Yields for the Photosensitization of TiO2 and Effects on the Band Selectivity. Chemistry of Materials, 2000, 12, 1083-1089.	3.2	137
440	Dependence of the Photocurrent Conversion Efficiency of Dye-Sensitized Solar Cells on the Incident Light Intensity. Journal of Physical Chemistry B, 2000, 104, 11484-11488.	1.2	68
441	Investigation of the Kinetics of the Back Reaction of Electrons with Tri-Iodide in Dye-Sensitized Nanocrystalline Photovoltaic Cells. Journal of Physical Chemistry B, 2000, 104, 8916-8919.	1.2	157
442	Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces. Journal of Physical Chemistry A, 2000, 104, 4256-4262.	1.1	251
443	Ultrafast Excited-State Dynamics of Re(CO)3Cl(dcbpy) in Solution and on Nanocrystalline TiO2 and ZrO2 Thin Films. Journal of Physical Chemistry A, 2000, 104, 4291-4299.	1.1	81

#	Article	IF	CITATIONS
444	Effect of sol processing parameters on dye-sensitized TiO/sub 2/ solar cell by spin-coating method. , 0, ,		0
445	Experimental and Theoretical Investigations of the Effect of Deprotonation on Electronic Spectra and Reversible Potentials of Photovoltaic Sensitizers:Â Deprotonation ofcis-L2RuX2(L =) Tj ETQq1 1 0.784314 rgBT /	Overlock 1	0 Tf 50 702
	Electrodes. Journal of the American Chemical Society. 2000. 122. 130-142.		
446	Photolelectrochemistry of Nanostructured WO3Thin Film Electrodes for Water Oxidation:Â Mechanism of Electron Transport. Journal of Physical Chemistry B, 2000, 104, 5686-5696.	1.2	213
447	Adsorption Studies of Counterions Carried by the Sensitizercis-Dithiocyanato(2,2â€~-bipyridyl-4,4â€~-dicarboxylate) Ruthenium(II) on Nanocrystalline TiO2Films. Langmuir, 2000, 16, 8525-8528.	1.6	39
448	The Role of Surface States in the Ultrafast Photoinduced Electron Transfer from Sensitizing Dye Molecules to Semiconductor Colloids. Journal of Physical Chemistry B, 2000, 104, 8995-9003.	1.2	269
449	Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Ruthenium Polypyridyl Complexes. Journal of Physical Chemistry B, 2000, 104, 6821-6836.	1.2	155
450	Thermally Activated, Inverted Interfacial Electron Transfer Kinetics:Â High Driving Force Reactions between Tin Oxide Nanoparticles and Electrostatically-Bound Molecular Reactants. Journal of the American Chemical Society, 2000, 122, 10956-10963.	6.6	70
451	Stepwise Charge Separation in Heterotriads. Binuclear Ru(II)â^'Rh(III) Complexes on Nanocrystalline Titanium Dioxide. Journal of the American Chemical Society, 2000, 122, 2840-2849.	6.6	104
452	Temperature-Dependent Electron Injection from Ru(II) Polypyridyl Compounds with Low Lying Ligand Field States to Titanium Dioxide. Langmuir, 2000, 16, 4662-4671.	1.6	47
453	High Quantum Yield Sensitization of Nanocrystalline Titanium Dioxide Photoelectrodes withcis-Dicyanobis(4,4â€~dicarboxy-2,2â€~bipyridine)osmium(II) or Tris(4,4â€~dicarboxy-2,2â€~bipyridine)osmium(II) Complexes. Journal of Physical Chemistry B, 2000, 104, 3488-3491.	1.2	109
454	Optical Properties and Reactions of Radiation Induced TiO2Electrons in Aqueous Colloid Solutions. Journal of Physical Chemistry B, 2000, 104, 5848-5853.	1.2	59
455	Electrodeposition of C60Cluster Aggregates on Nanostructured SnO2Films for Enhanced Photocurrent Generation. Journal of Physical Chemistry B, 2000, 104, 4014-4017.	1.2	144
456	Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films:  A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. Journal of Physical Chemistry B, 2000, 104, 1198-1205.	1.2	433
457	Photoelectric Conversion Properties of Nanocrystalline TiO2Electrodes Sensitized with Hemicyanine Derivatives. Journal of Physical Chemistry B, 2000, 104, 9676-9682.	1.2	203
458	Optical and Electrical Characterizations of Ultrathin Films Self-Assembled from 11-Aminoundecanoic Acid Capped TiO2Nanoparticles and Polyallylamine Hydrochlorideâ€. Langmuir, 2000, 16, 241-246.	1.6	99
459	Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2. Journal of Physical Chemistry B, 2000, 104, 3624-3629.	1.2	310
460	Determination of pKaValues of 4-Phosphonato-2,2â€~:6â€~,2â€~Ââ€~-Terpyridine and Its Ruthenium(II)-Based Photosensitizer by NMR, Potentiometric, and Spectrophotometric Methods. Inorganic Chemistry, 2000, 39, 4542-4547.	1.9	29
461	Spectral Sensitization of TiO2Substrates by Monolayers of Porphyrin Heterodimers. Journal of Physical Chemistry B, 2000, 104, 2371-2377.	1.2	83

#	Article	IF	CITATIONS
462	Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes. Journal of Physical Chemistry B, 2001, 105, 392-403.	1.2	276
463	A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode. Chemistry of Materials, 2001, 13, 678-682.	3.2	294
464	Photovoltage in nanocrystalline porousTiO2. Physical Review B, 2001, 64, .	1.1	223
465	Suppression of recombinations in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide. Journal Physics D: Applied Physics, 2001, 34, 868-873.	1.3	115
466	Synthesis of a Hemicyanine Dye Bearing Two Carboxylic Groups and Its Use as a Photosensitizer in Dye-Sensitized Photoelectrochemical Cells. Chemistry of Materials, 2001, 13, 3888-3892.	3.2	65
467	Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. Journal of Physical Chemistry B, 2001, 105, 6867-6873.	1.2	356
468	Laser Photolysis of TiO2Layers in the Presence of Aqueous lodide. Journal of Physical Chemistry B, 2001, 105, 6324-6329.	1.2	20
469	Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3Nanocrystalline Photoanodes:Â Indication for Electron Injection from Higher Excited Dye States. Journal of Physical Chemistry B, 2001, 105, 6347-6352.	1.2	332
470	Experimental Fingerprints of Vibrational Wave-Packet Motion during Ultrafast Heterogeneous Electron Transfer. Journal of Physical Chemistry B, 2001, 105, 9245-9253.	1.2	151
471	High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters, 2001, 79, 2085-2087.	1.5	485
472	Spectral Sensitization of TiO2Nanocrystalline Electrodes with Aggregated Cyanine Dyes. Journal of Physical Chemistry B, 2001, 105, 9960-9965.	1.2	356
473	Phthalocyanine-Sensitized Nanostructured TiO2Electrodes Prepared by a Novel Anchoring Method. Langmuir, 2001, 17, 2743-2747.	1.6	124
474	Photocurrent Enhancement of Hemicyanine Dyes Containing RSO3- Group through Treating TiO2 Films with Hydrochloric Acid. Journal of Physical Chemistry B, 2001, 105, 9210-9217.	1.2	160
475	A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications, 2001, , 569-570.	2.2	560
476	Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications. Journal of the American Chemical Society, 2001, 123, 10639-10649.	6.6	975
477	Novel Boxlike Dinuclear or Chain Polymeric Silver(I) Complexes with Polypyridyl Bridging Ligands:Â Syntheses, Crystal Structures, and Spectroscopic and Electrochemical Properties. Inorganic Chemistry, 2001, 40, 4143-4149.	1.9	66
478	Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. Journal of Physical Chemistry B, 2001, 105, 7517-7524.	1.2	155
479	IR Spectroscopy of Surface Water and Hydroxyl Species on Nanocrystalline TiO2 Films. Langmuir, 2001, 17, 816-820.	1.6	150

#	Article	IF	CITATIONS
480	A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chemical Communications, 2001, , 281-282.	2.2	51
481	Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers. Langmuir, 2001, 17, 5992-5999.	1.6	177
482	Investigation of the Photocatalytic Activity of TiO2â^'Polyoxometalate Systems. Environmental Science & Technology, 2001, 35, 3242-3246.	4.6	173
483	Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorganic Chemistry, 2001, 40, 6073-6079.	1.9	303
484	Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001, 123, 1613-1624.	6.6	2,483
486	Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 2001, 101, 953-996.	23.0	1,311
487	Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2001, 105, 4545-4557.	1.2	594
488	Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells:  Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. Journal of Physical Chemistry B, 2001, 105, 12809-12815.	1.2	358
489	Li Insertion into Li-Ti-O Spinels: Voltammetric and Electrochemical Impedance Spectroscopy Study. Journal of the Electrochemical Society, 2001, 148, A1045.	1.3	50
490	The photoelectrochemical properties of TiO2 electrodes modified by quantum sized PbS and thiols. Synthetic Metals, 2001, 123, 267-272.	2.1	19
491	Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals, 2001, 125, 279-287.	2.1	166
492	Photoelectrochemical properties of SnO2/TiO2 coupled electrode sensitized by a mercurochrome dye. Materials Letters, 2001, 51, 451-454.	1.3	23
494	Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. Journal of Physical Chemistry B, 2001, 105, 1422-1429.	1.2	486
495	Resonance Raman Scattering of a Dye-Sensitized Solar Cell:Â Mechanism of Thiocyanato Ligand Exchange. Journal of Physical Chemistry B, 2001, 105, 6314-6320.	1.2	161
496	Photochemical reactivity of halogen-containing ruthenium–dcbpy (dcbpy = 4,4'-dicarboxylic) Tj ETQq0 0 0 rgBT Physical Chemistry Chemical Physics, 2001, 3, 1992-1998.	/Overlock 1.3	10 Tf 50 18 23
497	Significant effects of the distance between the cyanine dye skeleton and the semiconductor surface on the photoelectrochemical properties of dye-sensitized porous semiconductor electrodes. New Journal of Chemistry, 2001, 25, 200-202.	1.4	71
498	Enhanced chemical reactivity of the tris-(2,2′-bipyridyl)ruthenium(II) complex due to electrostatic binding to colloidal particles as evidenced on the basis of the reaction with azidyl radicals. Physical Chemistry Chemical Physics, 2001, 3, 213-217.	1.3	1
499	Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. Journal of Materials Chemistry, 2001, 11, 521-526.	6.7	134

#	Article	IF	CITATIONS
500	Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B, 2001, 63, .	1.1	378
501	Photoelectrochemical Properties of Nano- to Microstructured ZnO Electrodes. Journal of the Electrochemical Society, 2001, 148, A149.	1.3	96
502	Computer Simulations of Charge Transport in Dye-Sensitized Nanocrystalline Photovoltaic Cells. Journal of Physical Chemistry B, 2001, 105, 4577-4583.	1.2	36
503	Large Increases in Photocurrents and Solar Conversion Efficiencies by UV Illumination of Dye Sensitized Solar Cells. Journal of Physical Chemistry B, 2001, 105, 7602-7605.	1.2	119
504	Electron Injection and Recombination in Fluorescein 27-Sensitized TiO2 Thin Films. Journal of Physical Chemistry B, 2001, 105, 967-974.	1.2	85
505	Photophysics and Relaxation Dynamics of Ru(4,4â€~Dicarboxy-2,2â€~-bipyridine)2cis(NCS)2in Solution. Journal of Physical Chemistry A, 2001, 105, 4019-4028.	1.1	36
506	Dye-Sensitized Photoelectrochemical Cell Using a Nanocomposite SiO2/Poly(Ethylene Glycol) Thin Film as Electrolyte Support. Characterization by Time-Resolved Luminescence and Conductivity Measurements. Journal of Physical Chemistry B, 2001, 105, 3486-3492.	1.2	49
507	Alternative Self-Assembled Films of Metal-Ion-Bridged 3,4,9,10-Perylenetetracarboxylic Acid on Nanostructured TiO2Electrodes and Their Photoelectrochemical Properties. Journal of Physical Chemistry B, 2001, 105, 4230-4234.	1.2	22
508	Potential Distribution and Photovoltage Origin in Nanostructured TiO2 Sensitization Solar Cells:  An Interference Reflection Study. Journal of Physical Chemistry B, 2001, 105, 9732-9738.	1.2	22
509	Proton-Controlled Electron Injection from Molecular Excited States to the Empty States in Nanocrystalline TiO2. Langmuir, 2001, 17, 6720-6728.	1.6	179
510	Quantitative Study of Electron Losses in Nanoporous Anatase Using Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 7220-7226.	1.2	16
511	Time-Resolved Optical Spectroscopy of Heterosupramolecular Assemblies Based on Nanostructured TiO2Films Modified by Chemisorption of Covalently Linked Ruthenium and Viologen Complex Components. Journal of Physical Chemistry B, 2001, 105, 2998-3004.	1.2	32
512	Synthesis and Characterization of Ruthenium(II) Molecular Assemblies for Photosensitization of Nanocrystalline TiO2:  Utilization of Hydroxyl Grafting Mode. Inorganic Chemistry, 2001, 40, 756-765.	1.9	49
513	Molecular Energy Transfer across Oxide Surfaces. Journal of Physical Chemistry B, 2001, 105, 8895-8904.	1.2	32
514	Photophysical Properties of TiO2Surfaces Modified with Dinuclear RuRu and RuOs Polypyridyl Complexes. Inorganic Chemistry, 2001, 40, 5343-5349.	1.9	48
515	Dye Sensitization of Nanocrystalline Titanium Dioxide with Square Planar Platinum(II) Diimine Dithiolate Complexes. Inorganic Chemistry, 2001, 40, 5371-5380.	1.9	215
516	Triarylamine on Nanocrystalline TiO2 Studied in Its Reduced and Oxidized State by Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 7182-7187.	1.2	14
517	Interaction of I-and I3-with a Redox-Stable Cr(III)-Based Structural Surrogate for Photo-Oxidized "N3 Dye― Inorganic Chemistry, 2001, 40, 5924-5927	1.9	29

#	Article	IF	CITATIONS
519	Rod-like Dinuclear Ruthenium Complexes for Dye-sensitized Photovoltaics. Materials Research Society Symposia Proceedings, 2001, 708, 10381.	0.1	0
520	Photoelectric Response from Nanofibous Membranes. Materials Research Society Symposia Proceedings, 2001, 708, 951.	0.1	6
521	Effect of Semiconductor and Dye Interfacial Properties in Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	2
525	Fabrication of Solid-State Dye-Sensitized TiO2Solar Cell Using Polymer Electrolyte. Bulletin of the Chemical Society of Japan, 2001, 74, 387-393.	2.0	69
526	Improved Solid-State Dye Solar Cells with Polypyrrole using a Carbon-Based Counter Electrode. Chemistry Letters, 2001, 30, 1054-1055.	0.7	97
527	Photoelectrochemical Cells Made from SnO2/ZnO Films Sensitized with Eosin Dyes. Chemistry Letters, 2001, 30, 180-181.	0.7	21
528	Nanocrystalline TiO2Electrodes Prepared by Water-Medium Screen Printing Technique. Chemistry Letters, 2001, 30, 1042-1043.	0.7	33
529	The Application of Room Temperature Molten Salt with Low Viscosity to the Electrolyte for Dye-Sensitized Solar Cell. Chemistry Letters, 2001, 30, 26-27.	0.7	182
530	Cathodic Electrodeposition of TiO2Thin Films for Dye-Sensitized Photoelectrochemical Applications. Chemistry Letters, 2001, 30, 78-79.	0.7	44
531	TiO2 Film Formation by a Spray Pyrolysis Deposition Technique and its Application to Dye-sensitized Solar Cell. Journal of the Japan Society of Colour Material, 2001, 74, 612-621.	0.0	1
532	<title>Concept of dye-sensitized mesoporous solid state heterojunction solar cells</title> .,2001,,.		3
534	Self-assembly and photoelectric properties of cerium complexes with 3, 4, 9, 10-perylenetetracarboxylic acid on nanocrystalline TiO2 films. Science in China Series B: Chemistry, 2001, 44, 268-275.	0.8	3
535	Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials, 2001, 30, 992-996.	1.0	26
536	ATR–FTIR study of the stability trends of carboxylate complexes formed on the surface of titanium dioxide particles immersed in water. Solid State Ionics, 2001, 143, 125-130.	1.3	66
537	Langmuir monolayer of hypocrellins and their amino substituted derivatives at the air/water interface: Brewster angle microscopy study. Thin Solid Films, 2001, 388, 120-125.	0.8	0
538	Sensitization of screen-printed and spray-painted TiO2 coatings by chemically deposited CdSe thin films. Thin Solid Films, 2001, 389, 91-98.	0.8	18
539	Self-assembly of ZnO/riboflavin $5\hat{a}\in^2$ -phosphate thin films by one-step electrodeposition and its characterization. Thin Solid Films, 2001, 397, 63-69.	0.8	30
540	Functionalized tetradentate ligands for Ru-sensitized solar cells. Tetrahedron, 2001, 57, 8145-8150.	1.0	18

		CITATION REPORT		
#	Article		IF	CITATIONS
541	Mesoporous thin film TiO2 electrodes. Microporous and Mesoporous Materials, 2001, 44-45, 653-6	59.	2.2	102
542	The voltammetric reduction, deprotonation and surface activity of ruthenium photovoltaic sensitizers in acetone. Electrochemistry Communications, 2001, 3, 400-405.		2.3	1
543	Nanoporous TiO2 solar cells sensitized with iron(II) complexes of bromopyrogallol red ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 173-177.		2.0	26
544	Sensitization of nanoporous TiO2 electrodes using the naturally occurring chromophores: stentorir and hypericin. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 179-183.		2.0	7
545	Photosensitization of nanocrystalline TiO2 electrodes with II B group metal-ion-bridged self-assembled films of 3,4,9,10-perylenetetracarboxylic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 255-262.		2.0	9
546	Photocurrent instability of PbS-sensitized TiO2 electrodes in S2â^' and SO32â^' solution. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143, 87-92.		2.0	14
547	Photoelectrochemical behaviour of methanol oxidation at nanoporous TiO2 film electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 197-204.		2.0	74
548	New Ru(II) phenanthroline complex photosensitizers having different number of carboxyl groups fo dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 11	r 7-122.	2.0	45
549	Separation of linkage isomers of trithiocyanato (4,4′,4″-tricarboxy-2,2′,6,2″-terpyridine)r pH-titration method and their application in nanocrystalline TiO2-based solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 79-86.	uthenium(II) by	2.0	52
550	Sensitization of nanocrystalline TiO2 film by ruthenium(II) diimine dithiolate complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145, 135-141.		2.0	59
551	Investigation of the effect of sol processing parameters on the photoelectrical properties of dye-sensitized TiO2 solar cells. Solar Energy Materials and Solar Cells, 2001, 65, 171-177.		3.0	50
552	Sol–gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Solar Energy Materials and Solar Cells, 2001, 68, 401-422.		3.0	187
553	Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells, 2001, 70, 151-161.		3.0	147
554	Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized chemically deposited CdSe thin films. Solar Energy Materials and Solar Cells, 2001, 70, 163-173.	by	3.0	25
555	Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Solar Energy Materials and Solar Cells, 2001, 69, 195-199.		3.0	235
556	Evidence for change of the interfacially local structure of titanium oxide/bis[(4,4?-carboxy-2,2?-bipyridine) (thiocyanato)] ruthenium nanocomposite. Surface and Inte Analysis, 2001, 32, 95-97.	rface	0.8	3
557	Local conductivity study of TiO2 electrodes by atomic force microscopy. Surface and Interface Analysis, 2001, 32, 125-129.		0.8	6
558	Free-base tetra-arylphthalocyanines for dye-sensitised nanostructured solar cell applications. Journal of Porphyrins and Phthalocyanines, 2001, 05, 609-616.		0.4	24

ARTICLE IF CITATIONS # All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochimica Acta, 559 2.6 94 2001, 46, 4243-4249. Transient absorption studies of the Ru(dcbpy)2(NCS)2 excited state and the dye cation on 1.2 nanocrystalline TiO2 film. Chemical Physics Letters, 2001, 340, 217-221. Synthesis and photophysical properties of ruthenium(II) charge transfer sensitizers containing 4,4′-dicarboxy-2,2â€́2-biquinoline and 5,8-dicarboxy-́6,7-diȟydro-dibenzo[1,10]-phenanthroline. Inorganica 561 1.2 40 Chimica Acta, 2001, 322, 7-16. Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 445-447. Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 20, 95-104. 563 1.1 11 Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline 564 1.3 284 thin films. Research on Chemical Intermediates, 2001, 27, 393-406. Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films. 565 2.0 82 Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 215-220. Optical properties of nano-structured dye-sensitized solar cells. Solar Energy Materials and Solar 566 Cells, 2001, 69, 147-163. A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2001, 70, 85-101. 567 3.0 27 Synthetic control of the photophysical and photoelectrochemical properties of ruthenium(II) polypyridyl complexes. Solar Energy Materials and Solar Cells, 2001, 70, 131-139. 569 New photoelectrochromic device. Electrochimica Acta, 2001, 46, 2131-2136. 2.6 125 Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized 2.6 1,212 solar cells. Electrochimica Acta, 2001, 46, 3457-3466. Photoelectrochemical cells. Nature, 2001, 414, 338-344. 571 13.7 11,931 Dependence of the Voltammetric Oxidation of the Photovoltaic Sensitizer : [(H[sub 3]-tctpy)Ru[sup II](NCS)[sub 3]][sup â''] on the Electrode Material, Solvent, and Isomeric Purity. Journal of the Electrochemical Society, 2001, 148, E97. 1.3 <title>Novel hole transporting poly(triphenyldiamine)s for application in hybrid solar cells</title>., 573 4 2001, 4108, 104. Performance Simulation for Dye-Sensitized Solar Cells: Toward High Efficiency and Solid State. Japanese Journal of Applied Physics, 2001, 40, 97-107. 43 Theory of ultrafast photoinduced heterogeneous electron transfer: Decay of vibrational coherence 576 1.2 77 into a finite electronic–vibrational quasicontinuum. Journal of Chemical Physics, 2001, 115, 2743-2756. The Preparation of Porous TiO[sub 2] by Immersing Ti in NaOH Solution. Journal of the 1.3 Electrochemical Society, 2002, 149, D167.

#	Article	IF	CITATIONS
578	Ruthenium phthalocyanines with axial carboxylate ligands: Synthesis and function in solar cells based on nanocrystalline TiO ₂ . Journal of Porphyrins and Phthalocyanines, 2002, 06, 217-224.	0.4	32
579	Near-infrared sensitization solar cell with the electrode of aluminium phthalocyanine adsorbed on nanocrystalline titanium dioxide film. Journal of Porphyrins and Phthalocyanines, 2002, 06, 211-216.	0.4	13
580	Electrochemical Activity of Hydrothermally Synthesized Li-Ti-O Cubic Oxides toward Li Insertion. Journal of the Electrochemical Society, 2002, 149, A1224.	1.3	35
581	Dye Sensitization of Natural Anatase Crystals with a Ruthenium-Based Dye. Journal of the Electrochemical Society, 2002, 149, A1146.	1.3	49
582	<title>Electron losses in nanostructured anatase using transient absorption spectroscopy</title> . , 2002, 4465, 94.		0
584	Low-Cost, Large-Area Nanocrystalline TiO2 -Polymer Solar Cells on Flexible Plastics. Materials Research Society Symposia Proceedings, 2002, 737, 723.	0.1	2
585	Organic Photoconducting Materials. , 2002, , .		0
586	Application of Poly(3,4-ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells. Chemistry Letters, 2002, 31, 1060-1061.	0.7	212
587	Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2Layers. Chemistry Letters, 2002, 31, 1250-1251.	0.7	110
588	Quasi-Solid-State Dye-Sensitized Solar Cell with Ionic Polymer Electrolyte. Chemistry Letters, 2002, 31, 948-949.	0.7	41
589	Dye-sensitized Solar Cells Using Brookite Nanoparticle TiO2Films as Electrodes. Chemistry Letters, 2002, 31, 872-873.	0.7	34
590	Significant Effect of Carbonate Ions on the Photooxidation of Water on Mesoporous TiO2Film Electrodes. Chemistry Letters, 2002, 31, 994-995.	0.7	10
591	Low Temperature Synthesis of Porous Nanocrystalline TiO2Thick Film for Dye-Sensitized Solar Cells by Hydrothermal Crystallization. Chemistry Letters, 2002, 31, 874-875.	0.7	63
592	A Nanocomposite Gel Electrolyte Made by the Sol-Gel Route for a Solid-State Dye-Sensitized Photoelectrochemical and Electrochromic Cells. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	3
593	Organized mesoporous titanium dioxide - A powerful photocatalyst for the removal of water pollutants. Studies in Surface Science and Catalysis, 2002, , 599-606.	1.5	4
595	Solvatochromic Dye Sensitized Nanocrystalline Solar Cells. Nano Letters, 2002, 2, 625-628.	4.5	50
596	Long-Range Electron Transfer across Moleculeâ^'Nanocrystalline Semiconductor Interfaces Using Tripodal Sensitizers. Journal of the American Chemical Society, 2002, 124, 7801-7811.	6.6	150
597	Real-Time Observation of Photoinduced Adiabatic Electron Transfer in Strongly Coupled Dye/Semiconductor Colloidal Systems with a 6 fs Time Constant. Journal of Physical Chemistry B, 2002, 106, 6494-6499.	1.2	239

#	Article	IF	CITATIONS
598	Enhanced photosensitization of nanocrystalline TiO2 film with a sulfonic sensitizer by surface protonation. New Journal of Chemistry, 2002, 26, 184-187.	1.4	4
599	Electron Injection Dynamics of Rull(dcbpy)2(SCN)2on Zirconia. Journal of Physical Chemistry B, 2002, 106, 6211-6219.	1.2	28
600	Enhanced Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized TiO[sub 2] Solar Cells with TiO[sub 2]-WO[sub 3] Buffer Layers Prepared by a Sol-Gel Method. Journal of the Electrochemical Society, 2002, 149, E155.	1.3	42
601	PES Studies of Ru(dcbpyH2)2(NCS)2Adsorption on Nanostructured ZnO for Solar Cell Applications. Journal of Physical Chemistry B, 2002, 106, 10102-10107.	1.2	106
602	Photocatalytic Activity of a Multicomponent System Assembled within Zeolites:Â Case of 2,4,6-Triphenylpyrylium or Ruthenium Tris(bipyridyl) Photosensitizers and Titanium Dioxide Relays within Zeolite Y. Journal of Physical Chemistry B, 2002, 106, 2460-2467.	1.2	38
603	Electron Spectroscopic Studies of Bis-(2,2â€~-bipyridine)-(4,4â€~-dicarboxy-2,2â€~-bipyridine)-ruthenium(II) and Bis-(2,2â€~-bipyridine)-(4,4â€~-dicarboxy-2,2â€~-bipyridine)-osmium(II) Adsorbed on Nanostructured TiO2and ZnO Surfaces. Journal of Physical Chemistry B, 2002, 106, 10108-10113.	1.2	50
604	Photocurrent Generation in Multilayer Organicâ^'Inorganic Thin Films with Cascade Energy Architectures. Journal of the American Chemical Society, 2002, 124, 4796-4803.	6.6	85
605	Effect of the Ligand Structure on the Efficiency of Electron Injection from Excited Ruâ`'Phenanthroline Complexes to Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2002, 106, 374-379.	1.2	83
606	Preparation of Nanoporous Titania Films by Surface Solâ^'Gel Process Accompanied by Low-Temperature Oxygen Plasma Treatment. Langmuir, 2002, 18, 9048-9053.	1.6	75
607	Photocurrent Generation in Thin SnO2Nanocrystalline Semiconductor Film Electrodes from Photoinduced Charge-Separation State in Porphyrinâ^C60Dyad. Journal of Physical Chemistry B, 2002, 106, 4070-4078.	1.2	47
608	Synthesis and Study of the Absorption and Luminescence Properties of Polymers Containing Ru(BpyMe2)32+ Chromophores and Coumarin Laser Dyes. Macromolecules, 2002, 35, 5396-5404.	2.2	74
609	Alternate assemblies of thionine and Au-nanoparticles on an amino functionalized surfaceElectronic supplementary information (ESI) available: AFM images and cyclic voltammograms. See http://www.rsc.org/suppdata/cc/b2/b204004b/. Chemical Communications, 2002, , 1706-1707.	2.2	32
610	Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks. Journal of the American Chemical Society, 2002, 124, 9582-9590.	6.6	368
611	Enhanced Energy Conversion Efficiency of the Sr2+-Modified Nanoporous TiO2Electrode Sensitized with a Ruthenium Complex. Chemistry of Materials, 2002, 14, 1500-1504.	3.2	60
612	Sensitizing Mechanism and Adsorption Properties of Dye-Sensitized TiO2 Thin Films. Plasma Science and Technology, 2002, 4, 1475-1480.	0.7	3
613	Comparison of Photoelectrochromic Devices with Different Layer Configurations. Journal of the Electrochemical Society, 2002, 149, H159.	1.3	59
614	Synthesis of a new copper(i) complex, [Cu(tmdcbpy)2]+ (tmdcbpy =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 107 To Transactions RSC, 2002, , 840.	d (4,4′, 2.3	6,6′-tetra 105
615	XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface:Â Alignment of Energy Levels. Journal of Physical Chemistry B, 2002, 106, 5814-5819.	1.2	191

#	Article	IF	CITATIONS
616	Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study. Chemistry of Materials, 2002, 14, 3556-3563.	3.2	83
617	Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells. Journal of Physical Chemistry B, 2002, 106, 12693-12704.	1.2	181
618	Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2Films. Langmuir, 2002, 18, 952-954.	1.6	238
619	Electron localisation in electrochemically reduced mono- and bi-nuclear rhenium(i) complexes with bridged polypyridyl ligands. Dalton Transactions RSC, 2002, , 1180.	2.3	17
620	Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2002, 124, 11215-11222.	6.6	542
621	Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2into Nanocrystalline TiO2Thin Films. Journal of Physical Chemistry B, 2002, 106, 4396-4404.	1.2	219
622	Iodide Electron Transfer Kinetics in Dye-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2002, 106, 12203-12210.	1.2	213
623	Quantitative Analysis of Light-Harvesting Efficiency and Electron-Transfer Yield in Ruthenium-Dye-Sensitized Nanocrystalline TiO2Solar Cells. Chemistry of Materials, 2002, 14, 2527-2535.	3.2	230
624	Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical Communications, 2002, , 374-375.	2.2	472
625	Improved Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized Solar Cells with Polypyrrole-Anchored TiO[sub 2] Films. Journal of the Electrochemical Society, 2002, 149, E493.	1.3	35
626	Effect of Trap States on Interfacial Electron Transfer between Molecular Absorbates and Semiconductor Nanoparticles. Journal of Physical Chemistry B, 2002, 106, 10191-10198.	1.2	119
627	Solvent Effects on the Oxidative Electrochemical Behavior ofcis-Bis(isothiocyanato)ruthenium(II)-bis-2,2â€~-bipyridine-4,4â€~-dicarboxylic Acid. Journal of Physical Chemistry B, 2002, 106, 3926-3932.	1.2	61
628	Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chemical Communications, 2002, , 1030-1031.	2.2	236
629	Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4â€~-dicarboxylato-2,2â€~-bipyridine)bis(isothiocyanato)ruthenium(II). Journal of Physical Chemistry A, 2002, 106, 7399-7406.	1.1	207
630	Lateral Electron Transport inside a Monolayer of Derivatized Fullerenes Anchored on Nanocrystalline Metal Oxide Films. Journal of Physical Chemistry B, 2002, 106, 3813-3822.	1.2	34
631	A Theoretical Investigation of the Ground and Excited States of Selected Ru and Os Polypyridyl Molecular Dyes. Journal of Physical Chemistry A, 2002, 106, 11354-11360.	1.1	174
632	Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States. Journal of the American Chemical Society, 2002, 124, 489-493.	6.6	546
633	Photonic antenna system for light harvesting, transport and trapping. Journal of Materials Chemistry, 2002, 12, 1-13.	6.7	145

#	Article	IF	CITATIONS
634	Novel Ruthenium Sensitizers Containing Functionalized Hybrid Tetradentate Ligands:Â Synthesis, Characterization, and INDO/S Analysis. Inorganic Chemistry, 2002, 41, 367-378.	1.9	167
635	Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells. Nano Letters, 2002, 2, 1259-1261.	4.5	365
636	Dye-Sensitized Solid-State Solar Cells:Â Use of Crystal Growth Inhibitors for Deposition of the Hole Collector. Chemistry of Materials, 2002, 14, 954-955.	3.2	234
637	Nanocrystalline-TiO2–Pt photo-electrochemical cells – UV induced hydrogen evolution from aqueous solutions of alcohols. Photochemical and Photobiological Sciences, 2002, 1, 793-798.	1.6	13
638	Manipulating the properties of MLCT excited states. Dalton Transactions RSC, 2002, , 3820.	2.3	99
639	BIOCATALYTIC SYNTHESIS OF A RUTHENIUM MACROMOLECULAR COMPLEX FOR PHOTOVOLTAICS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 1195-1206.	1.2	4
640	Tuning the photocatalytic activity of titanium dioxide by encapsulation inside zeolites exemplified by the cases of thianthrene photooxygenation and horseradish peroxidase photodeactivation. New Journal of Chemistry, 2002, 26, 1448-1455.	1.4	40
641	Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes. Journal of Materials Chemistry, 2002, 12, 723-728.	6.7	134
642	Glucose oxidase catalyses the reduction of O2 to H2O2 in the presence of irradiated TiO2 and isopropyl alcohol. Photochemical and Photobiological Sciences, 2002, 1, 951.	1.6	16
643	Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium. New Journal of Chemistry, 2002, 26, 421-426.	1.4	61
644	Efficient panchromatic sensitization of nanocrystalline TiO2films by β-diketonato ruthenium polypyridyl complexes. New Journal of Chemistry, 2002, 26, 966-968.	1.4	86
645	Dye-sensitized solar cells based on nanocrystalline TiO2 sensitized with a novel pyridylquinoline ruthenium(ii) complex. New Journal of Chemistry, 2002, 26, 963-965.	1.4	31
646	Efficiencies of Electron Injection from Excited Sensitizer Dyes to Nanocrystalline ZnO Films as Studied by Near-IR Optical Absorption of Injected Electrons. Journal of Physical Chemistry B, 2002, 106, 12957-12964.	1.2	127
647	Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2002, 70, 425-435.	3.0	150
648	The effect of chemisorbed dyes on the l–V tunnel characteristics of nanocrystalline anatase TiO2 observed in scanning tunnelling spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 145-151.	2.0	3
649	Semiconductor nanoparticles. , 2002, , 129-182.		1
650	Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO2 Film. Journal of Physical Chemistry B, 2002, 106, 1363-1371.	1.2	360
651	Dye sensitization of nanocrystalline TiO2 by perylene derivatives. Synthetic Metals, 2002, 128, 299-304.	2.1	29
ARTICLE IF CITATIONS Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. 652 2.1100 Synthetic Metals, 2002, 131, 185-187. Effect of Hydrogen on the Formation of Porous TiO[sub 2] in Alkaline Solution. Journal of the 1.3 23 Electrochemical Society, 2002, 149, F186. 654 Colloidal quantum dots of Ill–V semiconductors. , 2002, , 183-205. 4 Dye-Sensitized Coreâ[°]Shell Nanocrystals:Â Improved Efficiency of Mesoporous Tin Oxide Electrodes 748 Coated with a Thin Layer of an Insulating Oxide. Chemistry of Materials, 2002, 14, 2930-2935. Preparation of Porous Titania Solâ[^]Gel Matrix for Immobilization of Horseradish Peroxidase by a Vapor 656 3.2 223 Deposition Method. Analytical Chemistry, 2002, 74, 3579-3583. Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode. 6.6 396 Journal of the American Chemical Society, 2002, 124, 4922-4932. Dye-sensitized Solar Cells Using Semiconductor Thin Film Composed of Titania Nanotubes. 658 0.6 74 Electrochemistry, 2002, 70, 449-452. Effect of Imidazolium Salts on the Performance of Solid-state Dye-sensitized Photovoltaic Cell Using 0.6 Copper Iodide as a Hole Collector. Electrochemistry, 2002, 70, 432-434. Influence of the lodine Content on the Photocurrent in Dye-sensitized Solar Cells using Liquid 660 0.6 9 Polyiodide. Electrochemistry, 2002, 70, 446-448. Cathodic Electrodeposition of ZnO/EosinY Hybrid Thin Films from Dye Added Zinc Nitrate Bath and Their Photoelectrochemical Characterizations. Electrochemistry, 2002, 70, 470-487. Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the 662 0.8 186 solâ∉"gel method. Thin Solid Films, 2002, 403-404, 312-319. Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 0.8 electrodes. Thin Solid Films, 2002, 403-404, 271-274. Photo-induced electron transfer from a dithieno thiophene-based polymer to TiO2. Thin Solid Films, 664 0.8 53 2002, 403-404, 52-56. Electrical characterisation of dye sensitised nanocrystalline TiO2 solar cells with liquid electrolyte and solid-state organic hole conductor. Thin Solid Films, 2002, 403-404, 242-246. 0.8 34 Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 666 10.8 83 samples impregnated with Cu(II)-phthalocyanine. Applied Catalysis B: Environmental, 2002, 38, 309-319. Stepwise Formation of Ultrathin Films of a Titanium (Hydr)Oxide by Polyelectrolyte-Assisted 11.1 Adsorption. Advanced Materials, 2002, 14, 151-154. Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles. Journal of 668 5.062 Colloid and Interface Science, 2002, 250, 285-290.

CITATION REPORT

669Optical characterization of nanostructured ZnO and TiO2 films. Optical Materials, 2002, 20, 35-42.1.725

#	Article	IF	CITATIONS
670	Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells. Solar Energy Materials and Solar Cells, 2002, 71, 253-259.	3.0	95
671	Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex. Solar Energy Materials and Solar Cells, 2002, 71, 261-271.	3.0	44
672	A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Solar Energy Materials and Solar Cells, 2002, 73, 51-58.	3.0	577
673	Solid-state dye-sensitized photocell based on pentacene as a hole collector. Solar Energy Materials and Solar Cells, 2002, 73, 103-108.	3.0	56
674	The effect of chemisorbed dyes on I–V characteristics of mesoporous TiO2 observed in scanning tunnelling spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 224-228.	1.3	2
675	Surface photovoltage measurements: a useful tool for the detection of electron injection processes in extremely thin absorber (ETA) solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 233-236.	1.3	7
676	Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 237-241.	1.3	79
677	Fundamental reactions in TiO2 nanocrystallite aqueous solutions studied by pulse radiolysis. Radiation Physics and Chemistry, 2002, 65, 599-609.	1.4	35
678	Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 147, 143-148.	2.0	16
679	Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149, 237-245.	2.0	198
680	Effect of functional group on photochemical properties and photosensitization of TiO2 electrode sensitized by porphyrin derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 207-212.	2.0	123
681	A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149, 191-198.	2.0	146
682	New dyes for solar cells based on nanostructured semiconducting metal oxides. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 41-48.	2.0	24
683	Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 57-64.	2.0	337
684	Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 387-391.	2.0	86
685	Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 5-10.	2.0	33
686	Optimization of dye-sensitized solar cells prepared by compression method. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 11-15.	2.0	209
687	Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 17-24.	2.0	109

#	Article	IF	CITATIONS
688	Syntheses of mixed ligands complexes of Ru(II) with 4,4′-dicarboxy-2,2′-bipyridine and substituted pteridinedione and the use of these complexes in electrochemical photovoltaic cells. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 150, 167-175.	2.0	17
689	Electron injection versus charge recombination in photoelectrochemical solar cells using cis-[(dcbH2)2Ru(CNpy)(H2O)]Cl2 as a nanocrystalline TiO2 sensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 165-170.	2.0	22
690	Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002, 151, 19-27.	1.3	220
691	Observation of photoinduced electron transfer in dye/semiconductor colloidal systems with different coupling strengths. Chemical Physics, 2002, 285, 39-45.	0.9	43
692	Determination of the electronic density of states at a nanostructured TiO2/Ru-dye/electrolyte interface by means of photoelectron spectroscopy. Chemical Physics, 2002, 285, 157-165.	0.9	55
693	Electron dynamics within Ru-2,2′-bipyridine complexes—an N1s core level excitation study. Chemical Physics, 2002, 285, 167-176.	0.9	18
694	Synthesis and photophysical properties of Zn(II) porphyrin-C60 dyad with potential use in solar cells. Journal of Physical Organic Chemistry, 2002, 15, 844-851.	0.9	52
695	Role of electronic structure of ruthenium polypyridyl dyes in the photoconversion efficiency of dye-sensitized solar cells: Semiempirical investigation. International Journal of Quantum Chemistry, 2002, 89, 535-549.	1.0	17
696	Ruthenium complexes with 2,2′-, 2,4′- and 4,4′-bipyridine ligands: The role of bipyridine coordination modes and halide ligands. Journal of Organometallic Chemistry, 2002, 655, 31-38.	0.8	28
697	Phosphonate derivatives of pyridine grafted onto oxide nanoparticles. Tetrahedron Letters, 2002, 43, 9115-9117.	0.7	21
698	Effect of seed crystal and composition of solution on the formation of TiO2 thin film from aqueous solution. Thin Solid Films, 2002, 418, 102-111.	0.8	16
699	Interaction of photoactive cis (CO)– trans (I)-Ru-(4,4 ′ -dicarboxylate-2,2 ′ -bipyridine)(CO) 2 I 2 with anatase (1 0 1) surface. Surface Science, 2002, 511, 373-378.	0.8	13
700	Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature, 2002, 418, 620-623.	13.7	346
701	Photophysics of the adsorbed bipyridyl complexes of ruthenium(II) with phosphines. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 92, 167-171.	0.2	4
702	Microwave photoconductivity in nanocrystalline porous titanium oxide subjected to pulsed laser excitation. Semiconductors, 2002, 36, 319-324.	0.2	3
703	Ruthenium dye-sensitized SnO2/TiO2 coupled solar cells. Solar Energy Materials and Solar Cells, 2002, 71, 553-557.	3.0	22
704	Photo-induced surface charge separation in Cr-implanted TiO2 thin film. Thin Solid Films, 2002, 416, 80-84.	0.8	26
705	Synthesis and characterization of bdmppî—,dcbpyî—,Ru (II) complex for dye-sensitized solar cells [where bdmpp is 2,6-bis(3,5-dimethyl-N-pyrazoyl)pyridine and dcbpy is 2,2′-bipyridine-4,4′-dicarboxylic acid]. Inorganica Chimica Acta, 2002, 328, 204-209.	1.2	16

#	Article	IF	CITATIONS
706	New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2′-bipyridine. Inorganica Chimica Acta, 2002, 329, 79-92.	1.2	66
707	Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochimica Acta, 2002, 47, 2801-2807.	2.6	97
708	Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta, 2002, 47, 4213-4225.	2.6	1,182
709	Preparation of CuO nanoparticles by microwave irradiation. Journal of Crystal Growth, 2002, 244, 88-94.	0.7	500
710	Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2′-bithiophene) as a sensitizer and hole conductor. Journal of Electroanalytical Chemistry, 2002, 522, 40-48.	1.9	98
711	Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2002, 524-525, 127-136.	1.9	124
712	One-step electrodeposition of ZnO/eosin Y hybrid films from a hydrogen peroxide oxygen precursor. Journal of Electroanalytical Chemistry, 2002, 534, 55-64.	1.9	48
713	Photoelectrochemical properties of TiO2 electrodes sensitized by porphyrin derivatives with different numbers of carboxyl groups. Journal of Electroanalytical Chemistry, 2002, 537, 31-38.	1.9	85
714	Ultrafast energy transfer in J-aggregate on AgBr microcrystals: its dependence on dye coverage. Chemical Physics Letters, 2002, 352, 357-362.	1.2	21
715	Adsorption of merocyanine dye on rutile TiO2(1 1 0). Chemical Physics Letters, 2002, 360, 133-138.	1.2	19
716	Dye-sensitized anatase titanium dioxide nanocrystalline with (001) preferred orientation induced by Langmuir–Blodgett monolayer. Chemical Physics Letters, 2002, 363, 509-514.	1.2	20
717	Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide. Journal of Physical Chemistry B, 2002, 106, 11716-11719.	1.2	219
718	Charge-Transfer Studies of Iron Cyano Compounds Bound to Nanocrystalline TiO2Surfaces. Inorganic Chemistry, 2002, 41, 1254-1262.	1.9	113
719	Solid-State and Flexible Dye-Sensitized TiO2Solar Cells:Â a Study by Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 5925-5930.	1.2	300
720	Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2Dispersion. Environmental Science & Technology, 2002, 36, 3604-3611.	4.6	184
721	Ionization potential studies of organic dye adsorbed onto TiO2 electrode. Journal of Materials Science Letters, 2002, 21, 1013-1014.	0.5	14
722	High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry, 2002, 12, 1459-1464.	6.7	154
723	Influence of the Electrolytes on Electron Transport in Mesoporous TiO2â^'Electrolyte Systems. Journal of Physical Chemistry B, 2002, 106, 2967-2972.	1.2	273

#	Article	IF	CITATIONS
724	Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications, 2002, , 1464-1465.	2.2	254
725	The Measure of TiO2 Photocatalytic Efficiency and the Comparison of Different Photocatalytic Titania. Journal of Physical Chemistry B, 2003, 107, 11970-11978.	1.2	101
726	Conversion and Storage of Solar Energy using Dye-sensitized Nanocrystalline TiO2 Cells. , 2003, , 719-758.		20
727	Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry, 2003, 27, 783-785.	1.4	621
728	Water phase sensitization of nanoporous TiO ₂ film. Journal of Applied Electrochemistry, 2003, 33, 1239-1240.	1.5	1
729	Dye-sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2Nanoparticles. Langmuir, 2003, 19, 2169-2174.	1.6	111
730	Photophysics and Electron Dynamics in Dye-Sensitized Semiconductor Film Studied by Time-Resolved Mid-IR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4156-4161.	1.2	38
731	Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2003, 107, 597-606.	1.2	1,015
732	Rutherford backscattering spectrometry analysis of TiO2 thin films. Materials Characterization, 2003, 50, 155-160.	1.9	5
733	Reciprocity law experiments in polymeric photodegradation: a critical review. Progress in Organic Coatings, 2003, 47, 292-311.	1.9	133
734	CuInS2 sprayed films on different metal oxide underlayers. Thin Solid Films, 2003, 431-432, 105-109.	0.8	13
735	Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films, 2003, 438-439, 167-170.	0.8	50
736	Layer-by-layer self-assembly replication technique: application to photoelectrode of dye-sensitized solar cell. Thin Solid Films, 2003, 438-439, 346-351.	0.8	41
737	Transient Optical Studies of Interfacial Energetic Disorder at Nanostructured Dye-Sensitised Inorganic/Organic Semiconductor Heterojunctions. ChemPhysChem, 2003, 4, 89-93.	1.0	65
738	Reactivity of the Convex and Concave Surfaces of Single-Walled Carbon Nanotubes (SWCNTs) towards Addition Reactions: Dependence on the Carbon-Atom Pyramidalization. ChemPhysChem, 2003, 4, 93-97.	1.0	177
739	Synthesis and Characterization of Ruthenium Complexes with Substituted Pyrazino[2,3-f][1,10]-phenanthroline (=Rppl; R=Me, COOH, COOMe). Helvetica Chimica Acta, 2003, 86, 2110-2120.	1.0	43
740	Optical constants of DC magnetron sputtered titanium dioxide thin films measured by spectroscopic ellipsometry. Crystal Research and Technology, 2003, 38, 773-778.	0.6	49
741	Resonance Raman and time-resolved resonance Raman spectra of the monomeric and dimeric complexes of ruthenium(II) with 2,3-bis(2-pyridyl)pyrazine (dpp). Journal of Raman Spectroscopy, 2003, 34, 907-916.	1.2	8

ARTICLE IF CITATIONS Solid-State Photovoltaic Thin Films using TiO2, Organic Dyes, and Layer-by-Layer Polyelectrolyte 742 7.8 131 Nanocomposites. Advanced Functional Materials, 2003, 13, 831-839. Electroactive Surfactant Designed to Mediate Electron Transfer Between CdSe Nanocrystals and 743 11.1 198 Organic Semiconductors. Advanced Materials, 2003, 15, 58-61. Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 744 11.1 260 Bulk-Heterojunction. Advanced Materials, 2003, 15, 118-121. An Alternative Efficient Redox Couple for the Dye-Sensitized Solar Cell System. Chemistry - A European 745 304 Journal, 2003, 9, 3756-3763. Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells. 746 2.6 45 Electrochimica Ácta, 2003, 48, 2487-2491. One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochimica Acta, 2003, 48, 3071-3078. 2.6 Nanocrystalline solar cells sensitized with monocarboxyl or dicarboxyl pyridylquinoline 748 1.2 27 ruthenium(II) complexes. Inorganica Chimica Acta, 2003, 351, 283-290. Sensitization of aluminum chloride adsorbed tin(IV) oxide nanocrystalline films with Rose Bengal. 5.0 Journal of Colloid and Interface Science, 2003, 265, 428-431. Influence of alkylpyridine additives in electrolyte solution on the performance of dye-sensitized solar 750 3.0 110 cell. Solar Energy Materials and Solar Cells, 2003, 80, 167-179. Structural characterization of DC magnetron-sputtered TiO2 thin films using XRD and Raman 44 scattering studies. Materials Science in Semiconductor Processing, 2003, 6, 547-550. Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline 752 1.8 55 TiO2 solar cells. Journal of Molecular Structure, 2003, 658, 25-32. Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy. Solar 148 Energy, 2003, 75, 169-180. Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex. 754 2.0 86 Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155, 163-170. Photoelectrochemical measurement of phthalic acid adsorption on porous TiO2 film electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, 201-206. Influence of the mixed ratio on the photocurrent of the TiO2/SnO2 composite photoelectrodes sensitized by mercurochrome. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 756 2.0 10 39-46. Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 223 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 131-138. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer 758 2.0 167 electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 33-39. Influence of chemical treatments on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 41-45.

#	Article	IF	Citations
760	Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 171-179.	2.0	44
761	Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 87-91.	2.0	134
762	Charge transfer and photogeneration process in device consisting of safranine O dye and TiO2 nano-particles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 100, 13-17.	1.7	19
763	Preparation and properties of nanostructured TiO2 electrode by a polymer organic-medium screen-printing technique. Electrochemistry Communications, 2003, 5, 369-372.	2.3	82
764	The distribution of photoinjected electrons a dye-sensitized nanocrystalline TiO2 solar cell modelled by a boundary element method. Electrochemistry Communications, 2003, 5, 711-716.	2.3	32
765	Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4, 145-153.	5.6	4,007
766	Chain-length dependence of photoelectric conversion from a porphyrin monolayer modified electrode. Optical Materials, 2003, 21, 467-473.	1.7	7
767	Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Solar Energy Materials and Solar Cells, 2003, 76, 3-13.	3.0	114
768	Photoelectrochemical properties of ruthenium dye-sensitized nanocrystalline SnO2:TiO2 solar cells. Solar Energy Materials and Solar Cells, 2003, 76, 65-73.	3.0	39
769	A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Solar Energy Materials and Solar Cells, 2003, 76, 85-105.	3.0	147
770	Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Solar Energy Materials and Solar Cells, 2003, 77, 89-103.	3.0	248
771	Structure and photoelectrochemical properties of ruthenium(II) polypyridyl complexes as sensitizers for nanocrystalline TiO2 electrodes. Solar Energy Materials and Solar Cells, 2003, 77, 319-330.	3.0	7
772	High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2003, 79, 459-469.	3.0	641
773	Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode. Solar Energy Materials and Solar Cells, 2003, 79, 495-505.	3.0	99
774	Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Materials Science and Engineering C, 2003, 23, 285-289.	3.8	218
775	Spectroscopy and photophysics of chloro-bis-bipyridyl complexes of ruthenium(II) with pyridine ligands. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 917-924.	0.2	9
776	A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2, 402-407.	13.3	1,466
777	An approach for utilization of organic polymer as a sensitizer in solid-state cells. Solar Energy Materials and Solar Cells, 2003, 77, 15-24.	3.0	34

#	Article	IF	CITATIONS
778	Characterization of a commercial dye-sensitised titania solar cell electrode. Solar Energy Materials and Solar Cells, 2003, 76, 25-35.	3.0	19
779	A study of reverse bias in a dye sensitised photoelectrochemical device. Solar Energy Materials and Solar Cells, 2003, 76, 175-181.	3.0	18
780	Efficient photon-to-electron conversion with rhodamine 6G-sensitized nanocrystalline n-ZnO thin film electrodes in acetonitrile solution. Solar Energy Materials and Solar Cells, 2003, 79, 235-248.	3.0	43
781	Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials and Solar Cells, 2003, 80, 47-71.	3.0	292
782	New Perylene-Substituted Organotrialkynyltin Compounds for the Photosensitization of Tin Dioxide. Organometallics, 2003, 22, 4584-4592.	1.1	14
783	Absorption Spectrum and Solvatochromism of the [Ru(4,4â€~-COOH-2,2â€~-bpy)2(NCS)2] Molecular Dye by Time Dependent Density Functional Theory. Journal of the American Chemical Society, 2003, 125, 4381-4387.	6.6	299
784	Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir, 2003, 19, 3572-3574.	1.6	330
785	A swift dye uptake procedure for dye sensitized solar cells. Chemical Communications, 2003, , 1456-1457.	2.2	186
786	Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2Solar Cell. Journal of Physical Chemistry B, 2003, 107, 8981-8987.	1.2	712
787	Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Filmâ€. Journal of Physical Chemistry B, 2003, 107, 7376-7386.	1.2	226
788	Excitonic Solar Cells. Journal of Physical Chemistry B, 2003, 107, 4688-4698.	1.2	722
789	A new strategy towards ultra stable mesoporous titania with nanosized anatase walls. Chemical Communications, 2003, , 1178-1179.	2.2	50
790	Dye-Sensitized Solar Cell Using a TiO2Nanocrystalline Film Electrode Modified by an Aluminum Phthalocyanine and Myristic Acid Coadsorption Layer. Langmuir, 2003, 19, 8872-8875.	1.6	45
791	Synthesis of a diporphyrin dyad bearing electron-donor and electron-withdrawing substituents with potential use in the spectral sensitization of semiconductor solar cells. Journal of Porphyrins and Phthalocyanines, 2003, 07, 42-51.	0.4	12
792	Efficient Light Harvesting Polymers for Nanocrystalline TiO2Photovoltaic Cellsâ€. Nano Letters, 2003, 3, 523-525.	4.5	145
793	Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. Journal of Materials Chemistry, 2003, 13, 877-882.	6.7	207
794	Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cellâ€. Journal of Physical Chemistry B, 2003, 107, 3552-3555.	1.2	57
795	cellsElectronic supplementary information (ESI) available: details of the luminescence measurements and solar cell construction and testing; synthesis details; 1H–1H COSY and NOESY 2D spectra for [(bpy)2Ru(pbimH)](PF6)2. See http://www.rsc.org/suppdata/dt/b2/b208289f/. Dalton Transactions, 2003, , 685-691.	1.6	28

#	Article	IF	CITATIONS
796	Conductive and Transparent Multilayer Films for Low-Temperature-Sintered Mesoporous TiO2Electrodes of Dye-Sensitized Solar Cells. Chemistry of Materials, 2003, 15, 2824-2828.	3.2	83
797	Structural and electrical studies on solÂgel derived spun TiO2thin films. Journal Physics D: Applied Physics, 2003, 36, 1120-1125.	1.3	39
798	Excited-State Metal-to-Ligand Charge Transfer Dynamics of a Ruthenium(II) Dye in Solution and Adsorbed on TiO2 Nanoparticles from Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2003, 125, 15636-15646.	6.6	95
799	Synthesis and Comprehensive Characterizations of Newcis-RuL2X2(X = Cl, CN, and NCS) Sensitizers for Nanocrystalline TiO2Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L). Inorganic Chemistry, 2003, 42, 6655-6666.	1.9	109
800	Bridge-Assisted Ultrafast Interfacial Electron Transfer to Nanocrystalline SnO2Thin Films. Journal of Physical Chemistry B, 2003, 107, 14231-14239.	1.2	79
801	Electron Injection Dynamics from Ru Polypyridyl Complexes to ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2003, 107, 14414-14421.	1.2	121
802	Adsorption Morphology, Light Absorption, and Sensitization Yields for Squaraine Dyes on SnS2Surfaces. Journal of the American Chemical Society, 2003, 125, 5559-5571.	6.6	53
803	Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe. Journal of Physical Chemistry B, 2003, 107, 4356-4363.	1.2	129
804	Products of the Electrochemical Oxidation ofcis-L2Ru(II)(NCS)2in Dimethylformamide and Acetonitrile Determined by LC-UV/Vis-MS. Inorganic Chemistry, 2003, 42, 5545-5550.	1.9	15
805	Molten and Solid Trialkylsulfonium Iodides and Their Polyiodides as Electrolytes in Dye-Sensitized Nanocrystalline Solar Cells. Journal of Physical Chemistry B, 2003, 107, 13665-13670.	1.2	84
806	Excited State Interfacial Electron Transfer from a Compound with a Single Pyridine Ligand. Inorganic Chemistry, 2003, 42, 7351-7353.	1.9	22
807	Control of Nucleation in Solution Growth of Anatase TiO2on Glass Substrate. Journal of Physical Chemistry B, 2003, 107, 12244-12255.	1.2	57
808	Effects of Bridging Ligands on the Currentâ^'Potential Behavior and Interfacial Kinetics of Ruthenium-Sensitized Nanocrystalline TiO2Photoelectrodesâ€. Journal of Physical Chemistry A, 2003, 107, 3379-3383.	1.1	63
809	Organic and Plastic Solar Cells. , 2003, , 483-511.		0
810	Mono―and Dinuclear Ruthenium Complexes for Nanocrystalline TiO2 Based Dyeâ€Sensitized Photovoltaics. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1317-1325.	1.2	9
811	Adjacent- versus Remote-Site Electron Injection in TiO2Surfaces Modified with Binuclear Ruthenium Complexes. Inorganic Chemistry, 2003, 42, 2919-2932.	1.9	37
812	Interfacial Electron Transfer in Fell(CN)64-â^'Sensitized TiO2 Nanoparticles:  A Study of Direct Charge Injection by Electroabsorption Spectroscopy. Journal of the American Chemical Society, 2003, 125, 4637-4642.	6.6	110
813	A New Method for Manufacturing Dye-Sensitized Solar Cells on Plastic Substrates. ACS Symposium Series, 2003, , 123-132.	0.5	4

#	Article	IF	CITATIONS
814	A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2003, 107, 13280-13285.	1.2	607
815	Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes. Journal of Physical Chemistry B, 2003, 107, 4374-4381.	1.2	433
816	Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2003, 150, G488.	1.3	384
817	Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films:  Effect of (N3â^'Zn2+) Aggregate Formation. Journal of Physical Chemistry B, 2003, 107, 2570-2574.	1.2	212
818	Optical and electrochemical characterization of poly(3-undecyl-2,2′-bithiophene) in thin film solid state TiO2 photovoltaic solar cells. Synthetic Metals, 2003, 132, 197-204.	2.1	64
819	Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells. Synthetic Metals, 2003, 138, 333-339.	2.1	64
820	Photochemical sensitisation process at photosynthetic pigments/Q-sized colloidal semiconductor hetero-junctions. Synthetic Metals, 2003, 139, 593-596.	2.1	14
821	Eosin Y-sensitized nanostructured SnO2/TiO2 solar cells. Materials Letters, 2003, 57, 1508-1513.	1.3	39
822	Diffusion Limitations to I[sub 3][sup â^']/I[sup â^'] Electrolyte Transport Through Nanoporous TiO[sub 2] Networks. Electrochemical and Solid-State Letters, 2003, 6, E11.	2.2	40
823	A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Solâ ''Gel Nanocomposite Electrolyte Containing Ionic Liquid. Chemistry of Materials, 2003, 15, 1825-1829.	3.2	221
824	Novel polyene dyes for highly efficient dye-sensitized solar cells. Chemical Communications, 2003, , 252-253.	2.2	283
825	Band-Edge Tuning in Self-Assembled Layers of Bi2S3Nanoparticles Used To Photosensitize Nanocrystalline TiO2. Journal of Physical Chemistry B, 2003, 107, 8378-8381.	1.2	264
826	Sensitization of TiO[sub 2] by Polypyridine Dyes. Journal of the Electrochemical Society, 2003, 150, E155.	1.3	99
827	Enhanced Dye-Sensitized Photoconversion Efficiency via Reversible Production of UV-Induced Surface States in Nanoporous TiO2. Journal of Physical Chemistry B, 2003, 107, 3019-3029.	1.2	92
828	An expanded conjugation photosensitizer with two different adsorbing groups for solar cells. New Journal of Chemistry, 2003, 27, 1277.	1.4	130
829	Synthesis of titania hollow microspheres using non-aqueous emulsions. Journal of Materials Chemistry, 2003, 13, 1112-1114.	6.7	123
830	Electronic Transport in Dye-Sensitized Nanoporous TiO2Solar CellsComparison of Electrolyte and Solid-State Devices. Journal of Physical Chemistry B, 2003, 107, 3556-3564.	1.2	126
831	Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 14336-14341.	1.2	672

#	Article	IF	CITATIONS
832	Comparison of Electron Transfer Dynamics in Molecule-to-Nanoparticle and Intramolecular Charge Transfer Complexes. Journal of Physical Chemistry B, 2003, 107, 9434-9440.	1.2	186
833	Porphyrin dyes for TiO2 sensitization. Journal of Materials Chemistry, 2003, 13, 502-510.	6.7	224
834	Panchromatic Sensitization of Nanocrystalline TiO2withcis-Bis(4-carboxy-2-[2â€~-(4â€~-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II). Inorganic Chemistry, 2003, 42, 7921-7931.	1.9	105
835	Phototriggered Linkage Isomerization in Rutheniumâ^'Dimethylsulfoxyde Complexes:Â Insights from Theory. Journal of Physical Chemistry A, 2003, 107, 11182-11190.	1.1	108
836	Photosensitization of Nanocrystalline SnO2Films with atris(2,2′â€Bipyridine) Ruthenium(II)â€Fullerene Dyad. Fullerenes Nanotubes and Carbon Nanostructures, 2003, 11, 121-133.	1.0	3
837	Tuning the properties of ruthenium bipyridine dyes for solar cells by substitution on the ligands—characterisation of bis[4,4′-di(2-(3-methoxyphenyl)ethenyl)-2,2′-bipyridine][4,4′-dicarboxy-2,2′-bipyridine]ruthenium(ii) dibexafluorophosphate_Dalton_Transactions_20031280-1283	1.6	28
838	Porphyrin capped TiO2nanoclusters, tyrosine methyl ester enhanced electron transfer. Chemical Communications, 2003, , 1856-1857.	2.2	7
839	Synthesis, structure and properties of [Pt(2,2′-bipyridyl-5,5′-dicarboxylic acid)(3,4-toluenedithiolate)]: tuning molecular properties for application in dye-sensitised solar cells. Dalton Transactions, 2003, , 3757-3762.	1.6	79
840	Molecular Assembly by Sequential Ionic Adsorption of Nanocrystalline TiO2 and a Conjugated Polymer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1307-1316.	1.2	10
841	Optimum Nanoporous TiO 2 Film and Its Application to Dye-sensitized Solar Cells. Chinese Physics Letters, 2003, 20, 953-955.	1.3	44
842	Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes. Science Bulletin, 2003, 48, 646-648.	4.3	6
843	Light scattering characteristic of TiO2 nanocrystalline porous films. Science Bulletin, 2003, 48, 856-858.	4.3	3
844	TiO2 sensitized with an oligo(p-phenylenevinylene) carboxylic acid: a new model compound for a hybrid solar cell. Journal of Materials Chemistry, 2003, 13, 1054-1057.	6.7	34
845	Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode. Journal of Materials Chemistry, 2003, 13, 1048-1053.	6.7	119
846	Equilibrium potentials and charge transport of an I–/I3– redox couple in an ionic liquid. Chemical Communications, 2003, , 330-331.	2.2	176
847	Generation of Light-Induced Electrical Potential from Ion Exchange Membranes Containing 4,4[sup Ê1]-Bipyridine Moiety: IV. Effect of Presence of n-Type Semiconductors in a Photocell on Electrical Potential. Journal of the Electrochemical Society, 2003, 150, E141.	1.3	1
848	RECENT ADVANCES IN ELECTRON-TRANSFER REACTIONS. Advances in Inorganic Chemistry, 2003, , 351-393.	0.4	12
849	Synthesis of rutile and anatase TiO ₂ nanoparticles from Ti-peroxy compound aqueous solution with polyols. Journal of Materials Research, 2003, 18, 797-803.	1.2	18

#	Article	IF	CITATIONS
850	Alignment of valence photoemission, x-ray absorption, and substrate density of states for an adsorbate on a semiconductor surface. Physical Review B, 2003, 67, .	1.1	43
851	Efficient dye-sensitized photoelectrochemical cells made from nanocrystalline tin(IV) oxideÂzinc oxide composite films. Semiconductor Science and Technology, 2003, 18, 312-318.	1.0	36
852	Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques. Journal of Chemical Physics, 2003, 119, 12462-12472.	1.2	48
853	Fabrication of highly efficient polythiophene-sensitized metal oxide photovoltaic cells. Applied Physics Letters, 2003, 83, 5470-5472.	1.5	79
854	Li Insertion into Li[sub 4]Ti[sub 5]O[sub 12] (Spinel). Journal of the Electrochemical Society, 2003, 150, A1000.	1.3	269
855	Dye-sensitized solar cell with the near-infrared sensitization of aluminum phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2003, 07, 131-136.	0.4	21
856	On the photo-degradation of dye sensitized solid-state TiO2ÂdyeÂCuI cells. Semiconductor Science and Technology, 2003, 18, 708-712.	1.0	54
857	Analysis of Energy Conversion Efficiency with an Empirical Model in Dye-Sensitized Nanocrystalline Solar Cells. Electrochemical and Solid-State Letters, 2003, 6, A236.	2.2	7
858	<title>Beyond vibrationally mediated electron transfer: interfacial charge injection on a sub-10-fs time scale</title> . , 2003, 5223, 121.		3
859	Preparation of Ti02-Hybrid Gel with Optically Active ^ ^beta;-Hydroxysulfoxide. Journal of the Japan Society of Colour Material, 2003, 76, 138-141.	0.0	0
860	Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells. Chemistry Letters, 2003, 32, 28-29.	0.7	463
861	Future Prospects of Organic Solar Cells-Dye Sensitized Solar Cells Kobunshi, 2003, 52, 320-323.	0.0	0
862	Novel and Efficient Organic Liquid Electrolytes for Dye-sensitized Solar Cells Based on a Ru(II) Terpyridyl Complex Photosensitizer. Chemistry Letters, 2003, 32, 1014-1015.	0.7	12
863	Pore Size Distribution and Porosities of Nano-TiO2Films Made by Using Cellulosic Thickener and Their Influence on Performance of Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2003, 76, 2415-2418.	2.0	9
864	Water-based Dye-sensitized Solar Cells: Interfacial Activation of TiO2Mesopores in Contact with Aqueous Electrolyte for Efficiency Development. Chemistry Letters, 2003, 32, 1154-1155.	0.7	37
865	Molecular Electron Transfer. , 2003, , 657-730.		11
866	Photovoltaic Cell Based on the Near-IR Sensitization of Zn Chlorin-e ₆ Adsorbed on a Nanocrystalline TiO ₂ Film Electrode. Journal of the Japan Petroleum Institute, 2004, 47, 406-409.	0.4	6
867	Fabrication and Efficiency Enhancement of Water-based Dye-Sensitized Solar Cells by Interfacial Activation of TiO ₂ Mesopores. Electrochemistry, 2004, 72, 310-316.	0.6	24

#	Article	IF	CITATIONS
868	Photoinduced Electron Transfer Processes in Dye-sensitized Solar Cells. Hyomen Kagaku, 2004, 25, 272-278.	0.0	0
869	色ç′増感夙½é›»æ±ã®ç"究開発ã®ç¾çж. Hyomen Gijutsu/Journal of the Surface Finishing Society	ofd a pan, 2	2004, 55, 88
870	Enhancement of Photoresponse by Enlarging the Effective Interface between Conducting Polymer and Titanium Oxide in Photovoltaic Device. Japanese Journal of Applied Physics, 2004, 43, 3473-3478.	0.8	15
871	Two-layer TiO2nanostructured photoelectrode with underlying film obtained by microwave-activated chemical bath deposition (MW-CBD). Semiconductor Science and Technology, 2004, 19, L52-L55.	1.0	10
872	Improved Performance of Solid-State GrÂtzel Solar Cell by Cosensitization of Quantum Dot and Dye. Chinese Physics Letters, 2004, 21, 1391-1393.	1.3	7
873	Improved performance of 2-imidazolin-5-one as sensitizer at nanocrystalline ZnO thin film electrode in acetonitrile solution. Semiconductor Science and Technology, 2004, 19, 531-536.	1.0	5
874	Thin-film organic-based solar cells for space power. , 0, , .		1
876	Preparation of Nanoporous TiO ₂ Film Using Aqueous Sol with Trehalose. Key Engineering Materials, 2004, 269, 87-90.	0.4	7
877	Characterization of Interactions among 3-Hydroxypropionitrile/Lil Electrolytes. Electrochemical and Solid-State Letters, 2004, 7, A302.	2.2	31
878	Porphyrin supramolecules by complementary coordination for units constructing photosynthetic systems. Journal of Porphyrins and Phthalocyanines, 2004, 08, 156-174.	0.4	14
879	Photoelectrochemical Cell Based on Mixed Dye-Sensitized Nanocrystalline ZnO Thin Film Electrodes in Acetonitrile Medium. Journal of the Electrochemical Society, 2004, 151, G740.	1.3	4
880	Layered titanate thin film as an electrode material. Journal of Materials Research, 2004, 19, 661-666.	1.2	2
881	The Sensitization of Nanoporous TiO2 Electrodes by Porphyrin Derivatives with Different Substituents. Materials Research Society Symposia Proceedings, 2004, 822, S3.13.1.	0.1	0
883	Highly Efficient Dye-Sensitized Solar Cells Using a Composite Electrolyte Consisting of Lil(CH 3 OH) 4 -I 2 , SiO 2 Nano-Particles and an Ionic Liquid. Chinese Physics Letters, 2004, 21, 1828-1830.	1.3	14
884	Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Materials, 2004, 3, 787-792.	13.3	327
885	Gel polymer electrolytes based on polyacrylonitrile and a novel quaternary ammonium salt for dye-sensitized solar cells. Materials Research Bulletin, 2004, 39, 2113-2118.	2.7	58
886	Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts. Applied Catalysis B: Environmental, 2004, 51, 203-211.	10.8	52
887	Visible light activity of TiO2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij). Applied Catalysis B: Environmental, 2004, 52, 23-32.	10.8	51

ARTICLE IF CITATIONS # Preparation and characterization of compact TiO2 film used in Grï¿1/2tzel solar cells. Science Bulletin, 888 1.7 11 2004, 49, 123. Optimization of polymer electrolytes for quasi-solid-state dye-sensitized solar cells. Science Bulletin, 1.7 2004, 49, 2033. General process for transparent porous electrodes using metal-oxides nanoparticles. Journal of 890 1.7 6 Materials Science, 2004, 39, 5853-5856. Preparation of TiO2Powder by Modified Two-Stage Hydrolysis. Journal of Sol-Gel Science and 1.1 Technology, 2004, 30, 21-28. Incorporation of Functionalized Single-Wall Carbon Nanotubes in Dye-Sensitized TiO2Solar Cells. 892 1.6 175 Langmuir, 2004, 20, 9807-9810. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. Journal of the American Chemical Society, 2004, 126, 12218-12219. 1,165 6.6 Photoinduced Aziridination Reaction Sensitized by PbOx-Modified Zeolite. Journal of Physical 894 1.2 2 Chemistry B, 2004, 108, 20458-20464. Correlation between dispersion properties of TiO2 colloidal sols and photoelectric characteristics 5.0 of TiO2 films. Journal of Colloid and Interface Science, 2004, 279, 479-483. Nanocrystalline F-doped tin dioxide materials: texture, morphology and photosensitization with a 896 0.9 10 perylené-substituted organotin. Journal of Fluorine Chemistry, 2004, 125, 1247-1254. Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells. 114 Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161, 105-110. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell 898 2.0 66 performance. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 441-448. 899

#	Article	IF	CITATIONS
906	Low-Pressure Organometallic Chemical Vapor Deposition of Indium Nitride on Titanium Dioxide Nanoparticles. ChemPhysChem, 2004, 5, 1615-1618.	1.0	22
907	CuInS2 Thin Films Deposited by ALD. Chemical Vapor Deposition, 2004, 10, 45-49.	1.4	40
908	Spectator ligand effects on the vibrational spectra of heteroleptic complexes of ruthenium with bipyrazine. Journal of Raman Spectroscopy, 2004, 35, 1001-1005.	1.2	6
909	Highly efficient nanocrystalline titania films made from organic/inorganic nanocomposite gels. Microporous and Mesoporous Materials, 2004, 75, 255-260.	2.2	81
910	Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochemistry Communications, 2004, 6, 71-74.	2.3	165
911	Structural characterisation of sprayed TiO2 films for extremely thin absorber layer solar cells. Thin Solid Films, 2004, 466, 97-102.	0.8	34
912	The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO2/SnO2 and ZnO/SnO2 composites. Thin Solid Films, 2004, 468, 291-297.	0.8	23
913	Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2004, 81, 87-99.	3.0	68
914	Synthesis and characterization of naphthyridine and acridinedione ligands coordinated ruthenium (II) complexes and their applications in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2004, 81, 419-428.	3.0	16
915	Molten and solid metal-iodide-doped trialkylsulphonium iodides and polyiodides as electrolytes in dye-sensitized nanocrystalline solar cells. Solar Energy Materials and Solar Cells, 2004, 82, 345-360.	3.0	45
916	Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEHPPV heterojunction devices. Solar Energy Materials and Solar Cells, 2004, 85, 31-31.	3.0	12
917	Calibration of solar simulator for evaluation of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2004, 82, 421-429.	3.0	79
918	Performance of a solid-state photoelectrochromic device. Solar Energy Materials and Solar Cells, 2004, 84, 369-380.	3.0	51
919	Influence of aminothiazole additives in Iâ^'/I3â^' redox electrolyte solution on Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell performance. Solar Energy Materials and Solar Cells, 2004, 82, 457-465.	3.0	21
920	Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2004, 83, 1-13.	3.0	129
921	Solid-state photoelectrochemical device based on poly(3-hexylthiophene) and an ion conducting polymer electrolyte, amorphous poly(ethylene oxide) complexed with I3â^'/lâ^' redox couple. Solar Energy Materials and Solar Cells, 2004, 83, 301-310.	3.0	14
922	Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer. Solar Energy Materials and Solar Cells, 2004, 85, 21-21.	3.0	7
923	Thermal behavior of Ti-precursor sols for porous TiO2 thin films. Solid State Ionics, 2004, 172, 515-518.	1.3	15

#	Article	IF	CITATIONS
924	Preparation and properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 47-51.	2.0	57
925	Multi-colored dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 67-73.	2.0	84
926	Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 103-110.	2.0	50
927	Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 123-127.	2.0	110
928	Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 145-151.	2.0	101
929	lâ^²/l3â^² redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 153-157.	2.0	376
930	Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 159-166.	2.0	112
931	Fabrication of dye-sensitized solar cells by spray pyrolysis deposition (SPD) technique. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 167-172.	2.0	48
932	Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 183-185.	2.0	97
933	Coordinative interactions in a dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 23-27.	2.0	47
934	Long-term stability testing of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 137-144.	2.0	215
935	High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 87-92.	2.0	295
936	Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 97-101.	2.0	216
937	Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 179-182.	2.0	106
938	Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 75-80.	2.0	130
939	Comparative studies of substituted ruthenium(II)–pyrazoyl–pyridine complexes with classical N3 photosensitizer: the influence of î—,NCS dye ligands on the efficiency of solid-state nanocrystalline solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 331-340.	2.0	30
940	Dye-sensitized solar cells: improvement of spectral response by tandem structure. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 33-39.	2.0	119
941	A new polymeric photosensitizer for dye-sensitized solar cell with porous TiO2 from forest carbon resources. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 53-60.	2.0	18

#	Article	IF	CITATIONS
942	Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.	2.0	2,079
943	Photoinduced intra-molecular electron transfer in aniline-containing Ru(II) polypyridine complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 137-142.	2.0	1
944	Influence of quinoline derivatives in Iâ^'/I3â^' redox electrolyte solution on the performance of Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 157-163.	2.0	22
945	Highly efficient photosensitization of TiO2 with diimine(diketonato)ruthenium(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 81-90.	2.0	21
946	Polythiophene-sensitized TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166, 75-80.	2.0	82
947	Organic photosensitizers with catechol groups for dye-sensitized photovoltaics. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168, 191-196.	2.0	59
948	Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004, 570, 257-263.	1.9	335
949	Properties of several types of novel counter electrodes for dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2004, 574, 77-83.	1.9	193
950	Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells. Journal of Fluorine Chemistry, 2004, 125, 1241-1245.	0.9	105
951	Kinetic study of photocatalytic oxidation of adsorbed carboxylic acids at TiO2 porous films by photoelectrolysis. Journal of Catalysis, 2004, 223, 212-220.	3.1	102
952	Synthesis and electronic properties of mononuclear osmium(II) and rhenium(I) complexes containing ligands derived from [2,3-a:3′,2′-c]dipyridophenazine (ppb). Polyhedron, 2004, 23, 1427-1439.	1.0	17
953	The preparation of high-surface-area nanocrystalline TiO2 films using easy-reaggregation particles in solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 110, 227-232.	1.7	20
954	Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 2004, 248, 1363-1379.	9.5	737
955	Interfacial processes in the dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1215-1224.	9.5	163
956	Correlation of morphology and device performance in inorganic–organic TiO2–polythiophene hybrid solid-state solar cells. Coordination Chemistry Reviews, 2004, 248, 1491-1499.	9.5	52
957	Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews, 2004, 248, 1391-1406.	9.5	205
958	Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1381-1389.	9.5	1,034
959	Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1317-1328.	9.5	241

#	Article	IF	CITATIONS
960	Towards optimisation of electron transfer processes in dye sensitised solar cells. Coordination Chemistry Reviews, 2004, 248, 1247-1257.	9.5	255
961	Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 2004, 248, 1283-1297.	9.5	380
962	Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coordination Chemistry Reviews, 2004, 248, 1195-1213.	9.5	171
963	Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors. Coordination Chemistry Reviews, 2004, 248, 1469-1478.	9.5	73
964	Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews, 2004, 248, 1299-1316.	9.5	218
965	Primary and final charge separation in the nano-structured dye-sensitized electrochemical solar cell. Coordination Chemistry Reviews, 2004, 248, 1259-1270.	9.5	65
966	Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews, 2004, 248, 1421-1446.	9.5	408
967	Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordination Chemistry Reviews, 2004, 248, 1231-1246.	9.5	125
968	Random walk models of charge transfer and transport in dye sensitized systems. Coordination Chemistry Reviews, 2004, 248, 1181-1194.	9.5	299
969	Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands. Coordination Chemistry Reviews, 2004, 248, 1329-1341.	9.5	97
970	A system approach to molecular solar cells. Coordination Chemistry Reviews, 2004, 248, 1501-1509.	9.5	69
971	Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews, 2004, 248, 1343-1361.	9.5	488
972	Polymers in dye sensitized solar cells: overview and perspectives. Coordination Chemistry Reviews, 2004, 248, 1455-1468.	9.5	409
973	Dye sensitization solar cells: a critical assessment of the learning curve. Coordination Chemistry Reviews, 2004, 248, 1511-1530.	9.5	195
974	Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell. Analytica Chimica Acta, 2004, 514, 89-97.	2.6	72
975	Red electroluminescence from transparent PVK-dye films based on dipyrido[3,2-a:2′,3′-c]phenazine and Re(CO)3Cl-dipyrido[3,2-a:2′,3′-c]phenazine dyes. Chemical Physics Letters, 2004, 383, 292-296.	1.2	47
976	Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] in water solution: influence of the pH. Chemical Physics Letters, 2004, 389, 204-208.	1.2	121
977	Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosensors and Bioelectronics, 2004, 19, 843-847.	5.3	110

#	Article	IF	CITATIONS
978	Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films. Bioelectrochemistry, 2004, 63, 99-102.	2.4	20
979	Colloidal bismuth sulfide nanoparticles: a photoelectrochemical study of the relationship between bandgap and particle size. Journal of Materials Chemistry, 2004, 14, 704.	6.7	55
980	Excited-State Relaxation Dynamics of Ru(dcbpy)2(NCS)2, Studied by Fluorescence Upconversion Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 12629-12632.	1.2	32
981	Using the effects of pH and moisture to synthesize highly organized mesoporous titania thin filmsElectronic supplementary information (ESI) available: TC-DTA curve of the mixed sol, prepared with a molar ratio of 1 TiCl4: 44.6 EtOH : 0.0645 Brij 58. See http://www.rsc.org/suppdata/cc/b4/b404409f/. Chemical Communications. 2004 1514.	2.2	29
982	Nonlithographic Micro- and Nanopatterning of TiO2 Using Polymer Stamped Molecular Templates. Langmuir, 2004, 20, 1436-1441.	1.6	53
983	Ruthenium(II) σ-Acetylide and Carbene Complexes Supported by the Terpyridineâ^'Bipyridine Ligand Set:Â Structural, Spectroscopic, and Photochemical Studiesâ€. Organometallics, 2004, 23, 2263-2272.	1.1	29
984	Characterization of Nanostructured TiO2Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods. Japanese Journal of Applied Physics, 2004, 43, 2946-2951.	0.8	67
985	Manufacture of Dye Sensitized Solar Cell Using Titania Sol Prepared at Room Temperature by the Sol–Gel Method. Japanese Journal of Applied Physics, 2004, 43, 1231-1235.	0.8	13
986	Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells. Applied Physics Letters, 2004, 85, 464-466.	1.5	85
987	Copper Catalysis of the Oxidation of Iodide by [FeIII(bpy)2(CN)2]+in Acetonitrile. Journal of Physical Chemistry A, 2004, 108, 7637-7638.	1.1	10
988	Fabrication and Characterization of Eosin-Y-Sensitized ZnO Solar Cell. Japanese Journal of Applied Physics, 2004, 43, 152-155.	0.8	35
989	Conductivity Studies of Nanostructured TiO2Films Permeated with Electrolyte. Journal of Physical Chemistry B, 2004, 108, 12388-12396.	1.2	77
990	Amphiphilic Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2004, 43, 4216-4226.	1.9	142
991	Sensitization and Stabilization of TiO2Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes:Â A Stable Aqueous Photoelectrochemical Cell. Inorganic Chemistry, 2004, 43, 1784-1792.	1.9	46
992	Structure and Vibrational Spectrum of Formate and Acetate Adsorbed from Aqueous Solution onto the TiO2 Rutile (110) Surface. Journal of Physical Chemistry B, 2004, 108, 5004-5017.	1.2	212
993	Structureâ~'Activity Relationship of Organic Acids in Titanium Dioxide Nanoparticle Dispersions. Chemistry of Materials, 2004, 16, 5138-5140.	3.2	9
994	Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2Films:Â The Influence of Sample Preparation and Experimental Conditions. Journal of Physical Chemistry B, 2004, 108, 6365-6373.	1.2	93
995	Triplet Energy Migration in Layer-by-Layer Deposited Ultrathin Polymer Films Bearing Tris(2,2â€~-bipyridine)ruthenium(II) Moieties. Journal of Physical Chemistry B, 2004, 108, 18897-18902.	1.2	26

#	Article	IF	CITATIONS
996	Synthesis of Heteroleptic Bis(diimine)carbonylchlororuthenium(II) Complexes from Photodecarbonylated Precursors. Inorganic Chemistry, 2004, 43, 2818-2827.	1.9	32
997	Adsorption and Charge-Transfer Study of Bi-isonicotinic Acid on In Situ-Grown Anatase TiO2Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 3114-3122.	1.2	35
998	Dye-Sensitized TiO[sub 2] Solar Cells Using Polymer Gel Electrolytes Based on PVdF-HFP. Journal of the Electrochemical Society, 2004, 151, E257.	1.3	75
999	Enhancement of Photocurrent and Photovoltage of Dye-Sensitized Solar Cells with TiO2 Film Deposited on Indium Zinc Oxide Substrate. Chemistry of Materials, 2004, 16, 493-497.	3.2	39
1000	Electron Transport and Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal Crystallization. Journal of Physical Chemistry B, 2004, 108, 2227-2235.	1.2	190
1001	Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2004, 126, 13590-13591.	6.6	196
1002	Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2â€~-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells. Chemistry of Materials, 2004, 16, 3246-3251.	3.2	50
1003	Effect of Annealing Temperature on Back Electron Transfer and Distribution of Deep Trap Sites in Dye-Sensitized TiO2, Studied by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 2963-2969.	1.2	30
1004	Quantitative Estimation of the Efficiency of Electron Injection from Excited Sensitizer Dye into Nanocrystalline ZnO Film. Journal of Physical Chemistry B, 2004, 108, 2643-2647.	1.2	44
1005	Electrochemical Behavior of Thin Ta3N5Semiconductor Film. Journal of Physical Chemistry B, 2004, 108, 11049-11053.	1.2	146
1006	Photoelectron Spectroscopy Studies of Ru(dcbpyH2)2(NCS)2/CuI and Ru(dcbpyH2)2(NCS)2/CuSCN Interfaces for Solar Cell Applications. Journal of Physical Chemistry B, 2004, 108, 11604-11610.	1.2	37
1007	Photovoltage Enhancement:Â Analysis of Polaron Formation and Charge Transport at the Junctions of Organic Polythiophene and Inorganic Semiconductorsâ€. Journal of Physical Chemistry B, 2004, 108, 12842-12850.	1.2	24
1008	Photoelectrochemical Behavior of Oxalate at an Indium Tin Oxide Electrode. Journal of Physical Chemistry B, 2004, 108, 16850-16854.	1.2	7
1009	An alternative ionic liquid based electrolyte for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2004, 3, 918.	1.6	32
1010	METAL COMPLEXES FOR MOLECULAR ELECTRONICS AND PHOTONICS. Comments on Inorganic Chemistry, 2004, 25, 147-184.	3.0	141
1011	Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitised solar cells (DSSCs). Journal of Materials Chemistry, 2004, 14, 2917.	6.7	72
1012	Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells. Chemistry of Materials, 2004, 16, 1806-1812.	3.2	559
1013	Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004, 84, 2433-2435.	1.5	583

#	Article	IF	CITATIONS
1014	Interligand Electron Transfer Determines Triplet Excited State Electron Injection in RuN3â^'Sensitized TiO2Films. Journal of Physical Chemistry B, 2004, 108, 2862-2867.	1.2	130
1015	Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Rutheniumâ^'Polypyridyl Complexes. Inorganic Chemistry, 2004, 43, 396-398.	1.9	53
1016	Mesoporous Spherical Aggregates of Anatase Nanocrystals with Wormhole-like Framework Structures:Â Their Chemical Fabrication, Characterization, and Photocatalytic Performance. Langmuir, 2004, 20, 11738-11747.	1.6	55
1017	Polythiophene Containing Thermally Removable Solubilizing Groups Enhances the Interface and the Performance of Polymerâ °Titania Hybrid Solar Cells. Journal of the American Chemical Society, 2004, 126, 9486-9487.	6.6	238
1018	Titania Nanoparticles Prepared with Pulsed Laser Ablation of Rutile Single Crystals in Water. Journal of Physical Chemistry B, 2004, 108, 10863-10871.	1.2	84
1019	Application of Metalloporphyrins in Nanocrystalline Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Langmuir, 2004, 20, 6514-6517.	1.6	288
1020	Measuring methods of cell performance of dye-sensitized solar cells. Review of Scientific Instruments, 2004, 75, 2828-2831.	0.6	123
1021	Optical, Electronic, and Dynamic Properties of Semiconductor Nanomaterials. , 2004, , 201-255.		1
1022	Development of a Direct Photoelectrochemical Method for Determination of Chemical Oxygen Demand. Analytical Chemistry, 2004, 76, 155-160.	3.2	170
1023	Electrodeless Determination of the Trap Density, Decay Kinetics, and Charge Separation Efficiency of Dye-Sensitized Nanocrystalline TiO2. Journal of the American Chemical Society, 2004, 126, 7608-7618.	6.6	184
1024	Surfactant-Directed Synthesis of Mesoporous Titania with Nanocrystalline Anatase Walls and Remarkable Thermal Stability. Journal of Physical Chemistry B, 2004, 108, 3713-3721.	1.2	100
1025	Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chemical Communications, 2004, , 1662.	2.2	202
1026	Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO2 films. Photochemical and Photobiological Sciences, 2004, 3, 56.	1.6	38
1027	Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 18693-18697.	1.2	103
1028	Influence of Surface Protonation on the Sensitization Efficiency of Porphyrin-Derivatized TiO2. Journal of Physical Chemistry B, 2004, 108, 11680-11688.	1.2	89
1029	Identification of Reactive Species in Photoexcited Nanocrystalline TiO2Films by Wide-Wavelength-Range (400â^2500 nm) Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 3817-3823.	1.2	454
1030	Ultrafast Electron Transfer from Ru Polypyridyl Complexes to Nb2O5Nanoporous Thin Films. Journal of Physical Chemistry B, 2004, 108, 12795-12803.	1.2	38
1031	Synthesis and Chemical Properties of Conjugated Polyacetylenes Having Pendant Fullerene and/or Porphyrin Units. Macromolecules, 2004, 37, 7444-7450.	2.2	37

#	Article	IF	CITATIONS
1032	Solid state solar cell made from nanocrystalline TiO 2 with a fluorene-thiophene copolymer as a hole conductor. , 2004, , .		1
1033	Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces: Insights into the Surface Modification of Nanostructured TiO2 Electrodes. Journal of Physical Chemistry B, 2004, 108, 15077-15083.	1.2	85
1034	Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO2Films:Â Free Energy vs Distance Dependence. Journal of the American Chemical Society, 2004, 126, 5225-5233.	6.6	325
1035	Fabrication and characterization of mesoporous SnO2/ZnO-composite electrodes for efficient dye solar cells. Journal of Materials Chemistry, 2004, 14, 385.	6.7	88
1036	Structural Changes upon Reduction of Dipyrido[2,3-a:3â€~,2â€~-c]phenazine Probed by Vibrational Spectroscopy, ab Initio Calculations, and Deuteration Studies. Inorganic Chemistry, 2004, 43, 2876-2887.	1.9	29
1037	A Porous Multilayer Dye-Based Photoelectrochemical Cell That Unexpectedly Runs in Reverse. Journal of Physical Chemistry B, 2004, 108, 4111-4115.	1.2	66
1038	Current Density versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulations. Journal of Physical Chemistry B, 2004, 108, 5282-5293.	1.2	44
1039	Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 2004, , 400-401.	2.2	141
1040	Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2Solar Cells. Langmuir, 2004, 20, 4205-4210.	1.6	398
1041	Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology, 2004, 15, 1861-1865.	1.3	287
1042	Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose. Materials Letters, 2004, 58, 2751-2753.	1.3	38
1043	Improving the efficiency of titania aerogel-based photovoltaic electrodes by electrochemically grafting isopropyl moieties on the titania surface. Journal of Non-Crystalline Solids, 2004, 350, 107-112.	1.5	17
1044	Synthesis of phthalocyanines with two carboxylic acid groups and their utilization in solar cells based on nano-structured TiO ₂ . Journal of Porphyrins and Phthalocyanines, 2004, 08, 1228-1235.	0.4	33
1045	Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2Nanowires Made by the "Oriented Attachment―Mechanism. Journal of the American Chemical Society, 2004, 126, 14943-14949.	6.6	834
1046	Photovoltage study of charge injection from dye moleculesinto transparent hole and electron conductors. Applied Physics Letters, 2004, 84, 5455-5457.	1.5	82
1047	Synthesis of Rutile (α-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis:  Effects of Solvent Composition. Journal of Physical Chemistry B, 2004, 108, 14789-14792.	1.2	155
1048	Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2,) Tj ETQq0 0 0	rgBT /Over 1.2	lock 10 Tf 50

1049	Performance Improvement of Solid-State Dye-Sensitized Solar Cells Fabricated Using Poly(3,4-ethylenedioxythiophene) and Amphiphilic Sensitizing Dye. Journal of the Electrochemical Society, 2004, 151, A1745.	1.:	3 3	33
------	--	-----	-----	----

#	Article	IF	CITATIONS
1050	Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of Materials, 2004, 16, 477-485.	3.2	406
1051	Resonance micro-Raman spectrophotoelectrochemistry on nanocrystalline TiO2 thin film electrodes sensitized by Ru(II) complexes. Coordination Chemistry Reviews, 2004, 248, 1407-1420.	9.5	65
1052	A New Ionic Liquid for a Redox Electrolyte of Dye-Sensitized Solar Cells. ETRI Journal, 2004, 26, 647-652.	1.2	23
1053	Recent Trend of Technology Development in an Organic Solar Cells. Journal of the Japan Society of Colour Material, 2004, 77, 283-288.	0.0	0
1054	Synthesis and Application of Ruthenium(II) Tricarboxyterpyridyl Complex with a Nitrogen Chelete Ligand for Solar Cells Based on Nanocrystalline TiO2Films. Chemistry Letters, 2004, 33, 986-987.	0.7	21
1055	The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance. Journal of Chemical Engineering of Japan, 2004, 37, 645-649.	0.3	53
1056	Optimizations of quasi-solid-state dye-sensitized solar cells. , 2005, 5938, 173.		0
1057	An Efficient Dye-sensitized Photoelectrochemical Solar Cell Made from CaCO3-coated TiO2Nanoporous Film. Chemistry Letters, 2005, 34, 16-17.	0.7	34
1058	Ruthenium(II) Tricarboxyterpyridyl Complex with a Fluorine-substituted β-Diketonato Ligand for Highly Efficient Dye-sensitized Solar Cells. Chemistry Letters, 2005, 34, 344-345.	0.7	36
1059	Greatly Enhanced Photovoltaic Performance by Introducing Hydroxyl or Benzene Ring into D–π–A Dye Framework: Dye Sensitized Solar Cells Based on Rhodanine Dyes. Chemistry Letters, 2005, 34, 762-763.	0.7	11
1060	Flexible Metallic Substrates for TiO2Film of Dye-sensitized Solar Cells. Chemistry Letters, 2005, 34, 804-805.	0.7	56
1061	Visible-Light Sensitisation of Nanocrystalline TiO2Film by Mg Chlorophyll-athrough the Axial Imidazole-4-acetic Acid Ligand. Bulletin of the Chemical Society of Japan, 2005, 78, 132-134.	2.0	6
1062	The Use of TiCl4Treatment to Enhance the Photocurrent in a TaON Photoelectrode under Visible Light Irradiation. Chemistry Letters, 2005, 34, 1162-1163.	0.7	79
1063	Dye-sensitized Solar Cells with an Extremely Thin Liquid Film as the Redox Electron Mediator. Chemistry Letters, 2005, 34, 572-573.	0.7	5
1064	A High Voltage Dye-sensitized Solar Cell using a Nanoporous NiO Photocathode. Chemistry Letters, 2005, 34, 500-501.	0.7	117
1065	An Application of the Excited States of Lignophenol Derived from Native Lignin in Forest Carbon Resources. Kobunshi Ronbunshu, 2005, 62, 283-290.	0.2	3
1066	Synthesis and characterization of anatase-TiO2 thin films. Applied Surface Science, 2005, 239, 165-170.	3.1	117
1067	Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries. Journal of Power Sources, 2005, 144, 191-196.	4.0	27

ARTICLE IF CITATIONS Incorporation of innovative compounds in nanostructured photoelectrochemical cells. Journal of 1068 3.1 14 Materials Processing Technology, 2005, 161, 107-112. Modification of TiO2 semiconductor with molecules bearing functional phosphonic groups: a 31P 3.1 9 solid state NMR study. Journal of Materials Processing Technology, 2005, 161, 276-281. Dye-sensitized photoelectrochemical solar cells based on nanocomposite organic–inorganic 1070 2.0 58 materials. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 57-61. Influence of nitrogen-containing heterocyclic additives in lâ^'/I3â^' redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169, 169-176. 1071 2.0 A novel polymer quaternary ammonium iodide and application in quasi-solid-state dye-sensitized solar 1072 2.0 32 cells. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 1-6. Photoinduced electron transfer reactions of ruthenium(II) complexes containing 2,2′-bipyridine-4,4′-dicarboxylic acid with phenols. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 83-90. Density functional study of imidazole–iodine interaction and its implication in dye-sensitized solar 1074 2.0 19 cell. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 197-204. Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell. 2.0 57 Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 231-236. Dye sensitization of nanocrystalline TiO2: enhanced efficiency of unsymmetrical versus symmetrical 1076 2.0 165 squaraine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 63-71. Improvement of photovoltaic performance of solid-state dye-sensitized solar cells by iodine doping in conjugated polymer. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 135-139. Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells. 1078 106 2.0 Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 1-6. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar 106 cells using UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175, 165-171. Effect of rutile-type content on nanostructured anatase-type TiO2 electrode sensitized with CdSe quantum dots characterized with photoacoustic and photoelectrochemical current spectroscopies. 1080 3.8 10 Materials Science and Engineering C, 2005, 25, 853-857. Ultraviolet photoelectron spectroscopy of nanocrystalline TiO2 films sensitized with 1.4 (2,2â€²-bipyridyl)ruthenium(II) dyes for photovoltaic applications. Organic Electronics, 2005, 6, 55-64. Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for 1082 2.6 26 application to dye-sensitized solar cells. Electrochimica Acta, 2005, 50, 2713-2718. A novel high-performance counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2005, 50, 5546-5552. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells. Thin 1084 0.8 140 Solid Films, 2005, 472, 242-245. Influence of the binder on the electron transport in the dye-sensitized TiO2 electrode. Thin Solid Films, 2005, 484, 346-351.

ARTICLE

Synthesis, characterization and fabrication of solar cells making use of [Ru(dcbpy)(tptz)X]X (where) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

1087	Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films. Solar Energy Materials and Solar Cells, 2005, 88, 199-208.	3.0	80
1088	Design of novel efficient sensitizing dye for nanocrystalline TiO2 solar cell; tripyridine-thiolato (4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine)ruthenium(II). Solar Energy Materials and Solar Cells, 2005, 437-446.	820	28
1089	Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers. Solar Energy Materials and Solar Cells, 2005, 85, 321-331.	3.0	91
1090	Influence of pyrazole derivatives in lâ^'/I3â^' redox electrolyte solution on Ru(II)-dye-sensitized TiO2 solar cell performance. Solar Energy Materials and Solar Cells, 2005, 85, 333-344.	3.0	39
1091	Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm. Solar Energy Materials and Solar Cells, 2005, 85, 359-369.	3.0	38
1092	Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2005, 86, 269-282.	3.0	74
1093	On the structural variations of Ru(II) complexes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 357-367.	3.0	25
1094	Solid-state dye PV cells using inverse opal TiO2 films. Solar Energy Materials and Solar Cells, 2005, 87, 513-519.	3.0	59
1095	Influence of 1-methyl-3-propylimidazolium iodide on I/I redox behavior and photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2005, 86, 527-535.	3.0	30
1096	Characterization of N, N′-bis-2-(1-hydoxy-4-methylpentyl)-3, 4, 9, 10-perylene bis (dicarboximide) sensitized nanocrystalline TiO2 solar cells with polythiophene hole conductors. Solar Energy Materials and Solar Cells, 2005, 88, 11-21.	3.0	79
1097	Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2005, 85, 457-465.	3.0	15
1098	Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Solar Energy Materials and Solar Cells, 2005, 88, 23-35.	3.0	113
1099	Effect of Ar plasma treatment on the photo-electrical properties of nanocrystal TiO2 films. Solar Energy Materials and Solar Cells, 2005, 88, 293-299.	3.0	10
1100	Poly(butyl acrylate)/NaI/I electrolytes for dye-sensitized nanocrystalline TiO solar cells. Solid State Ionics, 2005, 176, 579-584.	1.3	79
1101	Wavelet analysis of the surface morphologic of nanocrystalline TiO2 thin films. Surface Science, 2005, 579, 37-46.	0.8	17
1102	The effect of particle size and conductivity of CuI layer on the performance of solid-state dye-sensitized photovoltaic cells. Current Applied Physics, 2005, 5, 149-151.	1.1	37
1103	Synthesis, characterization and crystal structure of bis(5′-methyl-2,2′-bipyridine-6-carboxylato) ruthenium(II). Inorganic Chemistry Communication, 2005, 8, 162-165.	1.8	2

#	Article	IF	CITATIONS
1104	3-[2-(2-Quinoxalinyl)benzoxazol-5-yl]alanine derivative – A specific fluoroionophore for Ni(II). Inorganic Chemistry Communication, 2005, 8, 947-950.	1.8	17
1105	Synthesis and photosensitizing properties of conjugated polymers that contain chlorotricarbonyl bis(phenylimino)acenaphthene rhenium(I) complexes. Coordination Chemistry Reviews, 2005, 249, 1351-1359.	9.5	43
1106	Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordination Chemistry Reviews, 2005, 249, 1460-1467.	9.5	262
1107	Photosensitization of thin SnO2 nanocrystalline semiconductor film electrodes with electron donor–acceptor metallodiporphyrin dyad. Chemical Physics, 2005, 312, 97-109.	0.9	8
1108	TiO2 nano-porous photoelectrochemical cells (PECs) sensitized with mixed cationic/anionic dye systems: Role of the second cationic fluorescent dye on the photocurrent enhancement. Chemical Physics Letters, 2005, 412, 29-34.	1.2	4
1109	Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COOâ^'-2,2′-bpy)2(X)2]4â^' (X=NCS, Cl) dyes in water solution. Chemical Physics Letters, 2005, 41 115-120.	51.2	91
1110	A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films. Applied Surface Science, 2005, 246, 72-76.	3.1	16
1111	Layer-by-layer deposition of TiO2 nanoparticles. Applied Surface Science, 2005, 246, 415-419.	3.1	18
1112	Syntheses and properties of phosphonate π-conjugated of pyridine. Comptes Rendus Chimie, 2005, 8, 911-915.	0.2	1
1113	Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 2005, 7, 1133-1137.	2.3	369
1114	Al2O3-coated SnO2/TiO2 composite electrode for the dye-sensitized solar cell. Electrochimica Acta, 2005, 50, 2583-2589.	2.6	57
1115	Influence of various cations on redox behavior of lâ^' and I3â^' and comparison between KI complex with 18-crown-6 and 1,2-dimethyl-3-propylimidazolium iodide in dye-sensitized solar cells. Electrochimica Acta, 2005, 50, 2597-2602.	2.6	35
1116	A novel method for preparing platinized counter electrode of nanocrystalline dye-sensitized solar cells. Science Bulletin, 2005, 50, 11.	1.7	19
1117	Efficient Light Harvesting by Using Green Zn-Porphyrin-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 15397-15409.	1.2	425
1118	Optical Modeling of Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 2591-2596.	1.2	21
1119	Comparative Study of Acetic Acid, Methanol, and Water Adsorbed on Anatase TiO2 Probed by Sum Frequency Generation Spectroscopy. Journal of the American Chemical Society, 2005, 127, 9736-9744.	6.6	110
1120	ELECTRON INJECTION AT DYE-SENSITIZED SEMICONDUCTOR ELECTRODES. Annual Review of Physical Chemistry, 2005, 56, 119-156.	4.8	224
1121	Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2Films. Langmuir, 2005, 21, 4272-4276.	1.6	325

#	Article	IF	CITATIONS
1122	ULTRAFAST ELECTRON TRANSFER AT THE MOLECULE-SEMICONDUCTOR NANOPARTICLE INTERFACE. Annual Review of Physical Chemistry, 2005, 56, 491-519.	4.8	465
1123	Molecular Approaches to Solar Energy Conversion with Coordination Compounds Anchored to Semiconductor Surfaces. Inorganic Chemistry, 2005, 44, 6852-6864.	1.9	232
1124	Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005, 44, 6841-6851.	1.9	3,119
1125	Bamboo-Shaped Ag-Doped TiO2Nanowires with Heterojunctions. Inorganic Chemistry, 2005, 44, 6503-6505.	1.9	60
1126	Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 14945-14953.	1.2	1,855
1127	Confocal microscopy of electrostatic properties of Si quantum dots and silica surfaces by charge-sensitive dye molecules. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784314	rg BT. ‡Ovei	rloek 10 Tf 5
1128	The adsorption of 4-tert-butylpyridine on the nanocrystalline TiO2 and Raman spectra of dye-sensitized solar cells in situ. Vibrational Spectroscopy, 2005, 39, 99-105.	1.2	73
1129	Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Materials Letters, 2005, 59, 434-438.	1.3	78
1130	The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells' electrodes. Materials Letters, 2005, 59, 4038-4040.	1.3	40
1131	Coll Complexes of Triazine-Based Tridentate Ligands with Positive and Attractive Coll/III Redox Couples. European Journal of Inorganic Chemistry, 2005, 2005, 1223-1226.	1.0	20
1132	Sensitization of Nanocrystalline TiO2 Films with Carboxy-Functionalized Bis(indolyl)maleimide. European Journal of Organic Chemistry, 2005, 2005, 3443-3449.	1.2	11
1133	I?3/I? Redox Behavior of Alkali-metal Iodide Complexes with Crown Ether/Cryptand Macrocycles and Their Applications to Dye-sensitized Solar Cells. Chinese Journal of Chemistry, 2005, 23, 251-254.	2.6	6
1134	Effects of TiO2 Film on the Performance of Dye-sensitized Solar Cells Based on Ionic Liquid Electrolyte. Chinese Journal of Chemistry, 2005, 23, 1579-1583.	2.6	17
1135	Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells. ChemPhysChem, 2005, 6, 1253-1258.	1.0	99
1136	Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites. Advanced Functional Materials, 2005, 15, 95-100.	7.8	108
1137	Novel Conjugated Organic Dyes for Efficient Dye-Sensitized Solar Cells. Advanced Functional Materials, 2005, 15, 246-252.	7.8	409
1138	Infiltration of Regioregular Poly[2,2?-(3-hexylthiopene)] into Random Nanocrystalline TiO2 Networks. Advanced Functional Materials, 2005, 15, 677-682.	7.8	70
1139	A Hybrid Poly(ethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells. Advanced Functional Materials, 2005, 15, 1940-1944.	7.8	188

#	Article	IF	Citations
1140	Photochemistry and Electrochemistry of Nanoassemblies. , 2005, , 620-645.		0
1141	Surface-Grafted Multiporphyrin Arrays as Light-Harvesting Antennae to Amplify Photocurrent Generation. Chemistry - A European Journal, 2005, 11, 5563-5574.	1.7	81
1142	Novel Carboxylated Oligothiophenes as Sensitizers in Photoelectric Conversion Systems. Chemistry - A European Journal, 2005, 11, 6272-6276.	1.7	92
1143	The preparation and characterization of nanostructured TiO2–ZrO2 mixed oxide electrode for efficient dye-sensitized solar cells. Journal of Solid State Chemistry, 2005, 178, 1044-1048.	1.4	86
1144	Photo-electro-chemical properties of TiO2 mediated by the enzyme glucose oxidase. Catalysis Today, 2005, 101, 397-405.	2.2	21
1145	A transient molecular probe for characterizing the surface properties of TiO2 nanoparticle in colloidal solution. Science and Technology of Advanced Materials, 2005, 6, 867-872.	2.8	4
1146	Effect of process parameters on the efficiency of dye sensitized solar cells. Metals and Materials International, 2005, 11, 465-471.	1.8	5
1147	Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Topics in Catalysis, 2005, 35, 269-278.	1.3	358
1148	A novel hybrid nanocrystalline TiO2 electrode for the dye-sensitized nanocrystalline solar cells. Journal of Materials Science, 2005, 40, 4921-4923.	1.7	15
1149	Influences of Solvent on Properties of TiO2 Porous Films Prepared by a Sol-Gel Method from the System Containing PEG. Journal of Sol-Gel Science and Technology, 2005, 36, 103-111.	1.1	29
1150	The Low Temperature Processing of Titanium Dioxide Films by the Addition of Trimesic Acid. Journal of Sol-Gel Science and Technology, 2005, 36, 157-162.	1.1	7
1151	Characterization of Photovoltaic Performance of Dye-Sensitized Solar Cells. Electrochemistry, 2005, 73, 887-896.	0.6	11
1152	Photoelectrochemical and Photocatalytic Properties of Multilayered TiO2 Thin Films With a Spinodal Phase Separation Structure Prepared by a Sol-Gel Process. Journal of Materials Research, 2005, 20, 121-127.	1.2	12
1153	Structural Characterization and Photocurrent Properties ofcis-di(thiocyanato)-bis(4,4'-dicarboxy-2,2'-bipyridine) Ruthenium(II) Monolayers on the Gold Surfaces. Japanese Journal of Applied Physics, 2005, 44, 2795-2798.	0.8	16
1154	A Polymeric/Inorganic Nanocomposite for Solid-State Dye-Sensitized Solar Cells. Plasma Science and Technology, 2005, 7, 2962-2964.	0.7	7
1155	Quasi-Solid-State Dye-Sensitized Solar Cells based on Mesoporous Silica SBA-15 Framework Materials. Chinese Physics Letters, 2005, 22, 2116-2118.	1.3	8
1156	Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Applied Physics Letters, 2005, 87, 213901.	1.5	104
1157	Effect of the Temperature and Concentration of NaOH on the Formation of Porous TiO[sub 2]. Journal of the Electrochemical Society, 2005, 152, C789.	1.3	17

#	Article	IF	CITATIONS
1158	NANOSTRUCTURED TIO2 FILMS IN DYE-SENSITIZED SOLAR CELLS. International Journal of Nanoscience, 2005, 04, 785-793.	0.4	0
1159	Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes. Journal of Physics Condensed Matter, 2005, 17, 4361-4368.	0.7	40
1160	Dye-Sensitized Solid-State Heterojunction Solar Cells. MRS Bulletin, 2005, 30, 23-27.	1.7	180
1161	Organic and plastic solar cells. , 2005, , 419-447.		2
1162	Enhancement in Performance of Dye-Sensitized Solar Cells Modified with In Situ Photopolymerized PDEA in TiO[sub 2] Films. Journal of the Electrochemical Society, 2005, 152, A1378.	1.3	10
1163	Characterization of TiO2/Polyelectrolyte Thin Film Fabricated by a Layer-by-Layer Self-Assembly Method. Japanese Journal of Applied Physics, 2005, 44, 7588-7592.	0.8	17
1164	Chemical Approaches to Artificial Photosynthesis. 2. Inorganic Chemistry, 2005, 44, 6802-6827.	1.9	887
1165	Metal-Assembling Dendrimers with a Triarylamine Core and Their Application to a Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2005, 127, 13030-13038.	6.6	163
1166	The Photoconversion Mechanism of Excitonic Solar Cells. MRS Bulletin, 2005, 30, 20-22.	1.7	138
1167	Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 1997, 80, 3157-3171.	1.9	1,418
1168	Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2Films Surface Treated with Al3+Ions:Â Photovoltage and Electron Transport Studies. Journal of Physical Chemistry B, 2005, 109, 18483-18490.	1.2	88
1169	Indium Tin Oxide Electrodes Modified with Tris(2,2â€~-bipyridine-4,4â€~-dicarboxylic acid) Iron(II) and the Catalytic Oxidation of Tris(4,4â€~-di-tert-butyl-2,2â€~-bipyridine) Cobalt(II). Langmuir, 2005, 21, 3022-3027.	1.6	23
1170	A Bird´s Eye View of Materials and Manufacturing Processes for Photovoltaic Cells. , 0, , .		1
1171	A highly efficient redox chromophore for simultaneous application in a photoelectrochemical dye sensitized solar cell and electrochromic devices. New Journal of Chemistry, 2005, 29, 320-324.	1.4	37
1172	A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. Journal Physics D: Applied Physics, 2005, 38, 3543-3549.	1.3	78
1173	Polynuclear complexes of a dissociative excited state formed in the [Ru(bpy)2(CN)2]–HgCl2system. Photochemical and Photobiological Sciences, 2005, 4, 185-190.	1.6	4
1174	Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. , 0, , .		4
1175	Electron Transfer Dynamics from Organic Adsorbate to a Semiconductor Surface:  Zinc Phthalocyanine on TiO2(110). Journal of Physical Chemistry B, 2005, 109, 18018-18024.	1.2	33

#	Article	IF	CITATIONS
1176	Using an Oxide Nanoarchitecture To Make or Break a Proton Wire. Analytical Chemistry, 2005, 77, 7924-7932.	3.2	31
1177	Combinatorial Approach to Identification of Catalysts for the Photoelectrolysis of Water. Chemistry of Materials, 2005, 17, 4318-4324.	3.2	161
1178	Solid-State Composite Electrolyte Lil/3-Hydroxypropionitrile/SiO2for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 6394-6401.	6.6	176
1179	Enhancement in Photoelectric Conversion Properties of the Dye-Sensitized Nanocrystalline Solar Cells Based on the Hybrid TiO[sub 2] Electrode. Journal of the Electrochemical Society, 2005, 152, A164.	1.3	39
1180	Investigation of Cation-Induced Degradation of Dye-Sensitized Solar Cells for a New Strategy to Long-Term Stability. Langmuir, 2005, 21, 11414-11417.	1.6	61
1181	Spectroscopic Ellipsometry and Raman Studies on Sputtered TiO ₂ Thin Films. Solid State Phenomena, 2005, 106, 127-132.	0.3	0
1182	Origin of Enhancement in Open-Circuit Voltage by Adding ZnO to Nanocrystalline SnO2 in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 17892-17900.	1.2	67
1183	Methods of Measuring Energy Conversion Efficiency in Dye-sensitized Solar Cells. Japanese Journal of Applied Physics, 2005, 44, 4176-4181.	0.8	35
1184	Determination of the Light-Induced Degradation Rate of the Solar Cell SensitizerN719on TiO2Nanocrystalline Particles. Journal of Physical Chemistry B, 2005, 109, 22413-22419.	1.2	56
1185	Electron Injection Dynamics of Ru Polypyridyl Complexes on SnO2Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2005, 109, 7088-7094.	1.2	66
1186	Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2. Journal of the American Chemical Society, 2005, 127, 12150-12151.	6.6	213
1187	Solid-State Photochromic Device Based on Nanocrystalline TiO2Functionalized with Electron Donorâ" Acceptor Species. Inorganic Chemistry, 2005, 44, 9619-9621.	1.9	54
1188	Novel Soft Chemical Method for Optically Transparent Ru(bpy)3-K4Nb6O17Thin Film. Journal of Physical Chemistry B, 2005, 109, 21612-21617.	1.2	24
1189	Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film. Analytical Chemistry, 2005, 77, 8068-8074.	3.2	168
1190	Near-IR Light-Sensitized Voltaic Conversion System Using Nanocrystalline TiO2Film by Zn Chlorophyll Derivative Aggregate. Langmuir, 2005, 21, 3008-3012.	1.6	40
1191	Solvent Effects on Interfacial Electron Transfer from Ru(4,4â€~-dicarboxylic) Tj ETQq1 1 0.784314 rgBT /Overlock Journal of Physical Chemistry A, 2005, 109, 11443-11452.	10 Tf 50 1 1.1	47 Td (acid- 53
1192	Electronic and Molecular Surface Structure of Ru(tcterpy)(NCS)3and Ru(dcbpy)2(NCS)2Adsorbed from Solution onto Nanostructured TiO2:Â A Photoelectron Spectroscopy Study. Journal of Physical Chemistry B, 2005, 109, 22256-22263.	1.2	106
1193	Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 6850-6856.	6.6	383

CITATION	N REPORT	
	IF	Citations
hemical Cell Ruthenium	6.6	2,645

1194	Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005, 127, 16835-16847.	6.6	2,645
1195	Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:Â the Minimization of Kinetic Redundancy. Journal of the American Chemical Society, 2005, 127, 3456-3462.	6.6	477
1196	Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. Journal of Materials Chemistry, 2005, 15, 75-93.	6.7	889
1197	Dye-Sensitized Solar Cells. , 2005, , 663-700.		28
1198	Roles of Electrolytes on Charge Recombination in Dye-Sensitized TiO2Solar Cells (2):Â The Case of Solar Cells Using Cobalt Complex Redox Couples. Journal of Physical Chemistry B, 2005, 109, 3488-3493.	1.2	102
1199	Electrochemical and gas-phase photocatalytic performance of nanostructured TiO2(B) prepared by novel synthetic route. Progress in Solid State Chemistry, 2005, 33, 253-261.	3.9	21
1200	Interfacial properties of photovoltaic TiO2/dye/PEDOT–PSS heterojunctions. Synthetic Metals, 2005, 149, 157-167.	2.1	33
1201	Porphyrin dye-sensitization of polythiophene in a conjugated polymer/TiO2 p–n hetero-junction solar cell. Synthetic Metals, 2005, 155, 51-55.	2.1	28
1202	New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synthetic Metals, 2005, 153, 77-80.	2.1	63
1203	Stepped Light-Induced Transient Measurements of Photocurrent and Voltage in Dye-Sensitized Solar Cells:Â Application for Highly Viscous Electrolyte Systems. Langmuir, 2005, 21, 10803-10807.	1.6	250
1204	Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. Journal of Physical Chemistry B, 2005, 109, 6334-6342.	1.2	279
1205	Dye Sensitization of the Anatase (101) Crystal Surface by a Series of Dicarboxylated Thiacyanine Dyes. Journal of the American Chemical Society, 2005, 127, 5158-5168.	6.6	124
1206	Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chemical Communications, 2005, , 740.	2.2	199
1207	Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New Journal of Chemistry, 2005, 29, 773.	1.4	205
1208	Highly Efficient and Direct Heterocyclization of Dipyridyl Ketone toN,N-Bidentate Ligands. Journal of Organic Chemistry, 2005, 70, 2353-2356.	1.7	67
1209	Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells:  Shielding versus Band-Edge Movement. Journal of Physical Chemistry B, 2005, 109, 23183-23189.	1.2	294
1210	Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Inorganic Chemistry, 2005, 44, 178-180.	1.9	189
1211	Nanocomposite Three-Dimensional Solar Cells Obtained by Chemical Spray Deposition. Nano Letters, 2005, 5, 1716-1719.	4.5	179

#

ARTICLE

#	Article	IF	CITATIONS
1212	Photophysical and (Photo)electrochemical Properties of a Coumarin Dye. Journal of Physical Chemistry B, 2005, 109, 3907-3914.	1.2	301
1213	Pseudocapacitive Lithium Storage in TiO2(B). Chemistry of Materials, 2005, 17, 1248-1255.	3.2	467
1214	Scattering spherical voids in nanocrystalline TiO2? enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 2005, , 2011.	2.2	274
1215	Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15476-15482.	1.2	562
1216	Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Applied Physics Letters, 2005, 86, 213501.	1.5	318
1217	Synthesis, Structure, and Properties of [Pt(II)(diimine)(dithiolate)] Dyes with 3,3â€~-, 4,4â€~-, and 5,5â€~-Disubstituted Bipyridyl: Applications in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2005, 44, 242-250.	1.9	201
1218	Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research, 2005, 20, 3167-3179.	1.2	197
1219	Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO2Electrodes. Journal of Physical Chemistry B, 2005, 109, 23776-23778.	1.2	155
1220	Preparation of Nanoporous MgO-Coated TiO2Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells. Langmuir, 2005, 21, 10332-10335.	1.6	191
1221	Sensitization of Nanocrystalline TiO2 with Black Absorbers Based on Os and Ru Polypyridine Complexes. Journal of the American Chemical Society, 2005, 127, 15342-15343.	6.6	203
1222	Fabrication of TiO2 Nanofibers from a Mesoporous Silica Film. Chemistry of Materials, 2005, 17, 5136-5140.	3.2	48
1223	Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. Journal of Materials Chemistry, 2005, 15, 412.	6.7	75
1224	High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Letters, 2005, 5, 2543-2547.	4.5	287
1225	Spatial Electron Distribution and Its Origin in the Nanoporous TiO2Network of a Dye Solar Cell. Journal of Physical Chemistry B, 2005, 109, 20444-20448.	1.2	27
1226	TiO2Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 2005, 44, 8269-8285.	0.8	2,895
1227	Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. Journal of Materials Chemistry, 2005, 15, 2414.	6.7	137
1228	Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes. Journal of Materials Chemistry, 2005, 15, 1654-1661.	6.7	201
1229	Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Physical Chemistry Chemical Physics, 2005, 7, 4157.	1.3	275

#	Article	IF	CITATIONS
1230	Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 18907-18913.	1.2	327
1231	Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3-Electrolyte. Journal of Physical Chemistry B, 2005, 109, 22449-22455.	1.2	204
1232	Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2005, 109, 15968-15976.	1.2	201
1233	A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2005, 127, 808-809.	6.6	507
1234	Electrospinning processed nanofibrous TiO2membranes for photovoltaic applications. Nanotechnology, 2006, 17, 1026-1031.	1.3	193
1235	Calculation of Activation Energies for Transport and Recombination in Mesoporous TiO2/Dye/Electrolyte FilmsTaking into Account Surface Charge Shifts with Temperature. Journal of Physical Chemistry B, 2006, 110, 8544-8547.	1.2	97
1237	High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 4146-4154.	6.6	538
1238	Room-Temperature Preparation of Nanocrystalline TiO2Films and the Influence of Surface Properties on Dye-Sensitized Solar Energy Conversion. Journal of Physical Chemistry B, 2006, 110, 21890-21898.	1.2	115
1239	Synthesis and Modeling of Acridine Dyes as Potential Photosensitizers for Dye‧ensitized Photovoltaic Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 1907-1922.	1.2	24
1240	Highly Active TiO2N Photocatalysts Prepared by Treating TiO2Precursors in NH3/Ethanol Fluid under Supercritical Conditions. Journal of Physical Chemistry B, 2006, 110, 1559-1565.	1.2	257
1241	Recombination Reduction in Dye-Sensitized Solar Cells by Screen-Printed TiO 2 Underlayers. Chinese Physics Letters, 2006, 23, 2606-2608.	1.3	20
1242	Escape dynamics of photoexcited electrons at catechol:TiO2(110). Physical Review B, 2006, 74, .	1.1	68
1243	Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics, 2006, 45, L638-L640.	0.8	1,761
1244	High Efficiency of Dye-Sensitized Solar Cell and Module. , 2006, , .		17
1245	Effect of an Adsorbent on Recombination and Band-Edge Movement in Dye-Sensitized TiO2Solar Cells:Â Evidence for Surface Passivation. Journal of Physical Chemistry B, 2006, 110, 12485-12489.	1.2	266
1246	Improved Performance in Dye-Sensitized Solar Cells Employing TiO2 Photoelectrodes Coated with Metal Hydroxides. Journal of Physical Chemistry B, 2006, 110, 3215-3219.	1.2	87
1247	Equivalent Circuit Analysis of Dye-Sensitized Solar Cell by Using One-Diode Model: Effect of Carboxylic Acid Treatment of TiO2Electrode. Japanese Journal of Applied Physics, 2006, 45, 542-545.	0.8	43
1248	TiO2micro/nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells. Nanotechnology, 2006, 17, 2090-2097.	1.3	64

#	Article	IF	CITATIONS
1249	Cyanine dyes for solar cells and optical data storage. , 2006, , 47-84.		8
1250	Quasi-Solid State Dye Sensitized Solar Cell Based on Poly (Acrylonitrile-co-Methacrylonitrile)-Silica Gel Electrolyte. , 2006, , .		1
1251	Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO2 solar cells. New Journal of Chemistry, 2006, 30, 689.	1.4	61
1252	Influence of Cation on Charge Recombination in Dye-Sensitized TiO2Electrodes. Journal of Physical Chemistry B, 2006, 110, 9619-9626.	1.2	24
1253	Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2Films. Journal of the American Chemical Society, 2006, 128, 2385-2393.	6.6	1,724
1254	ZnOâ^'Al2O3and ZnOâ^'TiO2Coreâ^'Shell Nanowire Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 22652-22663.	1.2	686
1255	Morphology Evolution of ZnO Thin Films from Aqueous Solutions and Their Application to Solar Cells. Langmuir, 2006, 22, 3936-3940.	1.6	132
1256	Purification of Bipyridyl Ruthenium Dye and Its Application in Dye-Sensitized Solar Cells. Plasma Science and Technology, 2006, 8, 531-534.	0.7	13
1257	Fabrication and I-V Characteristics of Nanocrystalline Titania Electrode Sensitized by Zinc Phthalocyanine. Key Engineering Materials, 2006, 326-328, 365-368.	0.4	1
1258	Influence of TiCl4 treatment on performance of dye-sensitized solar cell assembled with nano-TiO2 coating deposited by vacuum cold spraying. Rare Metals, 2006, 25, 163-168.	3.6	11
1259	Gel electrolytes containing several kinds of particles used in quasi-solid-state dye-sensitized solar cells. Rare Metals, 2006, 25, 201-206.	3.6	6
1260	Porphyrin-rhodanine dyads for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1007-1016.	0.4	59
1261	Size controllable self-assembly of titania nanospheres cored with fullerenol/fullerene. New Journal of Chemistry, 2006, 30, 18-21.	1.4	6
1262	Spectral Broadening in Nanocrystalline TiO2 Solar Cells Based on Poly(p-phenylene ethynylene) and Polythiophene Sensitizers. Chemistry of Materials, 2006, 18, 6109-6111.	3.2	82
1263	Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide. Journal of Materials Chemistry, 2006, 16, 1287.	6.7	159
1264	Porphyrin Supramolecules by Self-Complementary Coordination. , 0, , 49-104.		43
1265	Novel organic dyes for efficient dye-sensitized solar cells. Chemical Communications, 2006, , 2792.	2.2	241
1266	Characteristics of High Efficiency Dye-Sensitized Solar Cellsâ€. Journal of Physical Chemistry B, 2006, 110, 25210-25221.	1.2	1,015

#	Article	IF	CITATIONS
1267	Electron Transport Analysis for Improvement of Solid-State Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) as Hole Conductorsâ€. Journal of Physical Chemistry B, 2006, 110, 25251-25258.	1.2	61
1268	Electronic Structures and Absorption Spectra of Linkage Isomers of Trithiocyanato (4,4â€~,4â€~ â€~-Tricarboxy-2,2â€~:6,2â€~ â€~-terpyridine) Ruthenium(II) Complexes:  A DFT Study. I 2006, 45, 7600-7611.	norganic C	h e ®iistry,
1269	Corrole-sensitized TiO ₂ solar cells. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1259-1262.	0.4	84
1270	Ultrafast Photoinduced Charge Separation Dynamics in Polythiophene/SnO2Nanocompositesâ€. Journal of Physical Chemistry B, 2006, 110, 25496-25503.	1.2	49
1271	Porosity Effects on Electron Transport in TiO2Films and Its Application to Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 12404-12409.	1.2	40
1272	Large-Scale Fabrication of TiO2Hierarchical Hollow Spheres. Inorganic Chemistry, 2006, 45, 3493-3495.	1.9	230
1273	A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chemical Communications, 2006, , 2460.	2.2	173
1274	STM Observation of a Ruthenium Dye Adsorbed on a TiO2(110) Surface. Journal of Physical Chemistry B, 2006, 110, 4751-4755.	1.2	57
1275	FTIR Spectroscopy of Alcohol and Formate Interactions with Mesoporous TiO2Surfaces. Journal of Physical Chemistry B, 2006, 110, 12494-12499.	1.2	40
1276	Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:  Improvement of Electron Lifetime and Efficiency. Chemistry of Materials, 2006, 18, 2912-2916.	3.2	223
1277	Oxidation of Iodide by a Series of Fe(III) Complexes in Acetonitrile. Inorganic Chemistry, 2006, 45, 3415-3423.	1.9	70
1278	A Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2006, 45, 10407-10409.	1.9	104
1279	Electron-Transfer Dynamics from Ru Polypyridyl Complexes to In2O3Nanocrystalline Thin Films. Journal of Physical Chemistry B, 2006, 110, 5238-5244.	1.2	23
1280	N3-Sensitized TiO2Films:Â In Situ Proton Exchange toward Open-Circuit Photovoltage Enhancement. Langmuir, 2006, 22, 9718-9722.	1.6	47
1281	Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Applied Physics Letters, 2006, 89, 013103.	1.5	102
1282	Band-Gap Engineering of Metal Oxides for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 21899-21902.	1.2	89
1283	Effect of the Anchoring Group in Ruâ^'Bipyridyl Sensitizers on the Photoelectrochemical Behavior of Dye-Sensitized TiO2Electrodes:Â Carboxylate versus Phosphonate Linkages. Journal of Physical Chemistry B, 2006, 110, 8740-8749.	1.2	188
1284	Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters, 2006, 88, 103122.	1.5	109

#	Article	IF	CITATIONS
1285	Photosensitizers Containing the 1,8-Naphthyridyl Moiety and Their Use in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2006, 45, 10131-10137.	1.9	42
1286	In Situ Polymerized Carboxylated Diacetylene as a Hole Conductor in Solid-State Dye-Sensitized Solar Cells. Chemistry of Materials, 2006, 18, 4215-4217.	3.2	43
1287	Molecular Wiring of Nanocrystals:Â NCS-Enhanced Cross-Surface Charge Transfer in Self-Assembled Ru-Complex Monolayer on Mesoscopic Oxide Films. Journal of the American Chemical Society, 2006, 128, 4446-4452.	6.6	99
1288	Comparison of the Self-Exchange and Interfacial Charge-Transfer Rate Constants for Methyl- versustert-Butyl-Substituted Os(III) Polypyridyl Complexesâ€. Journal of Physical Chemistry B, 2006, 110, 25514-25520.	1.2	15
1289	Synthesis and Characterization of New Efficient Tricarboxyterpyridyl (β-diketonato) Ruthenium(II) Sensitizers and Their Applications in Dye-Sensitized Solar Cells. Chemistry of Materials, 2006, 18, 5178-5185.	3.2	93
1290	Mechanistic Study of the Electrodeposition of Nanoporous Self-Assembled ZnO/Eosin Y Hybrid Thin Films:  Effect of Eosin Concentration. Langmuir, 2006, 22, 10545-10553.	1.6	51
1291	Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films. Chemistry of Materials, 2006, 18, 6152-6156.	3.2	96
1292	Enhanced Diffraction Efficiency in a Photorefractive Liquid Crystal Cell with Poly(9-vinylcarbazole)-Infiltrated Mesoporous TiO2Layers. Journal of Physical Chemistry B, 2006, 110, 23678-23682.	1.2	9
1293	Tuning Open Circuit Photovoltages with Tripodal Sensitizers. Journal of Physical Chemistry B, 2006, 110, 11044-11046.	1.2	33
1294	Density Functional Study of the Interfacial Electron Transfer Pathway for Monolayer-Adsorbed InN on the TiO2Anatase (101) Surface. Journal of Physical Chemistry B, 2006, 110, 23460-23466.	1.2	19
1295	Influence of Yb-Doped Nanoporous TiO 2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells. Chinese Physics Letters, 2006, 23, 2288-2291.	1.3	25
1296	Crystal-Face Dependence and Photoetching-Induced Increases of Dye-Sensitized Photocurrents at Single-Crystal Rutile TiO2Surfaces. Journal of Physical Chemistry B, 2006, 110, 21050-21054.	1.2	20
1297	Effect of Iodine Addition on Solid-State Electrolyte LiI/3-Hydroxypropionitrile (1:4) for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 5970-5974.	1.2	65
1298	Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transferâ€. Journal of Physical Chemistry B, 2006, 110, 25383-25391.	1.2	102
1299	High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized Solar Cells by Self-assembly. Chemistry of Materials, 2006, 18, 5173-5177.	3.2	96
1300	Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3-Redox Electrolytes in Dye-Sensitized Nanostructured TiO2Solar Cells. Journal of Physical Chemistry B, 2006, 110, 13144-13150.	1.2	557
1301	A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications, 2006, , 2245.	2.2	651
1302	Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2006, 110, 19191-19197.	1.2	523
#	Article	IF	CITATIONS
------	--	-----	-----------
1303	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	1.9	167
1304	Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces. Chemical Communications, 2006, , 1430.	2.2	39
1305	Photoinduced Direct Electron Transfer from InSe to GaSe Semiconductor Nanoparticles. Nano Letters, 2006, 6, 116-122.	4.5	21
1306	Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes. Journal of the Electrochemical Society, 2006, 153, A2255.	1.3	824
1307	Semiconductor Nanoparticle-Polymer Composites. , 2006, , 275-310.		1
1308	Bilayer electrode composition of TiO2film for dye-sensitized solar cell. European Physical Journal Special Topics, 2006, 132, 359-363.	0.2	2
1309	Synthesis and Characterization of Titania-Sugar Alcohol Complex Nanoparticles. Journal of the Ceramic Society of Japan, 2006, 114, 807-813.	1.3	1
1310	Porous Acetylene-black Spheres as the Cathode Materials of Dye-sensitized Solar Cells. Chemistry Letters, 2006, 35, 1266-1267.	0.7	34
1311	pH-Dependent Reversible Switching of Fluorescence of Water-Soluble Porphyrin Adsorbed on Mesoporous TiO2Film. Bulletin of the Chemical Society of Japan, 2006, 79, 561-568.	2.0	11
1312	A transient molecular probe for characterizing the surface properties of TiO 2 nanoparticle in colloidal solution. , 2006, , .		0
1314	色ç′増感å≇€™1⁄2é›»æ±ç"¨ã,²ãƒ«é›»è§£è³ªã®é–‹ç™º. Electrochemistry, 2006, 74, 77-80.	0.6	0
1315	Preliminary Study of Performance of Dye-Sensitized Solar Cell of Nano-TiO ₂ Coating Deposited by Vacuum Cold Spraying. Materials Transactions, 2006, 47, 1703-1709.	0.4	49
1316	Preparation of TiO2 Nanocrystalline Electrodes Using Benzoylacetone/Polyethylene Glycol by the Sol-Gel Method and Application to Dye Sensitized Solar Cells. Journal of the Japan Society of Colour Material, 2006, 79, 277-282.	0.0	1
1317	Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica Acta, 2006, 51, 4243-4249.	2.6	116
1318	Ruthenium(II) complex based on 4,4′-di(p-methylphenyl)-2,2′-bipyridine: Synthesis and photoelectrochemical properties. Inorganic Chemistry Communication, 2006, 9, 394-396.	1.8	17
1319	New nanomaterials for light weight lithium batteries. Analytica Chimica Acta, 2006, 568, 57-64.	2.6	52
1320	Use of successive ionic layer adsorption and reaction (SILAR) method for amorphous titanium dioxide thin films growth. Applied Surface Science, 2006, 253, 421-424.	3.1	44
1321	Structural and photoelectrochemical characteristics of nanocrystalline ZnO electrode with Eosin-Y. Ceramics International, 2006, 32, 495-498.	2.3	24

#	Article	IF	CITATIONS
1322	Fabrication of fibrous films with rugate structure prepared by layer-by-layer self-assembly method: Application to photoelectrode of dye-sensitized solar cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 542-547.	2.3	6
1323	Photocurrents of solar cells sensitized by aggregate-forming polyenes: Enhancement due to suppression of singlet–triplet annihilation by lowering of dye concentration or light intensity. Chemical Physics Letters, 2006, 420, 309-315.	1.2	32
1324	Near-IR transient absorption spectra of N3 dye as a probe of aggregation on nanocrystalline semiconductor films. Chemical Physics Letters, 2006, 423, 417-421.	1.2	23
1325	Femtosecond fluorescence dynamics of zinc biphenylporphine in nanocrystalline TiO2 films: Evidence for interfacial electron transfer through space. Chemical Physics Letters, 2006, 432, 452-456.	1.2	10
1326	Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells. Electrochemistry Communications, 2006, 8, 961-966.	2.3	113
1327	Enhanced exchange current density and diffusion coefficient of iodide-based liquid electrolyte by layered α-zirconium phosphate. Electrochemistry Communications, 2006, 8, 946-950.	2.3	15
1328	Dependence of electron transport in nanocrystalline TiO2 films sensitized with [NBu4]2[Ru(Htcterpy)(NCS)3] ([NBu4]+=tetrabutylammonium cation;) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 50	2 Td (H3t)	cterpy=4,4â€ 12
1329	Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochimica Acta, 2006, 51, 5286-5294.	2.6	119
1330	Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochimica Acta, 2006, 51, 5870-5875.	2.6	146
1331	Viewing nanocrystalline TiO2 photoelectrodes as three-dimensional electrodes: Effect of the electrolyte upon the photocurrent efficiency. Electrochimica Acta, 2006, 52, 694-703.	2.6	21
1332	Mesostructured self-assembled titania films for photovoltaic applications. Microporous and Mesoporous Materials, 2006, 88, 304-311.	2.2	48
1333	Syntheses, characterization, and DFT investigation of new mononuclear acetonitrile- and chloro-ruthenium(II) terpyridine complexes. Inorganica Chimica Acta, 2006, 359, 4585-4593.	1.2	21
1334	Spontaneous resolution of Δ and ĥ enantiomeric pair of [Ru(phen)(bpy)2](PF6)2 (phen=1,10-phenanthroline, bpy=2,2′-bipyridine) by conglomerate crystallization. Polyhedron, 2006, 25, 1379-1385.	1.0	32
1335	Synthesis, spectroscopic and electrochemical studies of a series of transition metal complexes with amino- or bis(bromomethyl)-substituted dppz-ligands: Building blocks for fullerene-based donor–bridge–acceptor dyads. Journal of Organometallic Chemistry, 2006, 691, 1834-1844.	0.8	18
1336	Photoinduced synthesis and electrochemical properties of new ruthenium(mono)bipyridine dialkylcyanamide and propiononitrile complexes. Journal of Organometallic Chemistry, 2006, 691, 2368-2377.	0.8	20
1337	Comparison of photocatalytic degradation kinetic characteristics of different organic compounds at anatase TiO2 nanoporous film electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177, 253-260.	2.0	41
1338	Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 81-86.	2.0	192
1339	Photocurrent observed in dye-doped titania gel. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 125-129	2.0	32

#	Article	IF	CITATIONS
1340	A photochemical cell with nano-porous TiO2 electrode sensitized by lignophenol under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 114-119.	2.0	20
1341	Photovoltaic properties of ordered mesoporous silica thin film electrodes encapsulating titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 166-173.	2.0	8
1342	Solid-state dye-sensitized solar cell: Improved performance and stability using a plasticized polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 226-232.	2.0	69
1343	Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)–poly(ethylene glycol) composite. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 333-337.	2.0	71
1344	Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 138-145.	2.0	25
1345	Preparation of silica-modified TiO2 and application to dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 78-85.	2.0	31
1346	Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 296-305.	2.0	386
1347	Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 234-239.	2.0	57
1348	Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films: Comparison with SnO2, ZnO, and TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 273-279.	2.0	39
1349	Reverse electron transfer at the interface of semiconductor film in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 288-295.	2.0	16
1350	A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte. Journal of Power Sources, 2006, 160, 1451-1455.	4.0	75
1351	Computer simulations of light scattering and mass transport of dye-sensitized nanocrystalline solar cells. Journal of Electroanalytical Chemistry, 2006, 588, 51-58.	1.9	23
1352	Impedance analysis for dye-sensitized solar cells with a reference electrode. Journal of Electroanalytical Chemistry, 2006, 588, 59-67.	1.9	70
1353	In situ polymerization of amphiphilic diacetylene for hole transport in solid state dye-sensitized solar cells. Organic Electronics, 2006, 7, 546-550.	1.4	13
1354	Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 2006, 80, 209-214.	2.9	509
1355	An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells. Solar Energy, 2006, 80, 185-190.	2.9	137
1356	Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI+I2. Solar Energy, 2006, 80, 1483-1488.	2.9	97
1357	Low-temperature preparation of dye-sensitized solar cells through crystal growth of anatase titania in aqueous solutions. Solar Energy Materials and Solar Cells, 2006, 90, 640-648.	3.0	24

#	Article	IF	CITATIONS
1358	Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 649-658.	3.0	103
1359	Investigation of charge transport, photo generated electron transfer and photovoltaic response of iron phthalocyanine (FePc):TiO2 thin films. Solar Energy Materials and Solar Cells, 2006, 90, 32-45.	3.0	29
1360	Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes. Solar Energy Materials and Solar Cells, 2006, 90, 142-165.	3.0	56
1361	A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Solar Energy Materials and Solar Cells, 2006, 90, 574-581.	3.0	228
1362	Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 549-573.	3.0	628
1363	Design of high-efficiency solid-state dye-sensitized solar cells using coupled dye mixtures. Solar Energy Materials and Solar Cells, 2006, 90, 864-871.	3.0	15
1364	Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006, 90, 872-886.	3.0	73
1365	Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc). Solar Energy Materials and Solar Cells, 2006, 90, 933-943.	3.0	53
1366	Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates. Solar Energy Materials and Solar Cells, 2006, 90, 887-899.	3.0	100
1367	Density functional study of alkylpyridine–iodine interaction and its implications in the open-circuit photovoltage of dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 953-966.	3.0	18
1368	A comparison of fluorine tin oxide and indium tin oxide as the transparent electrode for P3OT/TiO2 solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 1034-1040.	3.0	52
1369	Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes. Solar Energy Materials and Solar Cells, 2006, 90, 944-952.	3.0	74
1370	Influence of scattering layers on efficiency of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 1176-1188.	3.0	460
1371	Heteropolyacid-impregnated PVDF as a solid polymer electrolyte for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 1715-1720.	3.0	56
1372	Utilization of MEH-PPV as a sensitizer in titana-based photovoltaic cells. Solar Energy Materials and Solar Cells, 2006, 90, 1673-1679.	3.0	11
1373	Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model. Solar Energy Materials and Solar Cells, 2006, 90, 2696-2709.	3.0	38
1374	Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells, 2006, 90, 1936-1944.	3.0	219
1375	Optimizations of large area quasi-solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2575-2588.	3.0	106

#	Article	IF	CITATIONS
1376	Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials and Solar Cells, 2006, 90, 2405-2412.	3.0	43
1377	The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2398-2404.	3.0	78
1378	A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 2006, 90, 2011-2075.	3.0	1,834
1379	Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method. Solar Energy Materials and Solar Cells, 2006, 90, 3187-3192.	3.0	31
1380	Synthesis and characterization of a novel electrical and optical-active triads containing fullerene and perylenebisimide units. Tetrahedron, 2006, 62, 1216-1222.	1.0	27
1381	A DFT study of the optical properties of substituted Zn(II)TPP complexes. Computational and Theoretical Chemistry, 2006, 759, 17-24.	1.5	71
1382	Fabrication of porous TiO2 films using a spongy replica prepared by layer-by-layer self-assembly method: Application to dye-sensitized solar cells. Thin Solid Films, 2006, 499, 396-401.	0.8	25
1383	Catalytic platinum layers for dye solar cells: A comparative study. Thin Solid Films, 2006, 511-512, 342-348.	0.8	65
1384	Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. Journal of Physical Chemistry B, 2006, 110, 17155-17160.	1.2	216
1385	Effects of downconversion luminescent film in dye-sensitized solar cells. Applied Physics Letters, 2006, 88, 173119.	1.5	110
1386	DFT-INDO/S Modeling of New High Molar Extinction Coefficient Charge-Transfer Sensitizers for Solar Cell Applications. Inorganic Chemistry, 2006, 45, 787-797.	1.9	126
1387	Photochemical energy conversion: from molecular dyads to solar cells. Chemical Communications, 2006, , 3279.	2.2	154
1388	Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Applied Physics Letters, 2006, 88, 223505.	1.5	163
1389	Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells. Open Chemistry, 2006, 4, 476-488.	1.0	33
1390	Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells. Journal Physics D: Applied Physics, 2006, 39, 2498-2503.	1.3	280
1391	Microwave processing of TiO2 blocking layers for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2006, 40, 45-54.	1.1	31
1392	The seminal literature of nanotechnology research. Journal of Nanoparticle Research, 2006, 8, 193-213.	0.8	71
1393	Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2006, 83, 73-76.	1.1	92

#	Article	IF	CITATIONS
1394	Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method. Thin Solid Films, 2006, 499, 83-89.	0.8	55
1395	Photoelectrochromic window with Pt catalyst. Thin Solid Films, 2006, 502, 246-251.	0.8	63
1396	A TD-DFT study on the electronic spectrum of Ru(II)L2 [L=bis(5′-methyl-2,2′-bipyridine-6-carboxylato)] in the gas phase and DMF solution. Chemical Physics, 2006, 330, 204-211.	0.9	46
1397	Copper(II) complexes containing chiral substituted 2-(4-isopropyl-4-methyl-4,5-dihydro-1H-imidazol-5-one-2-yl)pyridine ligands: Synthesis, X-ray structural studies and asymmetric catalysis. Journal of Organometallic Chemistry, 2006, 691, 2623-2630.	0.8	42
1398	Effect of excitation wavelength on electron injection efficiency in dye-sensitized nanocrystalline TiO2 and ZrO2 films. Comptes Rendus Chimie, 2006, 9, 639-644.	0.2	21
1399	Highly efficient dye-sensitized solar cells using a composite electrolyte. Comptes Rendus Chimie, 2006, 9, 627-630.	0.2	14
1400	Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochimica Acta, 2006, 51, 4942-4949.	2.6	80
1401	A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally. Science in China Series D: Earth Sciences, 2006, 49, 663-673.	0.9	7
1402	A new improved structure of dye-sensitized solar cells with reflection film. Science Bulletin, 2006, 51, 369-373.	1.7	10
1403	Substrate development for surface-enhanced Raman study of photocatalytic degradation processes: Congo red over silver modified titanium dioxide films. Applied Catalysis B: Environmental, 2006, 69, 34-42.	10.8	61
1404	Stacked-Cup Carbon Nanotubes for Photoelectrochemical Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 755-759.	7.2	120
1405	Optimizing Dyes for Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 2338-2345.	7.2	886
1406	TiO2-Based Light-Driven XOR/INH Logic Gates. Angewandte Chemie - International Edition, 2006, 45, 3143-3146.	7.2	72
1407	A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 5822-5825.	7.2	315
1408	Reactions of [Ru(CO)3Cl2]2 with aromatic nitrogen donor ligands in alcoholic media. Applied Organometallic Chemistry, 2006, 20, 51-69.	1.7	22
1409	Design and spectroscopic study of new ruthenium(II) complexes containing ligands derived from terpyridine and dipyrido[3,2-a:2′,3′-c]phenazine: {Ru(4′-Rph-tpy) [dppz(COOH)]Cl}PF6 with R = NO2, Br, Applied Organometallic Chemistry, 2006, 20, 315-321.	Ql7	2
1410	Comparative Sol–Hydro(Solvo)thermal Synthesis of TiO2 Nanocrystals. European Journal of Inorganic Chemistry, 2006, 2006, 2229-2235.	1.0	33
1411	Synthesis, Structure and Magnetic Properties of a New Low-Spin Iron(III) Complex [FeL3] {L = [HNC(CH3)]2C(CN)}. European Journal of Inorganic Chemistry, 2006, 2006, 3022-3027.	1.0	9

#	Article	IF	CITATIONS
1412	para-Dialkylaminophenyl Dyes for Efficient Nanocrystalline TiO2 Sensitization in Far-red Region. Chinese Journal of Chemistry, 2006, 24, 537-545.	2.6	7
1413	Novel Roles of Metal Ions in Layered Self-assembled Films of Polynuclear Complexes on Their Photoinduced Electron Transfer Properties. Chinese Journal of Chemistry, 2006, 24, 1452-1457.	2.6	2
1414	Ionic Liquid Based Electrolyte with Mesoporous Silica SBA-15 as Framework for Quasi-solid-state Dye-sensitized Solar Cells. Chinese Journal of Chemistry, 2006, 24, 1737-1740.	2.6	7
1419	Highly Selective and Reversible Optical, Colorimetric, and Electrochemical Detection of Mercury(II) by Amphiphilic Ruthenium Complexes Anchored onto Mesoporous Oxide Films. Advanced Functional Materials, 2006, 16, 189-194.	7.8	165
1420	Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes. Advanced Functional Materials, 2006, 16, 1095-1099.	7.8	69
1421	Room-Temperature Synthesis of Porous Nanoparticulate TiO2 Films for Flexible Dye-Sensitized Solar Cells. Advanced Functional Materials, 2006, 16, 1228-1234.	7.8	236
1422	Parameters Influencing Charge Separation in Solid-State Dye-Sensitized Solar Cells Using Novel Hole Conductors. Advanced Functional Materials, 2006, 16, 1832-1838.	7.8	192
1423	All-Solid-State Dye-Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy-Conversion Efficiency. Advanced Materials, 2006, 18, 2579-2582.	11.1	122
1424	Charge Accumulation and Polarization in Titanium Dioxide Electrodes. Journal of Physical Chemistry B, 2006, 110, 18286-18290.	1.2	5
1425	Low-Temperature Fabrication of TiO2Necking Electrode by Sol–Gel Method and its Application to Dye-Sensitized Solar Cell. Japanese Journal of Applied Physics, 2006, 45, 7917-7921.	0.8	15
1426	Analysis of Dominant Factors for Increasing the Efficiencies of Dye-Sensitized Solar Cells: Comparison between Acetonitrile and Ionic Liquid Based Electrolytes. Japanese Journal of Applied Physics, 2006, 45, 2780-2787.	0.8	6
1427	The Enhancement of Dye-Sensitized Solar cell Performance by Tio2-Based Mixed Metal Oxide Nanostructured Electrodes. , 2006, , .		0
1428	Synthesis of Titania Nanocrystals: Application for Dye-Sensitized Solar Cells. , 2006, , 71-100.		1
1429	Investigation of Mechanisms of Enhanced Open-Circuit Photovoltage of Dye-Sensitized Solar Cells Based the Electrolyte Containing 1-Hexyl-3-Methylimidazolium Iodide. Chinese Physics Letters, 2006, 23, 724-727.	1.3	14
1430	Theoretical treatments of ultrafast electron transfer from adsorbed dye molecule to semiconductor nanocrystalline surface. Journal of Chemical Physics, 2006, 125, 154706.	1.2	15
1431	Fabrication of Titania Nanotubes as Cathode Protection for Stainless Steel. Electrochemical and Solid-State Letters, 2006, 9, B28.	2.2	24
1432	Solid-State Dye-Sensitized Solar Cells Using Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] as a Hole-Transporting Material. Japanese Journal of Applied Physics, 2006, 45, 8728-8732.	0.8	12
1433	Adsorption, Desorption, and Sensitization of Low-Index Anatase and Rutile Surfaces by the Ruthenium Complex Dye N3. Journal of the Electrochemical Society, 2006, 153, E131.	1.3	56

#	Article	IF	CITATIONS
1434	Solar Cells Using Solution-derived Oxide Films as Photoelectrodes. Materials Research Society Symposia Proceedings, 2006, 974, 1.	0.1	0
1435	Electrochemical Properties of Nanoporous TiO ₂ Films. Key Engineering Materials, 2006, 301, 83-86.	0.4	1
1436	Fabrication of Ion-Paths for Ionic Liquid Type Quasi-Solid Dye Sensitized Solar Cell. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
1437	Dye Sensitized Solar Cells with High Photo-Energy Conversion-Controll of Nano-Particle Surfaces. , 2006, , .		2
1438	TiO2-Based Dye-Sensitized Solar Cell. , 2006, , 193-225.		6
1439	Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications. , 2006, , 227-254.		18
1440	Efficient Sensitization of Mesoporous Electrodeposited Zinc Oxide by cis-Bis(isothiocyanato)bis(2,2[sup Ê1]-bipyridyl-4,4[sup Ê1]-dicarboxylato)-Ruthenium(II). Journal of the Electrochemical Society, 2006, 153, A699.	1.3	17
1441	Electrolytes in solid-state dye-sensitized nanocrystalline solar cells*. Progress in Natural Science: Materials International, 2006, 16, 679-683.	1.8	5
1442	On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte. Applied Physics Letters, 2006, 89, 061110.	1.5	93
1443	Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Applied Physics Letters, 2006, 89, 253513.	1.5	157
1444	Charge and Energy Transfer in the Metal-free Indoline Dyes for Dye-sensitized Solar Cells. Chinese Journal of Chemical Physics, 2006, 19, 238-242.	0.6	5
1445	Photovoltaic Properties and Preparations of Dye-Sensitized Solar Cells Using Solid-State Polymer Electrolytes. Molecular Crystals and Liquid Crystals, 2006, 444, 233-239.	0.4	9
1446	Solid-state dye-sensitized mesoporous TiO2 and doped carbazole derivative molecular glasses solar cell. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	2
1447	Ru Dye Uptake under Pressurized CO[sub 2] Improvement of Photovoltaic Performances for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2006, 153, A2294.	1.3	34
1448	Cr[sup 3+]–TiO[sub 2] Thin-Film Electrodes. Journal of the Electrochemical Society, 2006, 153, G534.	1.3	3
1449	TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells. Journal of Physics: Conference Series, 2007, 61, 1112-1116.	0.3	31
1450	Dye sensitized solar cell based on 1,8-naphthalene benzimidazole comprising carboxyl group. EPJ Applied Physics, 2007, 38, 227-230.	0.3	10
1451	Electronic properties of the interface between p-Cul and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: A photoemission study. Journal of Chemical Physics, 2007, 127, 114703.	1.2	40

ARTICLE IF CITATIONS Electronic Structures of Dyes and Phthalocyanines Estimated with "Photo-Electron Spectroscopy in 1452 0.1 2 Air (PESA)― Materials Research Society Symposia Proceedings, 2007, 1029, 1. Intimate Heterojunction Structure between Titania and Polythiocyanogen and Its Photovoltaic Effect. 1453 0.3 Solid State Phenomena, 2007, 119, 13-16. Frontier electronic structures of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2: A photoelectron 1454 1.2 25 spectroscopy study. Journal of Chemical Physics, 2007, 126, 244303. Electron Transfer Mediators for Photoelectrochemical Cells Based on Cu(I) Metal Complexes. 1455 1.4 International Journal of Photoenergy, 2007, 2007, 1-10. Investigation of the Temperature Behavior of Dyeâ€Sensitised Solar Cells Prepared Using Different Binders. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 1456 0.6 0 347-351. Chapter 5 Density Matrix Treatments of Ultrafast Radiationless Transitions. Thin Films and Nanostructures, 2007, , 121-182. 0.1 In situ X-ray Photoelectron Spectroscopic Study of Metalloporphyrin–Fullerene 1458 0.8 11 Alternative-Deposited Thin Films. Japanese Journal of Applied Physics, 2007, 46, 5363. Explanation of Effect of Added Water on Dye-Sensitized Nanocrystalline TiO 2 Solar Cell: Correlation 1459 1.3 between Performance and Carrier Relaxation Kinetics. Chinese Physics Letters, 2007, 24, 3272-3275. Effects of Different Dispersion Methods on the Microscopical Morphology of TiO ₂ Film. 1460 9 1.3 Chinese Physics Letters, 2007, 24, 3567-3569. Organometallic Chemistry of Polypyridine Ligands III. Advances in Heterocyclic Chemistry, 2007, 95, 1461 221-256. Persistent photoconductivity in highly porous ZnO films. Journal of Applied Physics, 2007, 101, 013709. 1462 106 1.1 Improvement of photovoltages in organic dye-sensitized solar cells by Li intercalation in particulate 1464 1.5 TiO2 electrodes. Applied Physics Letters, 2007, 90, 103517. One-Pot Synthesis of Tetrahydronium Tris(4,4â€2-Dicarboxylato-2,2â€2-Bipyridine)-Ruthenium(II) Dihydrate. 1465 0.3 4 Inorganic Syntheses, 2007, , 181-186. Study on Nano Film of TiO<sub>2</sub> and ZnFe<sub>2</sub>O<sub>4</sub> Composite Prepared by Dip Coating Method. Key Engineering Materials, 2005, 280-283, 819-822. 1466 0.4 Determination of chemical oxygen demand using flow injection with Ti/TiO2electrode prepared by 1467 1.4 16 laser anneal. Measurement Science and Technology, 2007, 18, 945-951. Back Contact Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2007, 46, L420-L422. 1468 49 Theoretical Investigation of the Photophysical Properties of Black Dye Sensitizer 1469 [(H3-tctpy)M(NCS)3]-(M = Fe, Ru, Os) in Dye Sensitized Solar Cells. Japanese Journal of Applied Physics, 0.8 11 2007, 46, 2655-2660. A Dye-sensitized Solar Cell Using a Red Ruthenium(II) Complex with 1470 9,9-Bis(4-methoxyphenyl)-4,5-diazafluorene. Chemistry Letters, 2007, 36, 892-893.

#	Article	IF	CITATIONS
1472	Influence of addition of larger particles into 3-nm particles of TiO 2 film on the performance of dye-sensitized solar cells. , 2007, , .		1
1473	Synthesis of Morphology-Controlled Titania Nanocrystals and Application for Dye-Sensitized Solar Cells. Current Nanoscience, 2007, 3, 285-295.	0.7	48
1474	A comparative study on liquid-state photoelectrochemical cells based on poly(3-hexylthiophene) and a composite film of poly(3-hexylthiophene) and nanocrystalline titanium dioxide. Synthetic Metals, 2007, 157, 75-79.	2.1	4
1475	Influence of TiCl ₄ Treatment on Surface Defect Photoluminescence in Pure and Mixed-Phase Nanocrystalline TiO ₂ . Langmuir, 2007, 23, 8686-8690.	1.6	122
1476	Internal Structure of Nanoporous TiO2/Polyion Thin Films Prepared by Layer-by-Layer Deposition. Langmuir, 2007, 23, 9860-9865.	1.6	20
1477	Photoelectrochemical study of organic–inorganic hybrid thin films via electrostatic layer-by-layer assembly. Electrochemistry Communications, 2007, 9, 2151-2156.	2.3	51
1478	Kinetics of Photogenerated Electrons Involved in Photocatalytic Reaction of Methanol on Pt/TiO2. Chinese Journal of Chemical Physics, 2007, 20, 483-488.	0.6	7
1479	Influence of ï€-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 1853-1860.	1.5	160
1480	Novel unsymmetrically ⊨elongated porphyrin for dye-sensitized TiO2cells. Chemical Communications, 2007, , 2069-2071.	2.2	170
1481	Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology, 2007, 18, 505706.	1.3	129
1482	Electronic and Molecular Surface Structure of a Polyeneâ^'Diphenylaniline Dye Adsorbed from Solution onto Nanoporous TiO2. Journal of Physical Chemistry C, 2007, 111, 8580-8586.	1.5	61
1483	Modification of mesoporous TiO2electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells. Nanotechnology, 2007, 18, 125608.	1.3	60
1484	Bi-isonicotinic Acid on Anatase (101):  Insights from Theory. Journal of Physical Chemistry C, 2007, 111, 15034-15042.	1.5	42
1485	Effect of the Particle Size on the Electron Injection Efficiency in Dye-Sensitized Nanocrystalline TiO2Films Studied by Time-Resolved Microwave Conductivity (TRMC) Measurements. Journal of Physical Chemistry C, 2007, 111, 10741-10746.	1.5	87
1486	Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 213510.	1.5	61
1487	Transition Metal Complexes for Photovoltaic and Light Emitting Applications. Structure and Bonding, 2007, , 113-175.	1.0	130
1488	Synthesis and Electron Transfer Studies of Rutheniumâ^'Terpyridine-Based Dyads Attached to Nanostructured TiO2. Inorganic Chemistry, 2007, 46, 638-651.	1.9	63
1489	Intramolecular Charge-Transfer Tuning of Perylenes:  Spectroscopic Features and Performance in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15137-15140.	1.5	225

#	Article	IF	CITATIONS
1490	Comparison of Electron Injection Dynamics from Re-bipyridyl Complexes to TiO2Nanocrystalline Thin Films in Different Solvent Environmentsâ€. Journal of Physical Chemistry B, 2007, 111, 6903-6912.	1.2	49
1491	A Supramolecular Approach to Light Harvesting and Sensitization of Wide-Bandgap Semiconductors: Antenna Effects and Charge Separation. Progress in Inorganic Chemistry, 2007, , 1-95.	3.0	61
1492	Molecular and Supramolecular Surface Modification of Nanocrystalline TiO2Films: Charge-Separating and Charge-Injecting Devices. Progress in Inorganic Chemistry, 2007, , 345-393.	3.0	50
1493	Effects of a surfactant-templated nanoporous TiO2 interlayer on dye-sensitized solar cells. Journal of Applied Physics, 2007, 101, 084312.	1.1	56
1494	Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 213109.	1.5	182
1495	Conductive mesh based flexible dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 073501.	1.5	120
1496	Dye-Sensitized TiO2Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytesâ€. Journal of Physical Chemistry B, 2007, 111, 4763-4769.	1.2	211
1497	Preparation of a Nanoporous CaCO3-Coated TiO2 Electrode and Its Application to a Dye-Sensitized Solar Cell. Langmuir, 2007, 23, 11907-11910.	1.6	58
1498	Change in Titania Structure from Amorphousness to Crystalline Increasing Photoinduced Electron-Transfer Rate in Dye-Titania System. Journal of Physical Chemistry C, 2007, 111, 9008-9011.	1.5	49
1499	Preparation of TiO ₂ Nanocrystalline Films by Electrophoretic Deposition and their Application in Dye-Sensitized Solar Cells. Key Engineering Materials, 0, 336-338, 2193-2195.	0.4	1
1500	Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics, 2007, 101, 114503.	1.1	426
1501	Role of a pore network for band energy configuration in mesostructured materials. Journal of Applied Physics, 2007, 101, 034309.	1.1	5
1502	Synthesis and Characterization of a Ruthenium(II) Complex for Photovoltaic Cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 1255-1260.	1.2	3
1503	An alternative synthesis method for $[Os(NN)(CO)2X2]$ complexes (NN = 2,2â \in^2 -bipyridine,) Tj ETQq1 1 0.784314 Dalton Transactions, 2007, , 3314.	rgBT /Ove 1.6	erlock 10 Tf 9
1504	Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chemical Communications, 2007, , 1907.	2.2	148
1505	Theoretical Analysis of the Electronic Properties of N3 Derivatives. Journal of Physical Chemistry A, 2007, 111, 13106-13111.	1.1	32
1506	Pathway-Dependent Electron Transfer for Rod-Shaped Perylene-Derived Molecules Adsorbed in Nanometer-Size TiO ₂ Cavities. Journal of Physical Chemistry C, 2007, 111, 13586-13594.	1.5	24
1507	Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules. Journal of Materials Chemistry, 2007, 17, 642-649.	6.7	91

#	Article	IF	CITATIONS
1508	Calculation of the vibrationally non-relaxed photo-induced electron transfer rate constant in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2007, 9, 853.	1.3	8
1509	Efficiency Enhancement of Dye-Sensitized Solar Cells: Using Salt CuI as an Additive in an Ionic Liquid. Chinese Physics Letters, 2007, 24, 555-558.	1.3	14
1510	A dye-sensitized solar cell driven electrochromic device. Photochemical and Photobiological Sciences, 2007, 6, 63-66.	1.6	20
1511	Dinuclear Ru(ii) dyes for improved performance of dye-sensitized TiO2 solar cells. New Journal of Chemistry, 2007, 31, 2120.	1.4	19
1512	Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. Journal of Materials Chemistry, 2007, 17, 5084.	6.7	44
1513	Solar energy harvesting in photoelectrochemical solar cells. Journal of Materials Chemistry, 2007, 17, 3205.	6.7	31
1514	<i>cis</i> -Dichloro-bis(4,4â€~-dicarboxy-2,2-bipyridine)osmium(II)-Modified Optically Transparent Electrodes:  Application as Cathodes in Stacked Dye-Sensitized Solar Cells. Inorganic Chemistry, 2007, 46, 10071-10078.	1.9	28
1515	Interfacial Electron Transfer in Metal Cyanide-Sensitized TiO2Nanoparticlesâ€. Journal of Physical Chemistry B, 2007, 111, 6695-6702.	1.2	35
1516	Investigation of the Effect of Alkyl Chain Length on Charge Transfer at TiO2/Dye/Electrolyte Interface. Journal of Physical Chemistry C, 2007, 111, 3522-3527.	1.5	48
1517	Effect of Inorganic lodides on Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15125-15131.	1.5	45
1518	Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chemical Communications, 2007, , 4680.	2.2	198
1519	Reverse Electron Transfer from TiO2to I2in Nanocrystalline TiO2Film Electrodes with Coadsorbed Bipyridine and Biquinoline Ruthenium Complexes. Journal of Physical Chemistry C, 2007, 111, 201-209.	1.5	20
1520	Relaxation Dynamics of Ruthenium Complexes in Solution, PMMA and TiO ₂ Films:  The Roles of Self-Quenching and Interfacial Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 13288-13296.	1.5	29
1521	Harvesting Photons in the Infrared. Electron Injection from Excited Tricarbocyanine Dye (IR-125) into TiO2and Ag@TiO2Coreâ^'Shell Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 488-494.	1.5	82
1522	Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Applied Physics Letters, 2007, 90, 153122.	1.5	69
1523	Deep Surface Trap Filling by Photoinduced Carriers and Interparticle Electron Transport Observed in TiO2 Nanocrystalline Film with Time-Resolved Visible and Mid-IR Transient Spectroscopies. Journal of Physical Chemistry C, 2007, 111, 3762-3769.	1.5	61
1524	Ultrafast Photooxidation of Mn(II)â^'Terpyridine Complexes Covalently Attached to TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 11982-11990.	1.5	82
1525	Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab on A Chip, 2007, 7, 596.	3.1	88

#	Article	IF	CITATIONS
1526	Solvent Dependence of Absorption and Emission Spectra of Ru(bpy)2(CN)2:Â Experiment and Explanation Based on Electronic Structure Theory. Journal of Physical Chemistry A, 2007, 111, 12891-12900.	1.1	24
1527	Effect of Insulating Oxide Overlayers on Electron Injection Dynamics in Dye-Sensitized Nanocrystalline Thin Filmsâ€. Journal of Physical Chemistry C, 2007, 111, 8979-8987.	1.5	59
1528	Effects of Dye Loading Conditions on the Energy Conversion Efficiency of ZnO and TiO ₂ Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 18804-18811.	1.5	232
1529	Nanocrystalline TiO2-Catalyzed Solid-State Polymerization of Diacetylene in the Visible Region. Journal of the American Chemical Society, 2007, 129, 7238-7239.	6.6	45
1530	Photoinduced Electron Transfer in Dye-Sensitized Solar Cells:  Modified Sakataâ^'Hashimotoâ^'Hiramoto Model (MSHH)â€. Journal of Physical Chemistry C, 2007, 111, 15889-15902.	1.5	23
1531	QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZnO PHOTOANODE. Chemical Engineering Communications, 2007, 195, 375-385.	1.5	3
1532	A Photoelectrochemical Study of n-Doped TiO[sub 2] Nanotube Arrays as the Photoanodes for Cathodic Protection of SS. Journal of the Electrochemical Society, 2007, 154, C631.	1.3	40
1533	BaCO3Modification of TiO2Electrodes in Quasi-Solid-State Dye-Sensitized Solar Cells:  Performance Improvement and Possible Mechanism. Journal of Physical Chemistry C, 2007, 111, 8075-8079.	1.5	56
1534	Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO2/Electrolyte Interface:  Band Gap States and Their Interaction with Dye and Solvent Molecules. Journal of Physical Chemistry C, 2007, 111, 849-854.	1.5	81
1535	Pores in Nanostructured TiO2Films. Size Distribution and Pore Permeability. Journal of Physical Chemistry C, 2007, 111, 7605-7611.	1.5	15
1536	Multi-core cable-like TiO2nanofibrous membranes for dye-sensitized solar cells. Nanotechnology, 2007, 18, 165604.	1.3	81
1537	Organic Dyes Containing 1 <i>H</i> -Phenanthro[9,10- <i>d</i>]imidazole Conjugation for Solar Cells. Journal of Physical Chemistry C, 2007, 111, 18785-18793.	1.5	140
1538	Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indiumâ^'Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 4847-4853.	1.5	111
1539	Synthesis and Photovoltaic Properties of Efficient Organic Dyes Containing the Benzo[b]furan Moiety for Solar Cells. Journal of Organic Chemistry, 2007, 72, 3652-3658.	1.7	133
1540	Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groupsâ€. Journal of Physical Chemistry A, 2007, 111, 6832-6842.	1.1	88
1541	Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chemical Reviews, 2007, 107, 953-1010.	23.0	1,710
1542	New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 4465-4472.	1.5	366
1543	Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. Journal of Physical Chemistry C, 2007, 111, 2834-2860.	1.5	2,094

#	Article	IF	CITATIONS
1544	Influence of the Sensitizer Adsorption Mode on the Open-Circuit Potential of Dye-Sensitized Solar Cells. Nano Letters, 2007, 7, 3189-3195.	4.5	340
1545	p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Science and Technology, 2007, 22, 20-24.	1.0	93
1546	Laser Forward Transfer of Electronic and Power Generating Materials. , 2007, , 339-373.		15
1547	Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells. Journal of Materials Chemistry, 2007, 17, 1602.	6.7	65
1548	Tuning of Ruthenium Complex Properties Using Pyrrole- and Pyrrolidine-Containing Polypyridine Ligands. Inorganic Chemistry, 2007, 46, 2272-2277.	1.9	52
1549	Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:  Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. Journal of Physical Chemistry C, 2007, 111, 7224-7230.	1.5	485
1550	Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics, 2007, 9, 2630.	1.3	345
1551	Assembly and characterization of colloid-based antireflective coatings on multicrystalline silicon solar cells. Journal of Materials Chemistry, 2007, 17, 791-799.	6.7	147
1552	Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications, 2007, , 3741.	2.2	446
1553	Photocatalytic Degradation Characteristics of Different Organic Compounds at TiO2Nanoporous Film Electrodes with Mixed Anatase/Rutile Phases. Environmental Science & Technology, 2007, 41, 303-308.	4.6	165
1554	Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO ₂ Nanoparticles:  The Role of Sensitizer Protonation. Journal of the American Chemical Society, 2007, 129, 14156-14157.	6.6	228
1555	Native and Surface Modified Semiconductor Nanoclusters. Progress in Inorganic Chemistry, 2007, , 273-343.	3.0	25
1556	Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 6296-6302.	1.5	172
1557	Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2007, 2007, 1-13.	0.6	124
1559	Molecular Cosensitization for Efficient Panchromatic Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2007, 46, 8358-8362.	7.2	490
1561	New Ruthenium Complexes Containing Oligoalkylthiophene-Substituted 1,10-Phenanthroline for Nanocrystalline Dye-Sensitized Solar Cells. Advanced Functional Materials, 2007, 17, 29-36.	7.8	117
1562	Functional Supramolecular Ruthenium Cyclodextrin Dyes for Nanocrystalline Solar Cells. Advanced Functional Materials, 2007, 17, 54-58.	7.8	29
1563	New Family of Rutheniumâ€Dye†Sensitized Nanocrystalline TiO ₂ Solar Cells with a High Solarâ€Energyâ€Conversion Efficiency. Advanced Functional Materials, 2007, 17, 2964-2974.	7.8	67

#	Article	IF	CITATIONS
1564	A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells. Advanced Materials, 2007, 19, 1138-1141.	11.1	572
1565	Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection. Advanced Materials, 2007, 19, 2935-2940.	11.1	187
1566	A Novel Thermosetting Gel Electrolyte for Stable Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Materials, 2007, 19, 4006-4011.	11.1	275
1567	A New Route to Enhance the Lightâ€Harvesting Capability of Ruthenium Complexes for Dye‣ensitized Solar Cells. Advanced Materials, 2007, 19, 3888-3891.	11.1	177
1568	Catechol-Bearing Dipyrazinylpyridine Complexes of Ruthenium(II). European Journal of Inorganic Chemistry, 2007, 2007, 2121-2128.	1.0	20
1569	Theoretical Studies of the Electronic Structure and Spectroscopic Properties of [Ru(Htcterpy)(NCS)3]3–. European Journal of Inorganic Chemistry, 2007, 2007, 2171-2180.	1.0	17
1570	Synthesis, Characterization, and Sensitizing Properties of Heteroleptic Ru ^{II} Complexes Based on 2,6â€Bis(1â€pyrazolyl)pyrÂidine and 2,2′â€Bipyridineâ€4,4′â€dicarboxylic Acid Ligands. European Inorganic Chemistry, 2007, 2007, 5633-5644.	J o. ørnal of	⁼ 49
1571	New Amphiphilic Polypyridyl Ruthenium(II) Sensitizer and Its Application in Dye-Sensitized Solar Cells. Chinese Journal of Chemistry, 2007, 25, 168-171.	2.6	18
1572	New Type High Efficient Quasiâ€Solidâ€State Ionic Liquid Electrolyte for Dyeâ€Sensitized Solar Cells. Chinese Journal of Chemistry, 2007, 25, 1601-1603.	2.6	3
1573	TiO2 Porous Electrodes with Hierarchical Branched Inner Channels for Charge Transport in Viscous Electrolytes. ChemPhysChem, 2007, 8, 856-861.	1.0	43
1574	In Situ ESR and UV/Vis Spectroelectrochemical Study of Eosin Y Upon Reduction with and without Zn(II) Ions. ChemPhysChem, 2007, 8, 926-931.	1.0	20
1575	A Thermostable and Long-Term-Stable Ionic-Liquid-Based Gel Electrolyte for Efficient Dye-Sensitized Solar Cells. ChemPhysChem, 2007, 8, 1293-1297.	1.0	57
1576	A Dyadic Sensitizer for Dye Solar Cells with High Energy-Transfer Efficiency in the Device. ChemPhysChem, 2007, 8, 1548-1556.	1.0	73
1577	Quasi-solid-state dye-sensitized solar cells based on a sol–gel organic–inorganic composite electrolyte containing an organic iodide salt. Solar Energy, 2007, 81, 117-122.	2.9	40
1578	Generation of inhomogeneous photocurrent in solid-state TiO2â^£dyeâ^£Cul cells and effect of ligands attached to surfactant on morphology of Cul films. Solar Energy, 2007, 81, 535-539.	2.9	9
1579	Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Solar Energy, 2007, 81, 512-516.	2.9	207
1580	Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector. Solar Energy, 2007, 81, 717-722.	2.9	35
1581	Data mining assisted by theoretical calculations for improving dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2007, 91, 76-78.	3.0	4

#	Article	IF	CITATIONS
1582	A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. Solar Energy Materials and Solar Cells, 2007, 91, 6-16.	3.0	59
1583	Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 230-237.	3.0	34
1584	Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption. Solar Energy Materials and Solar Cells, 2007, 91, 250-257.	3.0	84
1585	New perylene derivative dyes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 427-431.	3.0	87
1586	Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Solar Energy Materials and Solar Cells, 2007, 91, 432-439.	3.0	61
1587	Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Solar Energy Materials and Solar Cells, 2007, 91, 518-524.	3.0	54
1588	Recent improvements and arising challenges in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 843-846.	3.0	89
1589	The superiority of Ti plate as the substrate of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1176-1181.	3.0	131
1590	Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 785-790.	3.0	82
1591	Synthesis and photovoltaic properties of soluble fulleropyrrolidine derivatives for organic solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 892-896.	3.0	22
1592	Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1062-1065.	3.0	34
1593	Dye-sensitized titania aerogels as photovoltaic electrodes for electrochemical solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1066-1074.	3.0	35
1594	On the use of triethylamine hydroiodide as a supporting electrolyte in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1432-1437.	3.0	12
1595	Effect of film thickness and morphology on the performance of photoelectrochemical cells based on poly(terthiophene). Solar Energy Materials and Solar Cells, 2007, 91, 1127-1136.	3.0	17
1596	Photovoltaic activity in a ZnTe/PEO–chitosan blend electrolyte junction. Solar Energy Materials and Solar Cells, 2007, 91, 1194-1198.	3.0	40
1597	Anchorage of N3 dye-linked polyacrylic acid to TiO2/electrolyte interface for improvement in the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2007, 91, 1209-1214.	3.0	14
1598	Effects of pH of a hybrid gel incorporated with 3-aminopropyltrimethoxysilane on the performance of a quasi-solid state dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2007, 91, 1313-1318.	3.0	16
1599	Mordant dyes as sensitisers in dye-sensitised solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1618-1630.	3.0	35

#	Article	IF	CITATIONS
1600	AM1 molecular screening of novel porphyrin analogues as dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1775-1781.	3.0	61
1601	Anthraquinone dyes as photosensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1863-1871.	3.0	57
1602	Preparation and characterization of a micro-porous polymer electrolyte with cross-linking network structure for dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2007, 91, 1892-1897.	3.0	46
1603	Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine. Solar Energy Materials and Solar Cells, 2007, 91, 1934-1942.	3.0	82
1604	Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3â^'/lâ^' redox couple for quasi-solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1959-1965.	3.0	132
1605	Synthesis of new julolidine dyes having bithiophene derivatives for solar cell. Tetrahedron, 2007, 63, 1553-1559.	1.0	80
1606	Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell. Tetrahedron, 2007, 63, 1913-1922.	1.0	202
1607	Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 2007, 63, 3115-3121.	1.0	152
1608	Tripodal pyrene chromophores for semiconductor sensitization: new footprint design. Tetrahedron, 2007, 63, 7550-7559.	1.0	22
1609	Synthesis of conjugated organic dyes containing alkyl substituted thiophene for solar cell. Tetrahedron, 2007, 63, 11436-11443.	1.0	85
1610	Tuning the structural, electrical and optical properties of Ti(III)-doped nanocrystalline TiO2 films by electrophoretic deposition time. Thin Solid Films, 2007, 515, 3402-3413.	0.8	34
1611	Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films, 2007, 515, 5131-5135.	0.8	191
1612	Carrier leakage blocking effect of high temperature sputtered TiO2 film on dye-sensitized mesoporous photoelectrode. Thin Solid Films, 2007, 515, 8045-8049.	0.8	46
1613	Solid-state dye-sensitized photovoltaic device with newly designed small organic molecule as hole-conductor. Chemical Physics Letters, 2007, 445, 259-264.	1.2	25
1614	Synthesis, characterization, electrochemical and spectroscopic studies of two new heteroleptic Ru(II) polypyridyl complexes. Dyes and Pigments, 2007, 75, 385-394.	2.0	36
1615	A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells. Electrochimica Acta, 2007, 52, 5334-5338.	2.6	81
1616	Application of transient infrared and near infrared spectroscopy to transition metal complex excited states and intermediates. Coordination Chemistry Reviews, 2007, 251, 492-514.	9.5	102
1617	Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007, 339, 1-10.	0.9	195

#	Article	IF	CITATIONS
1618	Heavy atom effects on anthracene-rigid-rod excited states anchored to metal oxide nanoparticles. Chemical Physics, 2007, 339, 146-153.	0.9	17
1619	New ruthenium sensitizers containing styryl and antenna fragments. Inorganica Chimica Acta, 2007, 360, 3518-3524.	1.2	18
1620	Effects of different anionic surfactant templates (H+Aâ^', Na+Aâ^') on titanium self-assembly: In the air–water interfacial films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 311, 93-98.	2.3	13
1621	Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2007, 9, 596-598.	2.3	457
1622	An alternative electrolyte based on acetylacetone–pyridine–iodine for dye-sensitized solar cells. Electrochemistry Communications, 2007, 9, 1735-1738.	2.3	17
1623	The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi–solid dye-sensitized solar cells. Electrochimica Acta, 2007, 52, 4858-4863.	2.6	53
1624	Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2007, 52, 6673-6678.	2.6	62
1625	Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window. Journal of Power Sources, 2007, 168, 533-536.	4.0	92
1626	Effect of solvents in liquid electrolyte on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2007, 173, 585-591.	4.0	72
1627	Nanocrystalline TiO2 film with textural channels: Exhibiting enhanced performance in quasi-solid/solid-state dye-sensitized solar cells. Journal of Power Sources, 2007, 171, 990-998.	4.0	27
1628	Synthesis of mer-[RuCl3(DMSO)(bpy)], reactivity and electrochemistry of mer-[RuCl3(DMSO)(bpy)] and mer-[RuCl3(TMSO)(bpy)] complexes. Polyhedron, 2007, 26, 5389-5397.	1.0	8
1629	Degradation of leather dye on TiO2: A study of applied experimental parameters on photoelectrocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 86-93.	2.0	47
1630	Optoelectronic and nonlinear optical properties of tBu4PcTiO/polymer composite materials. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 263-270.	2.0	23
1631	A comparative theoretical investigation of ruthenium dyes in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 283-288.	2.0	24
1632	A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 331-337.	2.0	159
1633	Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 29-33.	2.0	34
1634	Theoretical studies of charge-transfer complexes of I2 with pyrazoles, and implications on the dye-sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 233-241.	2.0	11
1635	An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butylpyridine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 348-355.	2.0	27

#	Article	IF	CITATIONS
1636	Quasi-solid-state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 395-401.	2.0	93
1637	Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 19-24.	2.0	65
1638	Tyrosine groups enhance photoinduced intramolecular electron transfer in polypyridyl ruthenium(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 317-324.	2.0	7
1639	Improved performance of Black-dye-sensitized solar cells with nanocrystalline anatase TiO2 photoelectrodes prepared from TiCl4 and ammonium carbonate. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 100-104.	2.0	19
1640	Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 295-300.	2.0	170
1641	Preparation of TiO2 nanocrystalline with 3–5nm and application for dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 314-321.	2.0	60
1642	Improved performance of solid-state dye-sensitized solar cells with p/p-type nanocomposite electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 329-333.	2.0	19
1643	Linking of N3 dye with C60 through diaminohydrocarbons for enhanced performance of dye-sensitized TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 128-134.	2.0	17
1644	Synthesis, characterization and sensitization properties of two novel mono and bis carboxyl-dipyrido-phenazine ruthenium(II) charge transfer complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 6-12.	2.0	33
1645	The influence of the metal cation and the filler on the performance of dye-sensitized solar cells using polymer-gel redox electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 49-55.	2.0	46
1646	Effect of steam treatment on photocurrent and dye–titania interaction in dye-doped titania gel. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 220-225.	2.0	22
1647	All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution. Journal of Electroanalytical Chemistry, 2007, 599, 23-30.	1.9	57
1648	Photoelectrocatalytic oxidation of organic compounds at nanoporous TiO2 electrodes in a thin-layer photoelectrochemical cell. Journal of Catalysis, 2007, 250, 102-109.	3.1	62
1649	Synthesis, isolation, and redispersion of resorcinarene-capped anatase TiO2 nanoparticles in nonaqueous solvents. Journal of Colloid and Interface Science, 2007, 310, 178-183.	5.0	21
1650	The effects of pyridine derivative additives on interface processes at nanocrystalline TiO ₂ thin film in dyeâ€sensitized solar cells. Surface and Interface Analysis, 2007, 39, 809-816.	0.8	45
1651	Template-Free Self-Assembly of a Nanoporous TiO2Thin Film. Journal of the American Ceramic Society, 2007, 90, 831-837.	1.9	27
1652	The optical properties of ZnO sheets electrodeposited on ITO glass. Materials Letters, 2007, 61, 2000-2003.	1.3	57
1653	A simple and cheap way to produce porous ZnO ribbons and their photovoltaic response. Materials	1.3	18

#	Article	IF	CITATIONS
1654	Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor. Scripta Materialia, 2007, 57, 567-570.	2.6	44
1655	Dye-effect in TiO2 catalyzed contaminant photo-degradation: Sensitization vs. charge-transfer formalism. Solid State Sciences, 2007, 9, 9-15.	1.5	62
1656	Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells. Open Chemistry, 2007, 5, 605-619.	1.0	23
1657	Size-Controlled Synthesis of Spherical TiO2Nanoparticles:  Morphology, Crystallization, and Phase Transition. Journal of Physical Chemistry C, 2007, 111, 96-102.	1.5	182
1658	Nanocrystalline CdS-water-soluble conjugated-polymers: High performance photoelectrochemical cells. Applied Physics Letters, 2007, 90, 263503.	1.5	38
1659	Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. Journal of Organic Chemistry, 2007, 72, 9550-9556.	1.7	576
1660	Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107, 2891-2959.	23.0	9,393
1661	Photochemistry and Photophysics of Coordination Compounds: Ruthenium. , 2007, , 117-214.		703
1662	Photophysical and electrochemical behavior of thin solid films based on a three-dimensional ruthenium complex network. Research on Chemical Intermediates, 2007, 33, 91-100.	1.3	7
1663	An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires. Theoretical Chemistry Accounts, 2007, 117, 1093-1104.	0.5	36
1664	Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant. Journal of Sol-Gel Science and Technology, 2007, 41, 49-55.	1.1	69
1665	Ruthenium(III) catalysis in the reaction of hexacyanoferrate(III) and iodide ions in perchloric acid medium. Transition Metal Chemistry, 2007, 32, 74-80.	0.7	7
1666	Iridium(III) catalyzed oxidation of iodide ions in aqueous acidic medium. Transition Metal Chemistry, 2007, 32, 541-547.	0.7	5
1667	Biophotofuel cell (BPFC) generating electrical power directly from aqueous solutions of biomass and its related compounds while photodecomposing and cleaning. Journal of Applied Electrochemistry, 2007, 37, 1039-1046.	1.5	17
1668	Novel counter electrodes based on NiP-plated glass and Ti plate substrate for dye-sensitized solar cells. Journal of Materials Science, 2007, 42, 5281-5285.	1.7	12
1669	A novel quasi-solid-state dye-sensitized solar cell based on monolayer capped nanoparticles framework materials. Journal of Materials Science, 2007, 42, 6412-6416.	1.7	34
1670	Role of the Platinum Nanoclusters in the Iodide/Triiodide Redox System of Dye Solar Cells. Journal of Cluster Science, 2007, 18, 141-155.	1.7	59
1671	Fabrication of photovoltaic cells using rhenium diimine complex containing polyelectrolytes by the layer-by-layer electrostatic self-assembly method. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 223-233.	1.9	12

#	Article	IF	CITATIONS
1672	Study on the improved structure of dye-sensitized solar cells for enhancing light absorption. Frontiers of Materials Science in China, 2007, 1, 293-296.	0.5	4
1673	Quasi-solid state dye-sensitized solar cells based on pyridine or imidazole containing copolymer chemically crosslinked gel electrolytes. Science Bulletin, 2007, 52, 2320-2325.	1.7	10
1674	Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique. Science Bulletin, 2007, 52, 2481-2485.	1.7	11
1675	Study on typical behavior of transient nature (I-t) and hysterisis nature of l–V characteristics of dye doped solid state thin film photoelectrochemical cell. Ionics, 2007, 13, 267-272.	1.2	3
1676	An approach to laminated flexible Dye sensitized solar cells. Electrochimica Acta, 2007, 52, 7469-7474.	2.6	21
1677	Low-cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2. Applied Surface Science, 2007, 254, 303-307.	3.1	23
1678	The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods. Thin Solid Films, 2007, 515, 4085-4091.	0.8	48
1679	Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources, 2008, 181, 46-55.	4.0	337
1680	XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications. Applied Surface Science, 2008, 254, 1874-1879.	3.1	83
1681	Viologen impregnated PVDF with TiO2 nanofiller as a solid polymer electrolyte for dye-sensitized solar cells. Current Applied Physics, 2008, 8, 99-103.	1.1	9
1682	Influence of ionic additives NaI/I2 on the properties of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 2296-2301.	2.6	42
1683	The use of 2,6-bis (N-pyrazolyl) pyridine as an efficient dopant in conjugation with poly(ethylene oxide) for nanocrystalline dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7903-7907.	2.6	35
1684	Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films. Solar Energy Materials and Solar Cells, 2008, 92, 425-431.	3.0	28
1685	Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Solar Energy Materials and Solar Cells, 2008, 92, 374-384.	3.0	205
1686	The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC. Solar Energy Materials and Solar Cells, 2008, 92, 1047-1053.	3.0	25
1687	Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1341-1346.	3.0	282
1688	An investigation on the performance of a silver ionic solid electrolyte system for a new detergent-based nanocrystalline dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92, 1712-1717.	3.0	20
1689	The effect of sputter-deposited TiO2 passivating layer on the performance of dye-sensitized solar cells based on sol–gel derived photoelectrode. Thin Solid Films, 2008, 517, 1294-1300.	0.8	38

#	άρτις ι ε	IF	CITATIONS
" 1690	Homogeneous catalysis: Kinetics and mechanism of oxidation of Ru(II) sensitizers by inorganic peroxides. Reaction Kinetics and Catalysis Letters, 2008, 93, 127-133.	0.6	4
1691	Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol–gel method with tri-block copolymer as structure directing agent. Journal of Applied Electrochemistry, 2008, 38, 703-712.	1.5	22
1692	Advances in the application of nanotechnology in enabling a â€~hydrogen economy'. Journal of Materials Science, 2008, 43, 5395-5429.	1.7	221
1693	Theoretical studies on Ru(fppz)2(CO)L (L = N-heterocyclic ligand): Electronic structure, absorption, phosphorescence, and solvatochromism. Science in China Series B: Chemistry, 2008, 51, 1211-1220.	0.8	1
1694	PEO electrolytes containing dioctyl phthalate (DOP) for dye-sensitized nanocrystalline TiO2 solar cells. Ionics, 2008, 14, 143-148.	1.2	4
1695	Polyethyleneoxide (PEO)-based, anion conducting solid polymer electrolyte for PEC solar cells. Journal of Solid State Electrochemistry, 2008, 12, 913-917.	1.2	31
1696	Enhanced Efficiency in Solid‣tate Dye‣ensitized Solar Cells Based on Fractal Nanostructured TiO ₂ Thin Films. Small, 2008, 4, 770-776.	5.2	25
1697	Functional Fe ₃ O ₄ /TiO ₂ Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small, 2008, 4, 485-491.	5.2	167
1698	Phthalocyanines: From outstanding electronic properties to emerging applications. Chemical Record, 2008, 8, 75-97.	2.9	580
1699	Enhancement of photocurrent of polymerâ€gelled dyeâ€sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets. Journal of Polymer Science Part A, 2008, 46, 47-53.	2.5	56
1700	Transparent solar cells based on dyeâ€sensitized nanocrystalline semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1895-1904.	0.8	90
1701	New Architectures for Dye ensitized Solar Cells. Chemistry - A European Journal, 2008, 14, 4458-4467.	1.7	253
1702	Theoretical modelling of the electrode thickness effect on maximum power point of dyeâ€sensitized solar cell. Canadian Journal of Chemical Engineering, 2008, 86, 35-42.	0.9	57
1703	Adsorption of 4 <i>â€ŧertâ€</i> Butylpyridine on TiO ₂ Surface in Dye‣ensitized Solar Cells. Chinese Journal of Chemistry, 2008, 26, 70-76.	2.6	16
1704	Application of the Organic Photosensitizers Bearing Two Carboxylic Acid Groups to Dye‧ensitized Solar Cells. Chinese Journal of Chemistry, 2008, 26, 929-934.	2.6	6
1705	Enhanced Energy Conversion Efficiency of La ³⁺ â€Modified Nanoporous TiO ₂ Electrode Sensitized with a Ruthenium Complex. Chinese Journal of Chemistry, 2008, 26, 1939-1943.	2.6	11
1706	Overcoming Kinetic Limitations of Electron Injection in the Dye Solar Cell via Coadsorption and FRET. ChemPhysChem, 2008, 9, 793-798.	1.0	49
1707	Europiumâ€Doped Mesoporous Titania Thin Films: Rareâ€Earth Locations and Emission Fluctuations under Illumination. ChemPhysChem, 2008, 9, 2077-2084.	1.0	26

#	Article	IF	CITATIONS
1708	Fabrication of Dyeâ€Sensitized Solar Cells with an Openâ€Circuit Photovoltage of 1â€V. ChemSusChem, 2008, 1, 401-403.	3.6	56
1709	Oriented Nanostructures for Energy Conversion and Storage. ChemSusChem, 2008, 1, 676-697.	3.6	367
1710	Triarylamineâ€Functionalized Ruthenium Dyes for Efficient Dyeâ€Sensitized Solar Cells. ChemSusChem, 2008, 1, 901-904.	3.6	22
1711	Cu ^I versus Ru ^{II} : Dye ensitized Solar Cells and Beyond. ChemSusChem, 2008, 1, 977-979.	3.6	71
1712	Theoretical Studies on [Ru(bpy) ₂ (NN)] ²⁺ [NN = Hydrazone and Azine]: Ground― and Excitedâ€State Geometries, Electronic Structures, Absorptions, and Phosphorescence Mechanisms. European Journal of Inorganic Chemistry, 2008, 2008, 1268-1276.	1.0	10
1713	Solidâ€State Organic/Inorganic Hybrid Solar Cells Based on Poly(octylthiophene) and Dyeâ€Sensitized Nanobrookite and Nanoanatase TiO ₂ Electrodes. European Journal of Inorganic Chemistry, 2008, 2008, 903-910.	1.0	42
1714	Synthesis and Characterisation of Poly(bipyridine)ruthenium Complexes as Building Blocks for Heterosupramolecular Arrays. European Journal of Inorganic Chemistry, 2008, 2008, 3310-3319.	1.0	61
1715	Ultrafast Vibronic Processes in a Ru–Porphyrin Complex. European Journal of Inorganic Chemistry, 2008, 2008, 4856-4860.	1.0	8
1716	Catching the Rainbow: Light Harvesting in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 1012-1014.	7.2	178
1717	Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 2402-2406.	7.2	598
1718	Multifunctionalized Rutheniumâ€Based Supersensitizers for Highly Efficient Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 7342-7345.	7.2	176
1719	A Lightâ€Resistant Organic Sensitizer for Solarâ€Cell Applications. Angewandte Chemie - International Edition, 2009, 48, 1576-1580.	7.2	223
1720	Recent Developments in Photocatalysis. Asia-Pacific Journal of Chemical Engineering, 1998, 6, 55-84.	0.0	46
1721	Bandâ€Edge Engineered Hybrid Structures for Dyeâ€Sensitized Solar Cells Based on SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2411-2418.	7.8	413
1722	Wireâ€ S haped Flexible Dyeâ€ s ensitized Solar Cells. Advanced Materials, 2008, 20, 592-595.	11.1	286
1723	A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing. Advanced Materials, 2008, 20, 3942-3946.	11.1	104
1727	Nanosized Titanium Oxides for Energy Storage and Conversion. , 0, , 387-407.		1
1728	Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. Journal of Analytical and Applied Pyrolysis, 2008, 82, 83-88.	2.6	50

#	Article	IF	CITATIONS
1729	A novel HPLC-UV/nano-TiO2-chemiluminescence system for the determination of selenocystine and selenomethionine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 870, 216-221.	1.2	12
1730	Synthesis, spectroscopic and electrochemical characterization of copper(I) complexes with functionalized pyrazino[2,3-f]-1,10-phenanthroline. Polyhedron, 2008, 27, 1287-1295.	1.0	8
1731	Synthesis and functionality of dendrimer with finely controlled metal assembly. Polymer, 2008, 49, 4033-4041.	1.8	32
1732	Fabrication, characterization and photocatalytic activity of Gd3+-doped titania nanoparticles with mesostructure. Microporous and Mesoporous Materials, 2008, 114, 166-174.	2.2	45
1733	Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2008, 175, 692-697.	4.0	97
1734	Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182, 370-376.	4.0	109
1735	Synthesis and characterization of polythiophene/titanium dioxide composites. Reactive and Functional Polymers, 2008, 68, 1492-1498.	2.0	112
1736	Betalain pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 72-80.	2.0	189
1737	Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 167-172.	2.0	60
1738	Hybridized ruthenium(II) complexes with high molar extinction coefficient unit: Effect of energy band and adsorption on photovoltatic performances. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 268-274.	2.0	18
1739	Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 144-150.	2.0	52
1740	Dye-sensitized nanostructured TiO2 film based photoconductor. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 352-356.	2.0	8
1741	Synthesis of new perylene imide dyes and their photovoltaic performances in nanocrystalline TiO2 dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 156-169.	2.0	84
1742	Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 260-265.	2.0	60
1743	Poly(o-phenylenediamine)/MWNTs composite film as a hole conductor in solid-state dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 288-292.	2.0	21
1744	Ruthenium bipyridyl complex-sensitized dechlorination of CCl4 in aqueous micellar solutions under visible light. Journal of Industrial and Engineering Chemistry, 2008, 14, 315-321.	2.9	10
1745	Biological investigation of 1311-labeled new water soluble Ru(II) polypyridyl complex. Applied Radiation and Isotopes, 2008, 66, 115-121.	0.7	8
1746	Photoelectrode characteristics of a perylene/phthalocyanine bilayer film in acetonitrile. Dyes and Pigments, 2008, 77, 437-440.	2.0	7

		Report	
#	Article	IF	CITATIONS
1747	Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1087-1089.	2.3	366
1748	Influence of 1-methylbenzimidazole interactions with Li+ and TiO2 on the performance of dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 5503-5508.	2.6	58
1749	Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3. Electrochimica Acta, 2008, 53, 5670-5674.	2.6	20
1750	Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7869-7874.	2.6	132
1751	The effect mechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on the performance of dye-sensitized solar cell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 42-47.	2.3	20
1752	Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles. Chemical Physics Letters, 2008, 460, 168-172.	1.2	18
1753	Photoinduced interfacial electron injection in RuN3–TiO2 thin films: Resolving picosecond timescale injection from the triplet state of the protonated and deprotonated dyes. Chemical Physics Letters, 2008, 462, 205-208.	1.2	24
1754	Valence electronic structure of ruthenium based complexes probed by photoelectron spectroscopy at high kinetic energy (HIKE) and modeled by DFT calculations. Chemical Physics Letters, 2008, 464, 192-197.	1.2	16
1755	Synthesis, crystal structure and magnetic properties of 1D chain Cu(II) complex with the single-μ-chloro bridging. Inorganic Chemistry Communication, 2008, 11, 1100-1102.	1.8	10
1756	Photochemistry of immobilized photoactive compounds. Coordination Chemistry Reviews, 2008, 252, 2470-2479.	9.5	19
1757	DFT investigation of the TiO2 band shift by nitrogen-containing heterocycle adsorption and implications on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2008, 92, 84-87.	3.0	60
1758	Performance variation of carbon counter electrode based dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92, 814-818.	3.0	145
1759	Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Solar Energy Materials and Solar Cells, 2008, 92, 1445-1449.	3.0	53
1760	Performance of a new polymer electrolyte incorporated with diphenylamine in nanocrystalline dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2008, 92, 1718-1722.	3.0	82
1761	On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1. Solar Energy Materials and Solar Cells, 2008, 92, 1723-1727.	3.0	40
1762	Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer. Solid State Ionics, 2008, 179, 1300-1304.	1.3	16
1763	A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron, 2008, 64, 345-350.	1.0	159
1764	Molecular engineering of organic sensitizers containing indole moiety for dye-sensitized solar cells. Tetrahedron, 2008, 64, 10417-10424.	1.0	53

#	Article	IF	CITATIONS
1765	Novel tandem cell structure of dye-sensitized solar cell for improvement in photocurrent. Thin Solid Films, 2008, 516, 2716-2722.	0.8	35
1766	Photosensitization of nanoporous TiO2 film with porphyrin-linked fullerene. Thin Solid Films, 2008, 516, 1204-1208.	0.8	16
1767	Fabrication of ZnO films consisting of densely accumulated mesoporous nanosheets and their dye-sensitized solar cell performance. Thin Solid Films, 2008, 516, 2026-2030.	0.8	66
1768	Structural, morphological and optical properties of thermal annealed TiO thin films. Thin Solid Films, 2008, 516, 1476-1479.	0.8	32
1769	Investigation of sputter-deposited TiO2 thin film for the fabrication of dye-sensitized solar cells. Thin Solid Films, 2008, 516, 7149-7154.	0.8	45
1770	Water based preparation method for â€~green' solid-state polythiophene solar cells. Thin Solid Films, 2008, 516, 7245-7250.	0.8	18
1771	Hydrazone based molecular glasses for solid-state dye-sensitized solar cells. Thin Solid Films, 2008, 516, 7260-7265.	0.8	29
1772	Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor. Thin Solid Films, 2008, 516, 7822-7827.	0.8	16
1773	Surface-enhanced Raman study of electrochemical and photocatalytic degradation of the azo dye Janus Green B. Applied Catalysis B: Environmental, 2008, 77, 339-345.	10.8	30
1774	Growth of TiO2 nanorods by chemical bath deposition method. Applied Surface Science, 2008, 255, 2682-2687.	3.1	56
1775	Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 604-607.	2.3	27
1776	Electrochemical properties of liquid electrolyte added quasi-solid state TiO2 dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1098-1100.	2.3	12
1777	Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochimica Acta, 2008, 53, 2890-2896.	2.6	216
1778	Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta, 2008, 53, 4161-4166.	2.6	76
1779	Composite electrolyte of heteropolyacid (HPA) and polyethylene oxide (PEO) for solid-state dye-sensitized solar cell. Electrochimica Acta, 2008, 53, 6623-6628.	2.6	48
1780	Polymer-sensitized photoelectrochemical solar cells based on water-soluble polyacetylene and β-In2S3 nanorods. Electrochimica Acta, 2008, 54, 714-719.	2.6	14
1781	Electrodeposition of CulnSe2 and In2Se3 on flat and nanoporous TiO2 substrates. Electrochimica Acta, 2008, 54, 524-529.	2.6	30
1782	Synthesis and characterisation of bis(2,2′-bipyridine)(4-carboxy-4′-(pyrid-2-ylmethylamido)-2,2′-bipyridine)ruthenium(II) di(hexafluorophosphate): Comparison of spectroelectrochemical properties with related complexes. Inorganica Chimica Acta, 2008, 361, 601-612.	1.2	27

#	Article	IF	CITATIONS
1783	Dye-sensitized solar cells based on PEDOP as a hole conductive medium. Inorganica Chimica Acta, 2008, 361, 627-634.	1.2	24
1784	The design and outdoor application of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361, 786-791.	1.2	58
1785	Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance. Inorganica Chimica Acta, 2008, 361, 635-655.	1.2	70
1786	Structural parameters controlling the performance of organized mesoporous TiO2 films in dye sensitized solar cells. Inorganica Chimica Acta, 2008, 361, 656-662.	1.2	52
1787	Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta, 2008, 361, 663-670.	1.2	77
1788	Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorganica Chimica Acta, 2008, 361, 671-676.	1.2	24
1789	Unusual photoelectrochemical behaviour of nanocrystalline TiO2 films. Inorganica Chimica Acta, 2008, 361, 792-797.	1.2	9
1790	Photoinduced absorption spectroscopy as a tool in the study of dye-sensitized solar cells. Inorganica Chimica Acta, 2008, 361, 729-734.	1.2	86
1791	Theoretical studies on the absorption spectra of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO2 solar cells: Revisited with transition-component analysis. Inorganica Chimica Acta, 2008, 361, 712-728.	1.2	15
1792	Artificial photosynthesis based on dye-sensitized nanocrystalline TiO2 solar cells. Inorganica Chimica Acta, 2008, 361, 735-745.	1.2	37
1793	A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 798-805.	1.2	78
1794	A new carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 2835-2840.	1.2	46
1795	Hydrogen and electricity generation by photoelectrochemical decomposition of ethanol over nanocrystalline titania. International Journal of Hydrogen Energy, 2008, 33, 5045-5051.	3.8	61
1796	Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity. Microporous and Mesoporous Materials, 2008, 111, 55-61.	2.2	18
1797	Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C ₆₀ . Environmental Science & amp; Technology, 2008, 42, 8064-8069.	4.6	482
1798	The use of reversed micelles for the synthesis of nanoparticles. High Energy Chemistry, 2008, 42, 516-521.	0.2	10
1799	A new study on solid-state cyanine dye-sensitized solar cells. Research on Chemical Intermediates, 2008, 34, 241-248.	1.3	8
1800	Mottâ^'Schottky Analysis and Impedance Spectroscopy of TiO ₂ /6T and ZnO/6T devices. Journal of Physical Chemistry B, 2008, 112, 10086-10091.	1.2	26

#	Article	IF	CITATIONS
1802	Alignment of the dye's molecular levels with the TiO ₂ band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology, 2008, 19, 424002.	1.3	263
1803	Photoelectrochemical Properties of Doubly β-Functionalized Porphyrin Sensitizers for Dye-Sensitized Nanocrystalline-TiO ₂ Solar Cells. Journal of Physical Chemistry C, 2008, 112, 16691-16699.	1.5	126
1804	Combining Light Harvesting and Electron Transfer in Silica–Titaniaâ€Based Organic–Inorganic Hybrid Materials. Chemistry - an Asian Journal, 2008, 3, 578-584.	1.7	4
1805	Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Transactions, 2008, , 2655.	1.6	372
1806	Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. Journal of Physical Chemistry C, 2008, 112, 18737-18753.	1.5	2,322
1807	TiO ₂ Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells:  a Periodic Density Functional Theory Study. Langmuir, 2008, 24, 4411-4419.	1.6	161
1808	Preparation of nanocrystalline anatase TiO2 using basic sol-gel method. Chemical Papers, 2008, 62, .	1.0	7
1809	Applicability of silanol to sensitizing dye for dye-sensitized solar cell. Silicon Chemistry, 2008, 3, 303-305.	0.8	18
1810	ZnO Nanowire and \$hbox{WS}_{2}\$ Nanotube Electronics. IEEE Transactions on Electron Devices, 2008, 55, 2988-3000.	1.6	35
1811	The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells. Materials Chemistry and Physics, 2008, 110, 38-42.	2.0	160
1812	Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Materials Chemistry and Physics, 2008, 112, 167-172.	2.0	106
1813	The effect of growth conditions on the properties of ZnO nanorod dye-sensitized solar cells. Materials Research Bulletin, 2008, 43, 3345-3351.	2.7	51
1814	Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell. Journal of Materials Chemistry, 2008, 18, 5809.	6.7	109
1815	Fabrication of High Conductivity TiO ₂ /Ag Fibrous Electrode by the Electrophoretic Deposition Method. Journal of Physical Chemistry C, 2008, 112, 18686-18689.	1.5	86
1816	Dye-sensitized solar cells: A safe bet for the future Energy and Environmental Science, 2008, 1, 655.	15.6	373
1817	2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells. Chemistry of Materials, 2008, 20, 1830-1840.	3.2	401
1818	High-Performance Quasi-Solid-State Dye-Sensitized Solar Cell Based on an Electrospun PVdFâ^'HFP Membrane Electrolyte. Langmuir, 2008, 24, 9816-9819.	1.6	129
1819	Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition. Journal of Physical Chemistry C, 2008, 112, 19756-19764.	1.5	168

#	Article	IF	CITATIONS
1820	Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology, 2008, 19, 375305.	1.3	110
1821	Convenient Synthesis and Purification of [Bu4N]2[Ru(4-carboxy-4-carboxylate-2,2′-bipyridine)2(NCS)2]: a Landmark DSC Dye. Australian Journal of Chemistry, 2008, 61, 405.	0.5	12
1822	Interface Modification on TiO2 Electrode Using Dendrimers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2008, 20, 2538-2543.	3.2	57
1823	Merocyanines: Synthesis and Application. Topics in Heterocyclic Chemistry, 2008, , 75-105.	0.2	42
1824	Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18, 2341.	6.7	198
1825	A new approach prevailing over chloride interference in the photoelectrochemical determination of chemical oxygen demand. Analyst, The, 2008, 133, 1684.	1.7	15
1826	Tuning Photoelectrochemical Performances of Agâ^'TiO ₂ Nanocomposites via Reduction/Oxidation of Ag. Chemistry of Materials, 2008, 20, 6543-6549.	3.2	546
1827	Highly Efficient Solar Cells using TiO ₂ Nanotube Arrays Sensitized with a Donor-Antenna Dye. Nano Letters, 2008, 8, 1654-1659.	4.5	275
1828	Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Transactions, 2008, , 1487.	1.6	26
1829	Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 2008, 19, 465204.	1.3	88
1830	Enhancement of the Performance of Dye-Sensitized Solar Cell by Formation of Shallow Transport Levels under Visible Light Illumination. Journal of Physical Chemistry C, 2008, 112, 7084-7092.	1.5	186
1831	Computational and Spectroscopic Studies of New Rhenium(I) Complexes Containing Pyridylimidazo[1,5- <i>a</i>)pyridine Ligands: Charge Transfer and Dual Emission by Fine-Tuning of Excited States. Organometallics, 2008, 27, 1427-1435.	1.1	131
1832	Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification. Chemistry of Materials, 2008, 20, 3993-4003.	3.2	609
1833	Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008, 80, 2241-2258.	0.9	234
1834	Poly(ethylene oxide)/Poly(dimethylsiloxane) Blend Solid Polymer Electrolyte and Its Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2008, 112, 12576-12582.	1.5	47
1835	TiO ₂ in Commercial Sunscreen Lotion: Flow Field-Flow Fractionation and ICP-AES Together for Size Analysis. Analytical Chemistry, 2008, 80, 7594-7608.	3.2	112
1836	Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catalysis Communications, 2008, 9, 1410-1413.	1.6	92
1837	Injection and Recombination in Dye-Sensitized Solar Cells with a Broadband Absorbance Metal-Free Sensitizer Based on Oligothienylvinylene. Journal of Physical Chemistry C, 2008, 112, 18623-18627.	1.5	20

#	Article	IF	CITATIONS
1838	Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 8486-8494.	1.5	169
1839	Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 19151-19157.	1.5	137
1840	Enhancement in dye-sensitized solar cells based on MgO-coated TiO ₂ electrodes by reactive DC magnetron sputtering. Nanotechnology, 2008, 19, 215704.	1.3	74
1841	Efficient Structural Modification of Triphenylamine-Based Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 11591-11599.	1.5	171
1842	Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2008, 7, 63-68.	1.6	71
1843	Light, Water, Hydrogen. , 2008, , .		176
1844	Effect of Etched Substrates in Long-Term Stability Testing of Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2008, 491, 298-306.	0.4	2
1845	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	1.4	39
1846	Pyrrole-Based Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 12557-12567.	1.5	117
1847	Ladder-Type Pentaphenylene Dyes for Dye-Sensitized Solar Cells. Chemistry of Materials, 2008, 20, 1808-1815.	3.2	122
1848	Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5152.	2.2	195
1849	Surfactant-mediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance. Nanotechnology, 2008, 19, 325706.	1.3	85
1850	Synthesis, Characterization, and Photovoltaic Properties of Soluble TiOPc Derivatives. International Journal of Molecular Sciences, 2008, 9, 2745-2756.	1.8	10
1851	A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the †dye to beat' for 17 years. Journal of Materials Chemistry, 2008, 18, 4246.	6.7	102
1852	The Ultrafast Temporal and Spectral Characterization of Electron Injection from Perylene Derivatives into ZnO and TiO2 Colloidal Films. Journal of Physical Chemistry C, 2008, 112, 10542-10552.	1.5	42
1853	Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. Journal of Physical Chemistry C, 2008, 112, 11023-11033.	1.5	432
1854	Effect of Coadsorbent on the Photovoltaic Performance of Zinc Pthalocyanine-Sensitized Solar Cells. Langmuir, 2008, 24, 5636-5640.	1.6	199
1855	Optimizing the Photocurrent Efficiency of Dye-Sensitized Solar Cells through the Controlled Aggregation of Chalcogenoxanthylium Dyes on Nanocrystalline Titania Films. Journal of Physical Chemistry C, 2008, 112, 13057-13061.	1.5	129

#	Article	IF	CITATIONS
1856	MEASURING ULTRAFAST PHOTOINDUCED ELECTRON-TRANSFER DYNAMICS. Series on Photoconversion of Solar Energy, 2008, , 633-674.	0.2	0
1857	INORGANIC EXTENDED-JUNCTION DEVICES. Series on Photoconversion of Solar Energy, 2008, , 393-452.	0.2	0
1858	DYE-SENSITISED MESOSCOPIC SOLAR CELLS. Series on Photoconversion of Solar Energy, 2008, , 503-536.	0.2	25
1859	Mass Transport of Polypyridyl Cobalt Complexes in Dye-Sensitized Solar Cells with Mesoporous TiO ₂ Photoanodes. Journal of Physical Chemistry C, 2008, 112, 18255-18263.	1.5	206
1860	Spectral Characteristics of Light Harvesting, Electron Injection, and Steady-State Charge Collection in Pressed TiO ₂ Dye Solar Cells. Journal of Physical Chemistry C, 2008, 112, 5623-5637.	1.5	163
1861	Effect of side chain length on the electrochemical and photoresponse characteristics of poly[3-(2′,5′-dialkoxyphenyl)thiophenes]. Synthetic Metals, 2008, 158, 307-314.	2.1	4
1862	Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells. Synthetic Metals, 2008, 158, 64-71.	2.1	65
1863	Electrochemical and morphological characterization of electrodeposited poly(2,2′:5′,2″-terthiophene) for photovoltaic applications. Synthetic Metals, 2008, 158, 661-669.	2.1	13
1864	Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. Journal of the American Chemical Society, 2008, 130, 2906-2907.	6.6	311
1865	Advancing beyond current generation dye-sensitized solar cells. Energy and Environmental Science, 2008, 1, 66.	15.6	663
1866	Photovoltaic properties of liquid-state photoelectrochemical cells based on PPAT and a composite film of PPAT and nanocrystalline titanium dioxide. Synthetic Metals, 2008, 158, 509-515.	2.1	14
1867	New Approach to Low-Cost Dye-Sensitized Solar Cells With Back Contact Electrodes. Chemistry of Materials, 2008, 20, 4974-4979.	3.2	67
1868	Acetylacetonate Anchors for Robust Functionalization of TiO ₂ Nanoparticles with Mn(II)â^'Terpyridine Complexes. Journal of the American Chemical Society, 2008, 130, 14329-14338.	6.6	151
1869	Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO ₂ Thin Film. Langmuir, 2008, 24, 13225-13230.	1.6	88
1870	Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering. Chemical Communications, 2008, , 4951.	2.2	105
1871	Vertically Aligned Single Crystal TiO ₂ Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters, 2008, 8, 3781-3786.	4.5	1,126
1872	Naphthyl-Fused π-Elongated Porphyrins for Dye-Sensitized TiO ₂ Cells. Journal of Physical Chemistry C, 2008, 112, 15576-15585.	1.5	150
1873	Comparison of Electron Injection Dynamics from Rhodamine B to In ₂ O ₃ , SnO ₂ , and ZnO Nanocrystalline Thin Films. Journal of Physical Chemistry C, 2008, 112, 5203-5212.	1.5	44

#	Article	IF	CITATIONS
1874	Fabrication of a multi-scale nanostructure of TiO2for application in dye-sensitized solar cells. Nanotechnology, 2008, 19, 095705.	1.3	31
1875	Binding Characteristics of CoPc/SnO2 by In-situ Process and Photocatalytic Activity under Visible Light Irradiation. Acta Physico-chimica Sinica, 2008, 24, 992-996.	0.6	8
1876	Synthesis and Photophysical Properties of Ruthenium-Based Dendrimers and Their Use in Dye Sensitized Solar Cells. Inorganic Chemistry, 2008, 47, 3408-3414.	1.9	25
1877	Low Molecular Mass Organogelator Based Gel Electrolyte with Effective Charge Transport Property for Long-Term Stable Quasi-Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2008, 112, 12927-12933.	1.2	70
1878	Application of Triphenylamine-Based Sensitizers with Two Carboxylic Acid Groups to Dye-Sensitized Solar Cells. Acta Physico-chimica Sinica, 2008, 24, 1950-1956.	0.6	5
1879	Heteronuclear bipyrimidine-bridged Ru–Ln and Os–Ln dyads: low-energy ³ MLCT states as energy-donors to Yb(iii) and Nd(iii). Dalton Transactions, 2008, , 691-698.	1.6	50
1880	Tailoring mixed-valence CoIII/FeII complexes for their potential use as sensitizers in dye sensitized solar cells. New Journal of Chemistry, 2008, 32, 705.	1.4	28
1881	A study of electron transfer in Ru(dcbpy) ₂ (NCS) ₂ sensitized nanocrystalline TiO ₂ and SnO ₂ films induced by red-wing excitation. Physical Chemistry Chemical Physics, 2008, 10, 996-1002.	1.3	31
1882	Photovoltaic Properties of Dye-Sensitized Solar Cells using Metallophthalocyanines with Poly(ethylene glycol) Electrolytes. Molecular Crystals and Liquid Crystals, 2008, 491, 307-316.	0.4	4
1883	Equivalent circuit analysis of dye-sensitized solar cell fabricated at low-temperature. , 2008, , .		1
1884	Layer-by-layer self-assembled hollow titania composite nanospheres containing [60]fullerene. New Journal of Chemistry, 2008, 32, 581.	1.4	2
1885	Inter versus intra-molecular photoinduced charge separation in solid films of donor–acceptor molecules. Chemical Communications, 2008, , 4915.	2.2	11
1886	Contrasting photoelectrochemical behaviour of two isomeric supramolecular dyes based on meso-tetra(pyridyl)porphyrin incorporating four (μ3-oxo)- triruthenium(iii) clusters. New Journal of Chemistry, 2008, 32, 1167.	1.4	23
1887	Anionic benzothiadiazole containing polyfluorene and oligofluorene as organic sensitizers for dye-sensitized solar cells. Chemical Communications, 2008, , 3789.	2.2	51
1888	Direct Measurement of the Recombination Losses via the Transparent Conductive Substrate in Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 2779-2783.	1.5	14
1889	Photoacoustic Measurement of Electron Injection Efficiencies and Energies from Excited Sensitizer Dyes into Nanocrystalline TiO ₂ Films. Journal of the American Chemical Society, 2008, 130, 8876-8877.	6.6	28
1890	Quantum dot sensitized solar cells. , 2008, , .		1
1891	Detailed Experimental and Theoretical Investigation of the Electron Transport in a Dye Solar Cell by Means of a Three-Electrode Configuration. Journal of Physical Chemistry C, 2008, 112, 1711-1720.	1.5	32

#	Article	IF	CITATIONS
1892	Coupling of Titania Inverse Opals to Nanocrystalline Titania Layers in Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2008, 112, 14415-14421.	1.2	187
1893	TiO ₂ Surface Functionalization to Control the Density of States. Journal of Physical Chemistry C, 2008, 112, 18224-18231.	1.5	51
1894	High Extinction Coefficient "Antenna―Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. Journal of Physical Chemistry C, 2008, 112, 7562-7566.	1.5	52
1895	Dynamic Stable Nanostructured Metal Oxide Fractal Films Grown on Flat Substrates. Journal of Physical Chemistry C, 2008, 112, 14286-14291.	1.5	10
1896	Temperature Dependence of Competitive Reaction of Iodine Ions on H-Terminated Si(111) Surface in a Concentrated HI Solution. Journal of Physical Chemistry C, 2008, 112, 19005-19011.	1.5	0
1897	Spray deposition and characterization of nanostructured Li doped NiO thin films for application in dye-sensitized solar cells. Nanotechnology, 2008, 19, 485707.	1.3	89
1898	Two-Dimensional Fractal Structures of Metal Oxides Synthesized at Room Temperature. Advanced Materials Research, 2008, 47-50, 1177-1180.	0.3	2
1899	Organic Dyes Containing a Cyanovinyl Entity in the Spacer for Solar Cells Applications. Journal of Physical Chemistry C, 2008, 112, 19739-19747.	1.5	84
1900	Adsorption Configurations and Reactions of Boric Acid on a TiO ₂ Anatase (101) Surface. Journal of Physical Chemistry C, 2008, 112, 8276-8287.	1.5	44
1901	Radial Electron Collection in Dye-Sensitized Solar Cells. Nano Letters, 2008, 8, 2862-2866.	4.5	130
1902	Nanostructured TiO ₂ Films with Controlled Morphology Synthesized in a Single Step Process:  Performance of Dye-Sensitized Solar Cells and Photo Watersplitting. Journal of Physical Chemistry C, 2008, 112, 4134-4140.	1.5	142
1903	Quenching of Triplet State Formation by Electron Transfer for Merocyanine/TiO2 Systems. Journal of Physical Chemistry C, 2008, 112, 11973-11977.	1.5	8
1904	Phenomenally High Molar Extinction Coefficient Sensitizer with "Donorâ^'Acceptor―Ligands for Dye-Sensitized Solar Cell Applications. Inorganic Chemistry, 2008, 47, 2267-2273.	1.9	49
1905	Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity. Chemistry of Materials, 2008, 20, 2495-2502.	3.2	137
1906	High-Performance All-Solid-State Dye-Sensitized Solar Cells Utilizing Imidazolium-Type Ionic Crystal as Charge Transfer Layer. Chemistry of Materials, 2008, 20, 6022-6028.	3.2	83
1907	Theoretical Studies on Structures and Spectroscopic Properties of Photoelectrochemical Cell Ruthenium Sensitizers, [Ru(H _{<i>m</i>} tcterpy)(NCS) ₃] ^{<i>n</i>â^'} (<i>m</i> = 0, 1, 2, and 3; <i>n</i> = 4, 3, 2, and 1). Inorganic Chemistry, 2008, 47, 2312-2324.	1.9	47
1908	Highly Water-soluble [60]Fullerene-ethylenediamino-β-cyclodextrin Inclusion Complex: The Synthesis and Self-assembly with Poly (Acrylic Acid). Supramolecular Chemistry, 2008, 20, 295-299.	1.5	6
1909	Effect of thickness on structural, electrical, and electrochemical properties of platinum/titanium bilayer counterelectrode. Journal of Applied Physics, 2008, 104, 034910.	1.1	14

#	Article	IF	CITATIONS
1910	Postpressing dependence of the effective electron diffusion coefficient in electrophoretically prepared nanoporous ZnO and TiO ₂ films. Journal of Materials Research, 2008, 23, 975-980.	1.2	6
1911	Preparation and Characterization of Nanocrystalline Pt/TCG Counterelectrodes for Dye-Sensitized Solar Cells. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.1	2
1912	Characterization of siloxane adsorbates covalently attached to TiO 2. Proceedings of SPIE, 2008, , .	0.8	10
1913	Dye-sensitized solar cells based on carbon counter electrode. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
1914	Electron transport in back contact dye-sensitized solar cells. Journal of Applied Physics, 2008, 104, 064307.	1.1	21
1915	Spatially Resolved Current-Voltage Measurements—Evidence for Nonuniform Photocurrents in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2008, 155, B290.	1.3	14
1916	Characterization and Evaluation of the Efficiency of TiO ₂ /Zinc Phthalocyanine Nanocomposites as Photocatalysts for Wastewater Treatment Using Solar Irradiation. International Journal of Photoenergy, 2008, 2008, 1-12.	1.4	44
1917	Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiO mathvariant="bold">2</mml:mtext></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> Electrodes for Flexible Dye-Sensitized Solar Cells. Journal of Nanomaterials. 2008. 2008. 1-4.	<td>ext₃ </td>	ext ₃
1918	Dye Sensitized Solar Cell Based On Pyronin G Dye and TiO[sub 2]. AIP Conference Proceedings, 2008, , .	0.3	0
1919	Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Applied Physics Letters, 2008, 93, .	1.5	76
1920	Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania. International Journal of Photoenergy, 2008, 2008, 1-7.	1.4	29
1921	Water adsorption beyond monolayer coverage on ZnO surfaces and nanoclusters. Proceedings of SPIE, 2008, , .	0.8	4
1922	Highly Efficient Dye-Sensitized Solar Cells Based on Ru (II) Complex Black Dye Sensitizers. , 2008, , 1341-1344.		0
1923	Influence of Calcination Temperature on the Microstructure of Porous TiO ₂ Film. Materials Science Forum, 0, 569, 17-20.	0.3	1
1924	Development of Multiscale Simulator for Dye-Sensitized TiO2Nanoporous Electrode Based on Quantum Chemical Calculation. Japanese Journal of Applied Physics, 2008, 47, 3010-3014.	0.8	10
1925	Highly active nanocrystalline TiO ₂ photoelectrodes. Nanotechnology, 2008, 19, 115201.	1.3	13
1926	Electrospinning of TiO <inf>2</inf> for dye sensitized solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	1
1927	Dynamic Formation of Diffraction Grating in a Photorefractive Liquid Crystal Cell With Mesoporous \$hbox{TiO}_{2}\$ Layers. IEEE Nanotechnology Magazine, 2008, 7, 115-119.	1.1	1

#	Article Effect of on-site Coulomb repulsion term <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	IF	CITATIONS
1928	display="inline"> <mml:mi>U</mml:mi> on the band-gap states of the reduced rutile (110) <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Ti</mml:mi><mml:msub><mml:mi< td=""><td>1.1</td><td>165</td></mml:mi<></mml:msub></mml:mrow></mml:math>	1.1	165
1929	mathvariant="normal">O <mml:mn>2surface. Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength. Applied Physics Letters, 2008, 93, .</mml:mn>	1.5	108
1930	Effect of structure and surface morphology of sol-gel derived TiO2 photoelectrode on the performance of dye-sensitized solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1007-1011.	0.9	3
1931	Performance improvement of TiO2â^•P3HT solar cells using CuPc as a sensitizer. Applied Physics Letters, 2008, 92, 073307.	1.5	67
1932	Open-circuit voltage improvement by using TiO <inf>2</inf> nanotubes as a working electrode of dye-sensitized solar cell. , 2008, , .		1
1933	Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide. Applied Physics Letters, 2008, 92, .	1.5	67
1934	Quasi-solid Polymer Electrolytes Based on Polyacrylonitrile and Plasticizers for Indoline Dye Sensitized Solar Cells of Efficiency 5.3%. Chemistry Letters, 2008, 37, 36-37.	0.7	19
1935	Enhanced Photocurrent in Nanocomposite of Dye-doped Titania Gel and Carbon Nanotubes. Chemistry Letters, 2008, 37, 940-941.	0.7	4
1936	Electrodeposition of ZnO/Dye Hybrid Thin Films for Dye-Sensitized Solar Cells. Electrochemistry, 2008, 76, 109-117.	0.6	48
1937	Theoretical Studies on the Absorption Spectra of .BETADiketonato Ruthenium Tricarboxyterpyridyl Dyes. Electrochemistry, 2008, 76, 165-170.	0.6	1
1938	Self-assembled nanoscale architecture of TiO ₂ and application for dye-sensitized solar cells. Nanotechnology, Science and Applications, 2008, Volume 1, 1-7.	4.6	6
1939	Preparation of TiO2 Thin Films by Electrophoresis Deposition Method in Highly Dispersed Colloidal Solution. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 196-202.	0.2	2
1940	Transition Metal Complexes as Sensitizers for Efficient Mesoscopic Solar Cells. Bulletin of Japan Society of Coordination Chemistry, 2008, 51, 3-12.	0.1	12
1941	Fabrication of dye-sensitized solar cells with TiO2 photoelectrode prepared by sol-gel technique with low annealing temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1042-1046.	0.9	4
1942	A novel composite electrolyte of titania nanotubes as fillers and polyethylene gycol for dye-sensitized solar cells. , 2009, , .		0
1943	Preparation and characterization of polypyrrole/TiO ₂ nanocomposite and its photocatalytic activity under visible light irradiation. Journal of Materials Research, 2009, 24, 2547-2554.	1.2	15
1944	Novel extended π-conjugated Zn(II) -porphyrin derivatives bearing pendant triphenylamine moiety for dye-sensitized solar cell: synthesis and characterization. Journal of Porphyrins and Phthalocyanines, 2009, 13, 798-804.	0.4	22
1945	CDS sensitized nanostructured TiO <inf>2</inf> and ZnO solar cells. , 2009, , .		0

#	Article	IF	Citations
1946	CONJUGATED POLYMER-SENSITIZED SOLAR CELLS BASED ON ELECTROSPUN TiO ₂ NANOFIBER ELECTRODE. International Journal of Nanoscience, 2009, 08, 227-230.	0.4	3
1947	Electrochemical Properties of the Supramolecular Assembly of Ruthenium(II)-bipyridine Complex with Single-Walled Carbon Nanotubes. Journal of the Electrochemical Society, 2009, 156, K44.	1.3	6
1948	Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application. Journal Physics D: Applied Physics, 2009, 42, 125108.	1.3	25
1949	Enhanced Efficiency Dye Sensitized Solar Cells Through Acid Pre-treatment. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	0
1950	The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group. International Journal of Photoenergy, 2009, 2009, 1-9.	1.4	4
1951	The Use of Near Infra Red as a Rapid Heat Treatment Process in the Manufacture of Metal-based Dye-sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	0
1952	PEDOT-Coated Counter Electrodes for Dye-Sensitized Solar Cells. Australian Journal of Chemistry, 2009, 62, 348.	0.5	13
1953	K-12 Outreach and Science Literacy through Green Chemistry. ACS Symposium Series, 2009, , 167-185.	0.5	4
1954	Characterization of Solar Cells using Nano Titanium Oxide and Nanocomposite Materials. , 2009, , .		6
1955	1-(3′-amino)propylsilatrane derivatives as covalent surface linkers to nanoparticulate metal oxide films for use in photoelectrochemical cells. Nanotechnology, 2009, 20, 505203.	1.3	49
1956	Density Functional Theory Study on Organic Dye Sensitizers Containing Bis-dimethylfluorenyl Amino Benzofuran. Chinese Journal of Chemical Physics, 2009, 22, 489-496.	0.6	2
1957	Geometry, Electronic Structure, and Related Properties of Dye Sensitizer: 3,4-bis[1-(carboxymethyl)-3-indolyl]-1H-pyrrole-2,5-dione. Chinese Journal of Chemical Physics, 2009, 22, 63-68.	0.6	2
1958	Preparation of Double Dye-Layer Structure of Dye-Sensitized Solar Cells from Cocktail Solutions for Harvesting Light in Wide Range of Wavelengths. Japanese Journal of Applied Physics, 2009, 48, 020213.	0.8	20
1959	Influence of Different Cations of N3 Dyes on Their Photovoltaic Performance and Stability. International Journal of Chemical Engineering, 2009, 2009, 1-7.	1.4	3
1960	Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode. Applied Physics Letters, 2009, 95, .	1.5	44
1961	Conduction Band Edge of TiO2-SnO2 Solid Mixtures Tuning for Photoelctrochemical Applications. Materials Research Society Symposia Proceedings, 2009, 1171, 41.	0.1	0
1962	Recent Advances of Dye-Sensitized Solar Cells and Integrated Modules at SHARP. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	14
1963	Dendrimers for photon harvesting in organic and organic/inorganic hybrid solar cells. Proceedings of SPIE, 2009, , .	0.8	0
#	Article	IF	CITATIONS
------	--	------	-----------
1964	Synthesis, characterization and electrochemical properties of a compact titanium dioxide layer. Solid State Sciences, 2009, 11, 433-438.	1.5	36
1965	Deposition potential dependence of ZnO–eosin Y hybrid thin films prepared by electrochemical deposition and their photoelectrochemical properties. Materials Chemistry and Physics, 2009, 114, 920-925.	2.0	18
1966	Photovoltaic enhancement of dye-sensitized solar cell prepared from [TiO2/ethyl cellulose/terpineol] paste employing TRITONâ"¢ X-based surfactant with carboxylic acid group in the oxyethylene chain end. Materials Chemistry and Physics, 2009, 116, 46-51.	2.0	26
1967	Electrospinning preparation and characterization of a new kind of composite nanomaterials: One-dimensional composite nanofibers doped with TiO2 nanoparticles and Ru(II) complex. Materials Research Bulletin, 2009, 44, 2081-2086.	2.7	11
1968	High thermal stability thick wall mesoporous titania thin films. Materials Letters, 2009, 63, 1583-1585.	1.3	13
1969	Ion-Conducting Nanocrystals: Theory, Methods, and Applications. , 0, , 79-132.		5
1970	Electrodeposition of Inorganic/Organic Hybrid Thin Films. Advanced Functional Materials, 2009, 19, 17-43.	7.8	315
1971	Photovoltaics Based on Hybridization of Effective Dyeâ€Sensitized Titanium Oxide and Holeâ€Conductive Polymer P3HT. Advanced Functional Materials, 2009, 19, 2481-2485.	7.8	120
1972	980â€nm Laserâ€Driven Photovoltaic Cells Based on Rareâ€Earth Upâ€Converting Phosphors for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3815-3820.	7.8	75
1973	Porous Oneâ€Dimensional Photonic Crystals Improve the Powerâ€Conversion Efficiency of Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21, 764-770.	11.1	249
1974	Singlet Excitation Energy Harvesting and Triplet Emission in the Selfâ€Assembled System Poly{1,4â€phenyleneâ€{9,9â€bis (4â€phenoxyâ€butylsulfonate)]fluoreneâ€2,7â€diyl} copolymer/tris(bipyridyl)ruthenium(II)in Aqueous Solution. Advanced Materials, 2009, 21, 1155-1159.	11.1	22
1975	Highly Efficient Nanoporous TiO ₂ â€Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metalâ€Free Organic Dye. Advanced Materials, 2009, 21, 994-1000.	11.1	243
1976	Dyeâ€Anchored Mesoporous Antimonyâ€Doped Tin Oxide Electrochemiluminescence Cell. Advanced Materials, 2009, 21, 2492-2496.	11.1	53
1977	ZnO Nanostructures for Dye‧ensitized Solar Cells. Advanced Materials, 2009, 21, 4087-4108.	11.1	1,629
1978	Formation of Highly Efficient Dyeâ€Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO ₂ Spheres. Advanced Materials, 2009, 21, 3668-3673.	11.1	452
1981	Novel Zinc Porphyrin Sensitizers for Dye ensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties. Chemistry - A European Journal, 2009, 15, 1403-1412.	1.7	392
1982	Color Tuning in New Metalâ€Free Organic Sensitizers (Bodipys) for Dye ensitized Solar Cells. Chemistry - A European Journal, 2009, 15, 6335-6339.	1.7	192
1983	Ultrafast Photoinduced Processes in Alizarin‧ensitized Metal Oxide Mesoporous Films. ChemPhysChem, 2009, 10, 384-391.	1.0	40

#	Article	IF	CITATIONS
1984	Influence of Sodium Cations of N3 Dye on the Photovoltaic Performance and Stability of Dye‧ensitized Solar Cells. ChemPhysChem, 2009, 10, 1117-1124.	1.0	45
1985	A Carbazoleâ€Containing Difunctional Ru ^{II} Complex That Functions as a pHâ€Induced Emission Switch and an Efficient Sensitizer for Solar Cells. European Journal of Inorganic Chemistry, 2009, 2009, 508-518.	1.0	34
1986	Molecular Designs and Syntheses of Organic Dyes for Dye‣ensitized Solar Cells. European Journal of Organic Chemistry, 2009, 2009, 2903-2934.	1.2	558
1987	Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser and Photonics Reviews, 2010, 4, 517-528.	4.4	266
1989	Metalâ€Free Organic Dyes for Dyeâ€Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie - International Edition, 2009, 48, 2474-2499.	7.2	2,545
1990	Application of thermosetting organic solvent free polymer gel electrolyte in quasiâ€solidâ€state dyeâ€sensitized solar cell. Journal of Applied Polymer Science, 2010, 116, 1329-1333.	1.3	4
1991	Ruthenium (II) complexes with ï€ expanded ligand having phenylene–ethynylene moiety as sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 729-732.	3.0	20
1992	Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 720-724.	3.0	57
1993	Effect of ultra-thin polymer membrane electrolytes on dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1083-1086.	3.0	37
1994	Long-term durability and degradation mechanism of dye-sensitized solar cells sensitized with indoline dyes. Solar Energy Materials and Solar Cells, 2009, 93, 1143-1148.	3.0	60
1995	Enhanced efficiency of dye-sensitized solar cells by UV–O3 treatment of TiO2 layer. Current Applied Physics, 2009, 9, 404-408.	1.1	62
1996	Triphenylamine-based organic dye containing the diphenylvinyl and rhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells. Journal of Power Sources, 2009, 187, 620-626.	4.0	39
1997	Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells. Journal of Power Sources, 2009, 194, 574-579.	4.0	55
1998	Novel fluoranthene dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2009, 82, 353-359.	2.0	39
1999	Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ethylenedioxythiophene)/TiO2/FTO counter electrode. Electrochimica Acta, 2009, 54, 5463-5469.	2.6	60
2000	TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells. Electrochimica Acta, 2009, 54, 7350-7356.	2.6	81
2001	Synthesis of pyridine derivatives and their influence as additives on the photocurrent of dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 147-154.	1.5	21
2002	An efficient and nonflammable organic phosphate electrolyte for dye-sensitized solar cells. Journal of Applied Electrochemistry, 2009, 39, 1939-1942.	1.5	2

#	Article	IF	CITATIONS
2003	Modeling the structure and spectral properties of sensitizing black dye for nanocrystalline TiO2 solar cells. Journal of Applied Spectroscopy, 2009, 76, 772-776.	0.3	2
2004	Modeling of Dye sensitized solar cells using a finite element method. Journal of Computational Electronics, 2009, 8, 398-409.	1.3	30
2005	Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). Journal of Electroceramics, 2009, 23, 422-425.	0.8	32
2006	Multi-layered TiO2 nanostructured films for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2009, 20, 446-450.	1.1	36
2007	Effects of electrode film modifications on the open-circuit photovoltage in enhanced dye-sensitized solar cells. Journal of Nanoparticle Research, 2009, 11, 1905-1915.	0.8	5
2008	Effect of calcination temperature on the microstructure of porous TiO2 film. Research on Chemical Intermediates, 2009, 35, 257-262.	1.3	4
2009	Nanocrystalline TiO2 thin film electrodes for dye-sensitized solar cell applications. Jom, 2009, 61, 52-57.	0.9	18
2010	Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Science in China Series B: Chemistry, 2009, 52, 1198-1209.	0.8	13
2011	A new type counter electrode for dye-sensitized solar cells. Science in China Series D: Earth Sciences, 2009, 52, 1923-1927.	0.9	7
2012	Fluorescence and sensitization performance of phenylene-vinylene-substituted polythiophene. Science Bulletin, 2009, 54, 1669-1676.	4.3	10
2013	Dye-sensitized solar cells based on bisindolylmaleimide derivatives. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 269-277.	0.4	7
2014	Electrosynthesis of TiO2 oxide film on ITO substrate and electrochemical comparative study of the oxide with its hydrated gel. Ionics, 2009, 15, 169-176.	1.2	7
2015	Dye-Sensitized Solar Cells Combining ZnO Nanotip Arrays and Nonliquid Gel Electrolytes. Journal of Electronic Materials, 2009, 38, 1612-1617.	1.0	10
2016	Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Research Letters, 2009, 4, .	3.1	259
2017	Effect of loaded TiO ₂ nanofiller on heteropolyacidâ€impregnated PVDF polymer electrolyte for the performance of dyeâ€sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 343-350.	0.8	14
2018	Application of polymer gel electrolyte with graphite powder in quasiâ€solidâ€state dyeâ€sensitized solar cells. Polymer Composites, 2009, 30, 1687-1692.	2.3	14
2019	Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnology, 2009, 4, 592-597.	15.6	727
2020	Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photonics, 2009, 3, 406-411.	15.6	430

#	Article	IF	CITATIONS
2021	Coordination of Ti ⁴⁺ Sites in Nanocrystalline TiO ₂ Films Used for Photoinduced Electron Conduction: Influence of Nanoparticle Synthesis and Thermal Necking. Journal of the American Ceramic Society, 2009, 92, 888-893.	1.9	23
2022	Metal-free indoline-dye-sensitized TiO2 nanotube solar cells. Microelectronics Journal, 2009, 40, 108-114.	1.1	34
2023	Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: Crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells. Microporous and Mesoporous Materials, 2009, 124, 52-58.	2.2	30
2024	Quasi solid state dye sensitized solar cells employing a polymer electrolyte and xanthene dyes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 162, 32-39.	1.7	47
2025	High efficiency solar cell based on dye sensitized plasma treated nano-structured TiO2 films. Electrochemistry Communications, 2009, 11, 75-79.	2.3	81
2026	Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochemistry Communications, 2009, 11, 1001-1004.	2.3	192
2027	A novel architecture of poly(tetrafluoroethylene)-framed TiO2 electrodes for dye-sensitized solar cells. Electrochemistry Communications, 2009, 11, 1647-1649.	2.3	4
2028	Study on photoelectrochemical solar cells of nanocrystalline Cd0.7Zn0.3Se -water soluble conjugated polymer. Electrochimica Acta, 2009, 54, 3169-3175.	2.6	26
2029	Enhanced electrochemical performance of the counterelectrode of dye sensitized solar cells by sandblasting. Electrochimica Acta, 2009, 54, 5320-5325.	2.6	24
2030	Effect of Triton X-100 in water-added electrolytes on the performance of dye-sensitized solar cells. Electrochimica Acta, 2009, 54, 6286-6291.	2.6	56
2031	The photoelectrochemical properties of N3 sensitized CaTiO3 modified TiO2 nanocrystalline electrodes. Electrochimica Acta, 2009, 55, 305-310.	2.6	29
2032	Synthesis and characterization of new ruthenium(II) complexes containing coupled di(2-pyridyl) and 1,3-dithiole units. Inorganica Chimica Acta, 2009, 362, 143-148.	1.2	6
2033	A 2-quinolinecarboxylate-substituted ruthenium(II) complex as a new type of sensitizer for dye-sensitized solar cells. Inorganica Chimica Acta, 2009, 362, 2519-2522.	1.2	42
2034	New applications of ruthenium solar cell sensitizers N3 and N719 as luminescence turn-on anion sensors. Inorganica Chimica Acta, 2009, 362, 5155-5162.	1.2	12
2035	Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron, 2009, 65, 7393-7402.	1.0	40
2036	Triaryl linked donor acceptor dyads for high-performance dye-sensitized solar cells. Tetrahedron, 2009, 65, 9626-9632.	1.0	66
2037	DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells. Computational and Theoretical Chemistry, 2009, 899, 86-93.	1.5	137
2038	Computational molecular characterization of Coumarin-102. Computational and Theoretical Chemistry, 2009, 911, 105-108.	1.5	23

#	Article	IF	CITATIONS
2039	Controlled preparation of macroporous TiO2 films by photo polymerization-induced phase separation method and their photocatalytic performance. Thin Solid Films, 2009, 517, 6479-6485.	0.8	15
2040	A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater. Sensors and Actuators B: Chemical, 2009, 141, 634-640.	4.0	64
2041	Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 2009, 83, 574-581.	2.9	50
2042	High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Solar Energy, 2009, 83, 845-849.	2.9	158
2043	Temperature dependence of open-circuit voltage in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 840-842.	3.0	76
2044	Photovoltaic performance of dye-sensitized solar cells stained with black dye under pressurized condition and mechanism for high efficiency. Solar Energy Materials and Solar Cells, 2009, 93, 1009-1012.	3.0	20
2045	Donor–acceptor-functionalized polymers for efficient light harvesting in the dye solar cell. Solar Energy Materials and Solar Cells, 2009, 93, 552-563.	3.0	36
2046	Thermal stability of dye-sensitized solar cells with current collecting grid. Solar Energy Materials and Solar Cells, 2009, 93, 1110-1115.	3.0	81
2047	TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact. Solar Energy Materials and Solar Cells, 2009, 93, 1728-1732.	3.0	32
2048	Electrochemical polymerization effects of triphenylamine-based dye on TiO2 photoelectrodes in dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2009, 631, 43-51.	1.9	40
2049	Studies of interfacial recombination in the dyed TiO2 electrode using Raman spectra and electrochemical techniques. Journal of Electroanalytical Chemistry, 2009, 632, 133-138.	1.9	11
2050	High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents. Journal of Electroanalytical Chemistry, 2009, 633, 146-152.	1.9	34
2051	Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2009, 15, 724-729.	2.9	60
2052	Sol–gel technique for the generation of europium-doped mesoporous and dense thin films: A luminescent study. Journal of Luminescence, 2009, 129, 1641-1645.	1.5	13
2053	Ruthenium complex-cored dendrimers: Shedding light on efficiency trade-offs in dye-sensitised solar cells. Organic Electronics, 2009, 10, 1356-1363.	1.4	34
2054	Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. Journal of Colloid and Interface Science, 2009, 335, 196-202.	5.0	67
2055	Synthesis and physical properties of ruthenium bipyridine complexes with TCNQ and TCNE ligands. Polyhedron, 2009, 28, 661-664.	1.0	7
2056	The coordination chemistry of gold surfaces: Formation and far-infrared spectra of alkanethiolate-capped gold nanoparticles. Journal of Organometallic Chemistry, 2009, 694, 1138-1143.	0.8	51

#	Article	IF	Citations
2057	Novel iridium complex with carboxyl pyridyl ligand for dye-sensitized solar cells: High fluorescence intensity, high electron injection efficiency?. Journal of Organometallic Chemistry, 2009, 694, 2705-2711.	0.8	87
2058	Efficient organic sensitizers containing benzo[cd]indole: Effect of molecular isomerization for photovoltaic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 102-110.	2.0	23
2059	Organic dyes with a novel anchoring group for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 168-174.	2.0	43
2060	Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 196-204.	2.0	50
2061	Lateral distribution of N3 dye molecules on TiO2(1 1 0) surface. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 185-190.	2.0	10
2062	Sol–gel modified TiO2 powder films for high performance dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 192-198.	2.0	60
2063	Near Ultraviolet and Visible light photoelectrochemical degradation of organic substances producing electricity and hydrogen. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 69-74.	2.0	68
2064	A simple route towards low-temperature processing of nanoporous thin films using UV-irradiation: Application for dye solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 70-76.	2.0	36
2065	Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 23-27.	2.0	76
2066	Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 53-63.	2.0	56
2067	Photo-electric conversion in dye-doped nanocrystalline titania films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 204-208.	2.0	18
2068	In situ photoelectrochemical measurement of phthalic acid on titania. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 97-103.	2.0	6
2069	Synthesis and characterization of novel heteroleptic ruthenium sensitizer for nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 154-158.	2.0	14
2070	Bio-inspired multi-scale structures in dye-sensitized solar cell. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 149-158.	5.6	28
2071	Preparation of polymer film of micro-porous or island-like structure and its application in dye-sensitized solar cell. Journal of Power Sources, 2009, 188, 319-322.	4.0	12
2072	Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2009, 188, 635-641.	4.0	107
2073	Characteristics of triphenylamine-based dyes with multiple acceptors in application of dye-sensitized solar cells. Journal of Power Sources, 2009, 188, 627-634.	4.0	82
2074	An inexpensive and efficient pyridine-based additive for the electrolyte of dye-sensitized solar cells. Journal of Power Sources, 2009, 193, 878-884.	4.0	15

#	Article	IF	CITATIONS
2075	Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2009, 194, 568-573.	4.0	206
2076	Effects of paste storage on the properties of nanostructured thin films for the development of dye-sensitized solar cells. Renewable Energy, 2009, 34, 1759-1764.	4.3	37
2077	Photosensitization of SnO2/ZnO semiconductors with zinc-phthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 455-459.	2.0	17
2078	Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews, 2009, 253, 3015-3041.	9.5	243
2079	Photoinduced electron transfer from a terrylene dye to TiO2: Quantification of band edge shift effects. Chemical Physics, 2009, 357, 124-131.	0.9	19
2080	The enhanced photoelectric conversion efficiency of N3 sensitized MgTiO3 modified nanoporous TiO2 electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340, 182-186.	2.3	21
2081	Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 2009, 371, 1-9.	2.2	116
2082	Time-dependent density functional theory study of squaraine dye-sensitized solar cells. Chemical Physics Letters, 2009, 475, 49-53.	1.2	82
2083	Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures. Chemical Physics Letters, 2009, 476, 84-88.	1.2	56
2084	Triphenylamine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2009, 81, 224-230.	2.0	82
2085	Efficient triphenylamine dyes for solar cells: Effects of alkyl-substituents and π-conjugated thiophene unit. Dyes and Pigments, 2009, 83, 187-197.	2.0	118
2086	Spatial distribution and decrease of dye solar cell performance induced by electrolyte filling. Electrochemistry Communications, 2009, 11, 25-27.	2.3	21
2087	Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2009, 11, 1346-1349.	2.3	108
2088	Enhancing the performance of dye-sensitized solar cells based on an organic dye by incorporating TiO2 nanotube in a TiO2 nanoparticle film. Electrochimica Acta, 2009, 54, 4123-4130.	2.6	44
2089	Synthesis of a new class of cyclometallated ruthenium(II) complexes and their application in dye-sensitized solar cells. Inorganic Chemistry Communication, 2009, 12, 842-845.	1.8	60
2090	Near-IR sensitization of nanocrystalline TiO2 with a new ruthenium complex having a 2,6-bis(4-carboxyquinolin-2-yl)pyridine ligand. Inorganic Chemistry Communication, 2009, 12, 1212-1215.	1.8	39
2091	Structural, optical and photoelectrochemical studies on the nanodispersed titania. Current Applied Physics, 2009, 9, 900-906.	1.1	20
2092	Performance characteristics of dye-sensitized solar cells with counter electrode based on NiP-plated glass and titanium plate. Current Applied Physics, 2009, 9, 1005-1008.	1.1	10

#	Article	IF	CITATIONS
2093	A flexible carbon counter electrode for dye-sensitized solar cells. Carbon, 2009, 47, 2704-2708.	5.4	281
2094	Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection. Applied Catalysis B: Environmental, 2009, 89, 536-542.	10.8	52
2095	Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements. Journal of Physical Chemistry C, 2009, 113, 1126-1136.	1.5	205
2096	Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. Journal of Materials Chemistry, 2009, 19, 5009.	6.7	72
2097	Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO ₂ semiconductor surfaces. Chemical Society Reviews, 2009, 38, 115-164.	18.7	1,064
2098	TiO ₂ Nanotubes in Dyeâ€Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chemistry - an Asian Journal, 2009, 4, 520-525.	1.7	174
2099	Visible Light-Driven H ₂ Production by Hydrogenases Attached to Dye-Sensitized TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2009, 131, 18457-18466.	6.6	407
2100	Di-branched di-anchoring organic dyes for dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 1094.	15.6	188
2101	Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Physical Chemistry Chemical Physics, 2009, 11, 9489.	1.3	168
2102	TiO2 Nanotube Arrays: Application to Photoelectrochemical Water Splitting. , 2009, , 149-216.		2
2103	Dye-Sensitized and Bulk-Heterojunctions Solar Cells: TiO2 Nanotube Arrays as a Base Material. , 2009, , 217-283.		0
2104	Efficient Dye-Sensitized Solar Cell Based on <i>oxo</i> -Bacteriochlorin Sensitizers with Broadband Absorption Capability. Journal of Physical Chemistry C, 2009, 113, 7954-7961.	1.5	95
2105	Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of Chemical Research, 2009, 42, 1788-1798.	7.6	2,502
2106	Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 2009, 42, 1819-1826.	7.6	1,303
2107	Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability. Journal of Physical Chemistry C, 2009, 113, 21779-21783.	1.5	105
2108	Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology, 2009, 20, 045604.	1.3	119
2109	Nitrogen-Containing Heterocycles' Interaction with Ru Dye in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 20764-20771.	1.5	26
2110	Effect of Surface Protonation of TiO ₂ on Charge Recombination and Conduction Band Edge Movement in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 15417-15421.	1.5	54

#	Article	IF	CITATIONS
2111	ZnO Nanorod–TiO2-Nanoparticulate Electrode for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2009, 48, 125003.	0.8	14
2112	Variable-Band-Gap Poly(arylene ethynylene) Conjugated Polyelectrolytes Adsorbed on Nanocrystalline TiO ₂ : Photocurrent Efficiency as a Function of the Band Gap. ACS Applied Materials & Interfaces, 2009, 1, 381-387.	4.0	35
2113	Aqueous Synthesis of ZnO Rod Arrays for Molecular Sensor. Crystal Growth and Design, 2009, 9, 3083-3088.	1.4	45
2114	Electron Transfer from Organic Aminophenyl Acid Sensitizers to Titanium Dioxide Nanoparticle Films. Journal of Physical Chemistry C, 2009, 113, 13985-13992.	1.5	26
2115	Modification of Charge Transfer and Energy Level Alignment at Organic/TiO ₂ Interfaces. Journal of Physical Chemistry C, 2009, 113, 13765-13771.	1.5	24
2116	Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye. Energy and Environmental Science, 2009, 2, 1205.	15.6	83
2117	Effect on Cell Efficiency following Thermal Degradation of Dye-Sensitized Mesoporous Electrodes Using N719 and D5 Sensitizers. Journal of Physical Chemistry C, 2009, 113, 18902-18906.	1.5	20
2118	Highly Stable Molecular Layers on Nanocrystalline Anatase TiO ₂ through Photochemical Grafting. Langmuir, 2009, 25, 10676-10684.	1.6	38
2119	Femtosecond Transient Absorption of Zinc Porphyrins with Oligo(phenylethylnyl) Linkers in Solution and on TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 11524-11531.	1.5	64
2120	Fabrication and Enhanced Performance of a Dye-Sensitized Solar Cell with a ClO[sub 4][sup â~']–Poly(3,4-ethylenedioxythiophene)/ TiO[sub 2]/FTO Counter Electrode. Electrochemical and Solid-State Letters, 2009, 12, F13.	2.2	17
2121	Photodriven Spin Change of Fe(II) Benzimidazole Compounds Anchored to Nanocrystalline TiO ₂ Thin Films. Langmuir, 2009, 25, 13641-13652.	1.6	26
2122	Evidence of Multiple Electron Injection and Slow Back Electron Transfer in Alizarin-Sensitized Ultrasmall TiO2 Particles. Journal of Physical Chemistry C, 2009, 113, 3593-3599.	1.5	51
2123	Surfactant-Free Synthesis of Macroporous TiO2 Films by a Photopolymerization-Induced Phase-Separation Method. Journal of Physical Chemistry C, 2009, 113, 15621-15628.	1.5	13
2124	Adsorption Configurations and Decomposition Pathways of Boric Acid on TiO2 Rutile (110) Surface: A Computational Study. Journal of Physical Chemistry C, 2009, 113, 3751-3762.	1.5	11
2125	Unravelling the Chemical Morphology of a Mesoporous Titanium Dioxide Interface by Confocal Raman Microscopy: New Clues for Improving the Efficiency of Dye Solar Cells and Photocatalysts. Langmuir, 2009, 25, 11269-11271.	1.6	30
2126	Ruthenium Phthalocyanine-Bipyridyl Dyads as Sensitizers for Dye-Sensitized Solar Cells: Dye Coverage versus Molecular Efficiency. Inorganic Chemistry, 2009, 48, 3215-3227.	1.9	54
2127	Indiumâ^'Tinâ^'Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 7443-7447.	1.5	35
2128	Imaging of Photoinduced Interfacial Charge Separation in Conjugated Polymer/Semiconductor Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 9368-9374.	1.5	13

#	Article	IF	CITATIONS
2129	Novel Amphiphilic Ruthenium Sensitizer with Hydrophobic Thiophene or Thieno(3,2- <i>b</i>)thiophene-Substituted 2,2′-Dipyridylamine Ligands for Effective Nanocrystalline Dye Sensitized Solar Cells. Chemistry of Materials, 2009, 21, 5719-5726.	3.2	51
2130	ZnO solid-state dye sensitized solar cells using composite electrolyte of poly(3-hexylthiophene-2,5-diyl) and carbon nanotubes. Journal of Renewable and Sustainable Energy, 2009, 1, 033109.	0.8	16
2131	Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO ₂ Nanoparticle Printed Electrodes. Analytical Chemistry, 2009, 81, 5381-5389.	3.2	29
2132	A Simple and Efficient Method Using Polymer Dispersion To Prepare Controllable Nanoporous TiO ₂ Anodes for Dye-Sensitized Solar Cells. Langmuir, 2009, 25, 11162-11167.	1.6	16
2133	Attachment of poly[(ethoxyhexylsilylene)oligothienylene]s to inorganic oxide surface. Synthetic Metals, 2009, 159, 817-820.	2.1	3
2134	Co-sensitization with near-IR absorbing cyanine dye to improve photoelectric conversion of dye-sensitized solar cells. Synthetic Metals, 2009, 159, 1028-1033.	2.1	41
2135	Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT:PSS counter electrode. Synthetic Metals, 2009, 159, 1325-1331.	2.1	69
2136	Trivalent dopants on ZnO semiconductor obtained by mechanical milling. Journal of Alloys and Compounds, 2009, 483, 442-444.	2.8	19
2137	An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of π-Conjugation Extension. Journal of Physical Chemistry C, 2009, 113, 14559-14566.	1.5	119
2138	Electrochemistry in Mesoporous Electrodes: Influence of Nanoporosity on the Chemical Potential of the Electrolyte in Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2022-2027.	1.5	14
2139	Organic Sensitizers Based on Hexylthiophene-Functionalized Indolo[3,2- <i>b</i>]carbazole for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 13409-13415.	1.5	118
2140	Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical, and Photovoltaic Investigation. Journal of Physical Chemistry C, 2009, 113, 755-764.	1.5	149
2141	Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 14040-14045.	1.5	212
2142	Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 4808-4818.	6.6	571
2143	New Indole-Based Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2009, 113, 14588-14595.	1.2	72
2144	Molecular Design of Sensitizers for Dye-Sensitized Solar Cells. Springer Series in Materials Science, 2009, , 217-250.	0.4	2
2145	Layer-by-layer self assembly deposition and characterization of TiO2nanoparticles by using a short chain polycation. EPJ Applied Physics, 2009, 48, 10602.	0.3	6
2146	Rhodaninedyes for dye-sensitized solar cells :  spectroscopy, energy levels and photovoltaic performance. Physical Chemistry Chemical Physics, 2009, 11, 133-141.	1.3	178

#	Article	IF	CITATIONS
2147	Adsorption/Desorption Kinetics from ATR-IR Spectroscopy. Aqueous Oxalic Acid on Anatase TiO ₂ . Langmuir, 2009, 25, 3538-3548.	1.6	66
2148	Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chemical Communications, 2009, , 6288.	2.2	156
2149	Symmetric and unsymmetric donor functionalization. comparing structural and spectral benefits of chromophores for dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7232.	6.7	177
2150	Fabrication of Highly-Ordered TiO ₂ Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters, 2009, 9, 601-606.	4.5	288
2151	Doubly β-Functionalized Mesoâ~'Meso Directly Linked Porphyrin Dimer Sensitizers for Photovoltaics. Journal of Physical Chemistry C, 2009, 113, 21956-21963.	1.5	78
2152	A Portable Photoelectrochemical Probe for Rapid Determination of Chemical Oxygen Demand in Wastewaters. Environmental Science & amp; Technology, 2009, 43, 7810-7815.	4.6	75
2153	A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 2009, 94, 103102.	1.5	50
2154	Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance. Applied Physics Letters, 2009, 95, .	1.5	32
2155	Molecular design of triarylamine-based organic dyes for efficient dye-sensitized solar cells. New Journal of Chemistry, 2009, 33, 868.	1.4	43
2156	Sequence-specific electrochemical detection of Alicyclobacillus acidoterrestrisDNA using electroconductive polymer-modified fluorine tin oxide electrodes. Analyst, The, 2009, 134, 314-319.	1.7	19
2157	Hybrid Polymer-Inorganic Photovoltaic Cells. , 2009, , 321-385.		8
2158	Highly efficient dye-sensitized solar cells of thick mesoporous titania films derived from supramolecular templating. Nanotechnology, 2009, 20, 505602.	1.3	14
2159	Novel TPD-based organic D–π–A dyes for dye-sensitized solar cells. Chemical Communications, 2009, , 2201.	2.2	75
2160	Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 2009, 3, 3103-3109.	7.3	1,210
2161	A Study of the Interactions between lâ^'/I3â^' Redox Mediators and Organometallic Sensitizing Dyes in Solar Cells. Journal of Physical Chemistry C, 2009, 113, 783-790.	1.5	101
2162	Substituted carbazole dyes for efficient molecular photovoltaics: long electron lifetime and high open circuit voltage performance. Journal of Materials Chemistry, 2009, 19, 4829.	6.7	125
2163	Improvements of photocurrent by using modified SiO2 in the poly(ether urethane)/poly(ethylene) Tj ETQq0 0 0 rg 2009, , 3895.	BT /Overlo 2.2	ock 10 Tf 50 62
2164	New insights into dye-sensitized solar cells with polymer electrolytes. Journal of Materials Chemistry, 2009, 19, 5279.	6.7	264

#	Article	IF	CITATIONS
2165	Nb-Doped TiO ₂ : A New Compact Layer Material for TiO ₂ Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 6878-6882.	1.5	210
2166	Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H ₂ production. Chemical Communications, 2009, , 550-552.	2.2	160
2167	High-performance dye-sensitized solar cell with a multiple dye system. Applied Physics Letters, 2009, 94,	1.5	191
2168	Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 10270.	1.3	118
2169	Highly Efficient Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 16816-16820.	1.5	91
2170	Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chemical Communications, 2009, , 2499.	2.2	97
2171	Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics. Journal of Physical Chemistry A, 2009, 113, 4015-4021.	1.1	255
2172	Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells. Chemical Communications, 2009, , 7146.	2.2	42
2173	Ruthenium complexes bearing π-extended pyrrolo-styryl-bipyridine ligand: electronic properties and evaluation as photosensitizers. Dalton Transactions, 2009, , 63-70.	1.6	21
2174	Homoleptic Ruthenium Complex Bearing Dissymmetrical 4-Carboxy-4′-pyrrolo-2,2′-bipyridine for Efficient Sensitization of TiO ₂ in Solar Cells. Inorganic Chemistry, 2009, 48, 8030-8036.	1.9	25
2175	Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate. Journal of Physical Chemistry C, 2009, 113, 20990-20997.	1.5	191
2176	Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. Journal of Physical Chemistry C, 2009, 113, 6290-6297.	1.5	558
2177	High efficient donor–acceptor ruthenium complex for dye-sensitized solar cell applications. Energy and Environmental Science, 2009, 2, 100-102.	15.6	104
2178	Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chemical Communications, 2009, , 5844.	2.2	96
2179	Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO ₂ Nanorod Photoelectrodes. Journal of Physical Chemistry C, 2009, 113, 21453-21457.	1.5	210
2180	Photovoltaic Properties of Dye-Sensitized Solar Cells Using Glycerol-Modified PEDOT:PSS. Molecular Crystals and Liquid Crystals, 2009, 505, 175/[413]-183/[421].	0.4	2
2181	Effects of 4- <i>tert</i> -Butylpyridine and Li Ions on Photoinduced Electron Injection Efficiency in Black-Dye-Sensitized Nanocrystalline TiO ₂ Films. Journal of Physical Chemistry C, 2009, 113, 20738-20744.	1.5	99
2182	Photoelectrochemical Study of the Band Structure of Zn ₂ SnO ₄ Prepared by the Hydrothermal Method. Journal of the American Chemical Society, 2009, 131, 3216-3224.	6.6	246

#	Article	IF	CITATIONS
2183	Coherent Control of Quantum Dynamics with Sequences of Unitary Phase-Kick Pulses. Annual Review of Physical Chemistry, 2009, 60, 293-320.	4.8	35
2184	Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes. ACS Applied Materials & Interfaces, 2009, 1, 944-950.	4.0	67
2185	Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy and Environmental Science, 2009, 2, 426.	15.6	190
2186	Synthesis, Optical and Photovoltaic Properties of Porphyrin Dyes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 730-737.	1.2	30
2187	Influence of pyridine ligand nature and the corresponding ruthenium(ii) dye molecular structure on the performance of dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2009, 8, 726-732.	1.6	16
2188	High Molar Extinction Coefficient Ruthenium Sensitizers for Thin Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1998-2003.	1.5	61
2189	Natural dye senstizers for photoelectrochemical cells. Energy and Environmental Science, 2009, 2, 1162.	15.6	162
2190	Conveniently synthesized isophorone dyes for high efficiency dye-sensitized solar cells: tuning photovoltaic performance by structural modification of donor group in donor–π–acceptor system. Chemical Communications, 2009, , 1766.	2.2	176
2191	Structurally Simple Dipolar Organic Dyes Featuring 1,3-Cyclohexadiene Conjugated Unit for Dye-Sensitized Solar Cells. Organic Letters, 2009, 11, 377-380.	2.4	66
2192	A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 2349.	6.7	90
2193	Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 3881-3886.	1.5	185
2194	Large-Scale, Noncurling, and Free-Standing Crystallized TiO ₂ Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 6310-6314.	1.5	208
2195	Interfacial Electron Transfer in TiO ₂ Surfaces Sensitized with Ru(II)â^'Polypyridine Complexes. Journal of Physical Chemistry A, 2009, 113, 12532-12540.	1.1	80
2196	Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7036.	6.7	42
2197	A metal-free "black dye―for panchromatic dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 674.	15.6	153
2198	High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 770.	15.6	37
2199	Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy and Environmental Science, 2009, 2, 1173.	15.6	91
2200	Visible Light Generation of Iodine Atoms and Iâ^'l Bonds: Sensitized I ^{â^'} Oxidation and I ₃ ^{â^'} Photodissociation. Journal of the American Chemical Society, 2009, 131, 16206-16214.	6.6	143

# 2201	ARTICLE Exploitation of Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells by Molecular Modification of	IF 3.2	Citations
2202	Micropatterning of titanium oxide film via phototactic mass transport. Journal of Materials Chemistry, 2009, 19, 7191.	6.7	18
2203	Functionalized alkyne bridged dendron based chromophores for dye-sensitized solar cell applications. Energy and Environmental Science, 2009, 2, 1082.	15.6	29
2204	Effect of methylene spacers on the spectral, electrochemical, and structural properties of bis(4,4′-disubstituted-2,2′-bipyridyl) ruthenium(ii) dye analogues. Dalton Transactions, 2009, , 7396.	1.6	9
2205	A novel ruthenium-free TiO2 sensitizer consisting of di-p-tolylaminophenyl ethylenedioxythiophene and cyanoacrylate groups. New Journal of Chemistry, 2009, 33, 1973.	1.4	16
2206	Photovoltaic Performance Enhancement in Dye-Sensitized Solar Cells with Periodic Surface Relief Structures. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 1213-1216.	1.2	6
2207	Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells. Dalton Transactions, 2009, , 10015.	1.6	97
2208	Long-term stability of organic–dye-sensitized solar cells based on an alkyl-functionalized carbazole dye. Energy and Environmental Science, 2009, 2, 1109.	15.6	111
2209	Squaraine dyes in molecular recognition and self-assembly. Chemical Communications, 2009, , 6339.	2.2	101
2210	Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 982.	15.6	139
2211	Exploring surface chemistry of nano-TiO2 for automated speciation analysis of Cr(iii) and Cr(vi) in drinking water using flow injection and ET-AAS detection. Journal of Analytical Atomic Spectrometry, 2009, 24, 1098.	1.6	62
2212	Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru(ii) complexes to achieve superior solar conversion efficiency. Journal of Materials Chemistry, 2009, 19, 5329.	6.7	40
2213	A methodology for improving laser beam induced current images of dye sensitized solar cells. Review of Scientific Instruments, 2009, 80, 063102.	0.6	15
2214	Mesostructured molecular solid material Co(en)3 (Zr2F11H2O) with enhanced photoelectronic effect. Dalton Transactions, 2009, , 6736.	1.6	5
2215	Tantalumâ€Doped Titanium Dioxide Nanowire Arrays for Dye‧ensitized Solar Cells with High Open ircuit Voltage. Angewandte Chemie - International Edition, 2009, 48, 8095-8098.	7.2	197
2216	PHOTOELECTROCHEMICAL CELLS Dye-Sensitized Cells. , 2009, , 10-21.		3
2217	Structure/Function Relationships in Dyes for Solar Energy Conversion: A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. Journal of the American Chemical Society, 2009, 131, 3541-3548.	6.6	221
2218	Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. Journal of Materials Chemistry, 2009, 19, 5016.	6.7	95

#	Article	IF	CITATIONS
2219	Organic photovoltaics. Energy and Environmental Science, 2009, 2, 251.	15.6	1,142
2220	On the effect of Al2O3 blocking layer on the performance of dye solar cells with cobalt based electrolytes. Applied Physics Letters, 2009, 94, 173113.	1.5	36
2221	Influence of TiO ₂ /Perylene Interface Modifications on Electron Injection and Recombination Dynamics. Journal of Physical Chemistry C, 2009, 113, 21233-21241.	1.5	21
2222	A Computational Study on the Adsorption Configurations and Reactions of Phosphorous Acid on TiO ₂ Anatase (101) and Rutile (110) Surfaces. Journal of Physical Chemistry C, 2009, 113, 8394-8406.	1.5	12
2223	Effects of Porphyrin Substituents and Adsorption Conditions on Photovoltaic Properties of Porphyrin-Sensitized TiO ₂ Cells. Journal of Physical Chemistry C, 2009, 113, 18406-18413.	1.5	143
2224	Adsorption of Phosphonic Acid at the TiO ₂ Anatase (101) and Rutile (110) Surfaces. Journal of Physical Chemistry C, 2009, 113, 5730-5740.	1.5	155
2225	Efficient Electron Transfer Ruthenium Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 2618-2623.	1.5	48
2226	Structure Transformation and Photoelectrochemical Properties of TiO ₂ Nanomaterials Calcined from Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 3359-3363.	1.5	73
2227	Re-evaluation of Recombination Losses in Dye-Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict Diffusion Length in Nanoporous Photoelectrodes. Nano Letters, 2009, 9, 3532-3538.	4.5	88
2228	Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms. Diamond and Related Materials, 2009, 18, 524-527.	1.8	138
2229	Enhancing the Properties of Ruthenium Dyes by Dendronization. Chemistry of Materials, 2009, 21, 3315-3324.	3.2	16
2230	Hydrothermal Preparation of Anatase TiO2 Nanoparticles for Dye-Sensitized Solar Cells. Journal of Chemical Engineering of Japan, 2009, 42, S36-S42.	0.3	3
2231	Meso-meso Linked Porphyrin Dimers for Dye-sensitized Solar Cells. Electrochemistry, 2009, 77, 206-209.	0.6	25
2232	A Highly Efficient Dye-sensitized Solar Cell Based on a Triarylamine-functionalized Ruthenium Dye. Chemistry Letters, 2009, 38, 44-45.	0.7	16
2234	Fabrication and characterization of mixture type dye-sensitized solar cells with organic dyes. Journal of the Ceramic Society of Japan, 2009, 117, 964-966.	0.5	3
2235	Efficient Panchromatic Sensitization of Nanocrystalline TiO2-based Solar Cells Using 2-Pyridinecarboxylate-substituted Ruthenium(II) Complexes. Chemistry Letters, 2009, 38, 62-63.	0.7	28
2236	Photoresponse of GaN:ZnO Electrode on FTO under Visible Light Irradiation. Bulletin of the Chemical Society of Japan, 2009, 82, 401-407.	2.0	52
2237	Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage. Chemistry Letters, 2009, 38, 322-323.	0.7	19

#	Article	IF	CITATIONS
2238	Highly efficient dye-sensitized solar cells. Proceedings of SPIE, 2009, , .	0.8	1
2239	Electronic-Structure Studies on Metal Complexes and Theoretical/Computational Chemistry for Molecular-Systems Design - Progress in Research on Dye-Sensitized Solar Cell Bulletin of Japan Society of Coordination Chemistry, 2009, 54, 52-67.	0.1	0
2240	Dye-Sensitized Solar Cells -Present and Future Journal of the Adhesion Society of Japan, 2009, 45, 313-320.	0.0	0
2241	Title is missing!. Electrochemistry, 2009, 77, 970-976.	0.6	1
2242	æ–°è¦å¢—感色ç´ãŠã,^ã³æ–°æ§‹é€ã®è‰²ç´å¢—感å¤í™½é›»æ±. Electrochemistry, 2009, 77, 965-970.	0.6	0
2243	PGM HIGHLIGHTS: Progress in Ruthenium Complexes for Dye Sensitised Solar Cells. Platinum Metals Review, 2009, 53, 216-218.	1.5	48
2244	Synthesis and Characterization of Novel Heteroleptic Ruthenium Complexes for Dyeâ€&ensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1151-1156.	0.8	5
2245	Characteristics of Zinc Oxide Crystallites Deposited on ITO for Dyeâ€Sensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1200-1203.	0.8	2
2246	Platinum Nanoparticles on Flexible Carbon Fiber Paper without Transparent Conducting Oxide Glass as Counter Electrode for Dye‧ensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1217-1220.	0.8	6
2247	Effects of Carbon Nanotubes on Dye‣ensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1180-1184.	0.8	20
2248	Photoelectrochemical cells. , 2010, , 26-32.		23
2249	A comprehensive study of the influence of the stoichiometry on the physical properties of TiOx films prepared by ion beam deposition. Journal of Applied Physics, 2010, 108, .	1.1	19
2250	Synthesis and characterisation of TiO _{2 nanoparticle with polypyridily complexes for using in solar cells. International Journal of Nanomanufacturing, 2010, 5, 352.}	0.3	4
2251	Remarkable Improvement in Sensitizing Property of Tetraphenylporphyrincarboxylic Acids as Sensitizers for Dye-sensitized Solar Cells by the Introduction of Trimethylsilyl Groups as Substituents. Chemistry Letters, 2010, 39, 1063-1065.	0.7	7
2252	High Performance of Si–O–Ti Bonds for Anchoring Sensitizing Dyes on TiO2 Electrodes in Dye-sensitized Solar Cells Evidenced by Using Alkoxysilylazobenzenes. Chemistry Letters, 2010, 39, 260-262.	0.7	34
2253	Dye-sensitized solar cells: Present state and prospects for future development. Thermal Engineering (English Translation of Teploenergetika), 2010, 57, 969-975.	0.4	7
2254	Synthesis and structural characterization of a novel organic-inorganic supermoleculer of [FeII(Phen)3]L2 · 2H2O complex. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 610-614.	0.3	1
2255	Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chemical Communications, 2010, 46, 809-811.	2.2	130

ARTICLE IF CITATIONS # Nanostructured TiO<inf>2</inf> and ZnO solar cells using CdS as sensitizer: Stability investigation. 2256 0 2010,,. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical 23.0 716 Reviews, 2010, 110, 6664-6688. Investigation of Iodine Concentration Effects in Electrolytes for Dye-Sensitized Solar Cells. Journal 2258 1.5 84 of Physical Chemistry C, 2010, 114, 10612-10620. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano, 1,040 2010, 4, 6203-6211. Dye Sensitized Solar Cells. International Journal of Molecular Sciences, 2010, 11, 1103-1113. 207 2260 1.8 Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient 1.7 198 Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2010, 75, 4778-4785. Synthesis and characterization of three organic dyes with various donors and rhodanine ring acceptor for use in dye-sensitized solar cells. Journal of the Iranian Chemical Society, 2010, 7, 707-720. 2262 1.2 42 Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency 2263 3.2 172 in Dye-Sensitized Solar Cells. Chemistry of Materials, 2010, 22, 928-934. 1â€Alkylâ€1<i>H</i>â€imidazoleâ€Based Dipolar Organic Compounds for Dyeâ€Sensitized Solar Cells. Chemistry -1.7 2264 77 an Asian Journal, 2010, 5, 87-96. Benzothiadiazole Containing Dâ€Ï€â€A Conjugated Compounds for Dyeâ€Sensitized Solar Cells: Synthesis, 1.7 Properties, and Photovoltaic Performances. Chemistry - an Asian Journal, 2010, 5, 1911-1917. Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663. 8,072 2266 23.0 Intrinsic n-type Defect Formation in TiO₂: A Comparison of Rutile and Anatase from 1.5 367 GGA+<i>U</i>/i> Calculations. Journal of Physical Chemistry C, 2010, 114, 2321-2328. Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy and 2268 15.6 695 Environmental Science, 2010, 3, 1170. Functional coatings: The sol-gel approach. Comptes Rendus Chimie, 2010, 13, 97-105. 0.2 24 The synthesis and characterization of 2-(2â€²-pyridyl)benzimidazole heteroleptic ruthenium complex: 2270 2.0 28 Efficient sensitizer for molecular photovoltaics. Dyes and Pigments, 2010, 84, 88-94. An efficient light-harvesting ruthenium dye for solar cell application. Dyes and Pigments, 2010, 84, 2271 2.0 95-101. Carbon nanotubes–polyethylene oxide composite electrolyte for solid-state dye-sensitized solar 2272 2.6 70 cells. Electrochimica Acta, 2010, 55, 2418-2423. Plastic–polymer composite electrolytes for solid state dye-sensitized solar cells. Electrochimica 2273 Acta, 2010, 55, 6415-6419.

#	Article	IF	CITATIONS
2274	The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates. Applied Energy, 2010, 87, 436-441.	5.1	46
2275	DFT and TD-DFT study on structure and properties of organic dye sensitizer TA-St-CA. Current Applied Physics, 2010, 10, 77-83.	1.1	130
2276	The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Current Applied Physics, 2010, 10, S168-S171.	1.1	64
2277	Effects of metal hydroxide-treated photoanode on the performance of hybrid solar cells. Current Applied Physics, 2010, 10, e176-e180.	1.1	8
2278	Drying processes for preparation of titania aerogel using supercritical carbon dioxide. Chemical Engineering Research and Design, 2010, 88, 1427-1431.	2.7	23
2279	Role of side groups in pyridine and bipyridine ruthenium dye complexes for modulated surface photovoltage in nanoporous TiO2. Solar Energy Materials and Solar Cells, 2010, 94, 686-690.	3.0	25
2280	Single walled carbon nanotube network electrodes for dye solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1665-1672.	3.0	34
2281	Novel polymeric metal complexes as dye sensitizers for Dye-sensitized solar cells based on poly thiophene containing complexes of 8-hydroxyquinoline with Zn(II),Cu(II) and Eu(III) in the side chain. Tetrahedron, 2010, 66, 2835-2842.	1.0	43
2282	Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650, 24-30.	1.9	32
2283	Triphenylamine- and benzothiadiazole-based dyes with multiple acceptors for application in dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 3002-3010.	4.0	20
2284	Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 175, 44-47.	1.7	15
2285	Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. Journal of Molecular Modeling, 2010, 16, 523-533.	0.8	24
2286	Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells. Journal of Solid State Electrochemistry, 2010, 14, 1541-1546.	1.2	66
2287	Adsorption and redox chemistry of cis-RuLL'(SCN)2 with L=4,4′-dicarboxylic acid-2,2′-bipyridine and L'=4,4′-dinonyl-2,2′-bipyridine (Z907) at FTO and TiO2 electrode surfaces. Journal of Solid State Electrochemistry, 2010, 14, 1929-1936.	1.2	23
2288	DFT and TD-DFT studies on symmetrical squaraine dyes for nanocrystalline solar cells. Monatshefte Für Chemie, 2010, 141, 549-555.	0.9	17
2289	Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 92-97.	2.4	38
2290	A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1352-1357.	4.2	7
2291	Recent progress in interface modification for dye-sensitized solar cells. Science China Chemistry, 2010, 53, 1669-1678.	4.2	19

#	Article	IF	CITATIONS
2292	Solvent effect for ruthenium porphyrin. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1005-1012.	2.0	4
2293	Structure-property relationships of organic dyes with D-ï€-A structure in dye-sensitized solar cells. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 150-161.	0.4	11
2294	Influence of molecular weight of PEO on performance of quasi-solid-state dye-sensitized solar cells. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 218-222.	0.4	1
2295	Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation. Nanoscale Research Letters, 2011, 6, 30.	3.1	18
2296	Preparation of sub-micron size anatase TiO2 particles for use as light-scattering centers in dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2010, 21, 833-837.	1.1	19
2297	Dye-sensitized solar cell with a solid state organic–inorganic composite electrolyte containing catalytic functional polypyrrole nanoparticles. Journal of Sol-Gel Science and Technology, 2010, 53, 599-604.	1.1	9
2298	Recent advances in visible light-responsive titanium oxide-based photocatalysts. Research on Chemical Intermediates, 2010, 36, 327-347.	1.3	82
2299	Multiscale Modeling of Dye Solar Cells and Comparison With Experimental Data. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1611-1618.	1.9	24
2300	The effect of Al3+ treatment on charge dynamics in dye-sensitized nanocrystalline TiO2 solar cells explored by photovoltage measurements. Materials Chemistry and Physics, 2010, 122, 259-261.	2.0	20
2301	A novel counter electrode based on mesoporous carbon for dye-sensitized solar cell. Materials Chemistry and Physics, 2010, 123, 690-694.	2.0	23
2302	Enhancing efficiency of dye-sensitized solar cells by combining use of TiO2 nanotubes and nanoparticles. Materials Chemistry and Physics, 2010, 124, 179-183.	2.0	26
2303	Photoinduced energy transfer and charge transfer on squarylium cyanine dyes. Chinese Journal of Chemistry, 1998, 16, 499-508.	2.6	1
2304	Synthesis of New Ruthenium (II) Bipyridyl Complexes and Studies on Their Photophysical and Photoelectrochemical Properties. Chinese Journal of Chemistry, 2003, 21, 644-649.	2.6	4
2305	Novel quasiâ€solidâ€state dyeâ€sensitized solar cell based on monolayer capped TiO ₂ nanoparticles framework materials. Chinese Journal of Chemistry, 2004, 22, 687-690.	2.6	9
2306	Bandgap Modulation in Efficient <i>n</i> â€Thiophene Absorbers for Dye Solar Cell Sensitization. ChemPhysChem, 2010, 11, 245-250.	1.0	35
2307	Doped TiO ₂ and TiO ₂ Nanotubes: Synthesis and Applications. ChemPhysChem, 2010, 11, 2698-2713.	1.0	352
2308	Role of annealing environment and partial pressure on structure and optical performance of TiO ₂ thin films fabricated by rf sputter method. Crystal Research and Technology, 2010, 45, 1161-1165.	0.6	10
2309	Formation of Silica Nanolayers on ZnO Electrodes in Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2010, 2010, 2165-2171.	1.0	12

#	Article	IF	CITATIONS
2310	Amperometric Determination of Chemical Oxygen Demand via the Functional Combination of Three Digestion Types. Electroanalysis, 2010, 22, 2947-2959.	1.5	5
2311	Improvedâ€Performance Dyeâ€Sensitized Solar Cells Using Nbâ€Doped TiO ₂ Electrodes: Efficient Electron Injection and Transfer. Advanced Functional Materials, 2010, 20, 509-515.	7.8	512
2312	Estimating the Maximum Attainable Efficiency in Dye ensitized Solar Cells. Advanced Functional Materials, 2010, 20, 13-19.	7.8	458
2313	Conformal Nanoâ€Sized Inorganic Coatings on Mesoporous TiO ₂ Films for Lowâ€Temperature Dyeâ€Sensitized Solar Cell Fabrication. Advanced Functional Materials, 2010, 20, 282-288.	7.8	116
2314	A CdSe Nanowire/Quantum Dot Hybrid Architecture for Improving Solar Cell Performance. Advanced Functional Materials, 2010, 20, 1464-1472.	7.8	100
2315	Double‣ayered NiO Photocathodes for pâ€₹ype DSSCs with Record IPCE. Advanced Materials, 2010, 22, 1759-1762.	11.1	303
2316	Photovoltaic Properties of Glutathioneâ€Protected Gold Clusters Adsorbed on TiO ₂ Electrodes. Advanced Materials, 2010, 22, 3185-3188.	11.1	210
2317	A New Type of Electrolyte with a Lightâ€Trapping Scheme for Highâ€Efficiency Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Materials, 2010, 22, 5526-5530.	11.1	39
2321	High Molar Extinction Coefficient Organic Sensitizers for Efficient Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 1193-1201.	1.7	140
2322	Dipolar Compounds Containing Fluorene and a Heteroaromatic Ring as the Conjugating Bridge for Highâ€Performance Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 3184-3193.	1.7	124
2323	Photophysical Studies of Dipolar Organic Dyes That Feature a 1,3â€Cyclohexadiene Conjugated Linkage: The Implication of a Twisted Intramolecular Chargeâ€Transfer State on the Efficiency of Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 12873-12882.	1.7	37
2324	Functionalized Alkynylplatinum(II) Polypyridyl Complexes for Use as Sensitizers in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 12244-12254.	1.7	61
2327	Highly Efficient Nâ€Heterocyclic Carbene/Pyridineâ€Based Ruthenium Sensitizers: Complexes for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 8161-8164.	7.2	68
2328	Electronic Tuning of Nickelâ€Based Bis(dicarbollide) Redox Shuttles in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 5339-5343.	7.2	121
2329	Silanol dyes for solar cells: higher efficiency and significant durability. Applied Organometallic Chemistry, 2010, 24, 247-250.	1.7	29
2330	Electrochemical photovoltaic cells—review of recent developments. Journal of Chemical Technology and Biotechnology, 2010, 85, 1547-1552.	1.6	16
2331	Controlled synthesis of TiO2-B nanowires and nanoparticles for dye-sensitized solar cells. Applied Surface Science, 2010, 257, 1660-1665.	3.1	37
2332	Photovoltaic performance and long-term stability of quasi-solid-state fluoranthene dyes-sensitized solar cells. Renewable Energy, 2010, 35, 1724-1728.	4.3	14

#	Article	IF	CITATIONS
2333	QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 239-247.	2.0	31
2334	Electron transfer dynamics from the singlet and triplet excited states of meso-tetrakis(p-carboxyphenyl)porphyrin into colloidal TiO2 and AuTiO2 nanoparticles. Journal of Colloid and Interface Science, 2010, 348, 642-648.	5.0	18
2335	Chemically deposited blocking layers on FTO substrates: Effect of precursor concentration on photovoltaic performance of dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2010, 638, 161-166.	1.9	53
2336	Cis-bis(isothiocyanato)-bis(2,2′-bipyridyl-4,4′dicarboxylato)-Ru(II) (N719) dark-reactivity when bound to fluorine-doped tin oxide (FTO) or titanium dioxide (TiO2) surfaces. Journal of Electroanalytical Chemistry, 2010, 640, 61-67.	1.9	18
2337	Interpretation of small-modulation photocurrent transients in dye-sensitized solar cells – A film thickness study. Journal of Electroanalytical Chemistry, 2010, 646, 91-99.	1.9	23
2338	Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. Journal of Power Sources, 2010, 195, 3730-3734.	4.0	26
2339	Low molecular mass organogelator based gel electrolyte gelated by a quaternary ammonium halide salt for quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 4384-4390.	4.0	46
2340	Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. Journal of Power Sources, 2010, 195, 5806-5809.	4.0	73
2341	Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum. Journal of Power Sources, 2010, 195, 7684-7690.	4.0	96
2342	An advanced model for determining charge recombination kinetic parameters in dye-sensitized solar cells. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 676-681.	2.7	12
2343	Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2867-2871.	1.3	66
2344	Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium(II) complexes with pyrazole, benzimidazole and triazole ligands. Polyhedron, 2010, 29, 1237-1242.	1.0	9
2345	Synthesis, crystal, molecular and electronic structures of thiocyanate ruthenium complexes with pyridine and its derivatives as ligands. Polyhedron, 2010, 29, 1973-1979.	1.0	103
2346	Theoretical study on the electronic absorption spectra and molecular orbitals of ten novel ruthenium sensitizers derived from N3 and K8. Journal of Molecular Graphics and Modelling, 2010, 29, 498-505.	1.3	14
2347	New type of ruthenium sensitizers with a triazole moiety as a bridging group. Journal of Organometallic Chemistry, 2010, 695, 821-826.	0.8	21
2348	Increased quantum efficiency in hybrid photoelectrochemical cell consisting of thionine and zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 143-146.	2.0	10
2349	NIR-absorbing poly(thieno[3,4-b]thiophene-2-carboxylic acid) as a polymer dye for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 81-87.	2.0	30
2350	Molecular forms and fluorescence processes of 9-aminoacridine in thin sol–gel films. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 62-67.	2.0	16

2351Relation of Ru(II) dye desorption from TiO2 film during illumination with photocurrent decrease of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 122-128.2.0332352Electrolyte effects on photoelectron injection and recombination dynamics in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 87-92.2.0172353A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 152-157.2.0102354Terpyridine- and 2,6-dipyrazinylpyridine-coordinated ruthenium(II) complexes: Synthesis, characterization and application in TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 22-32.462355Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited 94-1032.08	
2352Electrolyte effects on photoelectron injection and recombination dynamics in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 87-92.2.0172353A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 152-157.2.0102354Terpyridine- and 2,6-dipyrazinylpyridine-coordinated ruthenium(II) complexes: Synthesis, characterization and application in TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 22-32.2.0462355Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited 94-1032.08	
2353A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 152-157.2.0102354Terpyridine- and 2,6-dipyrazinylpyridine-coordinated ruthenium(II) complexes: Synthesis, characterization and application in TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 22-32.462355Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 94-1032.08	
2354Terpyridine- and 2,6-dipyrazinylpyridine-coordinated ruthenium(II) complexes: Synthesis, characterization and application in TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 22-32.2.0462355Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 94-1032.08	
Photoinduced electron transfer from Ru am(m)ine compounds with low-lying ligand field excited states to nanocrystalline TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 2.0 8 94-103	
5 (105.	
2356Tandem dye-sensitized solar cells consisting of floating electrode in one cell. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 104-109.2.017	
2357Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 123-139.2.0103	
2358Controlled microwave synthesis of Rull synthons and chromophores relevant to solar energy conversion. Inorganica Chimica Acta, 2010, 363, 283-287.1.219	
2359Density-functional analysis of the electronic structure of tris-bipyridyl Ru(II) sensitisers. Inorganica1.223Chimica Acta, 2010, 363, 1627-1638.1.223	
Enhancement of photovoltaic performance of a novel dye, "T18â€, with ketene thioacetal groups as electron donors for high efficiency dye-sensitized solar cells. Inorganica Chimica Acta, 2010, 363, 1.2 22 2409-2415.	
2361ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells. International3.814Journal of Hydrogen Energy, 2010, 35, 5834-5837.	
 Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. International Journal of Hydrogen Energy, 2010, 35, 8876-8883. 	
Influence of seed layer treatment on ZnO growth morphology and their device performance in2363dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced1.711Technology, 2010, 172, 283-288.	
 Hybrid solar cells using nanorod zinc oxide electrodes and perylene monoimide–monoanhydride dyes. 1.1 17 Current Applied Physics, 2010, 10, 187-192. 	
Effect of coadsorbents on DSSC sensitized by NIR absorbing poly(ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 182 Id (thieno $\frac{13}{10}$, 4	ɔ]thio
2366Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment.2.361Electrochemistry Communications, 2010, 12, 574-578.	
 Photoanodic oxidation of small organic molecules at nanostructured TiO2 anatase and rutile film 2367 electrodes. Electrochimica Acta, 2010, 55, 979-984. 2.6 13 	

2368Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation2.61272.6

#	Article	IF	CITATIONS
2369	Effect of pyridine in electrolyte on the current–voltage characteristics in dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 3491-3496.	2.6	14
2370	Hyperbranched conjugated polymers with donor-ï€-acceptor architecture as organic sensitizers for dye-sensitized solar cells. European Polymer Journal, 2010, 46, 2033-2041.	2.6	29
2371	Preparation and photoelectrochemical performance of TiO2/HS–CH2–COOH/Cu3Se2 composite film. Thin Solid Films, 2010, 518, 2603-2606.	0.8	0
2372	ZnO nanowire/TiO2 nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coating method. Thin Solid Films, 2010, 518, 4809-4812.	0.8	42
2373	Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells. Thin Solid Films, 2010, 518, 7209-7212.	0.8	25
2374	Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light. Thin Solid Films, 2010, 518, 5855-5859.	0.8	65
2375	Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photoelectrode. Thin Solid Films, 2010, 518, 7147-7151.	0.8	33
2376	Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode. Sensors and Actuators B: Chemical, 2010, 147, 622-628.	4.0	33
2377	Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition. Solar Energy, 2010, 84, 130-136.	2.9	60
2378	Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells. Solar Energy, 2010, 84, 373-378.	2.9	22
2379	Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells. Solar Energy, 2010, 84, 2195-2201.	2.9	72
2380	Optimization of tandem-structured dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2010, 94, 297-302.	3.0	77
2381	Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1005-1010.	3.0	51
2382	Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures—Can sterically hindered pyridines prevent dye degradation?. Solar Energy Materials and Solar Cells, 2010, 94, 1582-1590.	3.0	67
2383	Development of photoelectrochromic devices for dynamic solar control in buildings. Solar Energy Materials and Solar Cells, 2010, 94, 2304-2313.	3.0	51
2384	Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices and Microstructures, 2010, 48, 458-484.	1.4	540
2385	Deposition and characterization of NiOx coatings by magnetron sputtering for application in dye-sensitized solar cells. Surface and Coatings Technology, 2010, 204, 2729-2736.	2.2	56
2386	Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel. Surface and Coatings Technology, 2010, 205, 557-564.	2.2	79

#	Article	IF	CITATIONS
2387	Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study. Applied Catalysis A: General, 2010, 385, 114-122.	2.2	16
2388	Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode. Applied Energy, 2010, 87, 2500-2505.	5.1	43
2389	Preparation and characterization of patterned copper sulfide thin films on n-type TiO2 film surfaces. Applied Surface Science, 2010, 256, 7316-7322.	3.1	13
2390	Fiber-shaped flexible solar cells. Coordination Chemistry Reviews, 2010, 254, 1169-1178.	9.5	141
2391	Pore-size expansion of hexagonal-structured nanocrystalline titania/CTAB Nanoskeleton using cosolvent organic molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 29-39.	2.3	1
2392	The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosensors and Bioelectronics, 2010, 25, 1646-1651.	5.3	87
2393	Synthesis, characterization and photovoltaic properties of novel molecules based on triarylamine dyes. Current Applied Physics, 2010, 10, 749-756.	1.1	13
2394	Transparent conducting oxide glass grown with TiO2-nanotube array for dye-sensitized solar cell. Current Applied Physics, 2010, 10, S176-S179.	1.1	14
2395	New type of inorganic–organic hybrid (heteropolytungsticacid–polyepichlorohydrin) polymer electrolyte with TiO2 nanofiller for solid state dye sensitized solar cells. Current Applied Physics, 2010, 10, 1255-1260.	1.1	18
2396	Effect of dye coverage on photo-induced electron injection efficiency in N719-sensitized nanocrystalline TiO2 films. Chemical Physics Letters, 2010, 489, 202-206.	1.2	22
2397	Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation. Chemical Physics Letters, 2010, 493, 323-327.	1.2	118
2398	Development of liquid crystal embedded in polymer electrolytes composed of click polymers for dye-sensitized solar cell applications. Dyes and Pigments, 2010, 86, 259-265.	2.0	16
2399	Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells. Dyes and Pigments, 2010, 87, 181-187.	2.0	51
2400	Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 1468-1474.	2.6	26
2401	A series of Lil/acetamide phase transition electrolytes and their applications in dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 895-902.	2.6	17
2402	Synthesis of a novel alkylimidazolium iodide containing an amide group for electrolyte of dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 5652-5658.	2.6	5
2403	Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 5803-5807.	2.6	8
2404	Synthesis, structure and catalytic activities for hydrogen transfer reaction of the carbonyl ruthenium(II) complex containing polypyridine and phosphine ligands. Inorganic Chemistry Communication, 2010, 13, 1519-1521.	1.8	6

#	Article	IF	CITATIONS
2405	Two main chain polymeric metal complexes as dye sensitizers for dyeâ€sensitized solar cells based on the coordination of the ligand containing 8â€hydroxyquinoline and phenylethyl or fluorene units with Eu(III). Journal of Polymer Science Part A, 2010, 48, 1943-1951.	2.5	13
2406	Effects of using multiâ€component electrolytes on the stability and properties of solar cells sensitized with simple organic dyes. Progress in Photovoltaics: Research and Applications, 2010, 18, 128-136.	4.4	18
2407	A new structure of counter electrode used for dyeâ€sensitized solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1124-1127.	0.8	2
2408	Quantum-chemical study of the structure and optical properties of sensitized dyes of an indoline-thiazolidine series. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 16-22.	0.2	19
2409	N-Aryl Arenedicarboximides as Tunable Panchromatic Dyes for Molecular Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-7.	1.4	1
2410	New Components for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-16.	1.4	43
2411	Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-15.	1.4	57
2412	Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2Films. International Journal of Photoenergy, 2010, 2010, 1-11.	1.4	13
2413	Photon Management in Dye Sensitized Solar Cells. , 0, , .		3
2414	Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application. Journal of Nanophotonics, 2010, 4, 041540.	0.4	49
2415	Investigation of PEO-Imidazole Ionic Liquid Oligomer and Polymer Electrolytes for Dye-Sensitized Solar Cells. Key Engineering Materials, 2010, 451, 41-61.	0.4	2
2416	Research Progress of the Counter Electrode in Dye-Sensitized Solar Cells. Key Engineering Materials, 2010, 451, 63-78.	0.4	17
2417	Composite Polymer Electrolyte for Dye-Sensitized Solar Cells: Role of Multi-Walled Carbon Nanotubes. Advanced Materials Research, 0, 93-94, 31-34.	0.3	4
2418	Ultrafast TiO2 Sintering of Metal Mounted Dye-Sensitized Solar Cells. ECS Transactions, 2010, 33, 151-158.	0.3	1
2419	Fabrication of Dye-sensitized Solar Cells and Fluorescence Quenching Study Using Thiophene Based Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1180-1183.	1.2	16
2420	Tandem Dye-Sensitized Solar Cells Consisting of Floating Electrode Supported by Non-Conductive Glass Mesh. Advances in Science and Technology, 0, , .	0.2	4
2421	Dye-Sensitized Solar Cells Consisting of 3D-Electrodes—A Review: Aiming at High Efficiency From the View Point of Light Harvesting and Charge Collection. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.1	14
2422	Doubly βâ€Functionalized Zinc(II) Porphyrinâ€sensitized TiO ₂ Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1111-1118.	0.8	12

#	Article	IF	CITATIONS
2423	Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics, 2010, 4, 43004.	1.2	111
2424	Dye-sensitized solar cells: Effect of Ar/O2 gas-flow ratio on the structural and morphological properties of facing-target sputter-deposited TiO2 electrode. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1269-1274.	0.9	1
2425	Polymer electrolytes for dye-sensitized solar cells. , 2010, , 381-430.		6
2426	A New Microstructured DSC Photoelectrode for Potential High Power Conversion Efficiency. Journal of the Chinese Chemical Society, 2010, 57, 1119-1126.	0.8	1
2427	Dye-Sensitized Solar Cell Based on a Blend of Hyperbranched Poly(aryl-ether-urethane) Electrolyte with TiO ₂ Nanoparticles. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 965-970.	1.2	11
2428	Effects of Insulation Coating with Metal Salt on the Performance of Organic-Inorganic Hybrid Solar Cells. Molecular Crystals and Liquid Crystals, 2010, 532, 1/[417]-7/[423].	0.4	2
2429	Evaluation and visualisation of molecular orbitals of natural pigments by density functional theory for their application in photoelectrochemical devices. Molecular Simulation, 2010, 36, 1-4.	0.9	2
2430	Improved performance of dye-sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands. Journal of Family Business Management, 2010, 1, 025001.	2.6	17
2431	Synthesis and Characterization of a Heteroleptic Ru(II) Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties. International Journal of Molecular Sciences, 2010, 11, 3158-3176.	1.8	19
2432	Quasi-Solid State Dye-sensitized Solar Cells Based on Polyvinylpyrrolidone With Ionic Liquid. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1559-1568.	1.2	28
2433	Dye-Sensitized Solar Cells Based on Nitrogen-Doped Titania Electrodes. Key Engineering Materials, 2010, 451, 21-27.	0.4	4
2434	The improved performance of dye sensitized solar cells by bifunctional aminosilane modified dye sensitized photoanode. Journal of Renewable and Sustainable Energy, 2010, 2, 013104.	0.8	10
2435	Sensitivity of the photophysical properties of organometallic complexes to small chemical changes. Journal of Chemical Physics, 2010, 133, 124314.	1.2	12
2436	Photovoltage enhancement of dye sensitised solar cells by using ZnO modified TiO ₂ electrode. Materials Research Innovations, 2010, 14, 370-374.	1.0	13
2437	Optoelectronic Characteristics of HgSe Nanoparticle Films Spin-Coated on Flexible Plastic Substrates. Japanese Journal of Applied Physics, 2010, 49, 030210.	0.8	10
2438	Tandem Dye-Sensitized Solar Cells Consisting of Nanoporous Titania Sheet. Japanese Journal of Applied Physics, 2010, 49, 082301.	0.8	9
2439	Toward Optimization of Oligothiophene Antennas: New Ruthenium Sensitizers with Excellent Performance for Dye-Sensitized Solar Cells. Chemistry of Materials, 2010, 22, 4392-4399.	3.2	39
2440	Protonation-Dependent Binding of Ruthenium Bipyridyl Complexes to the Anatase(101) Surface. Journal of Physical Chemistry C, 2010, 114, 8398-8404.	1.5	103

	Cı	tation Report	
#	Article	IF	CITATIONS
2441	Computational Studies of the Interaction between Ruthenium Dyes and Xâ^' and X2â^', X = Br, I, At. Implications for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15165-15173.	1.5	25
2442	Effect of Cations in Coadsorbate on Charge Recombination and Conduction Band Edge Movement in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 7190-7195.	1.5	99
2443	Femtosecond Diffuse Reflectance Transient Absorption for Dye-Sensitized Solar Cells under Operational Conditions: Effect of Electrolyte on Electron Injection. Journal of the American Chemical Society, 2010, 132, 6614-6615.	6.6	49
2444	Mg(OOCCH3)2 as an electrolyte additive for quasi-solid dye-sensitized solar cells: with the purpose of enhancing both the photovoltage and photocurrent by modifying the TiO2/dye/electrolyte interfaces. Physical Chemistry Chemical Physics, 2010, 12, 15001.	1.3	7
2445	Unusual Enhancement of Photocurrent by Incorporation of Brönsted Base Thiourea into Electrolyte of Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2010, 114, 19849-19852.	1.5	51
2446	TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010, 2, 45-59.	2.8	571
2447	Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits. International Journal of Molecular Sciences, 2010, 11, 254-267.	1.8	233
2448	Fabrication of dye-sensitized solar cells using natural dye for food pigment: Monascus yellow. Energy and Environmental Science, 2010, 3, 905.	15.6	67
2449	Antireflective Photoanode Made of TiO ₂ Nanobelts and a ZnO Nanowire Array. Journal of Physical Chemistry C, 2010, 114, 11375-11380.	1.5	23
2450	Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Review of Scientific Instruments, 2010, 81, 103106.	0.6	81
2451	Organic Dyes Containing Thieno[3,2- <i>b</i>]indole Donor for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 18283-18290.	1.5	100
2452	Unsymmetric Ru(II) Complexes with <i>N</i> -Heterocyclic Carbene and/or Terpyridine Ligands: Synthesis, Characterization, Ground- and Excited-State Electronic Structures and Their Application for DSSC Sensitizers. Inorganic Chemistry, 2010, 49, 7340-7352.	1.9	93
2453	Observation of Positive Effects of Freestanding Scattering Film in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 288-291.	4.0	23
2454	Dye-Sensitized TiO ₂ Nanotube Solar Cells with Markedly Enhanced Performance via Rational Surface Engineering. Chemistry of Materials, 2010, 22, 579-584.	3.2	265
2455	Sulfamic Acid-Doped Polyaniline Nanofibers Thin Film-Based Counter Electrode: Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 4760-4764.	1.5	129
2456	New Type II Catechol-Thiophene Sensitizers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17964-17974.	1.5	80
2457	Novel Broadly Absorbing Sensitizers with Cyanovinylene 4-Nitrophenyl Segments and Various Anchoring Groups: Synthesis and Application for High-Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 12355-12363.	1.5	31
2458	In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11673-11679.	1.5	244

#	Article	IF	CITATIONS
2459	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	1.5	94
2460	Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple. Journal of Physical Chemistry C, 2010, 114, 10551-10558.	1.5	84
2461	Effects of meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 10656-10665.	1.5	147
2462	Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 2870.	6.7	168
2463	Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. Dalton Transactions, 2010, 39, 2903.	1.6	48
2464	A Triphenylamine-Grafted Imidazo[4,5- <i>f</i>][1,10]phenanthroline Ruthenium(II) Complex: Acidâ^Base and Photoelectric Properties. Inorganic Chemistry, 2010, 49, 3752-3763.	1.9	86
2465	New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 1343-1349.	1.5	272
2466	Water-stable, hydroxamate anchors for functionalization of TiO2 surfaces with ultrafast interfacial electron transfer. Energy and Environmental Science, 2010, 3, 917.	15.6	99
2467	Synthesis of P(EGDMA-co-MAA)/P(EGDMA-co-VPy)/titania/polymer tetra-layer microspheres. Polymer Chemistry, 2010, 1, 650.	1.9	9
2468	Synthesis and preliminary photovoltaic behavior study of a soluble polyimide containing ruthenium complexes. Polymer Chemistry, 2010, 1, 1048.	1.9	19
2469	A Redox Asymmetric, Cyclometalated Ruthenium Dimer: Toward Upconversion Dyes in Dye-Sensitized TiO ₂ Solar Cells. Organometallics, 2010, 29, 5635-5645.	1.1	34
2470	Organic Dyes Incorporating the Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 16-19.	2.4	112
2471	Viable Alternative to N719 for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 2039-2045.	4.0	60
2472	Optimization of Multiple Electron Donor and Acceptor in Carbazole-Triphenylamine-Based Molecules for Application of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21786-21794.	1.5	76
2473	Preparation of Multilayer TiO2Thin Films for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2010, 49, 06GG04.	0.8	7
2474	Improving photoresponse characterization of dye-sensitized solar cells: application to the laser beam-induced current technique. Measurement Science and Technology, 2010, 21, 075702.	1.4	1
2475	Novel Preparation Method of TiO ₂ -Nanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency. Journal of Physical Chemistry C, 2010, 114, 4228-4236.	1.5	99

#	ARTICLE	IF	CITATIONS
2477	High-Efficiency Dye-Sensitized Solar Cells Based on the Composite Photoanodes of SnO ₂ Nanoparticles/ZnO Nanotetrapods. Journal of Physical Chemistry A, 2010, 114, 3127-3138.	1.1	94
2478	The 2010 Millennium Technology Grand Prize: Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 4337-4343.	7.3	91
2479	Bridge-Dependent Interfacial Electron Transfer from Rheniumâ^'Bipyridine Complexes to TiO ₂ Nanocrystalline Thin Films. Journal of Physical Chemistry C, 2010, 114, 9898-9907.	1.5	42
2480	Modeling of Dye-Sensitized Solar Cells Based on TiO ₂ Electrode Structure Model. Japanese Journal of Applied Physics, 2010, 49, 04DP10.	0.8	17
2481	Quantum Yield Measurements of Short-Lived Photoactivation Intermediates in DNA Photolyase: Toward a Detailed Understanding of the Triple Tryptophan Electron Transfer Chain. Journal of Physical Chemistry A, 2010, 114, 3207-3214.	1.1	53
2482	Molecular Scale Characterization of the Titaniaâ^'Dyeâ^'Solvent Interface in Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 9612-9616.	1.6	25
2483	Suppression of Forward Electron Injection from Ru(dcbpy) ₂ (NCS) ₂ to Nanocrystalline TiO ₂ Film As a Result of an Interfacial Al ₂ O ₃ Barrier Layer Prepared with Atomic Layer Deposition. Journal of Physical Chemistry Letters, 2010, 1, 536-539.	2.1	39
2484	Wave-Function Engineering of CdSe/CdS Core/Shell Quantum Dots for Enhanced Electron Transfer to a TiO ₂ Substrate. Journal of Physical Chemistry C, 2010, 114, 15184-15189.	1.5	60
2485	Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach. Journal of Physical Chemistry C, 2010, 114, 14384-14392.	1.5	122
2486	lodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking Iâ^'l Bonds for Solar Energy Conversion. Journal of Physical Chemistry Letters, 2010, 1, 3132-3140.	2.1	143
2487	A Red-Emitting Light Switch Based on a Heteroleptic Ruthenium(II) Complex Containing a Tridentate dppz Analogue. Inorganic Chemistry, 2010, 49, 6814-6816.	1.9	23
2488	Electrolyte-Dependent Photovoltaic Responses in Dye-Sensitized Solar Cells Based on an Osmium(II) Dye of Mixed Denticity. Journal of Physical Chemistry C, 2010, 114, 6831-6840.	1.5	25
2489	Tuning the Optical and Electrochemical Properties of M(CO) ₄ (phenanthroline) Compounds via Substituents on the Phenanthroline Ligand: An Upper-Division Inorganic Laboratory. Journal of Chemical Education, 2010, 87, 975-977.	1.1	2
2490	Microbial Fuel Cell Equipped with a Photocatalytic Rutile-Coated Cathode. Energy & Fuels, 2010, 24, 1184-1190.	2.5	64
2491	Synergistic Effect of <i>N</i> -Methylbenzimidazole and Guanidinium Thiocyanate on the Performance of Dye-Sensitized Solar Cells Based on Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2010, 114, 22330-22337.	1.5	42
2492	Green-light photocatalytic reduction using dye-sensitized TiO ₂ and transition metal nanoparticles. Green Chemistry, 2010, 12, 400-406.	4.6	118
2493	Visible-Light-Induced Hydrophilic Effect in an Ultrathin Hybrid Film of Titania Nanosheet and an Optical Active Ruthenium(II) Complex Cation. Journal of Physical Chemistry C, 2010, 114, 19697-19703.	1.5	13
2494	Decreased Interfacial Charge Recombination Rate Constants with N3-Type Sensitizers. Journal of Physical Chemistry Letters, 2010, 1, 1725-1728.	2.1	37

#	Article	IF	CITATIONS
2495	Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO ₂ Nanocrystallites. Journal of the American Chemical Society, 2010, 132, 6696-6709.	6.6	171
2496	Spinâ ~ Orbit Coupling and Metalâ ~ Ligand Interactions in Fe(II), Ru(II), and Os(II) Complexes. Journal of Physical Chemistry C, 2010, 114, 10314-10322.	1.5	44
2497	Enhanced Electron Collection in TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells by an Array of Metal Micropillars on a Planar Fluorinated Tin Oxide Anode. Journal of Physical Chemistry C, 2010, 114, 19151-19156.	1.5	32
2498	Dynamics and Equilibrium of Heme Axial Ligation in Mesoporous Nanocrystalline TiO ₂ Thin Films. Inorganic Chemistry, 2010, 49, 29-37.	1.9	5
2499	Photosensitized Solid-state Polymerization of Diacetylenes in Nanoporous TiO ₂ Structures. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 1161-1166.	1.2	8
2500	Adsorption of Thiophene-Conjugated Sensitizers on TiO ₂ Anatase (101). Journal of Physical Chemistry C, 2010, 114, 20240-20248.	1.5	40
2501	Simultaneous Interactions of Ru Dye with Iodide Ions and Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11335-11341.	1.5	21
2502	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(<i>p</i> -tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. Journal of Physical Chemistry C, 2010, 114, 3280-3286.	1.5	110
2503	Influence of Electrolyte Composition on the Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells with Multiwalled Carbon Nanotube Catalysts. Langmuir, 2010, 26, 10341-10346.	1.6	69
2504	Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17880-17888.	1.5	78
2505	Ultrafast Terahertz Conductivity Dynamics in Mesoporous TiO ₂ : Influence of Dye Sensitization and Surface Treatment in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 1365-1371.	1.5	84
2506	Mesoporous TiO ₂ Films Fabricated Using Atmospheric Pressure Dielectric Barrier Discharge Jet. ACS Applied Materials & Interfaces, 2010, 2, 3397-3400.	4.0	35
2507	Role of Polyelectrolyte for Layer-by-Layer Compact TiO ₂ Films in Efficiency Enhanced Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 17954-17959.	1.5	47
2508	Enhanced Energy Conversion Efficiency of Mg ²⁺ -Modified Mesoporous TiO ₂ Nanoparticles Electrodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22346-22351.	1.5	52
2509	Molecular Engineering of Efficient Organic Sensitizers Incorporating a Binary ï€-Conjugated Linker Unit for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 14646-14653.	1.5	67
2510	Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO ₂ for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 11903-11910.	1.5	59
2511	Sensitization of Nanocrystalline TiO ₂ Anchored with Pendant Catechol Functionality Using a New Tetracyanato Ruthenium(II) Polypyridyl Complex. Inorganic Chemistry, 2010, 49, 4167-4174.	1.9	41
2512	Study of Redox Species and Oxygen Vacancy Defects at TiO2â^'Electrolyte Interfaces. Journal of Physical Chemistry C, 2010, 114, 19433-19442.	1.5	36

#	Article	IF	CITATIONS
2513	Charge Photogeneration in Organic Solar Cells. Chemical Reviews, 2010, 110, 6736-6767.	23.0	2,024
2514	New Efficient Ruthenium Sensitizers with Unsymmetrical Indeno[1,2 <i>-b</i>]thiophene or a Fused Dithiophene Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2010, 49, 8351-8357.	1.9	47
2515	Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 1127-1134.	6.7	247
2516	Substituted [Cu(i)(POP)(bipyridyl)] and related complexes: Synthesis, structure, properties and applications to dye-sensitised solar cells. Dalton Transactions, 2010, 39, 8945.	1.6	131
2517	Design and characterization of porphyrin sensitizers with a push-pull framework for highly efficient dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 949.	15.6	165
2518	Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale, 2010, 2, 2144.	2.8	423
2519	How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes. Langmuir, 2010, 26, 2592-2598.	1.6	359
2520	Polymer Nanocomposites for Electro-Optics: Perspectives on Processing Technologies, Material Characterization, and Future Application. Advances in Polymer Science, 2010, , 221-282.	0.4	15
2521	Cyclometalated Organoruthenium Complexes for Application in Dye-Sensitized Solar Cells. Organometallics, 2010, 29, 1569-1579.	1.1	124
2522	Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment. Journal of Non-Crystalline Solids, 2010, 356, 1958-1961.	1.5	88
2523	Stability of dye-sensitized solar cells under light soaking test. Journal of Non-Crystalline Solids, 2010, 356, 2049-2052.	1.5	20
2524	Al-doped ZnO mechanical milled powders for dye sensitized cells. Journal of Alloys and Compounds, 2010, 495, 432-435.	2.8	8
2525	Room-temperature ferromagnetism in Ti1â^'V O2 nanocrystals synthesized from an organic-free and water-soluble precursor. Journal of Alloys and Compounds, 2010, 499, 160-165.	2.8	16
2526	Synthesis and photovoltaic performance of new diketopyrrolopyrrole (DPP) dyes for dye-sensitized solar cells. Synthetic Metals, 2010, 160, 1767-1773.	2.1	51
2527	Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Letters, 2010, 10, 1869-1873.	4.5	837
2528	First-Principles Modeling of the Adsorption Geometry and Electronic Structure of Ru(II) Dyes on Extended TiO ₂ Substrates for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2010, 114, 6054-6061.	1.5	224
2529	Co-sensitized dye-sensitized solar cells based on d10 coordinate complexes towards their optoelectronic properties. New Journal of Chemistry, 2010, 34, 2599.	1.4	17
2530	In Situ Low Temperature Polymerization of Bismaleimide for Gel-Type Electrolyte for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 13832-13837.	1.5	24

#	Article	IF	CITATIONS
2531	Energing Applications of TiO2-Based Composites. Nanostructure Science and Technology, 2010, , 717-739.	0.1	0
2532	Review of stability for advanced dye solar cells. Energy and Environmental Science, 2010, 3, 418.	15.6	260
2533	4- <i>tert</i> -Butyl Pyridine Bond Site and Band Bending on TiO ₂ (110). Journal of Physical Chemistry C, 2010, 114, 2315-2320.	1.5	40
2534	Mechanism of Particle Size Effect on Electron Injection Efficiency in Ruthenium Dye-Sensitized TiO ₂ Nanoparticle Films. Journal of Physical Chemistry C, 2010, 114, 8135-8143.	1.5	49
2535	Natural Carotenoids as Nanomaterial Precursors for Molecular Photovoltaics: A Computational DFT Study. Molecules, 2010, 15, 4490-4510.	1.7	59
2536	Chemically Binding Carboxylic Acids onto TiO ₂ Nanoparticles with Adjustable Coverage by Solvothermal Strategy. Langmuir, 2010, 26, 9539-9546.	1.6	126
2537	Effects of π-Elongation and the Fused Position of Quinoxaline-Fused Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. Journal of Physical Chemistry C, 2010, 114, 11293-11304.	1.5	102
2538	Tunability of the Band Energetics of Nanostructured SrTiO ₃ Electrodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 4245-4249.	1.5	80
2539	Electron Transport Patterns in TiO ₂ Nanocrystalline Films of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 6762-6769.	1.5	90
2540	The Influence of Local Electric Fields on Photoinduced Absorption in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2010, 132, 9096-9101.	6.6	196
2541	Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors. International Journal of Molecular Sciences, 2010, 11, 329-353.	1.8	98
2542	CdSe Quantum-Dot-Sensitized Solar Cell with â^1⁄4100% Internal Quantum Efficiency. ACS Nano, 2010, 4, 6377-6386.	7.3	110
2543	Photocatalytic Degradation of Polyethylene Plastic with Polypyrrole/TiO ₂ Nanocomposite as Photocatalyst. Polymer-Plastics Technology and Engineering, 2010, 49, 400-406.	1.9	79
2544	Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell. Applied Surface Science, 2010, 256, 5428-5433.	3.1	46
2545	Improvement of Dye-Sensitized Solar Cell Through TiCl[sub 4]-Treated TiO[sub 2] Nanotube Arrays. Journal of the Electrochemical Society, 2010, 157, B354.	1.3	36
2546	Effects of TiO <inf>2</inf> blocking layer formation by SolGel method on conversion efficiency of dye-sensitized solar cell. , 2010, , .		0
2547	Quantification of the Effects of Recombination and Injection in the Performance of Dye-Sensitized Solar Cells Based on <i>N</i> -Substituted Carbazole Dyes. Journal of Physical Chemistry C, 2010, 114, 19840-19848.	1.5	120
2548	Characterization of Hematite Thin Films for Photoelectrochemical Water Splitting in a Dual Photoelectrode Device. Journal of the Electrochemical Society, 2010, 157, F173.	1.3	49

#	Article	IF	CITATIONS
2549	Improved Photovoltaic Response of Nanocrystalline CdS-Sensitized Solar Cells through Interface Control. ACS Applied Materials & amp; Interfaces, 2010, 2, 1343-1348.	4.0	49
2550	Observation of Transient Iron(II) Formation in Dye-Sensitized Iron Oxide Nanoparticles by Time-Resolved X-ray Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1372-1376.	2.1	31
2551	Development of a dye with broadband absorbance in visible spectrum for an efficient dye-sensitized solar cell. Journal of Renewable and Sustainable Energy, 2010, 2, .	0.8	38
2552	Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films. Journal of Porphyrins and Phthalocyanines, 2010, 14, 985-992.	0.4	18
2553	Preparation and Photovoltaic Characterization of Freeâ€Base and Metallo Carboxyphenylethynyl Porphyrins for Dye‧ensitized Solar Cells. Journal of the Chinese Chemical Society, 2010, 57, 1136-1140.	0.8	10
2554	Efficient electrolyte of N,N′-bis(salicylidene)ethylenediamine zinc(ii) iodide in dye-sensitized solar cells. New Journal of Chemistry, 2010, 34, 313-317.	1.4	32
2555	Ac conductivity and dielectric measurements of bulk pyronine G(Y). EPJ Applied Physics, 2010, 49, 10402.	0.3	12
2556	Dopamine Adsorption on Anatase TiO ₂ (101): A Photoemission and NEXAFS Spectroscopy Study. Langmuir, 2010, 26, 14548-14555.	1.6	85
2557	Mesophase Ordering of TiO ₂ Film with High Surface Area and Strong Light Harvesting for Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2010, 2, 1844-1850.	4.0	140
2558	Dynamic Template Assisted Electrodeposition of Porous ZnO Thin Films Using a Triangular Potential Waveform. Journal of Physical Chemistry C, 2010, 114, 5811-5816.	1.5	15
2559	Adsorption geometry, molecular interaction, and charge transfer of triphenylamine-based dye on rutile TiO2(110). Journal of Chemical Physics, 2010, 133, 224704.	1.2	28
2561	Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chemical Communications, 2010, 46, 2136.	2.2	109
2563	CdS/CdSe cosensitized oriented single-crystalline TiO2 nanowire array for solar cell application. Journal of Applied Physics, 2010, 108, .	1.1	27
2564	Influence of Different Electrolytes on the Reaction Mechanism of a Triiodide/Iodide Redox Couple on the Platinized FTO Glass Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 4160-4167.	1.5	48
2565	A Conjugated Polymer Network Approach to Anticorrosion Coatings: Poly(vinylcarbazole) Electrodeposition. Industrial & Engineering Chemistry Research, 2010, 49, 9789-9797.	1.8	65
2566	Effect of deprotonation on absorption and emission spectra of Ru(ii)-bpy complexes functionalized with carboxyl groups. Physical Chemistry Chemical Physics, 2010, 12, 8902.	1.3	56
2567	DFT/TD-DFT Investigation of Electronic Structures and Spectra Properties of Cu-Based Dye Sensitizers. Journal of Physical Chemistry A, 2010, 114, 1178-1184.	1.1	40
2568	Computational studies on the interactions among redox couples, additives and TiO2: implications for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12, 14609.	1.3	32

		CITATION RE	PORT	
# 2569	ARTICLE Enhanced Photoassisted Water Electrolysis Using Vertically Oriented Anodically Fabricate	ed	IF 7.3	Citations
2570	Photocatalytic Activity of Titanium Dioxide Modified by Silver Nanoparticles. ACS Applied & amp; Interfaces, 2010, 2, 1945-1953.	Materials	4.0	159
2571	Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode ionic liquids. Journal of Materials Chemistry, 2010, 20, 1654.	lerived from	6.7	208
2572	Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell application core level photoelectron spectroscopy study. Physical Chemistry Chemical Physics, 2010	ons: a , 12, 1507.	1.3	56
2573	Single walled carbon nanotube array as working electrode for dye solar cells. , 2010, , .			0
2574	Porphyrinâ€Perylene Dyes for Dye‧ensitized Solar Cells. Journal of the Chinese Chemic 57, 1141-1146.	al Society, 2010,	0.8	7
2575	Role of gold on catalytic platinum layer of dye-sensitized solar cell. , 2010, , .			0
2576	A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 4425.	l-state	6.7	55
2577	Improvement efficiency of a dye-sensitized solar cell using Eu3+ modified TiO2 nanoparti secondary layer electrode. Journal of Materials Chemistry, 2010, 20, 6505.	cles as a	6.7	37
2578	Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Chemistry, 2010, 20, 7158.	Materials	6.7	50
2579	Interface modification effects of 4-tertbutylpyridine interacting with N3 molecules in qua dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 10635.	si-solid	1.3	23
2580	Rapid, continuous in situ monitoring of dye sensitisation in dye-sensitized solar cells. Jour Materials Chemistry, 2011, 21, 4321.	nal of	6.7	37
2581	First-principles study of the excited-state properties of coumarin-derived dyes in dye-sens cells. Journal of Materials Chemistry, 2011, 21, 11101.	itized solar	6.7	53
2582	Highly efficient smart photovoltachromic devices with tailored electrolyte composition. E Environmental Science, 2011, 4, 2567.	nergy and	15.6	46
2583	Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency soli dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2234.	d state	15.6	99
2584	Photophysical and electrochemical properties of Ru(ii) complexes containing tridentate bisphosphino-oligothiophene ligands. Dalton Transactions, 2011, 40, 6912.		1.6	12
2585	Structures, spectroscopic properties and redox potentials of quaterpyridyl Ru(ii) photose its derivatives for solar energy cell: a density functional study. Physical Chemistry Chemic 2011, 13, 14481.	nsitizer and al Physics,	1.3	19
2586	Molecular engineering and theoretical investigation of organic sensitizers based on indol quasi-solid state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13	ne dyes for , 8985.	1.3	33

#	Article	IF	CITATIONS
2587	Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt. Journal of Materials Chemistry, 2011, 21, 16448.	6.7	41
2588	A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays. Energy and Environmental Science, 2011, 4, 2240.	15.6	42
2589	Large size, high efficiency fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 10076.	1.3	74
2590	Geometrical effect of stilbene on the performance of organic dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 14907.	6.7	50
2591	Utilization of Direct and Diffuse Sunlight in a Dye-Sensitized Solar Cell — Silicon Photovoltaic Hybrid Concentrator System. Journal of Physical Chemistry Letters, 2011, 2, 581-585.	2.1	49
2592	Heteroleptic ruthenium complexes containing uncommon 5,5′-disubstituted-2,2′-bipyridine chromophores for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 2314-2323.	1.6	28
2593	Aryl/hetero-arylethyne bridged dyes: the effect of planar π-bridge on the performance of dye-sensitized solar cells. New Journal of Chemistry, 2011, 35, 127-136.	1.4	40
2594	A new type of donor–acceptor dye bridged by the bidentate moiety; metal ion complexation enhancing DSSC performance. Journal of Materials Chemistry, 2011, 21, 4090.	6.7	16
2595	A facile way to fabricate highly efficient photoelectrodes with chemical sintered scattering layers for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 15552.	6.7	28
2596	Composite of carbon nanomaterials and polyethylene oxide for dye sensitized solar cells. , 2011, , .		0
2597	Slow excited state injection and charge recombination at star-shaped ruthenium polypyridyl compounds—TiO2 interfaces. Chemical Communications, 2011, 47, 6410.	2.2	18
2598	Fabrication of O (dye)-terminated anatase TiO2 nanosheets for dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 2054.	15.6	20
2599	All-inorganic core–shell silica–titania mesoporous colloidal nanoparticles showing orthogonal functionality. Journal of Materials Chemistry, 2011, 21, 13817.	6.7	4
2600	A new familiy of heteroleptic ruthenium(ii) polypyridyl complexes for sensitization of nanocrystalline TiO2 films. Dalton Transactions, 2011, 40, 4497.	1.6	43
2601	Dye-sensitized solar cells based on TiO2-B nanobelt/TiO2 nanoparticle sandwich-type photoelectrodes with controllable nanobelt length. Dalton Transactions, 2011, 40, 3808.	1.6	20
2602	Artificial neural network-based QSPR study on absorption maxima of organic dyes for dye-sensitised solar cells. Molecular Simulation, 2011, 37, 1-10.	0.9	16
2603	Preparations of Titanium Composite Electrodes from Commercial Inorganic Pigment and Its Application to Light Scattering Layers on Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 539, 156/[496]-165/[505].	0.4	1
2604	Photovoltaic manufacturing: Present status, future prospects, and research needs. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	226

#	Article	IF	CITATIONS
2605	Study of photoconductivity of nanocrystalline titanium dioxide used in dye sensitized solar cell. , 2011, , .		0
2606	Preventing Dye Aggregation on ZnO by Adding Water in the Dye-Sensitization Process. Journal of Physical Chemistry C, 2011, 115, 19274-19279.	1.5	40
2607	Dye-sensitized Solar Cells with Higher Jsc by Using Polyvinylidene Fluoride Membrane Counter Electrodes. Nano-Micro Letters, 2011, 3, 195-199.	14.4	9
2608	The Preparation of TiO ₂ Nanocrystal by Repetitious Hydrothermal Method and Its Application in Flexible Dye-sensitized Solar Cells. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2011, 34, 267-277.	1.2	1
2609	Role of One-Dimensional Ribbonlike Nanostructures in Dye-Sensitized TiO2-Based Solar Cells. Journal of Physical Chemistry C, 2011, 115, 7104-7113.	1.5	39
2610	Charge Transport Properties of ZnO Nanorod Aggregate Photoelectrodes for DSCs. Journal of Physical Chemistry C, 2011, 115, 20992-20999.	1.5	35
2611	Photocurrent Switching Effects in TiO ₂ Modified with Ruthenium Polypyridine Complexes. Journal of Physical Chemistry C, 2011, 115, 12187-12195.	1.5	25
2612	Organic Dyes Containing a Coplanar Indacenodithiophene Bridge for High-Performance Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2011, 76, 8977-8985.	1.7	80
2613	Influence of Water on the Electronic and Molecular Surface Structures of Ru-Dyes at Nanostructured TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 11996-12004.	1.5	31
2614	Near Unity Photon-to-Electron Conversion Efficiency of Photoelectrochemical Cells Built on Cationic Water-Soluble Porphyrins Electrostatically Decorated onto Thin-Film Nanocrystalline SnO2 Surface. ACS Applied Materials & Interfaces, 2011, 3, 2368-2376.	4.0	26
2615	Systematic Modulation of a Bichromic Cyclometalated Ruthenium(II) Scaffold Bearing a Redox-Active Triphenylamine Constituent. Inorganic Chemistry, 2011, 50, 6019-6028.	1.9	59
2616	Aggregation-Induced Increase of the Quantum Yield of Electron Injection from Chalcogenorhodamine Dyes to TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 6010-6018.	1.5	61
2617	ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. Journal of Physical Chemistry C, 2011, 115, 16720-16729.	1.5	55
2618	Enhancing the Performance of Organic Dye-Sensitized Solar Cells via a Slight Structure Modification. Journal of Physical Chemistry C, 2011, 115, 22640-22646.	1.5	39
2619	Electrochemical Characterization of the UV-Photodegradation of Dye-Sensitized Solar Cells and Usage in the Assessment of UV-Protection Measures. ECS Transactions, 2011, 41, 93-102.	0.3	3
2620	Attachment of CdSe Nanoparticles to TiO ₂ via Aqueous Linker-Assisted Assembly: Influence of Molecular Linkers on Electronic Properties and Interfacial Electron Transfer. ACS Applied Materials & Interfaces, 2011, 3, 4242-4253.	4.0	52
2621	Significant Performance Improvement of Porphyrin-Sensitized TiO ₂ Solar Cells under White Light Illumination. Journal of Physical Chemistry C, 2011, 115, 317-326.	1.5	42
2622	Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energy and Environmental Science, 2011, 4, 3379.	15.6	101
#	Article	IF	CITATIONS
------	--	------	-----------
2623	Photophysical Study of Perylene/TiO ₂ and Perylene/ZnO Varying Interfacial Couplings and the Chemical Environment. Journal of Physical Chemistry C, 2011, 115, 5683-5691.	1.5	24
2624	Formation of Molecular Monolayers on TiO ₂ Surfaces: A Surface Analogue of the Williamson Ether Synthesis. Langmuir, 2011, 27, 6879-6889.	1.6	26
2625	Computational Spectroscopy Characterization of the Species Involved in Dye Oxidation and Regeneration Processes in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 18863-18872.	1.5	22
2626	Solar-powered microfluidic photocatalysis. , 2011, , .		Ο
2627	Fluorescent magnetic nanoparticles based on a ruthenium complex and Fe ₃ O ₄ . Journal of Materials Chemistry, 2011, 21, 11464-11467.	6.7	14
2628	Analysis on dye-sensitized solar cell's efficiency improvement. Journal of Physics: Conference Series, 2011, 276, 012188.	0.3	7
2629	A theoretical investigation of tetrahydroquinoline dyes with different spacers used for sensitized solar cells. Canadian Journal of Chemistry, 2011, 89, 978-986.	0.6	4
2630	Effect of Hydrocarbon Chain Length of Disubstituted Triphenyl-amine-Based Organic Dyes on Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22002-22008.	1.5	59
2631	Inverse Design and Synthesis of acac-Coumarin Anchors for Robust TiO ₂ Sensitization. Journal of the American Chemical Society, 2011, 133, 9014-9022.	6.6	79
2632	Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes. Physical Chemistry Chemical Physics, 2011, 13, 17359.	1.3	45
2633	Self-Assembled TiO ₂ with Increased Photoelectron Production, and Improved Conduction and Transfer: Enhancing Photovoltaic Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 3002-3010.	4.0	25
2634	Nanoarchitectured Electrodes for Enhanced Electron Transport in Dye-Sensitized Solar Cells. Green Energy and Technology, 2011, , 271-298.	0.4	1
2635	A facile synthesis of anatase TiO ₂ nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chemical Communications, 2011, 47, 1809-1811.	2.2	191
2636	Electrochemical Growth of Eosin Y/Manganese Doped ZnO as Hybrid Films and Nanowires. Zeitschrift Fur Physikalische Chemie, 2011, 225, 325-339.	1.4	3
2637	Highly efficient triarylene conjugated dyes for sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 9523.	6.7	69
2638	Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes. Energy and Environmental Science, 2011, 4, 998.	15.6	49
2639	Water Contamination Effect on Liquid Acetonitrile/TiO ₂ Anatase (101) Interface for Durable Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2011, 115, 19849-19855.	1.5	31
2640	Optimizing the Performance of a Plastic Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2011, 115, 9787-9796.	1.5	37

#	Article	IF	CITATIONS
2641	Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chemical Society Reviews, 2011, 40, 1635-1646.	18.7	520
2642	Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO ₂ electrode modified by boron doping. Journal of Materials Chemistry, 2011, 21, 863-868.	6.7	82
2643	Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy and Environmental Science, 2011, 4, 2630.	15.6	423
2644	Quantum Dot Solar Cells. , 2011, , 257-275.		20
2645	Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 234-242.	1.6	57
2646	Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO ₂ Nanotube Electrodes. Journal of Physical Chemistry C, 2011, 115, 19979-19985.	1.5	58
2647	Synthesis, Characterization, and Spectroscopic Investigation of Benzoxazole Conjugated Schiff Bases. Journal of Physical Chemistry A, 2011, 115, 13390-13398.	1.1	33
2648	Quasi-solid-state dye-sensitized solar cell fabricated with poly (β-hydroxyethyl methacrylate) based organogel electrolyte. Energy and Environmental Science, 2011, 4, 1298.	15.6	72
2649	Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chemical Science, 2011, 2, 949.	3.7	259
2650	Electronic Optimization of Heteroleptic Ru(II) Bipyridine Complexes by Remote Substituents: Synthesis, Characterization, and Application to Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 3271-3280.	1.9	51
2651	Fluorous Molecules for Dye-Sensitized Solar Cells: Synthesis and Photoelectrochemistry of Unsymmetrical Zinc Phthalocyanine Sensitizers with Bulky Fluorophilic Donor Groups. Journal of Physical Chemistry C, 2011, 115, 3777-3788.	1.5	35
2652	The influence of dye structure on charge recombination in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 6637.	1.3	50
2653	Isobutrin from <i>Butea Monosperma</i> (Flame of the Forest): A Promising New Natural Sensitizer Belonging to Chalcone Class. ACS Applied Materials & Interfaces, 2011, 3, 2440-2444.	4.0	36
2654	Measurements and Modeling of Recombination from Nanoparticle TiO ₂ Electrodes. Journal of the American Chemical Society, 2011, 133, 8264-8271.	6.6	105
2655	Efficient Light Scattering from One-Pot Solvothermally Derived TiO2Nanospindles. Industrial & Engineering Chemistry Research, 2011, 50, 9003-9008.	1.8	34
2656	Synthesis, Photophysics, Electrochemistry, and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives. Journal of Physical Chemistry C, 2011, 115, 17993-18001.	1.5	35
2657	Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer. Journal of Materials Chemistry, 2011, 21, 5950.	6.7	105
2658	An efficient DSSC based on ZnO nanowire photo-anodes and a new D-Ï€-A organic dye. Energy and Environmental Science, 2011, 4, 2903.	15.6	49

#	Article	IF	CITATIONS
2659	Modifying organic phenoxazine dyes for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 12462.	6.7	79
2660	A molecularly engineered fluorene-substituted Ru-complex for efficient mesoscopic dye-sensitized solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035016.	0.7	12
2662	Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy and Environmental Science, 2011, 4, 3565.	15.6	212
2663	Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry, 2011, 21, 6054.	6.7	150
2664	Photosensitizers in Solar Energy Conversion. , 2011, , 527-617.		2
2665	TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2145.	15.6	131
2666	Dye-sensitized solar cellredox shuttles. Energy and Environmental Science, 2011, 4, 370-381.	15.6	209
2667	Influence of Steam Treatment on Dyeâ^'Titania Complex Formation and Photoelectric Conversion Property of Dye-Doped Titania Gel. Journal of Physical Chemistry C, 2011, 115, 2880-2887.	1.5	35
2668	An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells. Chemical Communications, 2011, 47, 2700.	2.2	88
2669	Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production. Annual Review of Condensed Matter Physics, 2011, 2, 303-327.	5.2	129
2670	Anatase TiO ₂ Crystal Facet Growth: Mechanistic Role of Hydrofluoric Acid and Photoelectrocatalytic Activity. ACS Applied Materials & Interfaces, 2011, 3, 2472-2478.	4.0	108
2671	Panchromatic engineering for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 842-857.	15.6	319
2672	Energy and Hole Transfer between Dyes Attached to Titania in Cosensitized Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011, 133, 10662-10667.	6.6	96
2673	One-step synthesis of titanium oxide with trilayer structure for dye-sensitized solar cells. Applied Physics Letters, 2011, 98, 133113.	1.5	21
2674	Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode. Journal of Materials Chemistry, 2011, 21, 13776.	6.7	104
2675	Monitoring Bisphosphonate Surface Functionalization and Acid Stability of Hierarchically Porous Titanium Zirconium Oxides. Langmuir, 2011, 27, 12985-12995.	1.6	25
2676	Novel Fluorous Amphiphilic Heteroleptic Ru-Based Complexes for a Dye-Sensitized Solar Cell: The First Fluorous Bis-ponytailed Amphiphilic Ru Complexes. Inorganic Chemistry, 2011, 50, 4289-4294.	1.9	22
2677	Real-Time Optical Waveguide Measurements of Dye Adsorption into Nanocrystalline TiO ₂ Films with Relevance to Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 613-619.	1.5	21

#	Article	IF	CITATIONS
2678	Benzimidazolyl functionalized ionic liquids as an additive for high performance dye-sensitized solar cells. Chemical Communications, 2011, 47, 11516.	2.2	44
2679	Unpredicted electron injection in CdS/CdSe quantum dot sensitized ZrO2 solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19302.	1.3	36
2680	Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy and Environmental Science, 2011, 4, 2025.	15.6	70
2681	Carrier Transport in Dye-Sensitized Solar Cells Using Single Crystalline TiO ₂ Nanorods Grown by a Microwave-Assisted Hydrothermal Reaction. Journal of Physical Chemistry C, 2011, 115, 14534-14541.	1.5	71
2682	Mapping the frontier electronic structures of triphenylamine based organic dyes at TiO ₂ interfaces. Physical Chemistry Chemical Physics, 2011, 13, 3534-3546.	1.3	10
2683	Electrospray Preparation of Hierarchically-structured Mesoporous TiO ₂ Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 2719-2725.	4.0	116
2684	Effects of Ethanol on Optimizing Porous Films of Dye-Sensitized Solar Cells. Energy & Fuels, 2011, 25, 1168-1172.	2.5	33
2685	Modification of nonlinear optical dyes for dye sensitized solar cells: a new use for a familiar acceptor. Journal of Materials Chemistry, 2011, 21, 4242.	6.7	21
2686	Effects of 4-tert-butylpyridine on the quasi-Fermi levels of TiO2 films in the presence of different cations in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 19310.	1.3	33
2687	The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3494.	15.6	77
2688	Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 1937-1945.	6.7	129
2689	Pyrene-based organic dyes with thiophene containing π-linkers for dye-sensitized solar cells: optical, electrochemical and theoretical investigations. Physical Chemistry Chemical Physics, 2011, 13, 17210.	1.3	59
2690	SYNTHETIC CHEMISTRY OF TITANIUM DIOXIDE. , 2011, , 281-328.		1
2691	NANOCRYSTALLINE OXIDE SEMICONDUCTORS FOR DYE-SENSITIZED SOLAR CELLS., 2011, , 127-173.		0
2692	Characterization of oxides obtained by heating a mixture of peroxoniobic acid and peroxotitanic acid. Dalton Transactions, 2011, 40, 1817.	1.6	1
2693	Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies. Physical Chemistry Chemical Physics, 2011, 13, 1639-1648.	1.3	24
2694	Molecular Design and Photovoltaic Performances of Organic Dyes Containing Triphenylamine for Dye-Sensitized Solar Cell. Molecular Crystals and Liquid Crystals, 2011, 538, 278-284.	0.4	3
2695	Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 8361.	1.6	10

ARTICLE IF CITATIONS "Click-chemistry―approach in the design of 1,2,3-triazolyl-pyridine ligands and their Ru(ii)-complexes 2697 6.7 69 for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 3726. Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex. Inorganic Chemistry, 2011, 50, 11938-11946. 2698 Influence of triazole dendritic additives in electrolytes on dye-sensitized solar cell (DSSC) 2699 6.7 31 performance. Journal of Materials Chemistry, 2011, 21, 7700. Application of the Stabilization Method to Temporary Anion States of CH3CN, CH3NC, CH3SCN, and CH3NCS in Density Functional Theory with Asymptotically Corrected Potentials. Journal of Physical Chemistry A, 2011, 115, 84-93. 2700 1.1 On the viability of cyclometalated Ru(<scp>ii</scp>) complexes as dyes in DSSC regulated by COOH 2701 1.3 64 group, a DFT study. Physical Chemistry Chemical Physics, 2011, 13, 2206-2213. A Multitechnique Physicochemical Investigation of Various Factors Controlling the Photoaction Spectra and of Some Aspects of the Electron Transfer for a Series of Push–Pull Zn(II) Porphyrins Acting as Dyes in DSSCs. Journal of Physical Chemistry C, 2011, 115, 23170-23182. 1.5 Enhancement of Photoexcited Charge Transfer by {001} Facet-Dominating TiO2 Nanoparticles. Journal 2703 2.1 77 of Physical Chemistry Letters, 2011, 2, 2655-2659. Probing Dye-Correlated Interplay of Energetics and Kinetics in Mesoscopic Titania Solar Cells with 2704 1.5 24 4-tert-Butylpyridine. Journal of Physical Chemistry C, 2011, 115, 14408-14414. DFT and TD-DFT investigations of metal-free dye sensitizers for solar cells: Effects of electron donors 2706 1.1 56 and π-conjugated linker. Computational and Theoretical Chemistry, 2011, 971, 42-50. Significant enhancement in efficiency of NKX-2807 Coumarin dye by applying external electric field in 2707 1.1 dye sensitizer solar cell: Theoretical study. Computational and Theoretical Chemistry, 2011, 978, 33-40. Novel Pyrenoimidazole-Based Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 2708 2.4 68 2622-2625. Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar 1.6 cells. Dalton Transactions, 2011, 40, 12421 Interactions of the N3 dye with the iodide redox shuttle: quantum chemical mechanistic studies of the 2710 1.3 28 dye regeneration in the dye-sensitized solar cell. Physical Chemistry Chemical Physics, 2011, 13, 15148. Theoretical studies of dye-sensitised solar cells: from electronic structure to elementary processes. Energy and Environmental Science, 2011, 4, 4473. 2711 15.6 Optical, Electrochemical, and Photovoltaic Effects of an Electron-Withdrawing Tetrafluorophenylene Bridge in a Push–Pull Porphyrin Sensitizer Used for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 14415-14424. 2712 1.5 94 Influence of the Nature of the Absorption Band on the Potential Performance of High Molar 2713 Extinction Coefficient Ruthenium(II) Polypyridinic Complexes As Dyes for Sensitized Solar Cells. 1.9 Inorganic Chemistry, 2011, 50, 5910-5924. Nanocrystalline Electrodes Based on Nanoporous-Walled WO₃ Nanotubes for 2714 1.6 85 Organic-Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 12730-12736. Can Polypyridyl Cu(I)-based Complexes Provide Promising Sensitizers for Dye-Sensitized Solar Cells? A Theoretical Insight into Cu(I) versus Ru(II) Sensitizers. Journal of Physical Chemistry C, 2011, 115, 2715 1.5 3753-3761.

#	Article	IF	CITATIONS
2716	Synthesis and Characterization of Tris(Heteroleptic) Ru(II) Complexes Bearing Styryl Subunits. Inorganic Chemistry, 2011, 50, 9714-9727.	1.9	21
2717	Long-Wavelength Sensitization of TiO2by Ruthenium Diimine Compounds with Low-Lying $\ddot{\in}^*$ Orbitals. Langmuir, 2011, 27, 14522-14531.	1.6	35
2718	A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 1838.	15.6	198
2719	Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens. Optics Express, 2011, 19, A818.	1.7	12
2720	Investigation of nitrogen doped diamond like carbon films as counter electrodes in dye sensitized solar cells. Journal of Alloys and Compounds, 2011, 509, 1969-1974.	2.8	31
2721	Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films. Journal of Alloys and Compounds, 2011, 509, 2127-2131.	2.8	34
2722	Novel bilayer structure ZnO based photoanode for enhancing conversion efficiency in dye-sensitized solar cells. Journal of Alloys and Compounds, 2011, 509, 7421-7426.	2.8	29
2723	The reversal constituent structure of photo-electrode in dye-sensitized solar cells. Journal of Alloys and Compounds, 2011, 509, 8670-8675.	2.8	2
2724	Optical stress and reliability study of ruthenium-based dye-sensitized solar cells (DSSC). , 2011, , .		0
2725	A novel main chain polymeric metal complex based on Zn(II) with thiophene and 2-(2′-pyridyl)benzimidazole ligand: Synthesis, characterization, photovoltaic property and application in DSSCs. Synthetic Metals, 2011, 161, 455-459.	2.1	12
2726	Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of dye sensitized solar cells. Synthetic Metals, 2011, 161, 1098-1104.	2.1	25
2727	CNT/PEDOT core/shell nanostructures as a counter electrode for dye-sensitized solar cells. Synthetic Metals, 2011, 161, 1284-1288.	2.1	136
2728	Novel 1,3,4-oxadiazole derivatives as efficient sensitizers for dye-sensitized solar cells: A combined experimental and computational study. Synthetic Metals, 2011, 161, 1671-1681.	2.1	39
2729	Enhancement of the Photoelectric Performance of Dye-sensitized Solar Cells by Sol-gel Modified TiO2 Films. Journal of Materials Science and Technology, 2011, 27, 764-768.	5.6	12
2730	Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy and Environmental Science, 2011, 4, 2803.	15.6	41
2731	Shape preserving chemical transformation of ZnO mesostructures into anatase TiO2 mesostructures for optoelectronic applications. Energy and Environmental Science, 2011, 4, 2835.	15.6	28
2732	Effect of Annealing Temperature on TiO ₂ â^'ZnO Coreâ^'Shell Aggregate Photoelectrodes of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 4927-4934.	1.5	87
2733	Synthesis of a novel unsymmetrical Zn(<scp>ii</scp>) phthalocyanine bearing a phenyl ethynyl moiety as sensitizer for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 38-40.	1.6	16

#	Article	IF	CITATIONS
2734	Donor-Substituted β-Functionalized Porphyrin Dyes on Hierarchically Structured Mesoporous TiO ₂ Spheres. Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 19343-19354.	1.5	130
2735	Porphyrin Dyes with High Injection and Low Recombination for Highly Efficient Mesoscopic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10898-10902.	1.5	79
2736	Linking optical and electrical small amplitude perturbation techniques for dynamic performance characterization of dye solar cells. Physical Chemistry Chemical Physics, 2011, 13, 12435.	1.3	53
2737	Low-temperature roll-to-roll coating procedure of dye-sensitized solar cell photoelectrodes on flexible polymer-based substrates. Semiconductor Science and Technology, 2011, 26, 045007.	1.0	21
2738	A New Class of Cyclometalated Ruthenium Sensitizers of the Type Ä^NÌ,N for Efficient Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 11340-11347.	1.9	59
2739	Solvent-free ionic liquid/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 7326.	6.7	113
2740	Phenothiazine conjugated bipyridine as ancillary ligand in Ru(II)-complexes for application in dye sensitized solar cell. Synthetic Metals, 2011, 161, 1469-1476.	2.1	25
2741	A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent. Analytica Chimica Acta, 2011, 686, 133-143.	2.6	16
2742	Ordered Semiconductor Photoanode Films for Dye-Sensitized Solar Cells Based on Zinc Oxide-Titanium Oxide Hybrid Nanostructures. , 0, , .		3
2743	Dye Solar Cells: Basic and Photon Management Strategies. , 0, , .		8
2744	Dye-Sensitized Solar Cells Based on Polymer Electrolytes. , 2011, , .		3
2745	Dye Sensitized Solar Cells - Working Principles, Challenges and Opportunities. , 0, , .		27
2746	Nanocomposites for Photovoltaic Energy Conversion. , 0, , .		0
2747	Dye Sensitized Solar Cells as an Alternative Approach to the Conventional Photovoltaic Technology Based on Silicon - Recent Developments in the Field and Large Scale Applications. , 0, , .		5
2748	Glass-Forming Organic Semiconductors for Optoelectronics. Medziagotyra, 2011, 17, .	0.1	0
2749	Investigation of Dyes for Dye-Sensitized Solar Cells: Ruthenium-Complex Dyes, Metal-Free Dyes, Metal-Free Dyes, Metal-Complex Porphyrin Dyes and Natural Dyes. , 0, , .		11
2750	Organometallic Materials for Electroluminescent and Photovoltaic Devices. , 0, , .		2
2751	Organic-Ruthenium(II) Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications. Advances in OptoElectronics, 2011, 2011, 1-8.	0.6	11

#	Article	IF	Citations
2752	Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II) Complex-Influence on Performance of Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2011, 2011, 1-10.	0.6	3
2753	Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	9
2754	Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid. Advances in OptoElectronics, 2011, 2011, 1-7.	0.6	3
2755	Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres. Advances in OptoElectronics, 2011, 2011, 1-5.	0.6	2
2756	Change of Dye Bath for Sensitisation of Nanocrystalline Films: Enhances Performance of Dye-Sensitized Solar Cells. Advances in OptoElectronics, 2011, 2011, 1-9.	0.6	3
2757	Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells Using High Surface Area Mesoporous Carbon Counter Electrode. Advances in OptoElectronics, 2011, 2011, 1-4.	0.6	2
2758	Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Beilstein Journal of Nanotechnology, 2011, 2, 681-690.	1.5	103
2759	Fabrication of ZnO Based Dye Sensitized Solar Cells. , 0, , .		14
2762	AC conductivity of nanoporous metal-oxide photoanodes for solar energy conversion. , 2011, , .		1
2763	Current Trends in Materials for Dye Sensitized Solar Cells. Recent Patents on Nanotechnology, 2011, 5, 46-61.	0.7	34
2764	Photocurrent Generated from Nanoelectrode Consisting of Dye, Titania Gel, and Carbon Nanotube. Chemistry Letters, 2011, 40, 640-641.	0.7	1
2765	Simple Oligothiophene-Based Dyes for Dye-Sensitized Solar Cells (DSSCs): Anchoring Group Effects on Molecular Properties and Solar Cell Performance. Bulletin of the Chemical Society of Japan, 2011, 84, 459-465.	2.0	19
2766	Synthesis and Properties of Seleno-analog MK-organic Dye for Photovoltaic Cells Prepared by C–H Functionalization Reactions of Selenophene Derivatives. Chemistry Letters, 2011, 40, 922-924.	0.7	33
2770	Molecular Design of Ruthenium Complexes for Dye-Sensitized Solar Cells Based on Nanocrystalline TiO2. Current Organic Chemistry, 2011, 15, 3849-3869.	0.9	8
2771	Photogenerated charge carriers in semiconductor nanomaterials for solar energy conversion. International Journal of Nanoparticles, 2011, 4, 95.	0.1	2
2772	Synthesis, Photophysical and Electrochemical Properties of a Mixed Bipyridyl-Phenanthrolyl Ligand Ru(II) Heteroleptic Complex Having trans-2-Methyl-2-butenoic Acid Functionalities. Molecules, 2011, 16, 8353-8367.	1.7	17
2773	Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotechnology, 2011, 6, 377-384.	15.6	368
2774	Quantum-chemical study of effect of conjugation on structure and spectral properties of C105 sensitizing dye. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 393-400.	0.2	19

#	Article	IF	CITATIONS
2775	Strategy to improve the performance of dye-sensitized solar cells: Interface engineering principle. Solar Energy, 2011, 85, 3143-3159.	2.9	65
2776	A phenylcarbazole functionalized ruthenium dye for efficient dye-sensitized solar cells. Solar Energy, 2011, 85, 2497-2506.	2.9	15
2777	Fluorenylvinylenes bridged triphenylamine-based dyes with enhanced performance in dye-sensitized solar cells. Tetrahedron, 2011, 67, 8477-8483.	1.0	43
2778	Synthesis and DSSC application of novel dendrimers with benzothiazole and triazole units. Tetrahedron Letters, 2011, 52, 5812-5816.	0.7	26
2779	Synthesis and photovoltaic performances of donor–π–acceptor dyes utilizing 1,3,5-triazine as π spacers. Tetrahedron Letters, 2011, 52, 6492-6496.	0.7	45
2780	Thermal stress effects on Dye-Sensitized Solar Cells (DSSCs). Microelectronics Reliability, 2011, 51, 1762-1766.	0.9	36
2781	Molecular interaction of oxazine dyes in aqueous solution: Temperature dependent molecular disposition of the aggregates. Journal of Molecular Liquids, 2011, 164, 250-256.	2.3	8
2782	Progress in light harvesting and charge injection of dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1142-1160.	1.7	128
2783	Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 185-191.	2.0	17
2784	Indoline-dye immobilized ZnO nanoparticles for whopping 5.44% light conversion efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 366-369.	2.0	25
2785	Meta versus para substituent effect of organic dyes for sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 192-202.	2.0	29
2786	Synthesis and characterization of novel cyclometalated iridium(III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 203-209.	2.0	45
2787	Interfacial electron transfer dynamics and photovoltaic performance of TiO2 and ZnO solar cells sensitized with Coumarin 343. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 226, 42-50.	2.0	26
2788	Comparison of solar cell performance of conducting polymer dyes with different functional groups. Journal of Power Sources, 2011, 196, 8874-8880.	4.0	22
2789	Carbon-nanofiber counter electrodes for quasi-solid state dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 10798-10805.	4.0	69
2790	Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Organic Electronics, 2011, 12, 2003-2011.	1.4	31
2791	Composite electrolytes of polyethylene glycol methyl ether and TiO2 for dye-sensitized solar cells—Effect of heat treatment. Materials Chemistry and Physics, 2011, 127, 479-483.	2.0	6
2792	Enhanced photovoltaic performances of dye-sensitized solar cell using self-charring phosphate ester surfactant. Materials Chemistry and Physics, 2011, 130, 203-210.	2.0	5

#	Article	IF	CITATIONS
2793	Performance variation from triphenylamine- to carbazole–triphenylamine–rhodaniline-3-acetic acid dyes in dye-sensitized solar cells. Materials Chemistry and Physics, 2011, 130, 635-643.	2.0	21
2794	Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells. Materials Research Bulletin, 2011, 46, 1473-1479.	2.7	58
2795	An efficient metal-free sensitizer for dye-sensitized solar cells. Materials Letters, 2011, 65, 583-586.	1.3	84
2796	Fabrication and characterization of TiO2-based dye-sensitized solar cells. Progress in Natural Science: Materials International, 2011, 21, 122-126.	1.8	44
2797	Theoretical Investigation of a Dye Solar Cell Wrapped Around an Optical Fiber. IEEE Journal of Quantum Electronics, 2011, 47, 1214-1221.	1.0	23
2798	Synthesis of near-infrared silver-indium-sulfide (AgInS2) quantum dots as heavy-metal free photosensitizer for solar cell applications. Chemical Physics Letters, 2011, 515, 254-257.	1.2	51
2799	Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode. Electrochimica Acta, 2011, 56, 7563-7568.	2.6	9
2800	Stability study of carbon-based counter electrodes in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 8463-8466.	2.6	30
2801	Ionic liquid/polymer composite electrolytes by in situ photopolymerization and their application in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 8680-8687.	2.6	33
2802	Influence of NH3·H2O additive on the photovoltaic performance of dye-sensitized solar cells with chemical sintered scattering layers. Electrochimica Acta, 2011, 56, 9926-9930.	2.6	5
2803	Stainless steel electrode characterizations by electrochemical impedance spectroscopy for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 10276-10282.	2.6	9
2804	Graphene-based counter electrode for dye-sensitized solar cells. Carbon, 2011, 49, 5382-5388.	5.4	406
2805	Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews, 2011, 255, 2602-2621.	9.5	220
2806	A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. Coordination Chemistry Reviews, 2011, 255, 2704-2726.	9.5	161
2807	Formation, morphology control and applications of anodic TiO2 nanotube arrays. Journal of Materials Chemistry, 2011, 21, 8955.	6.7	175
2808	Absorption Spectra and Excited State Energy Levels of the N719 Dye on TiO ₂ in Dye-Sensitized Solar Cell Models. Journal of Physical Chemistry C, 2011, 115, 8825-8831.	1.5	222
2809	Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions, 2011, 40, 10289.	1.6	156
2810	Simulating Dye-Sensitized TiO ₂ Heterointerfaces in Explicit Solvent: Absorption Spectra, Energy Levels, and Dye Desorption, Journal of Physical Chemistry Letters, 2011, 2, 813-817.	2.1	98

#	Article	IF	CITATIONS
2811	Adsorption of N719 Dye on Anatase TiO ₂ Nanoparticles and Nanosheets with Exposed (001) Facets: Equilibrium, Kinetic, and Thermodynamic Studies. Chemistry - an Asian Journal, 2011, 6, 2481-2490.	1.7	113
2812	Insights into Working Principles of Ruthenium Polypyridyl Dye-Sensitized Solar Cells from First Principles Modeling. Journal of Physical Chemistry C, 2011, 115, 4297-4306.	1.5	71
2813	Quantum dot-sensitized solar cells incorporating nanomaterials. Chemical Communications, 2011, 47, 9561.	2.2	242
2814	Ruthenium(II)- bipyridyl with extended π-system: Improved thermo-stable sensitizer for efficient and long-term durable dye sensitized solar cells. Journal of Chemical Sciences, 2011, 123, 555-565.	0.7	14
2815	Synthesis and crystal structure of a coordination polymer {[Cu2(L)2(Phen)2] · 8H2O} n. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 388-393.	0.3	0
2816	Anchoring functional molecules on TiO2 surfaces: A comparison between the carboxylic and the phosphonic acid group. European Physical Journal Plus, 2011, 126, 1.	1.2	34
2817	Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core–Shell Nanostructure. ACS Nano, 2011, 5, 7108-7116.	7.3	386
2818	Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 2011, 13, 16987.	1.3	301
2819	Optical properties of dye sensitized TiO ₂ nanowires from timeâ€dependent density functional theory. Physica Status Solidi - Rapid Research Letters, 2011, 5, 259-261.	1.2	5
2820	Simulation of dye solar cells: through and beyond one dimension. Journal of Computational Electronics, 2011, 10, 424-436.	1.3	24
2821	Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. Journal of Materials Science, 2011, 46, 7482-7488.	1.7	11
2822	A novel technique to synthesize nanoparticles of titanium dioxide, cadmium sulfide, and silicon dioxide, capped with 2,2-bipyridine compounds. Chemistry and Technology of Fuels and Oils, 2011, 47, 144-150.	0.2	0
2823	Modification of TiO2 electrode films in dye-sensitized solar cells with PMMA. Journal of Sol-Gel Science and Technology, 2011, 57, 128-131.	1.1	9
2824	CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells. Journal of Nanoparticle Research, 2011, 13, 3267-3273.	0.8	30
2825	Anodic TiO2 nanotubes powder and its application in dye-sensitized solar cells. Journal of Nanoparticle Research, 2011, 13, 6409-6418.	0.8	7
2826	Enhanced photovoltaic performance of quasi-solid-state dye-sensitized solar cells via incorporating quaternized ammonium iodide-containing conjugated polymer into PEO gel electrolytes. Colloid and Polymer Science, 2011, 289, 817-829.	1.0	12
2827	Electrochemical characterization of Prussian blue type nickel hexacyanoferrate redox mediator for potential application as charge relay in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2011, 15, 2545-2552.	1.2	26
2828	Performance of dye-sensitized solar cells with various carbon nanotube counter electrodes. Mikrochimica Acta, 2011, 174, 73-79.	2.5	35

#	Article	IF	CITATIONS
2829	Computational studies of the interactions of lâ^' and l3 â^' with TiO2 clusters: implications for dye-sensitized solar cells. Theoretical Chemistry Accounts, 2011, 129, 199-208.	0.5	14
2830	Characterization of electrodeposited zinc oxide/tetrasulphonatedcopper phthalocyanines (ZnO/Ts-CuPc) hybrid films and their photoelectrochemical properties. Journal of Electroanalytical Chemistry, 2011, 653, 86-92.	1.9	9
2831	Co-existence of Lil and KI in filler-free, quasi-solid-state electrolyte for efficient and stable dye-sensitized solar cell. Journal of Power Sources, 2011, 196, 1651-1656.	4.0	50
2832	Liquid crystal based electrolyte with light trapping scheme for enhancing photovoltaic performance of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 5784-5791.	4.0	38
2833	Fabrication and characterization of a composite ZnO semiconductor as electron transporting layer in dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 653-659.	1.7	42
2834	Structures and spectroscopic properties of ruthenium phenanthroline solar-cell sensitizers: A computational study. Chemical Physics Letters, 2011, 506, 146-151.	1.2	17
2835	Novel dyes based on naphthalimide moiety as electron acceptor for efficient dye-sensitized solar cells. Dyes and Pigments, 2011, 90, 297-303.	2.0	34
2836	Photofuel cells using glucose-doped titania. Applied Catalysis B: Environmental, 2011, 106, 250-250.	10.8	3
2837	Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chemical Engineering Journal, 2011, 170, 363-380.	6.6	130
2838	TiO2/modified natural clay semiconductor as a potential electrode for natural dye-sensitized solar cell. Ceramics International, 2011, 37, 659-663.	2.3	23
2839	Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: Density functional theory calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 287-293.	2.0	46
2840	Long-term stable dye-sensitized solar cells based on UV photo-crosslinkable poly(ethylene glycol) and poly(ethylene glycol) diacrylate based electrolytes. Solar Energy Materials and Solar Cells, 2011, 95, 318-322.	3.0	27
2841	Nano-grain SnO2 electrodes for high conversion efficiency SnO2–DSSC. Solar Energy Materials and Solar Cells, 2011, 95, 179-183.	3.0	84
2842	Near-IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis(quinolin-2-yl)pyridine derivatives. Solar Energy Materials and Solar Cells, 2011, 95, 310-314.	3.0	55
2843	Dye sensitized solar cells on paper substrates. Solar Energy Materials and Solar Cells, 2011, 95, 2531-2535.	3.0	83
2844	High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells. Journal of Chemical Sciences, 2011, 123, 37-46.	0.7	24
2845	Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. Journal of Chemical Sciences, 2011, 123, 371-378.	0.7	20
2846	Dye-sensitized solar cells based on ZnO nanotetrapods. Frontiers of Optoelectronics in China, 2011, 4, 24-44.	0.2	10

#	Article	IF	CITATIONS
2847	Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye. Frontiers of Optoelectronics in China, 2011, 4, 80-86.	0.2	8
2848	Spray deposited Nb2O5 thin film electrodes for fabrication of dye sensitized solar cells. Transactions of the Indian Institute of Metals, 2011, 64, 185-188.	0.7	17
2849	Application of upconversion luminescence in dye-sensitized solar cells. Science Bulletin, 2011, 56, 96-101.	1.7	36
2850	Preparation of nano-crystal N-Zn/TiO2 anode films and the effects of co-sensitization on the performance of dye-sensitized solar cells. Science Bulletin, 2011, 56, 2001-2008.	1.7	14
2851	Preparation of Gd2O3:Eu3+ downconversion luminescent material and its application in dye-sensitized solar cells. Science Bulletin, 2011, 56, 3114-3118.	1.7	31
2852	Electrochemical impedance characterization and photovoltaic performance of N719 dyeâ€sensitized solar cells using quaternized ammonium iodide containing polyfluorene electrolyte solutions. Polymers for Advanced Technologies, 2011, 22, 1650-1657.	1.6	9
2853	Quasiâ€solidâ€state dyeâ€sensitized solar cells containing P (MMAâ€ <i>co</i> â€AN)â€based polymeric gel electrolyte. Polymers for Advanced Technologies, 2011, 22, 1812-1815.	1.6	12
2854	Two novel branched chain polymeric metal complexes based on Cd(II), Zn(II) with fluorene, thiophene, 8â€hydroxyquinoline, and 1,10â€phenathroline ligand: synthesis, characterization, photovoltaic properties, and their application in DSSCs. Polymers for Advanced Technologies, 2011, 22, 2583-2591.	1.6	15
2855	Infiltrating P3HT polymer into ordered TiO ₂ nanotube arrays. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 658-663.	0.8	9
2856	Fabrication of dye sensitized solar cell using Cr doped CuZnSe type chalcopyrite thin film. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2215-2219.	0.8	14
2857	Role of energy level alignment in solar cells sensitized with a metalâ€free organic dye: A combined experimental and theoretical approach. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2467-2477.	0.8	10
2858	Titania Nanocrystalline Prepared by Detonation Method and Calculation of Detonation Parameters. Propellants, Explosives, Pyrotechnics, 2011, 36, 75-79.	1.0	5
2859	Synthesis of quaternized ammonium iodide ontaining conjugated polymer electrolytes and their application in dyeâ€sensitized solar cells. Polymer International, 2011, 60, 483-492.	1.6	11
2860	Mechanism of charge recombination and IPCE in ZnO dyeâ€sensitized solar cells having I ^{â^'} /I and Br ^{â^'} /Br redox couple. Progress in Photovoltaics: Research and Applications, 2011, 19, 180-186.	4.4	21
2861	Ultrafast near infrared sintering of TiO ₂ layers on metal substrates for dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 482-486.	4.4	44
2862	Surfaceâ€enhanced Raman spectroscopy of 4â€ <i>tert</i> â€butylpyridine on a silver electrode. Journal of Raman Spectroscopy, 2011, 42, 1945-1948.	1.2	3
2863	Synthesis of Ruthenium Complex Containing Conjugated Polymers and Their Applications in Dye ensitized Solar Cells. Macromolecular Chemistry and Physics, 2011, 212, 774-784.	1.1	13
2864	Highly Interconnected Porous Electrodes for Dyeâ€5ensitized Solar Cells Using Viruses as a Sacrificial Template. Advanced Functional Materials, 2011, 21, 1160-1167.	7.8	31

#	Article	IF	Citations
2865	A Thiopheneâ€Based Anchoring Ligand and Its Heteroleptic Ru(II)â€Complex for Efficient Thinâ€Film Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 963-970.	7.8	53
2866	Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy. Advanced Materials, 2011, 23, 873-877.	11.1	134
2867	Nanostructured Organic and Hybrid Solar Cells. Advanced Materials, 2011, 23, 1810-1828.	11.1	300
2868	Practical Roadmap and Limits to Nanostructured Photovoltaics. Advanced Materials, 2011, 23, 5712-5727.	11.1	160
2869	A Quasiâ€Inverse Opal Layer Based on Highly Crystalline TiO ₂ Nanoparticles: A New Light‣cattering Layer in Dye‣ensitized Solar Cells. Advanced Energy Materials, 2011, 1, 546-550.	10.2	71
2870	Improving Microstructured TiO ₂ Photoanodes for Dye Sensitized Solar Cells by Simple Surface Treatment. Advanced Energy Materials, 2011, 1, 879-887.	10.2	35
2871	Carbon Nanomaterials for Dyeâ€Sensitized Solar Cell Applications: A Bright Future. Advanced Energy Materials, 2011, 1, 472-485.	10.2	196
2872	Recent Progress in Dye‣ensitized Solar Cells Using Nanocrystallite Aggregates. Advanced Energy Materials, 2011, 1, 988-1001.	10.2	83
2875	Photovoitaic Performance and Characteristics of Dyea€Sensitized Solar Cells Prepared with the N/19 Thermal Degradation Products [Ru(LH) ₂ (NCS)(4â€ <i>tert</i> â€butylpyridine)][N(Bu) ₄] and [Ru(LH) ₂ (NCS)(1â€methylbenzimidazole)][N(Bu) ₄]. European Journal of	1.0	35
2876	Dinuclear Ru-Cu Complexes: Electronic Characterisation and Application to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 589-596.	1.0	13
2877	pH‧ensitive Bis(2,2′:6′,2"â€ŧerpyridine)ruthenium(II) Complexes – A DFT/TDDFT Investigation of Their Spectroscopic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 1605-1613.	1.0	12
2878	Strategies for Optimizing the Performance of Cyclometalated Ruthenium Sensitizers for Dye‧ensitized Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 1806-1814.	1.0	84
2879	Dye‧ensitised Solar Cells Based on Largeâ€Pore Mesoporous TiO ₂ with Controllable Pore Diameters. European Journal of Inorganic Chemistry, 2011, 2011, 4730-4737.	1.0	12
2880	Ruthenium Polypyridyl Sensitisers in Dye Solar Cells Based on Mesoporous TiO ₂ . European Journal of Inorganic Chemistry, 2011, 2011, 4509-4526.	1.0	129
2881	2Dâ€Îâ€A Type Organic Dyes Based on <i>N</i> , <i>N</i> â€Dimethylaryl Amine and Rhodamineâ€3â€acetic Acid f Dyeâ€sensitized Solar Cells. Chinese Journal of Chemistry, 2011, 29, 89-96.	or 2.6	16
2882	Transition from Anodic Titania Nanotubes to Nanowires: Arising from Nanotube Growth to Application in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2011, 12, 3634-3641.	1.0	21
2883	Computational study on the reactions of H ₂ O ₂ on TiO ₂ anatase (101) and rutile (110) surfaces. Journal of Computational Chemistry, 2011, 32, 1065-1081.	1.5	64
2884	Theoretical investigation of novel carbazoleâ€fluorene based Dâ€i€â€A conjugated organic dyes as dyeâ€sensitizer in dyeâ€sensitized solar cells (DSCs). Journal of Computational Chemistry, 2011, 32, 1568-1576.	1.5	42

#	Article	IF	CITATIONS
2885	Oligomer ethylene glycol based electrolytes for dyeâ€sensitized solar cell. Journal of Applied Polymer Science, 2011, 120, 2786-2789.	1.3	1
2886	Enhancement of photocatalytic degradation activity of poly(vinyl chloride)â€∓iO ₂ nanocomposite film with polyoxometalate. Journal of Applied Polymer Science, 2011, 120, 2048-2053.	1.3	18
2891	TiO ₂ Nanotubes: Synthesis and Applications. Angewandte Chemie - International Edition, 2011, 50, 2904-2939.	7.2	2,752
2892	Flexible, Lightâ€Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell. Angewandte Chemie - International Edition, 2011, 50, 1815-1819.	7.2	186
2893	Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 2054-2058.	7.2	199
2894	Structural Proof for a Higher Polybromide Monoanion: Investigation of [N(C ₃ H ₇) ₄][Br ₉]. Angewandte Chemie - International Edition, 2011, 50, 11528-11532.	7.2	49
2895	Reactivity of alkoxysilyl compounds: chemical surface modification of nanoâ€porous alumina membrane using alkoxysilylazobenzenes. Applied Organometallic Chemistry, 2011, 25, 98-104.	1.7	14
2896	Pyrolytic Carbon from an Aromatic Precursor and Its Application as a Counter Electrode in Dyeâ€ S ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 1358-1364.	1.7	13
2897	Synthesis and properties of a novel ruthenium complex containing a 2-(benzimidazol-2-yl)-8-octyloxyquinoline tridentate ligand. Inorganic Chemistry Communication, 2011, 14, 683-685.	1.8	5
2898	Visible light response of nitrogen and sulfur co-doped TiO2 photocatalysts fabricated by anodic oxidation. Catalysis Today, 2011, 164, 399-403.	2.2	26
2899	Syntheses of triphenylamine-based organic dyes and effects of their acceptor groups on photovoltaic performances of dye sensitized solar cells. Current Applied Physics, 2011, 11, S140-S146.	1.1	15
2900	Manipulated the band gap of 1D ZnO nano-rods array with controlled solution concentration and its application for DSSCs. Current Applied Physics, 2011, 11, S136-S139.	1.1	27
2901	Deposition of TiO2 layers for dye-sensitized solar cells using nano-particle deposition system. Current Applied Physics, 2011, 11, S122-S126.	1.1	8
2902	Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Applied Catalysis B: Environmental, 2011, 102, 126-131.	10.8	142
2903	Solid-state dye-sensitized solar cells fabricated with nanoporous TiO2 and TPD dyes: Analysis of penetration behavior and l–V characteristics. Chemical Physics Letters, 2011, 510, 93-98.	1.2	16
2904	Photoexcitation and electron injection processes in azo dyes adsorbed on nanocrystalline TiO2 films. Chemical Physics Letters, 2011, 510, 228-233.	1.2	12
2905	Far-red absorbing squarylium dyes with terminally connected electron-accepting units for organic dye-sensitized solar cells. Dyes and Pigments, 2011, 90, 275-283.	2.0	28
2906	Electro-optical properties of new anthracene based organic dyes for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 33-43.	2.0	72

#	Article	IF	CITATIONS
2907	Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 192-198.	2.0	160
2908	Effects of 1,3-dialkylimidazolium cations with different lengths of alkyl chains on the Pt electrode/electrolyte interface in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 3395-3400.	2.6	4
2909	Studies on isomeric effects of 2- and 4-Mercapto pyridine as dopants in polymer electrolyte in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5405-5409.	2.6	14
2910	A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 6157-6164.	2.6	29
2911	Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 2906-2913.	2.6	39
2912	Titanium dioxide sols synthesized by hydrothermal methods using tetrabutyl titanate as starting material and the application in dye sensitized solar cells. Electrochimica Acta, 2011, 56, 4308-4314.	2.6	25
2913	Evidence for enhancing charge collection efficiency with an alternative cost-effective binary ionic liquids electrolyte based dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5605-5610.	2.6	14
2914	New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5616-5623.	2.6	37
2915	Synthesis of Zn-doped TiO2 microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 6517-6523.	2.6	95
2916	Tertiary hierarchically structured TiO2 for CdS quantum-dot-sensitized solar cells. Electrochimica Acta, 2011, 56, 7371-7376.	2.6	18
2917	Lithium iodide effect on the electrochemical behavior of agarose based polymer electrolyte for dye-sensitized solar cell. Electrochimica Acta, 2011, 56, 7347-7351.	2.6	44
2918	Preparation of sol–gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Conversion and Management, 2011, 52, 2815-2818.	4.4	26
2919	Ultrafast electronic and vibrational dynamics of a ruthenium porphyrin complex in intersystem crossing. Physics Procedia, 2011, 13, 24-27.	1.2	0
2920	Synthesis, molecular structure and spectral analysis: DFT–TDDFT computational study of ruthenium complex of tetradentate N,N′-bis(benzimidazole-2yl-ethyl)-ethylenediamine. Journal of Molecular Structure, 2011, 989, 70-79.	1.8	11
2921	Enhanced performances of dye-sensitized solar cells based on graphite–TiO2 composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 431-435.	1.7	31
2922	Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups. Organic Electronics, 2011, 12, 1247-1252.	1.4	17
2923	Theoretical characterization of ruthenium complexes containing functionalized bithiophene ligands for dye-sensitized solar cells. Journal of Organometallic Chemistry, 2011, 696, 1632-1639.	0.8	9
2924	Dinuclear rhenium(I) carbonyl complexes based on π-conjugated polypyridyl ligands with tetrathiafulvalenes: Syntheses, crystal structures, properties and DFT calculations. Journal of Organometallic Chemistry, 2011, 696, 3076-3085.	0.8	12

ARTICLE IF CITATIONS Applications of vertically oriented TiO2 micro-pillars array on the electrode of dye-sensitized solar 2925 1.9 4 cell. Journal of Physics and Chemistry of Solids, 2011, 72, 653-656. Photosensitive materials and potential of photocurrent mediated tissue regeneration. Journal of 1.7 Photochemistry and Photobiology B: Biology, 2011, 102, 93-101. Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. Journal 2927 2.0 39 of Photochemistry and Photobiology A: Chemistry, 2011, 217, 68-75. Electron dynamics dependence on optimum dye loading for an efficient dye-sensitized solar cell. 2.0 Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 236-241. Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells. Journal of 2929 2.0 49 Photochemistry and Photobiology A: Chemistry, 2011, 217, 308-312. Synthesis, characterization and application of trans-D–B–A-porphyrin based dyes in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 219-225. Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability. 2931 2.0 57 Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 180-187. Photochemical reaction fields with strong coupling between a photon and a molecule. Journal of 2932 2.0 19 Photochemistry and Photobiology A: Chemistry, 2011, 221, 130-137. Improved efficiency of betanin-based dye-sensitized solar cells. Journal of Photochemistry and 2933 2.0 108 Photobiology A: Chemistry, 2011, 221, 90-97. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. 2934 245 Journal of Power Sources, 2011, 196, 7891-7898. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic 2935 1.1 32 photocatalysis. Microelectronic Engineering, 2011, 88, 2797-2799. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6, 91-109. 2936 6.2 601 Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene 2937 1.4 65 moieties. Organic Electronics, 2011, 12, 125-135. Effects of hydroxyl group numbers of coadsorbents on photovoltaic performances of dye-sensitized 2938 solar cells. Journal of Electroanalytical Chemistry, 2011, 653, 81-85. Titaniaâ€"silver and aluminaâ€"silver composite nanoparticles: Novel, versatile synthesis, reaction mechanism and potential antimicrobial application. Journal of Colloid and Interface Science, 2011, 356, 2939 5.060 395-403. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for 2940 dye-sensitized solar cells. Renewable Energy, 2011, 36, 2711-2716. Electronic structures and absorption properties of three kinds of ruthenium dye sensitizers 2941 containing bipyridine-pyrazolate for solar cells. Spectrochimica Acta - Part A: Molecular and 2.0 17 Biomolecular Spectroscopy, 2011, 79, 1843-1848. Synthesis and characterization of cross-linkable ruthenium dye with ion coordinating property for 2942 1.8 dye-sensitized solar cells. Polymer, 2011, 52, 3318-3324.

		CITATION REI	PORT	
#	Article		IF	CITATIONS
2943	Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells. Solar Energy, 20	11, 85, 174-179.	2.9	7
2944	Sensitizers containing donor cascade and rhodanine-3-acetic acid moieties for dye-sen cells. Solar Energy, 2011, 85, 1-6.	sitized solar	2.9	20
2945	Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 2011	, 85, 1580-1608.	2.9	810
2946	Phenomenological modeling of dye-sensitized solar cells under transient conditions. So 2011, 85, 781-793.	blar Energy,	2.9	53
2947	Dye-sensitized solar cells: A brief overview. Solar Energy, 2011, 85, 1172-1178.		2.9	726
2948	A nickel-complex sensitiser for dye-sensitised solar cells. Solar Energy, 2011, 85, 1195-	1203.	2.9	59
2949	Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitize low-cost metal-free organic dye. Solar Energy, 2011, 85, 1787-1793.	d with	2.9	48
2950	Large photocurrent generation of an ITO electrode modified with a red copper(II) com Energy, 2011, 85, 1780-1786.	blex. Solar	2.9	5
2951	Enhancing near-infrared solar cell response using upconverting transparentceramics. S Materials and Solar Cells, 2011, 95, 800-803.	olar Energy	3.0	102
2952	The degradation of dye sensitized solar cell in the presence of water isotopes. Solar En and Solar Cells, 2011, 95, 1624-1629.	ergy Materials	3.0	61
2953	Electrical and optical studies of flexible stainless steel mesh electrodes for dye sensitiz cells. Solar Energy Materials and Solar Cells, 2011, 95, 2120-2125.	ed solar	3.0	29
2954	Expanded graphite/pencil-lead as counter electrode for dye-sensitized solar cells. Solid- Electronics, 2011, 63, 76-82.	State	0.8	44
2955	Synthesis and applications of novel acceptor–donor–acceptor organic dyes with d and fluorene-cores for dye-sensitized solar cells. Tetrahedron, 2011, 67, 303-311.	ithienopyrrole-	1.0	75
2956	Thiophene-fused coplanar sensitizer for dye-sensitized solar cells. Tetrahedron Letters, 2764-2766.	2011, 52,	0.7	16
2957	Novel D-ï€-A system based on zinc-porphyrin derivatives for highly efficient dye-sensitis Tetrahedron Letters, 2011, 52, 3879-3882.	ed solar cells.	0.7	57
2958	Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical va deposition. Thin Solid Films, 2011, 519, 4551-4554.	por	0.8	12
2959	A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes protection of stainless steel. Thin Solid Films, 2011, 519, 5494-5502.	for cathodic	0.8	71
2960	Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. Bulletin, 2011, 36, 446-452.	MRS	1.7	14

#	ARTICLE O <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
2961	display="inline"> <mml:mrow><mml:mn>1</mml:mn><mml:mi>s</mml:mi></mml:mrow> core-level shifts at the anatase TiO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> (101)/N3 photovoltaic interface: Signature of H-bonded supramolecular assembly. Physical Review B, 2011, 84, .	1.1	24
2962	Tailoring Electronic and Optical Properties of TiO ₂ : Nanostructuring, Doping and Molecular-Oxide Interactions. , 2011, , 301-329.		2
2963	Synthesis and Photovoltaic Performance of Long Wavelength Absorbing Organic Dyes for Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 551, 283-294.	0.4	5
2964	Hydrogen Exfoliated Graphene As Counter Electrode for Dye Sensitized Solar Cells. , 2011, , .		1
2965	Dye-sensitized solar cells based on in situ sensitized of nitrogen doped TiO ₂ . , 2011, , .		0
2966	Solution-chemistry approach to graphene nanostructures. Journal of Materials Chemistry, 2011, 21, 3295.	6.7	64
2967	Graphene thin film based counter electrode for dye-sensitized solar cell. , 2011, , .		0
2968	Crystal particle Raman-scattering and applications for improved solar cell performance. Applied Physics Letters, 2011, 99, 251109.	1.5	5
2969	Layered mesoporous nanostructures for enhanced light harvesting in dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 2011, 3, 043106.	0.8	8
2970	Growth and Photovoltaic Performance of Single-Crystal TiO ₂ Nanorod Array Directly on Transparent Conducting Substrates. Advanced Materials Research, 0, 306-307, 159-163.	0.3	0
2971	Influence from Covering TiO ₂ Nanoparticles with Dense Films upon Electron Transport in Dye-Sensitized Solar Cells. Advanced Materials Research, 2011, 399-401, 1399-1402.	0.3	0
2972	New Dye-Sensitized Solar Cells Obtained from Extracted Bracts of Bougainvillea Glabra and Spectabilis Betalain Pigments by Different Purification Processes. International Journal of Molecular Sciences, 2011, 12, 5565-5576.	1.8	94
2973	HIGHLY CATALYTIC ACTIVE NANOSTRUCTURED Pt ELECTRODES FOR DYE-SENSITIZED SOLAR CELLS PREPARED BY LOW TEMPERATURE ELECTRODEPOSITION. Functional Materials Letters, 2011, 04, 7-11.	0.7	8
2974	CdSe Quantum Dots Sensitized Mesoporous TiO ₂ Solar Cells with CuSCN as Solid-State Electrolyte. Journal of Nanomaterials, 2011, 2011, 1-5.	1.5	6
2975	Functionalized pentacenes for dye-sensitized solar cells. Journal of Photonics for Energy, 2011, 1, 011106.	0.8	11
2976	Expanded Graphite/Carbon Nanotube as Counter Electrode for DSSCs. Advanced Materials Research, 0, 311-313, 1246-1249.	0.3	6
2977	The influence of ionic liquid and plastic crystal electrolytes on the photovoltaic characteristics of dye-sensitised solar cells. International Reviews in Physical Chemistry, 2011, 30, 371-407.	0.9	23
2978	Transparent conductive oxideless tandem dye-sensitized solar cells consisting of light-splitting structures. Journal of Photonics for Energy, 2011, 1, 011110.	0.8	5

#	Article	IF	CITATIONS
2979	Low Temperature Fabrication of Platinum/Carbon Black Powder Coating. Advanced Materials Research, 0, 415-417, 178-183.	0.3	0
2980	Dye-Sensitized Solar Cells Based on Novel Mixed Dyes. Advanced Materials Research, 0, 383-390, 5510-5515.	0.3	0
2981	TiO[sub 2] Composites for Efficient Poly(3-thiophene acetic acid) Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, B106.	1.3	7
2982	Structure-Dependent 4-Tert-Butyl Pyridine-Induced Band Bending at Ti <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>O</mml:mtext>< International Journal of Photoenergy, 2011, 2011, 1-6.</mml:msub></mml:mrow></mml:math 	m m lamtex	t> 22 /mml:m
2983	Dye-Sensitized Nanocrystalline ZnO Solar Cells Based on Ruthenium(II) Phendione Complexes. International Journal of Photoenergy, 2011, 2011, 1-10.	1.4	14
2984	Titanium Dioxide Nanotubes Decorated with Nanoparticles for Dye Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1303, 81.	0.1	0
2985	A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II) Complex: Synthesis, Photophysical and Electrochemical Properties. Molecules, 2011, 16, 4615-4631.	1.7	18
2986	Highly Efficient Dye-sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1327, 70501.	0.1	1
2987	Multiscale Simulation of Dye-Sensitized Solar Cells Considering Schottky Barrier Effect at Photoelectrode. Japanese Journal of Applied Physics, 2011, 50, 04DP06.	0.8	6
2988	Rotaxane based on terpyridyl bimetal ruthenium complexes and β-cyclodextrin as organic sensitizer for dye-sensitized solar cells. Journal of Coordination Chemistry, 2011, 64, 3062-3067.	0.8	9
2989	Controlled Synthesis of Nanostructured ZnO Films for Use in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, K1.	1.3	18
2990	High-quality GS/TiO2 composite for the photoanode of the dye-sensitized solar cells. , 2011, , .		3
2991	In Situ Synthesis and Integration of Polymer Electrolytes in Nanostructured Electrodes for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	1
2992	THIOCYANATE-FREE, PANCHROMATIC RUTHENIUM (II) TERPYRIDINE SENSITIZER HAVING A TRIDENTATE DIETHYLENETRIAMINE LIGAND FOR NEAR-IR SENSITIZATION OF NANOCRYSTALINE TiO₂ . Functional Materials Letters, 2011, 04, 21-24.	0.7	22
2993	DFT study of electronic structure and optical properties of some Ru- and Rh-based complexes for dye-sensitized solar cells. Molecular Physics, 2011, 109, 2511-2523.	0.8	14
2994	Electrophoretically-Assisted Deposition of Mesoporphyrin IX on Nanoparticulate TiO2 Films for Constructing Efficient Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, F100.	1.3	5
2995	Research of Titanium Dioxide Compact Layer Applied to Dye-Sensitized Solar Cell with Different Substrates. Journal of the Electrochemical Society, 2011, 159, A145-A151.	1.3	10
2996	Improvement of Carbon-Based Counter Electrode for Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2011, 84, 125-131.	2.0	5

ARTICLE IF CITATIONS One-Dimensional Nanostructure Arrays for Dye-Sensitized Solar Cells. Journal of Solar Energy 2997 1.1 4 Engineering, Transactions of the ASME, 2011, 133, . Painted steel mounted dye sensitised solar cells: titanium metallisation using magnetron sputtering. 2998 1.1 Ironmaking and Steelmaking, 2011, 38, 168-172. Nanostructural Control of Pt Layer on Counter Electrode for Application to Dye-Sensitized Solar 2999 0 0.3Cells. Advanced Materials Research, 0, 222, 126-129. Theoretical Insight into the Spectral Characteristics of Fe(II)-Based Complexes for Dye-Sensitized 3000 Solar Cellsâ€"Part I: Polypyridyl Ancillary Ligands. International Journal of Photoenergy, 2011, 2011, 1-11. Synthesis and Application of New Ruthenium Complexes ContainingÎ²-Diketonato Ligands as Sensitizers 3001 1.4 7 for Nanocrystalline TiO2Solar Cells. International Journal of Photoenergy, 2011, 2011, 1-8. Characterization of Synthetic Ni(II)-Xylenol Complex as a Photosensitizer for Wide-Band Gap ZnO 1.4 Semiconductor Electrodes. International Journal of Photoenergy, 2011, 2011, 1-9. Al-doped TiO2 Photoanode for Dye-Sensitized Solar Cells. Australian Journal of Chemistry, 2011, 64, 3003 0.5 24 820. Synthesis and Characterization of a Thiophene Copolymer for Photovoltaic Application. Journal of 3004 1.2 Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 1044-1048. Metal-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells through High Surface Area and 3005 1.4 12 Large Porous Carbon. International Journal of Photoenergy, 2011, 2011, 1-4. A Nano Quasi-Solid Electrolyte With Modified Nano-Clay Applied to Dye-Sensitized Solar Cells. Journal 1.1 of Solar Energy Engineering, Transactions of the ASME, 2011, 133, . Electrochemistry and Photocurrent Response from Vertically-Aligned Chemically-Functionalized 3007 1.3 9 Single-Walled Carbon Nanotube Arrays. Journal of the Electrochemical Society, 2011, 158, K53. Influence of Electrolyte Refreshing on the Photoelectrochemical Performance of Fiber-Shaped 1.4 Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-8. Fabrication of Highly Ordered Arrays of TiO<sub>2</sub> Nanotubes on Ti Wires. Advanced 3009 0.3 0 Materials Research, 0, 624, 63-66. Study of Photocatalytic Activity of TiO<sub>2</sub> Nanotube Derived from Different Anodized Parameters. Advanced Materials Research, 0, 488-489, 1519-1524. 3010 0.3 Preparation of Nanostructured TiO₂ Electrode by an Organic-Medium Screen Printing 3011 0 0.3Technique. Advanced Materials Research, 2012, 532-533, 157-160. TiO<sub>2</sub>/Solid State Polymer Junction for Photovoltaic Application. Advanced Materials Research, 0, 576, 623-625. Effect of Deoxycholic Acid on the Performance of Liquid Electrolyte Dye-Sensitized Solar Cells Using 3013 1.4 14 a Perylene Monoimide Derivative. International Journal of Photoenergy, 2012, 2012, 1-7. A High Molar Extinction Coefficient Bisterpyridyl Homoleptic Ru(II) Complex with 3014 trans-2-Methyl-2-butenoic Acid Functionality: Potential Dye for Dye-Sensitized Solar Cells. 1.8 International Journal of Molecular Sciences, 2012, 13, 3511-3526.

#	Article	IF	CITATIONS
3015	A Cheap Synthetic Route to Commercial Ruthenium N3 Dye for Sensitizing Solar Cell Applications. Advanced Materials Research, 2012, 488-489, 1049-1054.	0.3	3
3016	Nanoporous ZnO Photoelectrode for Dye-Sensitized Solar Cell. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	24
3017	A New Ruthenium Sensitizer Containing Benzo[1,9]quinolizino(acridin-2-yl)vinyl-2,2′-bipyridine Ligand for Effective Nanocrystalline Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	3
3018	Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-21.	1.4	111
3019	Application of Titanium Dioxide (TiO ₂) Based Photocatalytic Nanomaterials in Solar and Hydrogen Energy: A Short Review. Materials Science Forum, 0, 712, 25-47.	0.3	7
3020	Addressing Bottlenecks in Dye-sensitized Solar Cell Manufacture Using Rapid Near-infrared Heat Treatments. Materials Research Society Symposia Proceedings, 2012, 1447, 78.	0.1	2
3021	Natural dye-sensitized solar cells using pigments extracted from <italic>Syzygium guineense</italic> . Journal of Photonics for Energy, 2012, 2, 027001.	0.8	13
3022	The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis. Chinese Physics Letters, 2012, 29, 018401.	1.3	5
3023	Comparative Study of Platinum/Single Wall Carbon Nanotube versus Platinum/Carbon Black Coating. Advanced Materials Research, 2012, 488-489, 928-933.	0.3	0
3024	Preparation of ZnO Films with Different Morphologies and their Applications in Dye Sensitized Solar Cells. Key Engineering Materials, 2012, 519, 70-73.	0.4	0
3025	Polymer-Sensitized Solar Cells Using Polythiophene Derivatives with Directly Attached Carboxylic Acid Groups. Japanese Journal of Applied Physics, 2012, 51, 10NE04.	0.8	4
3026	Metal-free organic dye for dye sensitized solar cells. , 2012, , .		1
3027	Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells. Optics Express, 2012, 20, A898.	1.7	36
3028	Effects of Metal Oxide Modifications on Photoelectrochemical Properties of Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells. Chinese Journal of Chemical Physics, 2012, 25, 609-616.	0.6	1
3029	TiO2 nanofibrous interface development for Raman detection of environmental pollutants. Applied Physics Letters, 2012, 101, .	1.5	9
3030	Visible light generation of l–I bonds by Ru-tris(diimine) excited states. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15628-15633.	3.3	39
3031	Rapid, low-temperature processing of dye-sensitized solar cells. , 2012, , 42-66.		3
3032	Fabrication and characterization of dye-sensitized solar cells using electrospun TiO2nanofibre as a solar light harvesting layer. International Journal of Sustainable Energy, 2012, 31, 277-289.	1.3	2

#	Article	IF	CITATIONS
3033	A New Factor Affecting the Performance of Dye-Sensitized Solar Cells in the Presence of 4-tert-Butylpyridine. Applied Physics Express, 2012, 5, 042303.	1.1	10
3034	Preparation and characterization of low temperature sintering nanocrystalline TiO ₂ prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells. International Journal of Materials Research, 2012, 103, 347-351.	0.1	19
3035	Craphene based composites as a counter electrode for dye-sensitized solar cells. , 2012, , .		1
3036	Surface Treatment for Effective Dye Adsorption on Nanocrystalline TiO\$_{2}\$. Japanese Journal of Applied Physics, 2012, 51, 10NE16.	0.8	5
3037	Sulfur-doped TiO2 nanocrystalline photoanodes for dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	49
3038	UV-Assisted Chemical Sintering of Inkjet-Printed TiO ₂ Photoelectrodes for Low-Temperature Flexible Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2012, 159, H777-H781.	1.3	23
3039	Acid Treatment of Titania Pastes to Create Scattering Layers in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	10
3040	Influence of the Sol-Gel pH Process and Compact Film on the Efficiency of -Based Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	17
3041	Effective Sol-Gel Nanocoatings on ZnO Electrodes for Suppressing Recombination in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-14.	1.4	5
3042	Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-8.	1.4	10
3043	Dye-sensitized Solar Cells with New One-Dimensional Halide-Bridged Cu(I)–Ni(II) Heterometal Coordination Polymers Containing Hexamethylene Dithiocarbamate Ligand. Polymers, 2012, 4, 1613-1626.	2.0	18
3044	Temperature and Irradiance Dependence of a Dye Sensitized Solar Cell With Acetonitrile Based Electrolyte. Journal of Solar Energy Engineering, Transactions of the ASME, 2012, 134, .	1.1	4
3045	Laser-printed micro- and meso-scale power generating devices. , 2012, , 526-549.		1
3046	Utilization of Carboxylated 1,3-Indandione as an Electron Acceptor in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2012, 85, 1329-1331.	2.0	10
3047	Photofuel Cells Using Allophane–Titania Nanocomposites. Chemistry Letters, 2012, 41, 725-727.	0.7	14
3048	Synthesis of Pyrene-Based Ester Dendrimers for Applications in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2012, 85, 902-911.	2.0	9
3049	New Class of Thiocyanate-free Ruthenium(II) Complex as a Near-IR Sensitizer for Dye-sensitized Solar Cells. Chemistry Letters, 2012, 41, 647-649.	0.7	8
3050	Influence of Coexisting Electron Donor Species on Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 for H2 Evolution under Visible Light. Bulletin of the Chemical Society of Japan, 2012, 85, 1268-1276.	2.0	6

#	Article	IF	Citations
3051	All solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups for practical use. Journal of the Ceramic Society of Japan, 2012, 120, 304-306.	0.5	2
3052	Mesoporous titania: From synthesis to application. Nano Today, 2012, 7, 344-366.	6.2	260
3053	Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Transactions, 2012, 41, 11731.	1.6	39
3054	Surface-plasmon resonance for photoluminescence and solar-cell applications. Electronic Materials Letters, 2012, 8, 351-364.	1.0	25
3055	Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode. Analytica Chimica Acta, 2012, 754, 47-53.	2.6	32
3056	Efficient and stable organic DSSC sensitizers bearing quinacridone and furan moieties as a planar ï€-spacer. Journal of Materials Chemistry, 2012, 22, 24356.	6.7	72
3057	Carboxyl-modified conjugated polymer sensitizer for dye sensitized solar cells: significant efficiency enhancement. Journal of Materials Chemistry, 2012, 22, 23267.	6.7	9
3058	Adsorbate-Induced Modification of Surface Electronic Structure: Pyrocatechol Adsorption on the Anatase TiO ₂ (101) and Rutile TiO ₂ (110) Surfaces. Journal of Physical Chemistry C, 2012, 116, 23515-23525.	1.5	57
3059	Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2012, 134, 19438-19453.	6.6	204
3060	Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 2012, 16, 5848-5860.	8.2	749
3061	The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 24591.	6.7	12
3062	Phenothiazinyl Rhodanylidene Merocyanines for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2012, 77, 3704-3715.	1.7	89
3063	Simultaneous improvement of photocatalytic and superhydrophilicity properties of nano TiO2 thin films. Chemical Engineering Research and Design, 2012, 90, 1473-1479.	2.7	30
3064	Organic ionic plastic crystal-based electrolytes for solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6674.	6.7	41
3065	Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: A theoretical approach. Journal of Molecular Graphics and Modelling, 2012, 38, 419-429.	1.3	42
3066	Perspectives on ab initio molecular simulation of excited-state properties of organic dye molecules in dye-sensitised solar cells. Physical Chemistry Chemical Physics, 2012, 14, 12044.	1.3	33
3067	Sevenfold enhancement on porphyrin dye efficiency by coordination of ruthenium polypyridine complexes. Chemical Communications, 2012, 48, 6939.	2.2	28
3068	Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions. Journal of Physical Chemistry Letters, 2012, 3, 3786-3790.	2.1	52

#	Article	IF	CITATIONS
3069	Femtosecond Time-Resolved Fluorescence Study of TiO ₂ -Coated ZnO Nanorods/P3HT Photovoltaic Films. Journal of Physical Chemistry C, 2012, 116, 25248-25256.	1.5	27
3070	Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. International Reviews in Physical Chemistry, 2012, 31, 420-467.	0.9	75
3071	Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO ₂ solar cells. Journal of Materials Chemistry, 2012, 22, 1265-1269.	6.7	255
3072	Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 15475.	6.7	141
3073	Organic photosensitizers with N-carboxymethyl pyridinium acceptor/anchoring group for dye-sensitized solar cells. Synthetic Metals, 2012, 162, 2222-2227.	2.1	4
3074	Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Nanotechnology, 2012, 23, 205401.	1.3	33
3075	A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials. Nature Communications, 2012, 3, 631.	5.8	554
3076	Photocatalytic activity of titania layer prepared by oxidizing titanium compounds on titanium plate surface. Applied Catalysis B: Environmental, 2012, 127, 227-233.	10.8	11
3077	On the Intercalation of the Iodine–lodide Couple on Layered Double Hydroxides with Different Particle Sizes. Inorganic Chemistry, 2012, 51, 2560-2568.	1.9	52
3078	Preparation of nanoporous TiO2 electrodes using different mesostructured silica templates and improvement of the photovoltaic properties of DSSCs. New Journal of Chemistry, 2012, 36, 2094.	1.4	20
3079	Production of nanocrystalline titanium dioxide photoactive coatings for decomposition of organic water pollutants in a flow reactor. Glass Physics and Chemistry, 2012, 38, 504-510.	0.2	4
3080	An optically transparent cathode for dye sensitized solar cells based on cationically functionalized and metal decorated graphene. Nano Energy, 2012, 1, 757-763.	8.2	17
3081	Fine Tuning the Performance of DSSCs by Variation of the Ï€â€6pacers in Organic Dyes that Contain a 2,7â€Diaminofluorene Donor. Chemistry - an Asian Journal, 2012, 7, 2942-2954.	1.7	19
3082	Crystal Structures and Emitting Properties of Trifluoromethylaminoquinoline Derivatives: Thermal Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation of Polymorphic Crystals That Emit Different Colors. Chemistry - A European Journal, 2012, 18, 15038-15048.	1.7	72
3083	The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method. Applied Physics A: Materials Science and Processing, 2012, 109, 279-284.	1.1	2
3084	Donor-enhanced bridge effect on the electronic properties of triphenylamine based dyes: density functional theory investigations. Journal of Molecular Modeling, 2012, 18, 3609-3615.	0.8	16
3085	Photovoltaic Properties and Negative Capacitance Spectroscopy of PCBM:P3HT/FTO Nanostructured Counter Electrode for TiO2-Based DSSC. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1240-1247.	1.9	4
3086	Influence of adding carbon nanotubes on photoelectric conversion properties of dye-doped titania gel. Research on Chemical Intermediates, 2012, 38, 1857-1869.	1.3	1

		CITATION REPORT		
#	Article		IF	CITATIONS
3087	Light-driven water oxidation for solar fuels. Coordination Chemistry Reviews, 2012, 25	6, 2503-2520.	9.5	337
3088	Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coordination Reviews, 2012, 256, 2601-2627.	Chemistry	9.5	258
3089	Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar toward a "bright―future. Coordination Chemistry Reviews, 2012, 256, 3008-303	cells – A goal 5.	9.5	152
3090	Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sens cell. Journal of Alloys and Compounds, 2012, 545, 99-104.	sitized solar	2.8	12
3091	Polyoxometalate-based molecular/nano composites: Advances in environmental remec photocatalysis and biomimetic approaches to solar energy conversion. Journal of Photo Photobiology C: Photochemistry Reviews, 2012, 13, 277-298.	liation by ochemistry and	5.6	132
3092	Highly Efficient Quasi-solid State Flexible Dye-sensitized Solar Cells Using a Compressi Light-confined Effect for Preparation of TiO2 Photoelectrodes. Procedia Engineering, 2	on Method and 012, 36, 439-445.	1.2	6
3093	Recent Trends in High Efficiency Photo-Electrochemical Solar Cell Using Dye-Sensitised Photo-Electrodes and Ionic Liquid Based Redox Electrolytes. Proceedings of the Nation Sciences India Section A - Physical Sciences, 2012, 82, 5-19.	 al Academy of	0.8	10
3094	Improvement of dye-sensitized solar cells' performance through introducing suitable h groups to triarylamine dyes. Physical Chemistry Chemical Physics, 2012, 14, 2809.	eterocyclic	1.3	27
3095	Influence of ionic pretreatment on the performance of solid electrolyte dye-sensitized Solar Energy, 2012, 86, 2312-2317.	solar cells.	2.9	4
3096	Directly Determine an Additive-Induced Shift in Quasi-Fermi Level of TiO ₂ Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE15.	Films in	0.8	1
3097	Origins of device performance in dicarboxyterpyridine Ru(ii) dye-sensitized solar cells. Chemistry Chemical Physics, 2012, 14, 14190.	Physical	1.3	24
3098	The effect of ligand substitution and water co-adsorption on the adsorption dynamics level matching of amino-phenyl acid dyes on TiO2. Physical Chemistry Chemical Physic 1749-1755.	and energy s, 2012, 14,	1.3	18
3099	Core-shell Au–TiO2 nanoarchitectures formed by pulsed laser deposition for enhanc dye sensitized solar cells. RSC Advances, 2012, 2, 3791.	ed efficiency in	1.7	39
3100	Spirally configured cis-stilbene/fluorene hybrids as bipolar, organic sensitizers for solar applications. Chemical Communications, 2012, 48, 4884.	cell	2.2	24
3101	Solid-state dye-sensitized solar cells from polymer-templated TiO ₂ bilayer Canadian Journal of Chemistry, 2012, 90, 1048-1055.	thin films.	0.6	0
3102	The charge transport and photoconduction mechanisms of TiO2-based dye sensitized , .	solar cell. , 2012,		0
3103	Preparation of hierarchical tin oxide microspheres and their application in dye-sensitize Journal of Materials Chemistry, 2012, 22, 25335.	d solar cells.	6.7	35
3104	Construction of 980 nm laser-driven dye-sensitized photovoltaic cell with excellent per powering nanobiodevices implanted under the skin. Journal of Materials Chemistry, 20	formance for 12, 22, 18156.	6.7	26

#	Article	IF	CITATIONS
3105	Synthesis of single-crystalline anatase nanorods and nanoflakes on transparent conducting substrates. Chemical Communications, 2012, 48, 8565.	2.2	42
3106	Synthesis of long TiO2 nanowire arrays with high surface areas via synergistic assembly route for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 17531.	6.7	74
3107	Chemical input and l–V output: stepwise chemical information processing in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 16014.	1.3	11
3108	Highly porous TiO2 films for dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 14254.	6.7	63
3109	Multi-functional photoanode films using mesoporous TiO2 aggregate structure for efficient dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 10873.	6.7	43
3110	Versatile grafting chemistry for creation of stable molecular layers on oxides. Journal of Materials Chemistry, 2012, 22, 1046-1053.	6.7	22
3111	Double-layer coating of SrCO3/TiO2 on nanoporous TiO2 for efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 816-822.	1.3	25
3112	Efficient light-scattering functionalized TiO2 photoanodes modified with cyanobiphenyl-based benzimidazole for dye-sensitized solar cells with additive-free electrolytes. Journal of Materials Chemistry, 2012, 22, 18380.	6.7	31
3113	Novel pyrrole-based dyes for dye-sensitized solar cells: From rod-shape to "H―type. Journal of Materials Chemistry, 2012, 22, 6689.	6.7	81
3114	Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6389.	6.7	62
3115	Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs. Physical Chemistry Chemical Physics, 2012, 14, 3576.	1.3	15
3116	Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. Journal of Solid State Electrochemistry, 2012, 16, 2993-3001.	1.2	64
3117	Photosensitization of ZnO rod electrodes with AgInS ₂ nanoparticles and ZnS-AgInS ₂ solid solution nanoparticles for solar cell applications. RSC Advances, 2012, 2, 552-559.	1.7	46
3118	One-step synthesis of single-crystal anatase TiO2tetragonal faceted-nanorods for improved-performance dye-sensitized solar cells. CrystEngComm, 2012, 14, 230-234.	1.3	42
3119	Hierarchical micro/nano-structured titanium nitride spheres as a high-performance counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 6067.	6.7	64
3120	High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole. Journal of Materials Chemistry, 2012, 22, 10929.	6.7	79
3121	Sea urchin TiO2–nanoparticle hybrid composite photoelectrodes for CdS/CdSe/ZnS quantum-dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 4620.	1.3	33
3122	Enhanced light-harvesting capability by phenothiazine in ruthenium sensitizers with superior photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 130-139.	6.7	20

#	Article	IF	CITATIONS
3123	Anatase TiO2 pillar–nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Dalton Transactions, 2012, 41, 12683.	1.6	14
3124	Visible-Light Photocatalytic Degradation of Methylene Blue with Porphyrin-Sensitized TiO ₂ . Advanced Materials Research, 2012, 441, 544-548.	0.3	3
3125	Effect of Cation on Dye Regeneration Kinetics of N719-Sensitized TiO2 Films in Acetonitrile-Based and Ionic-Liquid-Based Electrolytes Investigated by Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2012, 116, 4316-4323.	1.5	39
3126	Effect of Side Groups for Ruthenium Bipyridyl Dye on the Interactions with lodine in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 1493-1502.	1.5	14
3127	Exploring the Heterogeneous Interfaces in Organic or Ruthenium Dye-Sensitized Liquid- and Solid-State Solar Cells. ACS Applied Materials & amp; Interfaces, 2012, 4, 3141-3147.	4.0	14
3128	Synthesis of Panchromatic Ru(II) Thienyl-Dipyrrin Complexes and Evaluation of Their Light-Harvesting Capacity. Inorganic Chemistry, 2012, 51, 1614-1624.	1.9	41
3129	Photoelectric Conversion Properties of Dye-Sensitized Solar Cells Using Dye-Dispersing Titania. Journal of Physical Chemistry C, 2012, 116, 4848-4854.	1.5	25
3130	Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2for regenerative quantum-dot-sensitized solar cells. Nanotechnology, 2012, 23, 395401.	1.3	6
3131	Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene ï€-bridges. Journal of Materials Chemistry, 2012, 22, 5382.	6.7	82
3132	All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. Journal of Materials Chemistry, 2012, 22, 14856.	6.7	47
3133	Solar Cell Sensitizer Models [Ru(bpy-R) ₂ (NCS) ₂] Probed by Spectroelectrochemistry. Inorganic Chemistry, 2012, 51, 2097-2104.	1.9	36
3134	Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Science and Technology of Advanced Materials, 2012, 13, 013003.	2.8	170
3135	Oligo(poly)thiophene Sensitization of CdSe Nanocrystal and TiO ₂ Polycrystalline Electrodes: A Photoelectrochemical Investigation. Journal of Physical Chemistry C, 2012, 116, 2033-2039.	1.5	10
3136	Synthesis, Morphology, and Optical and Electrochemical Properties of Poly(3-hexylthiophene)- <i>b</i> -poly(3-thiophene hexylacetate). Macromolecules, 2012, 45, 813-820.	2.2	43
3137	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Fluorine Substituents on Photovoltaic Performance. Journal of Physical Chemistry Letters, 2012, 3, 1830-1835.	2.1	42
3138	Redox Reaction Mechanisms with Non-triiodide Mediators in Dye-Sensitized Solar Cells by Redox Potential Calculations. Journal of Physical Chemistry Letters, 2012, 3, 3581-3584.	2.1	19
3139	A Novel Amine-Free Dianchoring Organic Dye for Efficient Dye-Sensitized Solar Cells. Organic Letters, 2012, 14, 6338-6341.	2.4	58
3140	Inverse Opal Carbons for Counter Electrode of Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 7033-7038.	1.6	52

		CITATION REPORT		
#	Article		IF	CITATIONS
3141	Pyrocatechol as a surface capping molecule on rutile TiO2 (110). Surface Science, 2012	2, 606, 273-277.	0.8	8
3142	Functionalized organic dyes containing a phenanthroimidazole donor for dye-sensitized applications. Tetrahedron, 2012, 68, 5590-5598.	l solar cell	1.0	24
3143	2,1,3-Benzothiadiazole-containing donor–acceptor–acceptor dyes for dye-sensitize Tetrahedron, 2012, 68, 7509-7516.	d solar cells.	1.0	44
3144	Preparation of TiO2 paste using poly(vinylpyrrolidone) for dye sensitized solar cells. Thi 2012, 520, 7018-7021.	n Solid Films,	0.8	15
3145	The effect of Li+ intercalation on different sized TiO2 nanoparticles and the performanc dye-sensitized solar cells. Thin Solid Films, 2012, 520, 7011-7017.	e of	0.8	23
3146	Near infrared thieno[3,4-b]pyrazine sensitizers for efficient quasi-solid-state dye-sensitizers. Physical Chemistry Chemical Physics, 2012, 14, 4802.	zed solar	1.3	66
3147	Fine-tuning the Electronic Structure of Organic Dyes for Dye-Sensitized Solar Cells. Org 2012, 14, 4330-4333.	anic Letters,	2.4	95
3148	Holographic modification of TiO2 nanostructure for enhanced charge transport in dye-s solar cell. Journal of Applied Physics, 2012, 112, .	ensitized	1.1	5
3149	Increase in the Coordination Number of a Cobalt Porphyrin after Photo-Induced Interfac Transfer into Nanocrystalline TiO ₂ . Inorganic Chemistry, 2012, 51, 9865-9	ial Electron 872.	1.9	8
3150	Aggregation-free branch-type organic dye with a twisted molecular architecture for dye solar cells. Energy and Environmental Science, 2012, 5, 8548.	-sensitized	15.6	76
3151	Quantum confinement effect of CdSe induced by nanoscale solvothermal reaction. Nar 6642.	ioscale, 2012, 4,	2.8	13
3152	Graphene quantum dots: an emerging material for energy-related applications and beyc Environmental Science, 2012, 5, 8869.	ond. Energy and	15.6	790
3153	Recent advances of fluorous chemistry in material sciences. Chemical Communications,	, 2012, 48, 11382.	2.2	64
3154	Organic dyes containing oligo-phenothiazine for dye-sensitized solar cells. Journal of Ma Chemistry, 2012, 22, 21704.	aterials	6.7	64
3155	Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society, 2012,	71, 1-16.	0.4	97
3156	Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorga chemistry principles. Dalton Transactions, 2012, 41, 7814.	anic	1.6	101
3157	New Triphenylamine-Based Organic Dyes with Different Numbers of Anchoring Groups Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 5941-5950.	or	1.5	68
3158	An experimental investigation to improve the hydrogen production by water photoelect cyanin-chloride is used as sensibilizer. Applied Energy, 2012, 97, 763-770.	trolysis when	5.1	30

		CITATION REPORT		
#	Article		IF	CITATIONS
3159	Tailoring the wettability of nanocrystalline TiO2 films. Applied Surface Science, 2012, 2	258, 2266-2269.	3.1	9
3160	Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized sola Surface Science, 2012, 258, 6479-6484.	r cells. Applied	3.1	90
3161	Effect of hydroxyl group attachment on TiO2 films for dye-sensitized solar cells. Applie Science, 2012, 258, 7833-7838.	d Surface	3.1	36
3162	The effect of electrolyte filling method on the performance of dye-sensitized solar cells Electroanalytical Chemistry, 2012, 677-680, 41-49.	s. Journal of	1.9	13
3163	Graphene application as a counter electrode material for dye-sensitized solar cell. Mate 2012, 86, 96-99.	erials Letters,	1.3	46
3164	Preparation of Jeffamine based quaternary ammonium iodide melt for dye sensitized so Journal of Molecular Liquids, 2012, 172, 8-11.	blar cells.	2.3	3
3165	Synthesis, characterization and electrochemistry of novel unsymmetrical zinc phthalog sensitizer with extended conjugation. Journal of Molecular Structure, 2012, 1022, 153	:yanines -158.	1.8	22
3166	Cellulose acetate fibers covered by CdS nanoparticles for hybrid solar cell applications Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177	Materials 1491-1496.	1.7	31
3167	Dependence of energy conversion efficiency of dye-sensitized solar cells on the anneal temperature of TiO2 nanoparticles. Materials Science in Semiconductor Processing, 20	ing)12, 15, 371-379.	1.9	18
3168	Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport sensitizer for stable dye-sensitized solar cell. Nano Energy, 2012, 1, 6-12.	unit as	8.2	38
3169	Recent progress of one-dimensional ZnO nanostructured solar cells. Nano Energy, 201	2, 1, 91-106.	8.2	189
3170	Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/r Nano Energy, 2012, 1, 259-272.	anosystems.	8.2	97
3171	Electrochemical properties of TiO2 encapsulated ZnO nanorod aggregates dye sensitiz Journal of Alloys and Compounds, 2012, 537, 159-164.	ed solar cells.	2.8	21
3172	A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar ce effects of substitution on the cyclometallated ligand. Journal of Organometallic Chemi 88-93.	ls: Beneficial stry, 2012, 714,	0.8	38
3173	A combined experimental and theoretical study of natural betalain pigments used in d solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240, 5-13	ye-sensitized	2.0	62
3174	Improvement of adhesion of Pt-free counter electrodes for low-cost dye-sensitized sol Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 66-71.	ar cells.	2.0	41
3175	Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod- light-scattering layer. Journal of Power Sources, 2012, 218, 280-285.	aggregate	4.0	59
3176	Graphene/carbon nanotubes composites as a counter electrode for dye-sensitized sola Applied Physics, 2012, 12, e49-e53.	r cells. Current	1.1	91

#	Article	IF	CITATIONS
3177	The adsorption and reactions of SiClx (x=0â \in "4) on hydroxylated TiO2 anatase (101) surface: A computational study on the functionalization of titania with Cl2Si(O)O adsorbate. Computational and Theoretical Chemistry, 2012, 993, 45-52.	1.1	9
3178	Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews, 2012, 256, 1438-1450.	9.5	275
3179	Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass. Electrochemistry Communications, 2012, 22, 157-161.	2.3	12
3180	Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells. Electrochimica Acta, 2012, 78, 392-397.	2.6	54
3181	Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78, 384-391.	2.6	50
3183	A Solid Advancement for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 10451-10452.	7.2	33
3184	<i>Opp</i> â€Ðibenzoporphyrins as a Lightâ€Harvester for Dyeâ€&ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 2662-2669.	1.7	22
3185	Photoanode Based on Chainâ€Shaped Anatase TiO ₂ Nanorods for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 2313-2320.	1.7	17
3186	Highâ€Performance Dipolar Organic Dyes with an Electronâ€Deficient Diphenylquinoxaline Moiety in the Ï€â€Conjugation Framework for Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 12085-12095.	1.7	65
3187	Optimizing TiO ₂ Nanotube Top Geometry for Use in Dye ensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 11862-11866.	1.7	50
3188	A New Musselâ€Inspired Polydopamine Sensitizer for Dyeâ€5ensitized Solar Cells: Controlled Synthesis and Charge Transfer. Chemistry - A European Journal, 2012, 18, 14000-14007.	1.7	90
3189	Electrodeposition of Platinum on Plastic Substrates as Counter Electrodes for Flexible Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 2850-2857.	1.5	62
3190	Mesoporous Dye-Sensitized Solar Cells. , 2012, , 481-496.		2
3191	All-carbon electrode-based fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 125-130.	1.3	82
3192	MWCNT/mesoporous carbon nanofibers composites prepared by electrospinning and silica template as counter electrodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 246, 45-49.	2.0	40
3193	A new family of A2B2 type porphyrin derivatives: synthesis, physicochemical characterization and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8092.	6.7	45
3194	Electron-Deficient Pyrimidine Adopted in Porphyrin Sensitizers: A Theoretical Interpretation of ï€-Spacers Leading to Highly Efficient Photo-to-Electric Conversion Performances in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 9166-9179.	1.5	76
3195	Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment. Physical Chemistry Chemical Physics, 2012, 14, 15963.	1.3	151

#	Article	IF	CITATIONS
3196	Thiophene-Bridged Double D-Ï€-A Dye for Efficient Dye-Sensitized Solar Cell. Chemistry of Materials, 2012, 24, 3493-3499.	3.2	174
3197	Dye-sensitized solar cells based on ZnO nanoneedle/TiO ₂ nanoparticle composite photoelectrodes with controllable weight ratio. Journal of Materials Research, 2012, 27, 2982-2987.	1.2	4
3198	Dye-Sensitized Photoelectrochemical Cells. , 2012, , 479-542.		17
3199	Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	6.7	2,339
3200	Effects of the aspect ratio on the dye adsorption of ZnO nanorods grown by using a sonochemical method for dye-sensitized solar cells. Journal of the Korean Physical Society, 2012, 61, 1444-1448.	0.3	10
3202	Derivatization of Bichromic Cyclometalated Ru(II) Complexes with Hydrophobic Substituents. Inorganic Chemistry, 2012, 51, 1501-1507.	1.9	25
3203	A simple triaryl amine-based dual functioned co-adsorbent for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 3786.	6.7	65
3204	A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Advances, 2012, 2, 6846.	1.7	59
3205	Photogenerated avenues in macromolecules containing Re(i), Ru(ii), Os(ii), and Ir(iii) metal complexes of pyridine-based ligands. Chemical Society Reviews, 2012, 41, 2222-2255.	18.7	211
3206	Controlled Dissolution of Polystyrene Nanobeads: Transition from Liquid Electrolyte to Gel Electrolyte. Nano Letters, 2012, 12, 2233-2237.	4.5	58
3207	New dyads using (metallo)porphyrins as ancillary ligands in polypyridine ruthenium complexes. Synthesis and electronic properties. Dalton Transactions, 2012, 41, 12865.	1.6	21
3208	Synthesis and photovoltaic properties of organic sensitizers incorporating a thieno[3,4-c]pyrrole-4,6-dione moiety. Physical Chemistry Chemical Physics, 2012, 14, 7993.	1.3	44
3209	Acid–base properties of the N3 ruthenium(ii) solar cell sensitizer: a combined experimental and computational analysis. Dalton Transactions, 2012, 41, 11841.	1.6	34
3210	Quantitative Analysis of Valence Photoemission Spectra and Quasiparticle Excitations at Chromophore-Semiconductor Interfaces. Physical Review Letters, 2012, 109, 116801.	2.9	26
3211	In Situ versus ex Situ Assembly of Aqueous-Based Thioacid Capped CdSe Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 484-489.	1.5	52
3212	A new organic dye bearing aldehyde electron-withdrawing group for dye-sensitized solar cell. Solar Energy, 2012, 86, 2306-2311.	2.9	46
3213	Protonated Carboxyl Anchor for Stable Adsorption of Ru N749 Dye (Black Dye) on a TiO2 Anatase (101) Surface. Journal of Physical Chemistry Letters, 2012, 3, 472-477.	2.1	48
3214	Solar absorption and microstructure of C-doped and H-co-doped TiO ₂ thin films. Journal Physics D: Applied Physics, 2012, 45, 385305.	1.3	18

#	Article	IF	CITATIONS
3215	Rapid Materials Degradation Induced by Surfaces and Voids: <i>Ab Initio</i> Modeling of β-Octatetramethylene Tetranitramine. Journal of the American Chemical Society, 2012, 134, 11815-11820.	6.6	65
3216	One-Step, Surfactant-Free Hydrothermal Method for Syntheses of Mesoporous TiO2 Nanoparticle Aggregates and Their Applications in High Efficiency Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 3255-3262.	3.2	53
3217	Effect of molecular filtering and electrolyte composition on the spatial variation in performance of dye solar cells. Journal of Electroanalytical Chemistry, 2012, 664, 63-72.	1.9	19
3218	Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. Journal of Electroanalytical Chemistry, 2012, 683, 43-46.	1.9	47
3219	Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods. Electrochimica Acta, 2012, 80, 100-107.	2.6	43
3220	A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells. Electrochimica Acta, 2012, 80, 219-226.	2.6	44
3221	Significant influence of nano-SiO2 on the performance of dye-sensitized solar cells based on P25. Electrochimica Acta, 2012, 81, 246-253.	2.6	23
3222	The photovoltaic performance of new ruthenium complexes in DSSCs based on nanorod ZnO electrode. Synthetic Metals, 2012, 162, 2125-2133.	2.1	31
3223	High performance quasi-solid-state dye-sensitized solar cells based on acetamide-modified polymer electrolytes. Organic Electronics, 2012, 13, 2561-2567.	1.4	19
3224	Dye-sensitized solar cells and complexes between pyridines and iodines. A NMR, IR and DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 247-251.	2.0	11
3225	Improved performance of dye-sensitized solar cells with surface-treated TiO2 as a photoelectrode. Materials Research Bulletin, 2012, 47, 2722-2725.	2.7	8
3226	Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. Materials Research Bulletin, 2012, 47, 2407-2414.	2.7	73
3227	Fabrication and reliability of dye solar cells: A resonance Raman scattering study. Microelectronics Reliability, 2012, 52, 2487-2489.	0.9	15
3228	A TD-DFT study of the effects of structural variations on the photochemistry of polyenedyes. Chemical Science, 2012, 3, 416-424.	3.7	38
3229	Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells. Nanoscale, 2012, 4, 5872.	2.8	102
3230	A New Direction in Dye-Sensitized Solar Cells Redox Mediator Development: In Situ Fine-Tuning of the Cobalt(II)/(III) Redox Potential through Lewis Base Interactions. Journal of the American Chemical Society, 2012, 134, 16646-16653.	6.6	134
3231	Adsorption and electron injection of the N3 metal–organic dye on the TiO2 rutile (110) surface. Physical Chemistry Chemical Physics, 2012, 14, 16668.	1.3	28
3232	Coupled Electron–Hole Quantum Dynamics on Dâ'π–A Dye-Sensitized TiO ₂	1.5	38

	CHAHON K	CITATION REPORT	
#	ARTICLE	IF	Citations
3234	Size-Controlled Anatase Titania Single Crystals with Octahedron-like Morphology for Dye-Sensitized Solar Cells. ACS Nano, 2012, 6, 10862-10873.	7.3	85
3235	Photo-induced electron transfer study of D-ï€-A sensitizers with different type of anchoring groups for dye-sensitized solar cells. RSC Advances, 2012, 2, 6011.	1.7	8
3236	Multifunctional ZnO Nanostructure-Based Devices. Springer Series in Materials Science, 2012, , 361-411.	0.4	1
3237	Controllable synthesis of rutile TiO2 nanorod array, nanoflowers and microspheres directly on fluorine-doped tin oxide for dye-sensitised solar cells. Micro and Nano Letters, 2012, 7, 826.	0.6	20
3238	Aerogel based SiO2–TiO2 hybrid photoanodes for enhanced light harvesting in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18930.	6.7	41
3239	A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry, 2012, 22, 24048.	6.7	74
3240	Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 4040.	6.7	147
3241	Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6267.	6.7	60
3242	Theoretical studies of the structures and spectroscopic properties of the photoelectrochemical cell ruthenium sensitizers, C101 and J13. Science China Chemistry, 2012, 55, 398-408.	4.2	2
3243	Plasmon-enhanced photocurrent in dye-sensitized solar cells. Solar Energy, 2012, 86, 2600-2605.	2.9	61
3244	Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	131
3245	Bioinspired High-Potential Porphyrin Photoanodes. Journal of Physical Chemistry C, 2012, 116, 4892-4902.	1.5	69
3246	The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 556-559.	2.1	36
3247	Molecular Engineering of Quinoxaline-Based Organic Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 3179-3187.	3.2	138
3248	Alternate redox electrolytes in dye-sensitized solar cells. Science Bulletin, 2012, 57, 4131-4142.	1.7	26
3249	Synthesis and application of core-shell Au–TiO2nanowire photoanode materials for dye sensitized solar cells. RSC Advances, 2012, 2, 573-582.	1.7	44
3250	Photophysical, electrochemical and photovoltaic properties of dye sensitized solar cells using a series of pyridyl functionalized porphyrin dyes. RSC Advances, 2012, 2, 12899.	1.7	76

#	Article	IF	CITATIONS
3251	Variable-Gap Conjugated Oligomers Grafted to CdSe Nanocrystals. Chemistry of Materials, 2012, 24, 3143-3152.	3.2	31
3252	Effect of pH on the Photophysical and Redox Properties of a Ruthenium(II) Mixed Chelate Derived from Imidazole-4,5-dicarboxylic Acid and 2,2′-Bipyridine: An Experimental and Theoretical Investigation. Journal of Physical Chemistry A, 2012, 116, 5216-5226.	1.1	29
3253	Coating TiO ₂ Anatase by Amorphous Al ₂ O ₃ : Effects on Dyes Anchoring Through Carboxyl Groups. Journal of Physical Chemistry C, 2012, 116, 4408-4415.	1.5	8
3254	Photoinduced electron transport in dye-containing titania gel films. RSC Advances, 2012, 2, 4258.	1.7	14
3255	Dithienylthienothiadiazole-based organic dye containing two cyanoacrylic acid anchoring units for dye-sensitized solar cells. RSC Advances, 2012, 2, 11457.	1.7	19
3256	Ru–Pt and Ru–Pd heterobimetallic complexes based on a new ligand with two distinct chelate sites. Dalton Transactions, 2012, 41, 5553.	1.6	8
3257	Photonic crystal coupled plasmonic nanoparticle array for resonant enhancement of light harvesting and power conversion. Physical Chemistry Chemical Physics, 2012, 14, 14334.	1.3	13
3258	Panchromic Cationic Iridium(III) Complexes. Inorganic Chemistry, 2012, 51, 12560-12564.	1.9	40
3259	Influence of Surface-Attachment Functionality on the Aggregation, Persistence, and Electron-Transfer Reactivity of Chalcogenorhodamine Dyes on TiO ₂ . Langmuir, 2012, 28, 7071-7082.	1.6	54
3260	Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties. Energy and Environmental Science, 2012, 5, 8238.	15.6	50
3261	Open-ended TiO ₂ nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale, 2012, 4, 448-450.	2.8	42
3263	High-Performance Plastic Dye-sensitized Solar Cells Based on Low-Cost Commercial P25 TiO ₂ and Organic Dye. ACS Applied Materials & Interfaces, 2012, 4, 1709-1715.	4.0	47
3264	Effects of Iodine Content in the Electrolyte on the Charge Transfer and Power Conversion Efficiency of Dye-Sensitized Solar Cells under Low Light Intensities. Journal of Physical Chemistry C, 2012, 116, 25727-25733.	1.5	93
3265	Modulation of Photocarrier Dynamics in Indoline Dye-Modified TiO ₂ Nanorod Array/P3HT Hybrid Solar Cell with 4- <i>tert</i> -Butylpridine. Journal of Physical Chemistry C, 2012, 116, 25721-25726.	1.5	22
3266	Wavelet–fractal approach to surface characterization of nanocrystalline ITO thin films. Physica B: Condensed Matter, 2012, 407, 4369-4374.	1.3	9
3267	Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 246, 29-35.	2.0	98
3268	Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18018.	6.7	135
3269	Vibrational spectroscopy as a probe of molecule-based devices. Chemical Society Reviews, 2012, 41, 1929-1946.	18.7	33

#	Article	IF	CITATIONS
3270	Facile Synthesis and Morphology Control of Bamboo-Type TiO ₂ Nanotube Arrays for High-Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 14257-14263.	1.5	68
3271	Carbon Nanotube Solar Cells. PLoS ONE, 2012, 7, e37806.	1.1	23
3272	Self-Organized One-Dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>TiO</mml:mtext><mml:mn mathvariant="bold">2</mml:mn </mml:msub>Nanotube/Nanowire Array Films for Use in Excitonic Solar Cells: A Review. Journal of Nanotechnology, 2012, 2012, 1-27.</mml:math 	1.5	7
3273	Henna (<i>Lawsonia inermis</i> L.) Dye-Sensitized Nanocrystalline Titania Solar Cell. Journal of Nanotechnology, 2012, 2012, 1-6.	1.5	16
3274	Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide. Journal of Nanotechnology, 2012, 2012, 1-8.	1.5	6
3275	Dye sensitized solar cell using natural dyes extracted from red leave onion. International Journal of Physical Sciences, 2012, 7, .	0.1	5
3276	Investigating New Materials and Architectures for Gr $ ilde{A}$ el Cells. , 0, , .		2
3277	Utilization of Nanoparticles Produced by Aqueous-Solution Methods – Formation of Acid Sites on CeO2-TiO2 Composite and 1-D TiO2 for Dye-Sensitized Solar Cells. , 2012, , .		4
3278	Potential Applications for Solar Photocatalysis: From Environmental Remediation to Energy Conversion. , 0, , .		9
3279	Improving openâ€circuit voltage in DSSCs using Cuâ€doped TiO ₂ as a semiconductor. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 378-385.	0.8	54
3280	Resonant Raman study of dye instability in dyeâ€sensitized TiO ₂ system: The effect of surface states. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1369-1375.	0.8	3
3281	Molecular engineering of sensitizers for dyeâ€sensitized solar cell applications. Chemical Record, 2012, 12, 306-328.	2.9	109
3282	Acetic Acid Adsorption on Anatase TiO ₂ (101). Journal of Physical Chemistry C, 2012, 116, 11643-11651.	1.5	67
3283	Stability of CdS-coated TiO2 solar cells. Journal of Solid State Electrochemistry, 2012, 16, 1091-1097.	1.2	11
3284	Development of separate-type Pt-free photofuel cells based on visible-light responsive TiO2 photoanode. Journal of Materials Chemistry, 2012, 22, 10460.	6.7	18
3285	The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6, 162-169.	15.6	1,197
3286	Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale, 2012, 4, 1707.	2.8	194
3287	Dye-sensitized solar cells: spectroscopic evaluation of dye loading on TiO2. Journal of Materials Chemistry, 2012, 22, 11364.	6.7	73
	CHANORA	LFORT	
-----------	---	------------	------------------
# 3288	ARTICLE Surface Modification Using Phosphonic Acids and Esters. Chemical Reviews, 2012, 112, 3777-3807.	IF 23.0	Citations 706
3289	Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique. RSC Advances, 2012, 2, 7074.	1.7	30
3290	Efficient flexible dye-sensitized solar cells fabricated by transferring photoanode with a buffer layer. RSC Advances, 2012, 2, 6393.	1.7	7
3291	Evaluating Charge Recombination Rate in Dye-Sensitized Solar Cells from Electronic Structure Calculations. Journal of Physical Chemistry C, 2012, 116, 7638-7649.	1.5	85
3292	Solvent Effects on the Adsorption Geometry and Electronic Structure of Dye-Sensitized TiO ₂ : A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 5932-5940.	1.5	83
3293	Evaluation of a Ruthenium Oxyquinolate Architecture for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2012, 51, 1-3.	1.9	66
3294	Iodide-functionalized graphene electrolyte for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 16477.	6.7	25
3295	Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 6460.	15.6	173
3296	The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem, 2012, 13, 2824-2875.	1.0	239
3297	Recent developments in molecule-based organic materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8734.	6.7	362
3298	Synthesis and photovoltaic properties of polymeric metal complexes containing 8-hydroxyquinoline as dye sensitizers for dye-sensitized solar cells. Journal of Coordination Chemistry, 2012, 65, 1632-1644.	0.8	13
3299	The DFT investigations of the electron injection in hydrazone-based sensitizers. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	49
3300	The effect of conjugated spacer on novel carbazole derivatives for dyeâ€sensitized solar cells: Density functional theory/timeâ€dependent density functional theory study. Journal of Computational Chemistry, 2012, 33, 1517-1523.	1.5	28
3301	Nanocomposite pâ€n Junction Polycarbazole CdSe/TiO ₂ Thin Films on ITO via Electrochemical Crosslinking. Macromolecular Materials and Engineering, 2012, 297, 875-886.	1.7	7
3302	Optimization of the Performance of Dyeâ€5ensitized Solar Cells Based on Ptâ€Like TiC Counter Electrodes. European Journal of Inorganic Chemistry, 2012, 2012, 3557-3561.	1.0	29
3303	Efficient Metalâ€Free Organic Sensitizers Containing Tetraphenylethylene Moieties in the Donor Part for Dyeâ€ S ensitized Solar Cells. European Journal of Organic Chemistry, 2012, 2012, 5248-5255.	1.2	25
3304	A dendron modified ruthenium complex: enhanced open circuit voltage in dye-sensitized solar cells. Chemical Communications, 2012, 48, 7793.	2.2	17
3305	A facile method to prepare SnO2 nanotubes for use in efficient SnO2–TiO2 core–shell dye-sensitized solar cells. Nanoscale, 2012, 4, 3475.	2.8	140

#	Article	IF	CITATIONS
3306	Ï€-Extended TTF: a versatile molecule for organic electronics. Journal of Materials Chemistry, 2012, 22, 4188.	6.7	136
3307	Study of Quantum Dot/Inorganic Layer/Dye Molecule Sandwich Structure for Electrochemical Solar Cells. Journal of Physical Chemistry C, 2012, 116, 15185-15191.	1.5	18
3308	Ru complexes of thienyl-functionalized dipyrrins as NCS-free sensitizers for the dye-sensitized solar cell. Chemical Communications, 2012, 48, 8790.	2.2	41
3309	Modeling Ruthenium-Dye-Sensitized TiO ₂ Surfaces Exposing the (001) or (101) Faces: A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 18124-18131.	1.5	55
3310	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	1.7	18
3311	Stable Dyeâ€Sensitized Solar Cells by Encapsulation of N719â€Sensitized TiO ₂ Electrodes Using Surfaceâ€Induced Crossâ€Linking Polymerization. Advanced Energy Materials, 2012, 2, 219-224.	10.2	43
3312	Clickâ€Functionalized Ru(II) Complexes for Dyeâ€5ensitized Solar Cells. Advanced Energy Materials, 2012, 2, 1004-1012.	10.2	22
3313	Sandwichâ€like Singledâ€Walled Titania Nanotube as a Novel Semiconductor Electrode for Quantum Dot‧ensitized Solar Cells. Advanced Energy Materials, 2012, 2, 639-644.	10.2	12
3315	Cyclometalated Ruthenium(II) Complexes as Nearâ€IR Sensitizers for High Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 7528-7531.	7.2	109
3316	New Organic Dye Based on a 3,6â€Disubstituted Carbazole Donor for Efficient Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 343-350.	1.7	35
3317	Highâ€Performance Organic Materials for Dyeâ€Sensitized Solar Cells: Triaryleneâ€Linked Dyads with a 4â€ <i>tert</i> â€Butylphenylamine Donor. Chemistry - an Asian Journal, 2012, 7, 572-581.	1.7	29
3318	Unsymmetric Platinum(II) Bis(aryleneethynylene) Complexes as Photosensitizers for Dye‧ensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1426-1434.	1.7	35
3319	Ruthenium(II) Photosensitizers of Tridentate Clickâ€Đerived Cyclometalating Ligands: A Joint Experimental and Computational Study. Chemistry - A European Journal, 2012, 18, 4010-4025.	1.7	61
3320	Donorâ€Ï€â€Acceptors Containing the 10â€(1,3â€Dithiolâ€2â€ylidene)anthracene Unit for Dyeâ€Sensitized Sola Chemistry - A European Journal, 2012, 18, 11621-11629.	r Cells. 1.7	40
3321	Ethoxyâ€substituted Oligoâ€phenylenevinyleneâ€Bridged Organic Dyes for Efficient Dyeâ€Sensitized Solar Cells. Chinese Journal of Chemistry, 2012, 30, 1497-1503.	2.6	7
3322	Photophysical and Electrochemical Properties, and Molecular Structures of Organic Dyes for Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2012, 13, 4032-4080.	1.0	319
3323	Electrochemistry in Reverse Biased Dye Solar Cells and Dye/Electrolyte Degradation Mechanisms. ChemPhysChem, 2012, 13, 2964-2975.	1.0	34
3324	Substituent Effect on the π Linkers in Triphenylamine Dyes for Sensitized Solar Cells: A DFT/TDDFT Study. ChemPhysChem, 2012, 13, 3320-3329.	1.0	39

#	Article	IF	Citations
3325	Avoiding Diffusion Limitations in Cobalt(III/II)â€ <i>Tris</i> (2,2′â€Bipyridine)â€Based Dyeâ€Sensitized Solar Ce by Tuning the Mesoporous TiO ₂ Film Properties. ChemPhysChem, 2012, 13, 2976-2981.	^{lls} 1.0	75
3326	A Lightâ€Assisted Biomass Fuel Cell for Renewable Electricity Generation from Wastewater. ChemSusChem, 2012, 5, 1482-1487.	3.6	18
3327	Enhanced Light Harvesting in Plasmonic Dyeâ€Sensitized Solar Cells by Using a Topologically Ordered Gold Lightâ€Trapping Layer. ChemSusChem, 2012, 5, 572-576.	3.6	29
3328	Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chemical Society Reviews, 2012, 41, 5285.	18.7	237
3329	Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2012, 116, 10215-10221.	1.5	59
3330	Ultrafast fluorescence studies of dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 7934.	1.3	75
3331	Molecular modification on dye-sensitized solar cells by phosphonate self-assembled monolayers. Journal of Materials Chemistry, 2012, 22, 2915-2921.	6.7	24
3332	Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 1695-1700.	2.1	63
3333	What Is the Best Anchoring Group for a Dye in a Dye-Sensitized Solar Cell?. Journal of Physical Chemistry Letters, 2012, 3, 1531-1535.	2.1	151
3334	It Takes More Than an Imine: The Role of the Central Atom on the Electron-Accepting Ability of Benzotriazole and Benzothiadiazole Oligomers. Journal of the American Chemical Society, 2012, 134, 2599-2612.	6.6	135
3335	Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cells. Energy and Environmental Science, 2012, 5, 7203.	15.6	117
3336	Review on nanostructured semiconductors for dye sensitized solar cells. Electronic Materials Letters, 2012, 8, 231-243.	1.0	58
3337	Influence of annealing temperature on performance of dye-sensitized TiO2 nanorod solar cells. Journal of Materials Science: Materials in Electronics, 2012, 23, 1373-1377.	1.1	19
3338	The controllable synthesis of chain-like TiO2 networks with multiwalled carbon nanotubes as templates and its application for dye-sensitized solar cells. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	7
3339	Photochemical hydrogen production with molecular devices comprising a zinc porphyrin and a cobaloxime catalyst. Science China Chemistry, 2012, 55, 1274-1282.	4.2	16
3340	Theoretical study on the structures and electronic properties of oligo(p-phenylenevinylene) carboxylic acid and its derivatives: effects of spacer and anchor groups. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	14
3341	The effect of anchoring group number on molecular structures and absorption spectra of triphenylamine sensitizers: a computational study. Journal of Molecular Modeling, 2012, 18, 1767-1777.	0.8	29
3342	<scp><scp>CuInS</scp>₂/<scp>N</scp> Coâ€Sensitized <scp><scp>ZnO</scp> </scp> Nanorods with Improved Photovoltaic Properties for Solar Cells. Journal of the American Ceramic Society, 2012, 95, 1343-1347.</scp>	1.9	11

#	Article	IF	CITATIONS
3343	Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chemical Engineering Journal, 2012, 187, 351-356.	6.6	176
3344	Effect of acetic acid in TiO2 paste on the performance of dye-sensitized solar cells. Ceramics International, 2012, 38, S511-S515.	2.3	27
3345	Effect of substrate temperature on the properties of TiO2 nanoceramic films. Ceramics International, 2012, 38, 2461-2466.	2.3	6
3346	Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution. Chemical Physics, 2012, 393, 51-57.	0.9	84
3347	Dye-sensitized solar cell based on nanocrystalline ZnO thin film electrodes combined with a novel light absorbing dye Coomassie Brilliant Blue in acetonitrile solution. International Journal of Hydrogen Energy, 2012, 37, 4863-4870.	3.8	19
3348	A near-infrared dye for dye-sensitized solar cell: Catecholate-functionalized zinc phthalocyanine. Dyes and Pigments, 2012, 92, 1160-1165.	2.0	38
3349	Synthesis and applications of 3,6-carbazole-based conjugated side-chain copolymers containing complexes of 1,10-phenanthroline with Zn(II), Cd(II) and Ni(II) for dye-sensitized solar cells. Dyes and Pigments, 2012, 92, 1062-1068.	2.0	33
3350	Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived ï€-conjugated bridge. Dyes and Pigments, 2012, 92, 1042-1051.	2.0	34
3351	Organic dyes with oligo-n-hexylthiophene for dye-sensitized solar cells: Relation between chemical structure of donor and photovoltaic performance. Dyes and Pigments, 2012, 92, 1250-1256.	2.0	33
3352	Organic dyes incorporating the cyclopentadithiophene moiety for efficient dye-sensitized solar cells. Dyes and Pigments, 2012, 92, 1292-1299.	2.0	37
3353	Alkyloxy substituted organic dyes for high voltage dye-sensitized solar cell: Effect of alkyloxy chain length on open-circuit voltage. Dyes and Pigments, 2012, 94, 88-98.	2.0	27
3354	Performance improvement of dye-sensitizing solar cell by semi-rigid triarylamine-based donors. Dyes and Pigments, 2012, 94, 40-48.	2.0	41
3355	New 2,6-modified BODIPY sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2012, 94, 224-232.	2.0	75
3356	Theoretical studies on spectroscopic properties of ruthenium sensitizers absorbed to TiO2 film surface with connection mode for DSSC. Dyes and Pigments, 2012, 94, 459-468.	2.0	61
3357	4-Methoxy-1,3-thiazole based donor-acceptor dyes: Characterization, X-ray structure, DFT calculations and test as sensitizers for DSSC. Dyes and Pigments, 2012, 94, 512-524.	2.0	67
3358	Synthesis of D-(Ï€-A)2 organic chromophores for dye-sensitized solar cells. Dyes and Pigments, 2012, 94, 503-511.	2.0	60
3359	New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 244-251.	2.0	29
3360	Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells. Journal of Colloid and	5.0	26

#	Article	IF	CITATIONS
3361	Silica modification of titania nanoparticles for a dye-sensitized solar cell. Electrochimica Acta, 2012, 59, 32-38.	2.6	18
3362	A novel gel electrolyte for quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2012, 60, 17-22.	2.6	13
3363	Performance enhancement for quasi-solid-state dye-sensitized solar cells by using acid-oxidized carbon nanotube-based gel electrolytes. Electrochimica Acta, 2012, 61, 185-190.	2.6	47
3364	Bi-functional TiO2 cemented Ag grid under layer for enhancing the photovoltaic performance of a large-area dye-sensitized solar cell. Electrochimica Acta, 2012, 62, 313-318.	2.6	8
3365	Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. Electrochimica Acta, 2012, 67, 201-207.	2.6	36
3366	Enhanced light-harvesting efficiency by Förster resonance energy transfer in quasi-solid state DSSC using organic blue dye. Electrochimica Acta, 2012, 68, 240-245.	2.6	25
3367	A novel thixotropic and ionic liquid-based gel electrolyte for efficient dye-sensitized solar cells. Electrochimica Acta, 2012, 68, 235-239.	2.6	17
3368	Electrochemical impedance parameters elucidate performance of carbazole–triphenylamine–ethylenedioxythiophene-based molecules in dye-sensitized solar cells. Electrochimica Acta, 2012, 69, 256-267.	2.6	30
3369	Enhanced efficiency in dye sensitized solar cells with nanostructured Pt decorated multiwalled carbon nanotube based counter electrode. Electrochimica Acta, 2012, 72, 199-206.	2.6	28
3370	Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells. Electrochimica Acta, 2012, 76, 446-452.	2.6	40
3371	Nearâ€ŀR Absorbing Solar Cell Sensitized With Bacterial Photosynthetic Membranes. Photochemistry and Photobiology, 2012, 88, 1467-1472.	1.3	26
3372	Correlating the photovoltaic performance of alumina modified dye-sensitized solar cells with the properties of metal-free organic sensitizers. Materials Chemistry and Physics, 2012, 132, 943-949.	2.0	13
3373	Two polymeric metal complexes based on polycarbazole containing complexes of 8-hydroxyquinoline with Zn(II) and Ni(II) in the backbone: Synthesis, characterization and photovoltaic applications. Materials Chemistry and Physics, 2012, 133, 452-458.	2.0	20
3374	Template free synthesis of locally-ordered mesoporous titania and its application in dye-sensitized solar cells. Materials Chemistry and Physics, 2012, 134, 170-176.	2.0	9
3375	Low temperature preparation of TiO2 films by cold isostatic pressing for flexible dye-sensitized solar cells. Materials Letters, 2012, 68, 493-496.	1.3	20
3376	Electrospun TiO2 nanostructures sensitized by CdS in conjunction with CoS counter electrodes: Quantum dot-sensitized solar cells all prepared by successive ionic layer adsorption and reaction. Materials Letters, 2012, 76, 43-46.	1.3	33
3377	VIS harvesting unsymmetrical squaraine dye for dye-sensitized solar cells. Renewable Energy, 2012, 38, 163-168.	4.3	11
3378	Enhancing the performance of dye-sensitized solar cells by benzoic acid modified TiO2 nanorod electrode. Renewable Energy, 2012, 38, 214-218.	4.3	36

#	Article	IF	CITATIONS
3379	Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells. Renewable Energy, 2012, 41, 115-122.	4.3	60
3380	Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 91, 239-243.	2.0	46
3381	Improved efficiency of dye-sensitized solar cells applied with nanostructured N–F doped TiO2 electrode. Journal of Physics and Chemistry of Solids, 2012, 73, 911-916.	1.9	14
3382	Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with Indoline D-358 as the dye. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 229, 29-32.	2.0	28
3383	Fluorine substituent effect on organic dyes for sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 230, 47-54.	2.0	27
3384	lodine-free solid-state dye-sensitized solar cells with fullerene derivatives as hole transporting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 231, 64-69.	2.0	4
3385	Linear perylenetetracarboxylic monoanhydried derivatives for the sensitization of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 28-36.	2.0	3
3386	Triphenylamine-based starburst dyes with carbazole and phenothiazine antennas for dye-sensitized solar cells. Journal of Power Sources, 2012, 199, 426-431.	4.0	83
3387	A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2012, 201, 402-407.	4.0	64
3388	Synergistic effects of ZnO compact layer and TiCl4 post-treatment for dye-sensitized solar cells. Journal of Power Sources, 2012, 204, 257-264.	4.0	52
3389	Ionic liquid-tethered nanoparticle/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2012, 207, 216-221.	4.0	73
3390	Anatase TiO2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells. Journal of Power Sources, 2012, 208, 316-321.	4.0	30
3391	Morphology and topography analysis of mesoporous titania templated by micrometric latex sphere arrays. Microporous and Mesoporous Materials, 2012, 152, 84-95.	2.2	4
3392	Mono-ion transport electrolyte based on ionic liquid polymer for all-solid-state dye-sensitized solar cells. Solar Energy, 2012, 86, 1546-1551.	2.9	21
3393	Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy, 2012, 86, 1563-1575.	2.9	315
3394	Facile synthesis and photoelectrochemical performance of the bush-like ZnO nanosheets film. Solid State Sciences, 2012, 14, 155-158.	1.5	22
3395	Dye-sensitized solar cell tube. Solar Energy Materials and Solar Cells, 2012, 102, 212-219.	3.0	32
3396	Synthesis, electrochemical and photophysical properties of β-carboxy triaryl corroles. Tetrahedron Letters, 2012, 53, 991-993.	0.7	22

# 3397	ARTICLE A novel pyridinium hemicyanine dye with carboxylate anchoring group and its application in dye-sensitized solar cells. Tetrahedron Letters, 2012, 53, 1341-1344.	IF 0.7	CITATIONS
3398	ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization. Thin Solid Films, 2012, 520, 1814-1820.	0.8	28
3399	Highly efficient all solid state dye-sensitized solar cells by the specific interaction of Cul with NCS groups II. Enhancement of the photovoltaic characteristics. Organic Electronics, 2012, 13, 514-518.	1.4	42
3400	Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569.	1.4	33
3401	Electrochemical and spectral properties of hexacoordinate polypyridyl silicon complexes. Polyhedron, 2012, 31, 754-758.	1.0	16
3402	Reliability Study of Ruthenium-Based Dye-Sensitized Solar Cells (DSCs). IEEE Journal of Photovoltaics, 2012, 2, 27-34.	1.5	16
3403	Increases in solar conversion efficiencies of the ZrO2 nanofiber-doped TiO2 photoelectrode for dye-sensitized solar cells. Nanoscale Research Letters, 2012, 7, 98.	3.1	20
3404	Evaluation of decay photocurrent measurements in dye-sensitized solar cells: Application to laser beam-induced current technique. International Journal of Energy Research, 2012, 36, 193-203.	2.2	11
3405	Highâ€Temperature Solidâ€State Dyeâ€Sensitized Solar Cells Based on Organic Ionic Plastic Crystal Electrolytes. Advanced Materials, 2012, 24, 945-950.	11.1	82
3406	Directly Hydrothermal Growth of Single Crystal Nb ₃ O ₇ (OH) Nanorod Film for High Performance Dye‧ensitized Solar Cells. Advanced Materials, 2012, 24, 1598-1603.	11.1	86
3407	Effects of Dyeâ€Adsorption Solvent on the Performances of the Dyeâ€Sensitized Solar Cells Based on Black Dye. Chemistry - an Asian Journal, 2012, 7, 156-162.	1.7	52
3408	Gelation of a liquid electrolyte with aniline for use in a quasi-solid-state dye-sensitized solar cell. Science China Chemistry, 2012, 55, 242-246.	4.2	5
3409	Syntheses of organic dyes based on phenothiazine as photosensitizers and effects of their Ï€-conjugated bridges on the photovoltaic performances of dye-sensitized solar cells. Macromolecular Research, 2012, 20, 128-137.	1.0	16
3410	Low-lying electronic excitations and optical absorption spectra of the black dye sensitizer: a first-principles study. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	9
3411	Photocatalytic reaction on photofuel cell titania electrode. Research on Chemical Intermediates, 2012, 38, 241-250.	1.3	4
3412	Carbon/polymer composite counterâ€electrode application in dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2013, 128, 75-79.	1.3	19
3413	Enhanced efficiency of phenothiazine derivative organic dyeâ€sensitized ionic liquid solar cells on aging. Progress in Photovoltaics: Research and Applications, 2013, 21, 525-533.	4.4	1
3414	Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials. Progress in Photovoltaics: Research and Applications, 2013, 21, 1625-1633.	4.4	20

#	Article	IF	CITATIONS
3415	Theoretical studies on structural and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, derivatives of AR20. International Journal of Quantum Chemistry, 2013, 113, 891-901.	1.0	5
3416	Preparation of highly concentrated and stable conducting polymer solutions and their application in high-efficiency dye-sensitized solar cell. Organic Electronics, 2013, 14, 2369-2378.	1.4	28
3417	A remarkable enhancement of efficiency by co-adsorption with CDCA on the bithiazole-based dye-sensitized solar cells. Organic Electronics, 2013, 14, 2546-2554.	1.4	32
3418	Enhanced photovoltaic characterization and charge transport of TIO2 nanoparticles/nanotubes composite photoanode based on indigo carmine dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 2013, 67, 618-628.	1.1	11
3419	Polyethylene glycol assisted direct deposition of rutile TiO2 nanocrystals on transparent conducting oxide substrate for dye-sensitized solar cell applications. Journal of Sol-Gel Science and Technology, 2013, 66, 378-386.	1.1	1
3420	Enhanced photoelectrochemical properties of visible light-responsive TiO2 photoanode for separate-type Pt-free photofuel cells by Rh3+ addition. Research on Chemical Intermediates, 2013, 39, 1603-1611.	1.3	4
3421	Improved performance of ZnO nanostructured bulk heterojunction organic solar cells with nanowire-density modified by yttrium chloride introduction into solution. Solar Energy Materials and Solar Cells, 2013, 117, 273-278.	3.0	28
3422	Push–pull triarylamine additives that enhance dye sensitized solar cell performance. RSC Advances, 2013, 3, 15626.	1.7	6
3423	Highly Efficient Iodide/Triiodide Dye-Sensitized Solar Cells with Gel-Coated Reduce Graphene Oxide/Single-Walled Carbon Nanotube Composites as the Counter Electrode Exhibiting an Open-Circuit Voltage of 0.90 V. ACS Applied Materials & Interfaces, 2013, 5, 6657-6664.	4.0	50
3424	Correlation between Current–Voltage Curves and Recombination Kinetics of Dye-Sensitized Solar Cells Investigated by the Galvanostatic Constant Intensity Light Perturbation Technique. Journal of Physical Chemistry C, 2013, 117, 15924-15932.	1.5	2
3425	Exploring the role of varied-length spacers in charge transfer: a theoretical investigation on pyrimidine-bridged porphyrin dyes. RSC Advances, 2013, 3, 17515.	1.7	25
3427	Functionalized phenyl bipyridine ancillary ligand as double recombination inhibitor in ruthenium complex for dye solar cells. Dyes and Pigments, 2013, 99, 850-856.	2.0	14
3428	Efficient and stable DSSC sensitizers based on substituted dihydroindolo[2,3-b]carbazole donors with high molar extinction coefficients. Journal of Materials Chemistry A, 2013, 1, 11295.	5.2	87
3429	Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 374-380.	2.0	63
3430	Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. Journal of Industrial and Engineering Chemistry, 2013, 19, 1464-1469.	2.9	36
3431	Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2013, 27, 334-349.	8.2	118
3432	Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system. Water Research, 2013, 47, 4547-4555.	5.3	94
3433	Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Electrochimica Acta, 2013, 109, 39-45.	2.6	50

#	Article	IF	Citations
3434	Imidazolium functionalized cobalt tris(bipyridyl) complex redox shuttles for high efficiency ionic liquid electrolyte dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 11933.	5.2	44
3435	A DFT study of the regeneration process of zinc porphyrin analogues in dye-sensitized solar cells. Dalton Transactions, 2013, 42, 13874.	1.6	2
3436	Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles. Scientific Reports, 2013, 3, 2112.	1.6	87
3437	Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye. Journal of Power Sources, 2013, 240, 779-785.	4.0	60
3438	Funnel-structured TiO2 electrode for improved charge extraction in dye-sensitized solar cell. Applied Surface Science, 2013, 282, 566-570.	3.1	3
3439	Improved Photoelectrical Performance of Single-Crystal TiO ₂ Nanorod Arrays by Surface Sensitization with Copper Quantum Dots. ACS Sustainable Chemistry and Engineering, 2013, 1, 798-804.	3.2	31
3440	Modular Assembly of High-Potential Zinc Porphyrin Photosensitizers Attached to TiO ₂ with a Series of Anchoring Groups. Journal of Physical Chemistry C, 2013, 117, 14526-14533.	1.5	90
3441	Experimental and Computational Exploration of Ground and Excited State Properties of Highly Strained Ruthenium Terpyridine Complexes. Journal of Physical Chemistry A, 2013, 117, 6489-6507.	1.1	25
3442	Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2013, 102, 423-428.	2.6	62
3443	Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochimica Acta, 2013, 87, 651-656.	2.6	60
3444	Synthesis of diphenylamino-carbazole substituted BODIPY dyes and their photovoltaic performance in dye-sensitized solar cells. RSC Advances, 2013, 3, 18099.	1.7	33
3445	Photoelectrocatalysis Study of the Decolorization of Synthetic Azo Dye Mixtures on Ti/TiO2. Electrocatalysis, 2013, 4, 85-91.	1.5	7
3446	Tetraaryl Zn ^{II} Porphyrinates Substituted at βâ€Pyrrolic Positions as Sensitizers in Dyeâ€Sensitized Solar Cells: A Comparison with <i>meso</i> â€Disubstituted Push–Pull Zn ^{II} Porphyrinates. Chemistry - A European Journal, 2013, 19, 10723-10740.	1.7	60
3447	First application of the HETPHEN concept to new heteroleptic bis(diimine) copper(i) complexes as sensitizers in dye sensitized solar cells. Dalton Transactions, 2013, 42, 10818.	1.6	82
3448	Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2013, 12, 883-894.	1.6	95
3449	Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2, 1031-1045.	8.2	348
3450	Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NIÂ+ÂMgI2 binary iodide salt mixture. Journal of Applied Electrochemistry, 2013, 43, 891-901.	1.5	31
3451	Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013, 1, 10142.	5.2	33

#	Article	IF	CITATIONS
3452	Novel in situ crosslinked polymer electrolyte for solid-state dye-sensitized solar cells. Journal of Materials Science, 2013, 48, 6377-6385.	1.7	13
3453	TDDFT studies of electronic spectra and excited states of the triphenylamine-based organic sensitizers and organic sensitizer–titanium dioxide cluster complexes. RSC Advances, 2013, 3, 12133.	1.7	11
3454	Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A, 2013, 1, 11735.	5.2	96
3455	Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. Ionics, 2013, 19, 1185-1194.	1.2	21
3457	The potential of eutectic mixtures as environmentally friendly, solvent-free electrolytes for dye-sensitized solar cells. RSC Advances, 2013, 3, 6922.	1.7	18
3458	High performance dye sensitized solar cells by adding titanate co-adsorbant. RSC Advances, 2013, 3, 20488.	1.7	2
3459	Characterizing the Role of Iodine Doping in Improving Photovoltaic Performance of Dye‣ensitized Hierarchically Structured ZnO Solar Cells. ChemPhysChem, 2013, 14, 1977-1984.	1.0	20
3460	Synthesis, photophysical and preliminary investigation of the dye-sensitized solar cells properties of functionalized anthracenyl-based bipyridyl and phenanthrolyl Ru(II) complexes. Journal of Chemical Sciences, 2013, 125, 17-27.	0.7	2
3461	Incorporation of Mn2+ and Co2+ to TiO2 nanoparticles and the performance of dye-sensitized solar cells. Applied Surface Science, 2013, 283, 975-981.	3.1	62
3462	Synthesis, characterization and light harvesting properties of nickel(II) diimine dithiolate complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 106-110.	2.0	15
3463	Interfacial modification of the working electrode of dye-sensitized solar cells to improve the charge transport properties. Journal of Materials Chemistry A, 2013, 1, 12137.	5.2	6
3464	Coordinated shifts of interfacial energy levels: insight into electron injection in highly efficient dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 3637.	15.6	31
3465	The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39, 7343-7353.	2.3	22
3466	Ultrafast Interfacial Charge-Transfer Dynamics in a Donor-ï€-Acceptor Chromophore Sensitized TiO ₂ Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 4824-4835.	1.5	33
3467	Enhanced Sunlight Harvesting of Dye-Sensitized Solar Cells Assisted with Long Persistent Phosphor Materials. Journal of Physical Chemistry C, 2013, 117, 17894-17900.	1.5	83
3468	Benzo[1,2-b:4,5-b′]difuran-based sensitizers for dye-sensitized solar cells. RSC Advances, 2013, 3, 19798.	1.7	14
3469	Determination of Sensitizer Regeneration Efficiency in Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 8233-8242.	7.3	58
3470	Influence of organic nitrogenous compounds phenothiazine and diphenyl amine in poly(vinylidene) Tj ETQq1 1 C Electrochimica Acta, 2013, 102, 219-224.	.784314 rş 2.6	gBT /Overlaci 27

#	Article	IF	CITATIONS
3471	Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Current Applied Physics, 2013, 13, 1391-1396.	1.1	33
3472	Dye-sensitized solar cells based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) nanofibers. Polymer Bulletin, 2013, 70, 507-515.	1.7	9
3473	Effects of controlled surface treatment on titanium dioxide electrode nanostructure for dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2013, 112, 371-380.	1.1	7
3474	A dye-sensitized solar cell based on PEDOT:PSS counter electrode. Science Bulletin, 2013, 58, 559-566.	1.7	36
3475	D–π–A Dye Sensitizers Made of Polymeric Metal Complexes Containing 1,10â€Phenanthroline and Alkylfluorene or Alkoxybenzene: Synthesis, Characterization and Photovoltaic Performance for Dyeâ€Sensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 5893-5901.	1.2	7
3476	A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 14182.	1.3	24
3477	Preparation of dye sensitized solar cell by using supercritical carbon dioxide drying. Journal of Supercritical Fluids, 2013, 77, 153-157.	1.6	13
3478	Aqueous-Phase Linker-Assisted Attachment of Cysteinate(2–)-Capped CdSe Quantum Dots to TiO2 for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8649-8654.	4.0	27
3479	Synthesis and Photoelectrochemical Performance of Chalcogenopyrylium Monomethine Dyes Bearing Phosphonate/Phosphonic Acid Substituents. Journal of Organic Chemistry, 2013, 78, 8885-8891.	1.7	7
3480	Tuning the electronic structures and related properties of Ruthenium-based dye sensitizers by ligands: A theoretical study and design. Computational and Theoretical Chemistry, 2013, 1017, 99-108.	1.1	15
3481	On the behavior of the carboxyphenylterpyridine(8-quinolinolate) thiocyanatoruthenium(II) complex as a new black dye in TiO2 solar cells modified with carboxymethyl-beta-cyclodextrin. Inorganic Chemistry Communication, 2013, 36, 35-38.	1.8	10
3482	Connection style and spectroscopic properties: Theoretical understanding of the interface between N749 and TiO2 in DSSCs. Dyes and Pigments, 2013, 99, 201-208.	2.0	17
3483	A simple copper(I) complex and its application in efficient dye sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 204-209.	1.2	34
3484	Metal free sensitizer and catalyst for dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 3439.	15.6	365
3485	Rigid triarylamine-based D–A–π–A structural organic sensitizers for solar cells: the significant enhancement of open-circuit photovoltage with a long alkyl group. RSC Advances, 2013, 3, 22544.	1.7	19
3486	DFT and TDDFT study on the electronic structure and photoelectrochemical properties of dyes derived from cochineal and lac insects as photosensitizer for dye-sensitized solar cells. Journal of Molecular Modeling, 2013, 19, 1407-1415.	0.8	29
3487	Dye stability of dye-sensitized solar cells with a conducting and a non-conducting electrode. EPJ Applied Physics, 2013, 61, 10201.	0.3	2
3488	Ruthenium Sensitizers with 2,2â€ ² -Bipyrimidine or a 5,5â€ ² -Disubstituted 2,2â€ ² -Bipyrimidine Ligand: Synthesis, Photo- and Electrochemical Properties, and Application to Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2013, 2013, 5187-5195.	1.0	9

#	Article	IF	CITATIONS
3489	Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells. Electrochimica Acta, 2013, 111, 216-222.	2.6	61
3490	Aqueous Colloidal Stability Evaluated by Zeta Potential Measurement and Resultant <scp><scp>TiO</scp></scp> ₂ for Superior Photovoltaic Performance. Journal of the American Ceramic Society, 2013, 96, 2636-2643.	1.9	26
3491	Panchromatic Light Harvesting and Hot Electron Injection by Ru(II) Dipyrrinates on a TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 17399-17411.	1.5	29
3492	A study of TiO2/carbon black composition as counter electrode materials for dye-sensitized solar cells. Nanoscale Research Letters, 2013, 8, 227.	3.1	50
3495	Synthesis and characterization of dianchoring organic dyes containing 2,7-diaminofluorene donors as efficient sensitizers for dye-sensitized solar cells. Organic Electronics, 2013, 14, 3267-3276.	1.4	22
3496	TiO2-B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. Electrochimica Acta, 2013, 88, 263-269.	2.6	27
3497	New class of thiocyanate-free cyclometalated ruthenium(II) complexes having a pyridylquinoline derivative for near-infrared sensitization of dye-sensitized solar cells. Inorganic Chemistry Communication, 2013, 35, 281-283.	1.8	12
3498	Spectroscopic evidences of synergistic co-sensitization in dye-sensitized solar cells via experimentation of mixture design. Electrochimica Acta, 2013, 107, 170-177.	2.6	15
3499	Theoretical insight into the spectral characteristics of Fe(II)-based complexes for dye-sensitized solar cells: Functionalized bipyridyl chromophores. Journal of Organometallic Chemistry, 2013, 741-742, 168-175.	0.8	5
3500	Effects of surface-anchoring mode and aggregation state on electron injection from chalcogenorhodamine dyes to titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 264, 18-25.	2.0	16
3501	Photophysical studies on D–ï€â€"A dye-sensitized solar cells: Effects of ï€-bridge and hexyloxy side chains in donor moieties. Organic Electronics, 2013, 14, 1037-1044.	1.4	10
3502	Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol–gel dip coating method. Optik, 2013, 124, 6201-6204.	1.4	32
3503	Enhancement of photovoltaic performance in dye-sensitized solar cells fabricated with dendritic photosensitizer containing site-isolated chromophores. Dyes and Pigments, 2013, 99, 986-994.	2.0	18
3504	A novel photoelectrochemical solar cell with high efficiency in converting ultraviolet light to electricity. Electrochimica Acta, 2013, 108, 337-342.	2.6	9
3505	Synthesis of Phosphonic Acid Derivatized Bipyridine Ligands and Their Ruthenium Complexes. Inorganic Chemistry, 2013, 52, 12492-12501.	1.9	114
3506	Visible-Light-Induced Water Splitting Based on Two-Step Photoexcitation between Dye-Sensitized Layered Niobate and Tungsten Oxide Photocatalysts in the Presence of a Triiodide/Iodide Shuttle Redox Mediator. Journal of the American Chemical Society, 2013, 135, 16872-16884.	6.6	233
3507	Zinc-Porphyrin Based Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2013, 117, 10973-10979.	1.1	83
3508	Layer-by-Layer Assembly of Graphene Oxide and a Ru(II) Complex and Significant Photocurrent Generation Properties. Langmuir, 2013, 29, 14314-14320.	1.6	43

#	Article	IF	CITATIONS
3509	Bulky dendritic triarylamine-based organic dyes for efficient co-adsorbent-free dye-sensitized solar cells. Journal of Power Sources, 2013, 237, 195-203.	4.0	49
3510	Salicylic Acid As a Tridentate Anchoring Group for <i>azo</i> -Bridged Zinc Porphyrin in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 12631-12637.	4.0	52
3511	Novel Carbazole-Phenothiazine Dyads for Dye-Sensitized Solar Cells: A Combined Experimental and Theoretical Study. ACS Applied Materials & Interfaces, 2013, 5, 9635-9647.	4.0	102
3512	Synthesis of Novel Ruthenium Dyes with Thiophene or Thienothiophene Substituted Terpyridyl Ligands and Their Characterization. Molecular Crystals and Liquid Crystals, 2013, 581, 45-51.	0.4	8
3513	Photovoltaic Performance of Vertically Grown ZnO Nanorods in Dye-sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 581, 116-125.	0.4	1
3514	Chemically modified titanium oxide nanostructures for dye-sensitized solar cells. Nano Energy, 2013, 2, 1373-1382.	8.2	21
3515	Nanoenergy. , 2013, , .		5
3516	X-ray Characterization of Dye Adsorption in Coadsorbed Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 17033-17038.	1.5	15
3517	Modeling the effect of ionic additives on the optical and electronic properties of a dye-sensitized TiO2 heterointerface: absorption, charge injection and aggregation. Journal of Materials Chemistry A, 2013, 1, 14675.	5.2	41
3518	Electron Transport Dynamics in TiO ₂ Films Deposited on Ti Foils for Back-Illuminated Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 11958-11964.	4.0	9
3519	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4497-4502.	3.2	37
3520	Plasma spraying of efficient photoactive TiO2 coatings. Surface and Coatings Technology, 2013, 220, 40-43.	2.2	27
3521	A low-cost platinum film deposited direct on glass substrate forÂelectrochemical counter electrodes. Journal of Power Sources, 2013, 232, 254-257.	4.0	13
3522	Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect. Journal of Applied Physics, 2013, 114, .	1.1	31
3523	LiTFSI as a plastic salt in the quasi-solid state polymer electrolyte for dye-sensitized solar cells. Comptes Rendus Chimie, 2013, 16, 195-200.	0.2	3
3524	Design and Characterization of Heteroleptic Ruthenium Complexes Containing Benzimidazole Ligands for Dye-Sensitized Solar Cells: The Effect of Thiophene and Alkyl Substituents on Photovoltaic Performance. Journal of Physical Chemistry C, 2013, 117, 2059-2065.	1.5	37
3525	Third row metal complexes as an alternative dye in dye sensitized solar cell system. Proceedings of SPIE, 2013, , .	0.8	4
3526	Facile Synthesis of Poly(3,4-ethylenedioxythiophene) Film via Solid-State Polymerization as High-Performance Pt-Free Counter Electrodes for Plastic Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 8423-8429.	4.0	68

(ITATION REDOD	
	Т

#	Article	IF	CITATIONS
3527	Sequence-Specific Synthesis of Platinum-Conjugated Trichromophoric Energy Cascades of Anthracene, Tetracene, and Pentacene and Fluorescent "Black Chromophores― Organometallics, 2013, 32, 7283-7291.	1.1	13
3528	Optimal Sunlight Harvesting in Photovoltaics and Photosynthesis. Journal of Physical Chemistry C, 2013, 117, 26896-26904.	1.5	6
3529	Plasmonic nanoparticles enhanced dye-sensitized solar cells. Proceedings of SPIE, 2013, , .	0.8	0
3530	Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Advances, 2013, 3, 23361.	1.7	41
3532	Effects of surfactants on agarose-based magnetic polymer electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2013, 90, 524-529.	2.6	34
3533	Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells. Chemical Communications, 2013, 49, 6671.	2.2	3
3534	Crystallization and densification of alkoxide-derived titania films: Effect of the amount of H2O in the precursor solutions. Journal of Asian Ceramic Societies, 2013, 1, 248-256.	1.0	2
3535	Synergistic assembly of nanoparticle aggregates and texture nanosheets into hierarchical TiO2 core–shell structures for enhanced light harvesting in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6175.	5.2	9
3536	In situ growth of CuInS2 nanocrystals on nanoporous TiO2 film for constructing inorganic/organic heterojunction solar cells. Nanoscale Research Letters, 2013, 8, 354.	3.1	4
3537	Post-annealing of CdS/ZnS-assembled TiO2 films for photoelectrochemical solar cells. Journal of the Korean Physical Society, 2013, 63, 2209-2214.	0.3	1
3538	Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Solar Energy Materials and Solar Cells, 2013, 119, 291-295.	3.0	130
3539	Conducting polymer and titanium carbide-based nanocomposites as efficient counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2013, 105, 275-281.	2.6	34
3540	Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 10723-10725.	1.9	47
3541	Metal-free organic dyes with benzothiadiazole as an internal acceptor for dye-sensitized solar cells. Tetrahedron, 2013, 69, 9175-9182.	1.0	11
3542	A novel organic ionic plastic crystal electrolyte for solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 112, 247-251.	2.6	20
3543	β-(Ethynylbenzoic acid)-substituted push–pull porphyrins: DSSC dyes prepared by a direct palladium-catalyzed alkynylation reaction. Chemical Communications, 2013, 49, 9164.	2.2	46
3544	Charge Transfer in CdSe Nanocrystal Complexes with an Electroactive Polymer. Journal of Physical Chemistry C, 2013, 117, 18870-18884.	1.5	17
3545	Determination of Midgap State Energy Levels of an Anatase TiO ₂ Nanocrystal Film by Nanosecond Transient Infrared Absorption – Excitation Energy Scanning Spectra. Journal of Physical Chemistry C, 2013, 117, 18863-18869.	1.5	55

#	Article	IF	CITATIONS
3546	Modeling of the dye loading time influence on the electrical impedance of a dye-sensitized solar cell. Journal of Applied Physics, 2013, 114, 094901.	1.1	6
3547	Study of the effects of UV-exposure on dye-sensitized solar cells. , 2013, , .		3
3548	Thiocyanate-free ruthenium(II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells. Journal of Organometallic Chemistry, 2013, 748, 75-83.	0.8	25
3549	Optimizing the Energy Offset between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 19850-19858.	1.5	19
3550	Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency. Journal of Materials Chemistry A, 2013, 1, 9853.	5.2	70
3551	Recent molecular engineering of room temperature ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. RSC Advances, 2013, 3, 23521.	1.7	18
3552	Amidoamine dendron-based co-adsorbents: improved performance in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 14524.	5.2	13
3553	Evidence on dye clustering in the sensitization of TiO2 by aluminum phthalocyanine. Photochemical and Photobiological Sciences, 2013, 12, 1984-1990.	1.6	9
3554	DFT/TD-DFT studies on structural and spectroscopic properties of metalloporphyrin complexes: A design of ruthenium porphyrin photosensitizer. Computational and Theoretical Chemistry, 2013, 1019,	1.1	11
	94-100.		
3555	Computational investigation of the adsorption and reactions of SiH _{<i>x</i>} (<i>x</i> =) Tj ETQq1 Chemistry, 2013, 113, 1696-1708.	1 0.784314 1.0	rgBT /Overlo 4
3555 3556	Computational investigation of the adsorption and reactions of SiH _{<i>x</i>} (<i>x</i> =) Tj ETQq1 Chemistry, 2013, 113, 1696-1708. Two Ruthenium Complexes with Phenanthroline Ligand for Dye-Sensitized Solar Cells. Advanced Materials Research, 0, 651, 115-119.	1 0.784314 1.0 0.3	rgBT /Overlo 4
3555 3556 3557	94-100. Computational investigation of the adsorption and reactions of SiH _{<i>x</i>} (<i>x</i> =) Tj ETQq1 Chemistry, 2013, 113, 1696-1708. Two Ruthenium Complexes with Phenanthroline Ligand for Dye-Sensitized Solar Cells. Advanced Materials Research, 0, 651, 115-119. Highly efficient photoanodes for dye solar cells with a hierarchical meso-ordered structure. Physical Chemistry Chemical Physics, 2013, 15, 16949.	1 0.784314 1.0 0.3 1.3	rgBT /Overla 4 1
3555 3556 3557 3558	94-100. Computational investigation of the adsorption and reactions of SiH _{<i>x</i> Chemistry, 2013, 113, 1696-1708. Two Ruthenium Complexes with Phenanthroline Ligand for Dye-Sensitized Solar Cells. Advanced Materials Research, 0, 651, 115-119. Highly efficient photoanodes for dye solar cells with a hierarchical meso-ordered structure. Physical Chemistry Chemical Physics, 2013, 15, 16949. Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution. RSC Advances, 2013, 3, 19311.}	1 0.784314 1.0 0.3 1.3 1.7	rgBT /Overla 1 4 12
3555 3556 3557 3558 3559	94-100. Computational investigation of the adsorption and reactions of SiH _{<i>x</i>} (<i>x</i> (<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>xx(<i>x(<i>x(<i>xxx<td>1 0.784314 1.0 0.3 1.3 1.7 2.8</td><td>rgBT /Oveild 1 4 12 17</td></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1 0.784314 1.0 0.3 1.3 1.7 2.8	rgBT /Oveild 1 4 12 17
3555 3556 3557 3558 3559	 Computational investigation of the adsorption and reactions of SiH_{<i>x</i>}(<i>x</i>(<i>x</i>(<i>x</i>(<i>x</i>(<i>x</i>(<i>x</i>(<i>x</i>(<i>x</i>(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>x(<i>xxxx<td>1 0.784314 1.0 0.3 1.3 1.7 2.8 1.3</td><td>rgBT /Ove da 1 4 12 17 9</td></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	1 0.784314 1.0 0.3 1.3 1.7 2.8 1.3	rgBT /Ove da 1 4 12 17 9
3555 3556 3557 3558 3559 3561	 Service: Service: Ser	1 0.784314 1.0 0.3 1.3 1.7 2.8 1.3 1.6	rgBT /Ove da 1 4 12 17 9 27
3555 3556 3557 3558 3559 3561 3562	 Service. Computational investigation of the adsorption and reactions of SiH_{<i>x</i>} Two Ruthenium Complexes with Phenanthroline Ligand for Dye-Sensitized Solar Cells. Advanced Materials Research, 0, 651, 115-119. Highly efficient photoanodes for dye solar cells with a hierarchical meso-ordered structure. Physical Chemistry Chemical Physics, 2013, 15, 16949. Novel phenanthroline-based ruthenium complexes for dye-sensitized solar cells: enhancement in performance through fluoro-substitution. RSC Advances, 2013, 3, 19311. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells. Nanoscale, 2013, 5, 726-733. Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 10835. Novel Ru(ii) sensitizers bearing an unsymmetrical pyridine-quinoline hybrid ligand with extended if-conjugation: synthesis and application in dye-sensitized solar cells. Dalton Transactions, 2013, 42, 6582. Detection of non-absorbing charge dynamics via refractive index change in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 5975. 	1 0.784314 1.0 0.3 1.3 1.7 2.8 1.3 1.6 1.3	rgBT /Ove da 1 4 12 17 9 27 20

		CITATION [Report	
#	Article		IF	CITATIONS
3565	Small molecular weight materials for (opto)electronic applications: overview. , 2013, ,	3-82.		6
3566	A bright entry to improve the performance of DSSCs with the influence of novel optoe acridinedione based macromolecules in Iâ^'/I3â^' electrolytes. Journal of Materials Chen 14666.	lectronic nistry A, 2013, 1,	5.2	4
3567	Porphyrin-Sensitized Solar Cells. Handbook of Porphyrin Science, 2013, , 279-317.		0.3	0
3568	Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 ph Journal of Power Sources, 2013, 224, 168-173.	otoelectrodes.	4.0	72
3569	Verification of necessity of one-dimensional titania nanoscale materials for dye-sensitiz Journal of Power Sources, 2013, 226, 94-100.	ed solar cells.	4.0	12
3570	Photovoltaic performance degradation and recovery of the flexible dye-sensitized solar bending and relaxing. Journal of Power Sources, 2013, 226, 173-178.	cells by	4.0	17
3571	Enhancing in the performance of dye-sensitized solar cells by the incorporation of func multi-walled carbon nanotubes into TiO2 films: The role of MWCNT addition. Journal or Photochemistry and Photobiology A: Chemistry, 2013, 251, 78-84.	:tionalized f	2.0	36
3572	Porphyrin-sensitized solar cells. Chemical Society Reviews, 2013, 42, 291-304.		18.7	1,233
3573	New organic dyes containing E- or Z-trifluoromethyl acrylic acid as the electron accept dye-sensitized solar cell applications: an investigation of the effect of molecular config the power conversion efficiency of the cells. RSC Advances, 2013, 3, 1069-1072.	ors for uration on	1.7	15
3574	The role of transition metal complexes in dye sensitized solar devices. Coordination Ch Reviews, 2013, 257, 1472-1492.	lemistry	9.5	157
3575	Temperature effects in dye-sensitized solar cells. Physical Chemistry Chemical Physics,	2013, 15, 2328.	1.3	111
3576	Toward rational design of organic dye sensitized solar cells (DSSCs): An application to dye. Journal of Molecular Graphics and Modelling, 2013, 40, 64-71.	the TA-St-CA	1.3	42
3577	Excited-State Relaxation of Ruthenium Polypyridyl Compounds Relevant to Dye-Sensiti Inorganic Chemistry, 2013, 52, 6839-6848.	zed Solar Cells.	1.9	32
3578	Investigation and optimization of photocurrent transient measurements on nano-TiO2 Applied Electrochemistry, 2013, 43, 217-225.	. Journal of	1.5	37
3579	New Ruthenium Sensitizers Featuring Bulky Ancillary Ligands Combined with a Dual Fu Coadsorbent for High Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials &am 2013, 5, 144-153.	inctioned ip; Interfaces,	4.0	39
3580	Influence of the benzo[d]thiazole-derived π-bridges on the optical and photovoltaic pe D–π–A dyes. Dyes and Pigments, 2013, 96, 619-625.	erformance of	2.0	31
3581	New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenyleneviny Communications, 2013, 49, 582-584.	lene. Chemical	2.2	49
3582	A phenyl-capped aniline tetramer for Z907/tert-butylpyridine-based dye-sensitized sola molecular modelling of the device. Chemical Communications, 2013, 49, 1416.	r cells and	2.2	15

#	Article	IF	CITATIONS
3583	Assessment of new gem-silanediols as suitable sensitizers for dye-sensitized solarÂcells. Journal of Organometallic Chemistry, 2013, 723, 198-206.	0.8	11
3584	In situ growth of oriented polyaniline nanowires array for efficient cathode of Co(<scp>iii</scp>)/Co(<scp>ii</scp>) mediated dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 97-104.	5.2	98
3585	Rigid triarylamine-based efficient DSSC sensitizers with high molar extinction coefficients. Journal of Materials Chemistry A, 2013, 1, 4763.	5.2	76
3586	Enhanced Performance of Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells by Branching the Linear Substituent in Sensitizers Based on Thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione. Chemistry - an Asian Journal, 2013, 8, 168-177.	1.7	32
3587	Synthesis and photovoltaic properties of main chain polymeric metal complexes containing 1,10â€phenanthroline metal complexes conjugating alkyl fluorene or alkoxy benzene by Câ•€ bridge for dyeâ€sensitized solar cells. Polymers for Advanced Technologies, 2013, 24, 266-269.	1.6	8
3588	Magnetic field processed solid-state dye-sensitized solar cells with nickel oxide modified agarose electrolyte. Journal of Power Sources, 2013, 243, 919-924.	4.0	24
3589	New polymer electrolyte for electrochemical application. Journal of Industrial and Engineering Chemistry, 2013, 19, 819-822.	2.9	42
3590	Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: An effective recombination suppressant?. Electrochimica Acta, 2013, 90, 291-294.	2.6	8
3591	Influence of co-existing alcohol on charge transfer of H2 evolution under visible light with dye-sensitized nanocrystalline TiO2. Applied Catalysis B: Environmental, 2013, 140-141, 406-411.	10.8	19
3592	A novel research approach on the dynamic properties of photogenerated charge carriers at Ag2S quantum-dots-sensitized TiO2 films by a frequency-modulated surface photovoltage technology. Materials Research Bulletin, 2013, 48, 3242-3246.	2.7	18
3593	Photoluminescence study of carbon doped and hydrogen co-doped TiO 2 thin films. Thin Solid Films, 2013, 545, 234-240.	0.8	14
3594	Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics, 2013, 231, 30-36.	1.3	32
3595	Combined embedding of N-doping and CaCO3 surface modification in the TiO2 photoelectrodes for dye-sensitized solar cells. Applied Surface Science, 2013, 285, 789-794.	3.1	16
3596	Performance enhancement for high performance dye-sensitized solar cells via using pyridinyl-functionalized ionic liquid type additive. Electrochimica Acta, 2013, 106, 181-186.	2.6	24
3597	Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2013, 242, 438-446.	4.0	46
3598	Fabrication of mesoporous TiO2 electrodes by chemical technique for dye-sensitized solar cells. Electrochimica Acta, 2013, 94, 277-284.	2.6	19
3599	Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells. Materials Research Bulletin, 2013, 48, 4351-4356.	2.7	8
3600	The effect of oligo-organosiloxane on poly(ethylene oxide) electrolyte system for solid dye sensitized solar cells. Electrochimica Acta, 2013, 89, 29-34.	2.6	6

#	Article	IF	CITATIONS
3601	The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 109, 37-41.	2.0	11
3602	Comparison between positive and negative constant current stress on dye-sensitized solar cells. Microelectronics Reliability, 2013, 53, 1804-1808.	0.9	4
3603	Tri-functional Nb2O5 nano-islands coated on an indium tin oxide layer for a highly efficient dye-sensitized plastic photoanode. Journal of Power Sources, 2013, 240, 753-758.	4.0	5
3604	New phenothiazine-based dyes for efficient dye-sensitized solar cells: Positioning effect of a donor group on the cell performance. Journal of Power Sources, 2013, 243, 253-259.	4.0	74
3605	Modeling Materials and Processes in Dye-Sensitized Solar Cells: Understanding the Mechanism, Improving the Efficiency. Topics in Current Chemistry, 2013, 352, 151-236.	4.0	24
3606	Starburst triarylamine based dyes bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 11909.	1.3	26
3607	Effects of the number of chromophores and the bulkiness of a nonconjugated spacer in a dye molecule on the performance of dye-sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 420, 22-29.	2.3	13
3608	Spectra and relaxation dynamics of the pseudohalide (PS) vibrational bands for Ru(bpy)2(PS)2 complexes, PS=CN, NCS and N3. Chemical Physics, 2013, 422, 135-142.	0.9	8
3609	Novel ITO/arc-TiO2 antireflective conductive substrate for transmittance enhanced properties in dye-sensitized solar cells. Microelectronic Engineering, 2013, 108, 99-105.	1.1	15
3610	Enhanced performance of dye/QDs cosensitized solar cells via Förster resonance energy transfer. Electrochimica Acta, 2013, 109, 291-297.	2.6	10
3611	Photovoltaic performance of ruthenium complex dye associated with number and position of carboxyl groups on bipyridine ligands. Materials Chemistry and Physics, 2013, 142, 420-427.	2.0	5
3612	The synthesis and characterization of dinuclear ruthenium sensitizers and their applications in photocatalytic hydrogen production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 105, 539-544.	2.0	17
3613	Effect of post-heat-treated NiOx overlayer on performance of nanocrystalline TiO2 thin films for dye-sensitized solar cells. Journal of Power Sources, 2013, 240, 705-712.	4.0	16
3614	Ultraviolet-O2 treatment TiO2/Ti anodes for use in Ti grids-based large-area flexible dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 138, 899-904.	2.0	8
3615	Binder-addition effect in TiO2 nanoparticles on dye-sensitized solar cells evidenced by spectroscopic techniques. Electrochimica Acta, 2013, 111, 784-790.	2.6	1
3616	Sculptured platinum nanowire counter electrodes for dye-sensitized solar cells. Thin Solid Films, 2013, 540, 208-211.	0.8	9
3617	Structure of electron collection electrode in dye-sensitized nanocrystalline TiO2. Electrochimica Acta, 2013, 87, 309-316.	2.6	12
3618	Photoelectrochemical properties of the CT1 dye: A DFT study. Journal of Molecular Structure, 2013, 1046, 116-123.	1.8	19

#	Article	IF	CITATIONS
3619	Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods. Electrochimica Acta, 2013, 94, 92-97.	2.6	23
3620	Ruthenium(II) dichloro or dithiocyanato complexes with 4,4′:2′,2″:4″,4â€^quaterpyridinium ligands: Tov photosensitisers with enhanced low-energy absorption properties. Polyhedron, 2013, 50, 622-635.	wards 1.0	6
3621	Nanostructured transition metal nitrides for energy storage and fuel cells. Coordination Chemistry Reviews, 2013, 257, 1946-1956.	9.5	309
3622	Triarylamineâ€Substituted Imidazole―and Quinoxalineâ€Fused Push–Pull Porphyrins for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 508-517.	3.6	70
3623	Molecular Design of Porphyrins for Dye-Sensitized Solar Cells: A DFT/TDDFT Study. Journal of Physical Chemistry Letters, 2013, 4, 524-530.	2.1	123
3624	Inner-Sphere Electron-Transfer Single Iodide Mechanism for Dye Regeneration in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 2431-2434.	6.6	28
3625	Hierarchical TiO ₂ microspheres comprised of anatase nanospindles for improved electron transport in dye-sensitized solar cells. Nanoscale, 2013, 5, 324-330.	2.8	68
3626	Hybrid TiO ₂ –SnO ₂ Nanotube Arrays for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 3232-3239.	1.5	113
3627	Structure and absorption properties of the C212 dye chemisorbed onto the TiO2 (101) anatase surface. Chemical Physics Letters, 2013, 556, 151-157.	1.2	22
3628	Monolithic quasi-solid-state dye-sensitized solar cells based on iodine-free polymer gel electrolyte. Journal of Power Sources, 2013, 235, 243-250.	4.0	28
3629	Controllable synthesis of anatase TiO2 crystals for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5347.	5.2	29
3630	Highly efficient dye-sensitized solar cells: progress and future challenges. Energy and Environmental Science, 2013, 6, 1443.	15.6	596
3631	Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells. Electrochimica Acta, 2013, 96, 155-163.	2.6	59
3632	Organic Chromophores Based on a Fused Bisâ€Thiazole Core and Their Application in Dyeâ€5ensitized Solar Cells. European Journal of Organic Chemistry, 2013, 2013, 1916-1928.	1.2	48
3634	Novel Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Organic Dyes for Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Chemistry - an Asian Journal, 2013, 8, 939-946.	^{3.} 1.7	21
3635	Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective. Journal of Physical Chemistry Letters, 2013, 4, 956-974.	2.1	76
3636	Synthesis, Characterization and Electronic Properties of <i>trans</i> â€{4â€(Alkoxycarbonyl)phenyl]porphyrinâ€{Ru ^{II} (bpy) ₃] ₂ Complexes or Boron–Dipyrrin Conjugates as Panchromatic Sensitizers for DSSCs. European Journal of Inorganic Chemistry, 2013, 2013, 1275-1286	1.0	10
3637	Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis. Journal of Electroanalytical Chemistry, 2013, 689, 21-25.	1.9	38

#	Article	IF	CITATIONS
3638	Influence of different anchoring groups in indoline dyes for dye-sensitized solar cells: Electron injection, impedance and charge recombination. Journal of Power Sources, 2013, 234, 139-146.	4.0	71
3639	Formation of â€~single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chemical Communications, 2013, 49, 2067.	2.2	91
3640	Nanohybridization of Low-Dimensional Nanomaterials: Synthesis, Classification, and Application. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 1-56.	6.8	20
3641	Ruthenium(II) Complexes Bearing a Naphthalimide Fragment: A Modular Dye Platform for the Dye-Sensitized Solar Cell. Inorganic Chemistry, 2013, 52, 3001-3006.	1.9	47
3642	Formation of size-tunable dandelion-like hierarchical rutile titania nanospheres for dye-sensitized solar cells. RSC Advances, 2013, 3, 559-565.	1.7	22
3643	Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chemical Communications, 2013, 49, 1471-1487.	2.2	149
3644	Angular response of photonic crystal based dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 1260.	15.6	40
3645	The influence of electron injection and charge recombination kinetics on the performance of porphyrin-sensitized solar cells: effects of the 4-tert-butylpyridine additive. Physical Chemistry Chemical Physics, 2013, 15, 4651.	1.3	32
3646	Applications of metal oxide materials in dye sensitized photoelectrosynthesis cells for making solar fuels: let the molecules do the work. Journal of Materials Chemistry A, 2013, 1, 4133.	5.2	115
3647	Effects of bis-carbazole based D—ï€-A sensitizers on solar energy capture in DSSCs. Photochemical and Photobiological Sciences, 2013, 12, 421-431.	1.6	4
3648	Silane: A new linker for chromophores in dye-sensitised solar cells. Polyhedron, 2013, 52, 719-732.	1.0	28
3649	New fluorenone-containing organic photosensitizers for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 428-436.	2.0	30
3650	Effects of ligand LUMO levels, anchoring groups and spacers in Ru(II)-based terpyridine and dipyrazinylpyridine complexes on adsorption and photoconversion efficiency in DSSCs. Electrochimica Acta, 2013, 87, 236-244.	2.6	15
3651	Functional Assessment for Predicting Charge-Transfer Excitations of Dyes in Complexed State: A Study of Triphenylamine–Donor Dyes on Titania for Dye-Sensitized Solar Cells. Journal of Physical Chemistry A, 2013, 117, 2114-2124.	1.1	49
3652	Cooperative effect of adsorbed cations on electron transport and recombination behavior in dye-sensitized solar cells. Electrochimica Acta, 2013, 100, 197-202.	2.6	20
3653	Reliable evaluation of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 54-66.	15.6	114
3654	Silica Nanoparticle Doped Organic Ionic Plastic Crystal Electrolytes for Highly Efficient Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 1453-1459.	4.0	27
3655	Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. Journal of Physical Chemistry C, 2013, 117, 3874-3887.	1.5	82

#	Article	IF	CITATIONS
3656	First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 3772-3778.	1.5	169
3657	Enhanced Lightâ€Harvesting Capability of a Panchromatic Ru(II) Sensitizer Based on Ï€â€Extended Terpyridine with a 4â€Methylstylryl Group for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 1817-1823.	7.8	82
3658	Surface Patterning of Mesoporous Niobium Oxide Films for Solar Energy Conversion. ACS Applied Materials & Interfaces, 2013, 5, 3469-3474.	4.0	28
3659	Synthesis, Photo-, and Electrochemistry of Ruthenium Bis(bipyridine) Complexes Comprising a <i>N-</i> heterocyclic Carbene Ligand. Inorganic Chemistry, 2013, 52, 5395-5402.	1.9	106
3660	High-efficient dye-sensitized solar cell based on highly conducting and thermally stable PEDOT:PSS/glass counter electrode. Organic Electronics, 2013, 14, 1769-1776.	1.4	31
3661	Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 1519-1525.	2.1	96
3662	Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochimica Acta, 2013, 103, 91-95.	2.6	89
3663	Clean Energy. Interface Science and Technology, 2013, 19, 279-383.	1.6	12
3664	Theoretical evidence of multiple dye regeneration mechanisms in dye-sensitized solar cells. Chemical Physics Letters, 2013, 570, 159-162.	1.2	17
3665	Stable Dyeâ€Sensitized Solar Cell Electrolytes Based on Cobalt(II)/(III) Complexes of a Hexadentate Pyridyl Ligand. Angewandte Chemie - International Edition, 2013, 52, 5527-5531.	7.2	87
3666	Photoelectrochemical reduction of nitrates at the illuminated p-GaInP ₂ photoelectrode. Energy and Environmental Science, 2013, 6, 1802-1805.	15.6	18
3667	The effects of co-sensitization in dye-sensitized solar cells. Journal of Materials Science, 2013, 48, 3448-3453.	1.7	17
3668	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) Tris-Heteroleptic Compounds or Natural Dyes. , 2013, , 49-80.		4
3669	Novel Main Chain Polymeric Metal Complexes Based on Zn(II) or Cd(II) with Fluorene and 8-Hydroxyquinoline Ligand: Synthesis, Characterization and Photovoltaic Application in DSSCs. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 579-586.	1.9	7
3670	Fine size-regulation of nanocrystalline anatase-TiO2via sol–gel synthesis and subsequent phase transformation by calcination. New Journal of Chemistry, 2013, 37, 1378.	1.4	9
3671	Efficient Synthesis of a Regioregular Oligothiophene Photovoltaic Dye Molecule, MKâ€2, and Related Compounds: A Cooperative Hypervalent Iodine and Metalâ€Catalyzed Synthetic Route. Chemistry - A European Journal, 2013, 19, 2067-2075.	1.7	18
3672	Effect of the chemical modifications of thiophene-based N3 dyes on the performance of dye-sensitized solar cells: A density functional theory study. Computational and Theoretical Chemistry, 2013, 1015, 8-14.	1.1	21
3673	Natural dye-sensitised solar cells with Titania nanoparticles. , 2013, , .		1

#	Article	IF	CITATIONS
3674	Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core–shell structure in TiO2 films. Journal of Materials Chemistry A, 2013, 1, 7229.	5.2	35
3675	Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2013, 239, 122-127.	4.0	104
3676	Growth of carbon nanotubes over transition metal loaded on Co-SBA-15 and its application for high performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 5070.	5.2	26
3677	Facile Synthesis of High-Crystallinity Graphitic Carbon/Fe ₃ C Nanocomposites As Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 3663-3670.	4.0	127
3678	Photoelectrochemical properties of electrostatically self-assembled multilayer films formed by a cobalt complex and graphene oxide. Journal of Colloid and Interface Science, 2013, 402, 107-113.	5.0	17
3679	Porphyrin sensitizers with π-extended pull units for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 8409.	1.3	38
3680	Theoretical study on novel double donor-based dyes used in high efficient dye-sensitized solar cells: The application of TDDFT study to the electron injection process. Organic Electronics, 2013, 14, 711-722.	1.4	97
3681	Significant Improvement of Dye-Sensitized Solar Cell Performance Using Simple Phenothiazine-Based Dyes. Chemistry of Materials, 2013, 25, 2146-2153.	3.2	250
3682	Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO ₂ and on Redox-Shuttle-Derived Dark Currents. Langmuir, 2013, 29, 806-814.	1.6	34
3683	Physico-chemical Processes and Kinetics of Sunlight-Induced Hydrophobic ↔ Superhydrophilic Switching of Transparent N-Doped TiO ₂ Thin Films. ACS Applied Materials & Interfaces, 2013, 5, 3967-3974.	4.0	26
3684	Ru(ii) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7681.	5.2	26
3685	First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2013, 117, 13902-13913.	1.5	861
3686	Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells. Journal of Physics: Conference Series, 2013, 439, 012012.	0.3	8
3687	Characterization and Application of Ru ²⁺ Complex with Square-Planar Quadridentate Ligand Containing Arylamines for Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 01AD07.	0.8	2
3688	Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells. Journal of Molecular Modeling, 2013, 19, 1553-1563.	0.8	27
3689	New panchromatic dyes comprising benzothiadiazole units within a donor–acceptor π-conjugated spacer. Synthesis and photophysical properties. Tetrahedron, 2013, 69, 2167-2174.	1.0	12
3690	Efficient organic dyes containing dibenzo heterocycles as conjugated linker part for dye-sensitized solar cells. Tetrahedron, 2013, 69, 1970-1977.	1.0	20
3691	Light intensity effects on photocatalytic water splitting with aÂtitania catalyst. International Journal of Hydrogen Energy, 2013, 38, 6938-6947.	3.8	38

#	Article	IF	CITATIONS
3692	First application of bis(oxalate)borate ionic liquids (ILBOBs) in high-performance dye-sensitized solar cells. RSC Advances, 2013, 3, 12975.	1.7	11
3693	Tunable surface plasmons of dielectric core-metal shell particles for dye sensitized solar cells. RSC Advances, 2013, 3, 9690.	1.7	10
3694	Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal. RSC Advances, 2013, 3, 3017.	1.7	36
3695	Dye-sensitized solar cells based on ZnO nanowire array/TiO2 nanoparticle composite photoelectrodes with controllable nanowire aspect ratio. Applied Physics A: Materials Science and Processing, 2013, 111, 279-284.	1.1	15
3696	Effect of organic dyes on the performance of ZnO based dye-sensitized solar cells. Applied Solar Energy (English Translation of Geliotekhnika), 2013, 49, 40-45.	0.2	22
3697	Hydrothermally Grown Upright-Standing Nanoporous Nanosheets of Iodine-Doped ZnO (ZnO:I) Nanocrystallites for a High-Efficiency Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces, 2013, 5, 3075-3084.	4.0	34
3698	Near-infrared phosphorescence: materials and applications. Chemical Society Reviews, 2013, 42, 6128.	18.7	566
3699	Distance Dependent Electron Transfer at TiO ₂ Interfaces Sensitized with Phenylene Ethynylene Bridged Ru ^{II} –Isothiocyanate Compounds. Journal of the American Chemical Society, 2013, 135, 8331-8341.	6.6	52
3700	Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2013, 52, 6752-6764.	1.9	102
3701	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5139-5148.	4.0	55
3701 3702	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>} Se _{1â€"<i>x</i>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156.	4.0 15.6	55 181
3701 3702 3703	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>} Se _{Iâ€"<i>x</i>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156. Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Materials Letters, 2013, 94, 15-18.	4.0 15.6 1.3	55 181 17
3701 3702 3703 3704	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>} Se _{lâ€"<i>x</i>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148.Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156.Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Materials Letters, 2013, 94, 15-18.X-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 29, 8302-8310.	4.0 15.6 1.3 1.6	 55 181 17 18
 3701 3702 3703 3704 3705 	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>} Se _{lâ€"<i>x</i>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156. Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Materials Letters, 2013, 94, 15-18. X-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 29, 8302-8310. Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441.	4.0 15.6 1.3 1.6	 55 181 17 18 2
 3701 3702 3703 3704 3705 3706 	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>x</i>>>} Se _{1â€"<i>x</i>>} Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156. Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Materials Letters, 2013, 94, 15-18. X-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 29, 8302-8310. Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441. Photoelectrochemical cells based on nanocrystalline TiO2 synthesized by high temperature hydrolysis of ammonium dihydroxodilactatotitanate(IV). Russian Journal of Electrochemistry, 2013, 49, 423-427.	4.0 15.6 1.3 1.6	 55 181 17 18 2 1
 3701 3702 3703 3704 3705 3706 3707 	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{Films for Quantum Dot-Sensitized Solar Cells.ACS Applied Materials & amp; Interfaces, 2013, 5, 5139-5148.Cold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitizedSolar Cells.Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells.NewX-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 385-441.DyeeSensitized Photoelectrochemical Cells., 2013, 385-441.}	4.0 15.6 1.3 1.6 0.3	 55 181 17 18 2 1 24
 3701 3702 3703 3704 3705 3706 3707 3708 	One-Step Preparation and Assembly of Aqueous Colloidal CdS _{<i>xx</i>} Se _{18C CdS_{<i>xx</i>}Se_{18C Cold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2156.Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Materials Letters, 2013, 94, 15-18.X-ray Photoemission Spectroscopy Investigation of the Interaction between 4-Mercaptopyridine and the Anatase TiO2 Surface. Langmuir, 2013, 29, 8302-8310.Dye-Sensitized Photoelectrochemical Cells. , 2013, , 385-441.Photoelectrochemical cells based on nanocrystalline TiO2 synthesized by high temperature hydrolysis of ammonium dihydroxodilactatotitanate(IV). Russian Journal of Electrochemistry, 2013, 49, 423-427.Ruthenium oxyquinolate complexes for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 405, 98-104.Charge Transport Properties in TiO₂ Network with Different Particle Sizes for Dye Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2013, 5, 1044-1052.}}	 4.0 15.6 1.3 1.6 0.3 1.2 4.0 	 55 181 17 18 2 1 24 91

#	Article	IF	CITATIONS
3710	An unusual thiazolo[5,4-d]thiazole sensitizer for dye-sensitized solar cells. Tetrahedron Letters, 2013, 54, 3944-3948.	0.7	11
3711	An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2013, 107, 231-237.	2.6	15
3712	Increased charge transfer of Poly (ethylene oxide) based electrolyte by addition of small molecule and its application in dye-sensitized solar cells. Electrochimica Acta, 2013, 87, 526-531.	2.6	37
3713	Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydrate Polymers, 2013, 91, 682-685.	5.1	103
3714	Improved efficiency of dye-sensitized solar cells applied with F-doped TiO2 electrodes. Journal of Fluorine Chemistry, 2013, 150, 78-84.	0.9	30
3716	Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method. Applied Surface Science, 2013, 270, 462-466.	3.1	16
3718	Micron-thick, worm-like, organized TiO2 films prepared using polystyrene-b-poly(2-vinyl pyridine) block copolymer and preformed TiO2 for solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 105, 15-22.	2.6	5
3719	Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89, 90-97.	2.6	31
3720	Syntheses of near infrared absorbed phthalocyanines to utilize photosensitizers. Journal of Porphyrins and Phthalocyanines, 2013, 17, 605-627.	0.4	11
3721	Halido-Bridged 1D Mixed-Valence Cul-CullCoordination Polymers Bearing a Piperidine-1-carbodithioato Ligand: Crystal Structure, Magnetic and Conductive Properties, and Application in Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2013, 2013, 3384-3391.	1.0	13
3722	Enhanced photoelectric conversion efficiency of dye-sensitized solar cells by the incorporation of dual-mode luminescent NaYF4:Yb3+/Er3+. Dalton Transactions, 2013, 42, 7971.	1.6	47
3723	Influence of dye dispersion on photoelectric conversion properties of dye-containing titania electrodes. Catalysis Science and Technology, 2013, 3, 1512.	2.1	9
3724	Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells. Solar Energy, 2013, 94, 37-70.	2.9	125
3725	Fully Plastic Dye Solar Cell Devices by Lowâ€Temperature UVâ€Irradiation of both the Mesoporous TiO ₂ Photo―and Platinized Counterâ€Electrodes. Advanced Energy Materials, 2013, 3, 1292-1298.	10.2	67
3726	Structure-Function Interplay in Dye-Sensitised Solar Cells. Springer Theses, 2013, , 33-50.	0.0	0
3727	Dye-Sensitised Solar Cell Based on a Three-Dimensional Photonic Crystal. Springer Theses, 2013, , 129-140.	0.0	0
3728	Recombination and redox couples in dye-sensitized solar cells. Coordination Chemistry Reviews, 2013, 257, 1533-1543.	9.5	93
3729	Metal Oxide Nanomaterials, Conducting Polymers and Their Nanocomposites for Solar Energy. , 0, , .		5

ARTICLE IF CITATIONS Improving the performance of quantum dot-sensitized solar cells by using TiO2nanosheets with 3730 1.3 23 exposed highly reactive facets. Nanotechnology, 2013, 24, 245401. Synthesis and characterization of simple trans-AB-porphyrins for dye-sensitized solar cells. New 1.4 Journal of Chemistry, 2013, 37, 1134. Platinum nanoparticle/self-doping polyaniline composite-based counter electrodes for dye-sensitized 3732 0.8 20 solar cells. Journal of Nanoparticle Research, 2013, 15, 1. Atomic and molecular adsorption on Ru(0001). Surface Science, 2013, 614, 64-74. 3733 0.8 Photovoltaic performance of dye-sensitized solar cells based on Dâ€"Ï€â€"A type BODIPY dye with two 3734 1.4 74 pyridyl groups. New Journal of Chemistry, 2013, 37, 2479. Protoporphyrin IX on TiO2 electrode: A spectroscopic and photovoltaic investigation. Dyes and Pigments, 2013, 96, 196-203. New N-methyl pyrrole and thiophene based D–i€â€"A systems for dye-sensitized solar cells. Dyes and 3736 2.0 26 Pigments, 2013, 96, 313-318. New bithiazole-functionalized organic photosensitizers for dye-sensitized solar cells. Dyes and 2.0 Pigments, 2013, 96, 516-524. TiO2 nanorods via one-step electrospinning technique: A novel nanomatrix for mouse myoblasts 3738 2.5 27 adhesion and propagation. Colloids and Surfaces B: Biointerfaces, 2013, 101, 424-429. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes. Materials Research 3739 2.7 Bulletin, 2013, 48, 79-83. Photoelectrochemical properties of electrostatically self-assembled multilayer films formed by three 3740 17 2.7 bipolar hemicyanines and H4SiW12O40. Materials Research Bulletin, 2013, 48, 595-602. Triazine dyes as photosensitizers for dye-sensitized solar cells. Tetrahedron, 2013, 69, 190-200. 3741 1.0 Photoinduced charge transfer processes of zinc porphyrin derivatives for dye-sensitized solar cells. 3742 1.3 4 Chemical Research in Chinese Universities, 2013, 29, 974-981. Formation of artificial pores in nano-TiO2 photo-electrode films using acetylene-black for high-efficiency, dye-sensitized solar cells. Scientific Reports, 2013, 3, 1496. 3743 1.6 Fabrication and Evaluation of Low-cost Cu2ZnSn(S,Se)4 Counter Electrodes for Dye-sensitized Solar 3744 14.4 18 Cells. Nano-Micro Letters, 2013, 5, 281-288. Optofluidic Microreactors with TiO₂-Coated Fiberglass. ACS Applied Materials & amp; 3745 Interfaces, 2013, 5, 12548-12553. Effect of free rotation in polypyridinic ligands of Ru(ii) complexes applied in light-emitting 3746 1.6 34 electrochemical cells. Dalton Transactions, 2013, 42, 15502. Soft-Landing Electrospray Deposition of the Ruthenium Dye N3 on Au(111). Journal of Physical 3747 1.5 Chemistry C, 2013, 117, 9734-9738.

#	Article	IF	CITATIONS
3748	Degradation study of dye-sensitized solar cells by electrochemical impedance and FTIR spectroscopy. , 2013, , .		8
3749	Modeling opto-electronic properties of a dye molecule in proximity of a semiconductor nanoparticle. Journal of Chemical Physics, 2013, 139, 024105.	1.2	16
3750	Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs. Dyes and Pigments, 2013, 99, 74-81.	2.0	35
3751	Dye-Sensitized Solar Cell Studies of a Donor-Appended Bis(2,9-dimethyl-1,10-phenanthroline) Cu(I) Dye Paired with a Cobalt-Based Mediator. Journal of Physical Chemistry C, 2013, 117, 3853-3864.	1.5	54
3752	Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell. Scientific Reports, 2013, 3, 2727.	1.6	16
3753	What Limits Photoconductance in Anatase TiO ₂ Nanostructures? A Real and Imaginary Microwave Conductance Study. Journal of Physical Chemistry C, 2013, 117, 8032-8040.	1.5	43
3754	Ink-jet-printed (ZnO)1â^'x(TiO2)x composite films for solar cell applications. Journal of Materials Research, 2013, 28, 502-506.	1.2	9
3755	Molecular Structure Effect of Pyridine-Based Surface Ligand on the Performance of P3HT:TiO ₂ Hybrid Solar Cell. ACS Applied Materials & Interfaces, 2013, 5, 1009-1016.	4.0	33
3756	Optical properties of nano-structured Pt/FTO counter electrode for QDSSCs. , 2013, , .		0
3757	2,3′-Diamino-4,4′-stilbenedicarboxylic acid sensitizer for dye-sensitized solar cells: quantum chemical investigations. Journal of Molecular Modeling, 2013, 19, 4561-4573.	0.8	8
3758	Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye-sensitized solar cells. Journal of Polymer Research, 2013, 20, 1.	1.2	16
3759	One-Dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mtext>T</mml:mtext><mml:mtext>i</mml:mtext><mml:msub><mml:mrow><mml:mtext>Oas Photoanodes for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2013, 2013, 1-11.</mml:mtext></mml:mrow></mml:msub></mml:math>	n lım text>	<del عml:mro
3760	Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths. NPG Asia Materials, 2013, 5, e61-e61.	3.8	71
3761	Role of Molecular Thermodynamical Processes at Functionalized Polymer/Metaloxide Interfaces for Photovoltaics. Journal of Physical Chemistry C, 2013, 117, 13894-13901.	1.5	13
3762	Organic Sensitizers with Bridged Triphenylamine Donor Units for Efficient Dye ensitized Solar Cells. Advanced Energy Materials, 2013, 3, 200-205.	10.2	49
3763	Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests. Journal of Applied Electrochemistry, 2013, 43, 209-215.	1.5	13
3764	Gel polymer electrolytes for dye sensitised solar cells: a review. Materials Technology, 2013, 28, 65-70.	1.5	70
3765	Nanostructured ZnO, TiO _{2} , and Composite ZnO/TiO _{2} Films for Application in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	17

#	Article	IF	CITATIONS
3766	Ultradurable Dye-Sensitized Solar Cells under 120°C Using Cross-Linkage Dye and Ionic-Liquid Electrolyte. International Journal of Photoenergy, 2013, 2013, 1-9.	1.4	5
3767	Spectroscopic and Morphological Studies of Metal-Organic and Metal-Free Dyes onto Titania Films for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-11.	1.4	5
3768	Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	12
3769	Separation of Functionalized 5,6-Disubstituted-1,10-Phenanthroline for Dye-Sensitized Solar Cell Applications. Journal of Chemistry, 2013, 2013, 1-8.	0.9	3
3770	High Efficiency of Dye-Sensitized Solar Cells Based on Ruthenium and Metal-Free Dyes. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	5
3771	Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method. International Journal of Photoenergy, 2013, 2013, 1-5.	1.4	7
3772	The Role of the Conjugate Bridge in Electronic Structures and Related Properties of Tetrahydroquinoline for Dye Sensitized Solar Cells. International Journal of Molecular Sciences, 2013, 14, 5461-5481.	1.8	66
3773	Understanding the Electronic Structures and Absorption Properties of Porphyrin Sensitizers YD2 and YD2-o-C8 for Dye-Sensitized Solar Cells. International Journal of Molecular Sciences, 2013, 14, 20171-20188.	1.8	54
3774	A New Heteroleptic Biquinoline Ruthenium(II) Sensitizer for Near-IR Sensitization of Nanocrystalline TiO2. Journal of Chemistry, 2013, 2013, 1-4.	0.9	0
3775	Experiments with the titanium dioxide-ruthenium tris-bipyridine-nickel cyclam system for the photocatalytic reduction of CO2. Green Processing and Synthesis, 2013, 2, .	1.3	0
3776	Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment. International Journal of Molecular Sciences, 2013, 14, 4081-4093.	1.8	43
3777	Photo-Electronic Properties of Titanium Dioxide Nano Thin Films. Applied Mechanics and Materials, 0, 479-480, 50-54.	0.2	0
3778	A simple template-free †sputtering deposition and selective etching' process for nanoporous thin films and its application to dye-sensitized solar cells. Nanotechnology, 2013, 24, 365604.	1.3	12
3779	Effects of Polyethylene Glycol on Agarose-Based Magnetic Polymer Electrolyte for Dye-Sensitized Solar Cell. Advanced Materials Research, 0, 652-654, 860-864.	0.3	2
3780	New Family of Ruthenium-Dye-Sensitized Solar Cells (DSSCs) with a High Solar-Energy-Conversion Efficiency. Advanced Materials Research, 0, 770, 145-148.	0.3	0
3781	ZnO Nanoforest Based New Generation Dye Sensitized Solar Cells. Materials Science Forum, 0, 771, 71-89.	0.3	3
3782	Design and Synthesis of Ruthenium (II) Complexes and their Applications in Dye Sensitized Solar Cells (DSSCs). Advanced Materials Research, 2013, 770, 92-95.	0.3	1
3783	The effect of photoanode thickness on the performance of dye-sensitized solar cells containing TiO ₂ nanosheets with exposed reactive {001} facets. Journal of Materials Research, 2013, 28, 475-479	1.2	15

# 3784	ARTICLE Review: Dye sensitised solar cells. Materials Technology, 2013, 28, 9-14.	IF 1.5	CITATIONS
3785	TiO ₂ nanocrystals coated rutile nanorod microspheres as the scattering layers for dye-sensitized solar cells. Proceedings of SPIE, 2013, , .	0.8	1
3786	Rare Earth Oxide Nanolayer Coating on ZnO Nanowires in Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 10MB26.	0.8	0
3787	Effect of NiO Nanoparticles on Magnetic Polymer Electrolyte for Dye-Sensitized Solar Cells. Advanced Materials Research, 2013, 658, 97-101.	0.3	0
3788	Solid-State Dye Sensitized Solar Cells: Effect of Hole Transport Material Properties to the Photovoltaic Performance. Advanced Materials Research, 0, 667, 317-323.	0.3	6
3789	The Hydrothermal Synthesis of Nanoporous Titanium Dioxide and its Application in Dye-Sensitized Solar Cell. Advanced Materials Research, 0, 641-642, 543-546.	0.3	0
3790	A new 1 <i>H-</i> pyridin-(2E)-ylidene ruthenium complex as sensitizer for a dye-sensitized solar cell. Journal of Coordination Chemistry, 2013, 66, 1384-1395.	0.8	9
3791	Corrosion Monitoring of Flexible Metallic Substrates for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	12
3792	Triazoloisoquinoline-Based/Ruthenium-Hybrid Sensitizer for Efficient Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2013, 2013, 1-5.	1.4	2
3793	Recent Advances in SnO ₂ Based Photo Anode Materials for Third Generation Photovoltaics. Materials Science Forum, 0, 771, 25-38.	0.3	11
3794	Plasmon Resonance Enhanced Zinc Oxide Photoelectrodes for Improvement in Performance of Dye Sensitized Solar Cells. Materials Science Forum, 2013, 771, 91-101.	0.3	2
3795	Unexpected Performances of Flat Sb ₂ S ₃ -Based Hybrid Extremely Thin Absorber Solar Cells. Applied Physics Express, 2013, 6, 072301.	1.1	18
3796	Organic Photovoltaics and Dye-Sensitized Solar Cells. , 2013, , 567-605.		2
3797	Effect of co-adsorption dye on the electrode interface (Ru complex/TiO2) of dye-sensitized solar cells. AIP Advances, 2013, 3, .	0.6	8
3798	Atomic layer deposition of anatase TiO2 on porous electrodes for dye-sensitized solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	10
3799	Effective inorganic-organic composite electrolytes for efficient solid-state dye sensitized solar cells. , 2013, , .		1
3800	Synthesis and photovoltaic properties of main chain polymeric metal complexes containing 8-hydroxyquinoline metal complexes conjugating alkyl fluorene or alkoxy benzene by CN bridge for dye-sensitized solar cells. Polymer Composites, 2013, 34, 1629-1639.	2.3	10
3801	A Highly Conjugated Benzimidazole Carbeneâ€Based Ruthenium Sensitizer for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 2196-2203.	1.7	9

	CITATION REF	PORT	
#	Article	IF	CITATIONS
3802	TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell. Journal of Renewable and Sustainable Energy, 2013, 5, 043101.	0.8	21
3803	Enhanced Performance of Dyeâ€Sensitized Solar Cells Using Solutionâ€Based In Situ Synthesis and Fabrication of Cu ₂ ZnSnSe ₄ Nanocrystal Counter Electrode. Chemistry - A European Journal, 2013, 19, 10107-10110.	1.7	44
3804	Influence of TiCl ₄ Treatment on Structure and Performance of Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 075002.	0.8	27
3805	Effect of Valeric Acid as a Co-adsorbate on the Performance of Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 9-15.	0.4	3
3806	Synthesis and Photovoltaic Performance of Ionic Dyes for Quasi-Solid State Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 111-120.	0.4	1
3807	Synthesis and properties of conjugated polymers from 3,6-di(4-chlorophenyl)-3,6-dihydrophthalic acid diethyl ester and application to the photo-sensitizer of a solar cell. Polymer Journal, 2013, 45, 790-796.	1.3	1
3808	Main chain polymeric metal complexes based on linkage fluorenevinylene or phenylenevinylene with thienyl(8â€hydro xyquinoline)–cadmium (II) complexes as dye sensitizer for dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2013, 129, 3104-3112.	1.3	3
3809	Bis(4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine)ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	1.7	18
3810	Effective charge collection in dye-sensitized nanocrystalline TiO 2. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 015006.	0.7	4
3811	Study the effect of TiO <inf>2</inf> annealing and TiCl <inf>4</inf> treatment on the performance of dye-sensitized solar cells. , 2013, , .		1
3812	Effects of Double Layer Coating on TiO2Surface on the Photovoltaic Properties of Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2013, 586, 16-22.	0.4	0
3813	Enhanced Performance of Dye-Sensitized Solar Cells with Surface-Modified ZnO Nanorods. Molecular Crystals and Liquid Crystals, 2013, 586, 88-94.	0.4	1
3814	Substituent Effects for Perylenedicarboxylic Anhydrides on the Performance of Dye-sensitized Solar Cells: The Simpler, the Better. Chemistry Letters, 2013, 42, 450-452.	0.7	2
3815	Cosensitization of Ruthenium–Polypyridyl Dyes with Organic Dyes in Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 1328-1335.	0.7	30
3816	New Organic Sensitizers with N-Substituted or Nonsubstituted Pyrrole Units for Dye-sensitized Solar Cells. Chemistry Letters, 2013, 42, 140-142.	0.7	6
3817	Fabrication of Photoelectrodes from LaTiO2N Particles for Photoelectrochemical Water Splitting. Bulletin of the Chemical Society of Japan, 2013, 86, 540-546.	2.0	10
3819	Bimetallic Activation of 2â€Alkanones through Photoâ€Induced αâ€Hydrogen Abstraction Mediated by a Dinuclear Ruthenium Tetrahydride Complex. Angewandte Chemie - International Edition, 2013, 52, 1773-1776.	7.2	8
3820	Photoinduced electron injection between DFCP and TiO2 nanoparticles. Neuroscience of Decision Making, 2013, 1, 1-5.	1.3	0

CITATION REP	PORT

#	Article	IF	CITATIONS
3821	The Photovoltaic Performance of Doped-Cul Hole Conductors for Solid State Dye-Sensitized Solar Cells. IOP Conference Series: Materials Science and Engineering, 2013, 46, 012012.	0.3	4
3822	Fabrication of fairly efficient solid state dye-sensitized solar cells with a dense blocking layer. Journal of the Ceramic Society of Japan, 2013, 121, 437-440.	0.5	0
3823	Optimisation of Ruthenium Dye Sensitised Solar Cells Efficiency via Sn Diffusion into the TiO2 Mesoporous Layer. PLoS ONE, 2013, 8, e63923.	1.1	0
3824	Fluorescence Ratiometric Properties Induced by Nanoparticle Plasmonics and Nanoscale Dye Dynamics. Scientific World Journal, The, 2013, 2013, 1-6.	0.8	5
3825	A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods. Scientific World Journal, The, 2013, 2013, 1-17.	0.8	39
3826	Fast TiO2Sensitization Using the Semisquaric Acid as Anchoring Group. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	4
3827	Enhancing the Light Harvesting Capacity of the Photoanode Films in Dye-Sensitized Solar Cells. , 0, , .		7
3828	Photovoltaic Performance of Spray-Coated Zinc Oxide Nanoparticles Sensitized With Metal-Free Indoline Dyes. Journal of Materials Science Research, 2013, 3, .	0.1	1
3829	A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Advances in Chemistry, 2014, 2014, 1-23.	1.1	33
3830	Improved Composite Gel Electrolyte by Layered Vermiculite for Quasi-Solid-State Dye-Sensitized Solar Cells. Advances in Condensed Matter Physics, 2014, 2014, 1-5.	0.4	1
3831	High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes. Journal of Solar Energy, 2014, 2014, 1-7.	0.8	4
3832	Synthesis and Photophysical and Electrochemical Properties of Functionalized Mono-, Bis-, and Trisanthracenyl Bridged Ru(II) Bis(2,2′:6′,2″-terpyridine) Charge Transfer Complexes. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	3
3833	Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes. Beilstein Journal of Nanotechnology, 2014, 5, 895-902.	1.5	9
3834	Molecular Electron Transferâ~†â~†Change History: April 2013. JF Endicott updated text throughout, and references, and added two figures, deleted one figure and amended one figure , 2014, , .		0
3836	A distinguishable photovoltaic performance on dye-sensitized solar cells using ruthenium sensitizers with a pair of isomeric ancillary ligands. Dalton Transactions, 2014, 43, 16601-16604.	1.6	12
3837	Photovoltaic performance of multi-wall carbon nanotube/PEDOT:PSS composite on the counter electrode of a dye-sensitized solar cell. Japanese Journal of Applied Physics, 2014, 53, 08NJ02.	0.8	6
3838	Triarylamine-Functionalized Ru Dyes with Different Conjugation Lengths for Highly Efficient Dye Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 600, 22-27.	0.4	7
3839	Highly Efficient SnO ₂ / MgO Composite Film-Based Dye-Sensitized Solar Cells Sensitized with N719 and D358 Dyes. International Journal of Nanoscience, 2014, 13, 1440006.	0.4	3

#	Article	IF	CITATIONS
3840	Benzotriazole-based dyes containing a low band gap for dye-sensitised solar cells: a theoretical study. Molecular Physics, 2014, 112, 3120-3126.	0.8	1
3841	Recent Progress of Zn ₂ SnO ₄ -Based Dye Sensitized Solar Cells. Materials Science Forum, 0, 809-810, 793-799.	0.3	0
3842	Electronic, photophysical and redox properties of tetrapyrrolic ruthenium(II) isothiocyanato complexes and their carboxylic anchors' effect: an implication for dye-sensitized solar cells. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	4
3843	Aggregation control of organic sensitizers for panchromatic dye co-sensitized solar cells. Japanese Journal of Applied Physics, 2014, 53, 08NC04.	0.8	7
3844	Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell. Japanese Journal of Applied Physics, 2014, 53, 11RE02.	0.8	5
3845	Effects of a Seed Layer and Sn Ion Modification on the ZnO Nanorods in Dye-Sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 602, 72-80.	0.4	4
3846	Enhancing performance of dye-sensitized solar cells by TiCl ₄ treatment at different concentrations. Japanese Journal of Applied Physics, 2014, 53, 06JG10.	0.8	3
3847	DYE- AND PEROVSKITE-SENSITISED MESOSCOPIC SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014, , 413-452.	0.2	1
3848	Electron dynamics in charged wet TiO2anatase (001) surface functionalised by ruthenium ions. Molecular Physics, 2014, 112, 441-452.	0.8	20
3849	A Rutheniumâ€Based Lightâ€Harvesting Antenna Bearing an Anthracene Moiety in Dyeâ€ S ensitized Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 953-962.	1.3	11
3850	Novel D-ï€-A dye sensitizers of polymeric metal complexes with phenylethyl or carbazole derivatives as donors for dye-sensitized solar cells: synthesis, characterization, and photovoltaic application. Journal of Materials Science: Materials in Electronics, 2014, 25, 5144-5152.	1.1	2
3851	N,S,Pâ€Hybrid Donor–ï€â€"Acceptor Organic Dyes for Dyeâ€ S ensitized Solar Cell: Synthesis, Optical Properties, and Photovoltaic Performances. Heteroatom Chemistry, 2014, 25, 533-547.	0.4	21
3852	Study on Dye-Sensitized Solar Cells Based on Graphene / Pt Counter Electrode. Advanced Materials Research, 2014, 1056, 25-29.	0.3	2
3853	Controlling the interfacial concentrations of I 3 â [°] and Li + ions in illuminated ruthenium (II) complex-sensitized nanoparticulate TiO 2 photoanodes chemically coated by poly(amidoamide) dendrimers generation 4.0 for enhancing the performance of dye-sensitized solar cells. Electrochimica Acta, 2014, 143, 247-256.	2.6	4
3854	Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-12.	1.4	8
3855	Energy harvesting of dye-sensitized solar cells assisted with Ti-mesh and phosphor materials. IOP Conference Series: Materials Science and Engineering, 2014, 54, 012025.	0.3	4
3856	Characterization and Performance Evaluation of Dye Sensitized Solar Cell Using Nanostructured TiO ₂ Electrode. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	5
3857	Recent Advances in Dye Sensitized Solar Cells. Advances in Materials Science and Engineering, 2014, 2014, 1-12.	1.0	143

#	Article	IF	CITATIONS
3858	Cobalt Sulphate as an Alternative Counter Electrode Material in Dye Sensitized Solar Cells. Journal of Solar Energy Engineering, Transactions of the ASME, 2014, 136, .	1.1	2
3859	Novel method for evaluation of natural dyes in DSSC. , 2014, , .		1
3860	Chemistry of Sensitizers for Dye-sensitized Solar Cells. RSC Energy and Environment Series, 2014, , 186-241.	0.2	3
3861	Effective Solid Electrolyte Based on Benzothiazolium for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 22088-22095.	4.0	14
3862	Preparation of inkjet-printed titanium monoxide as p-type absorber layer for photovoltaic purposes. Thin Solid Films, 2014, 572, 8-14.	0.8	18
3863	Effect of TiO ₂ microbead pore size on the performance of DSSCs with a cobalt based electrolyte. Nanoscale, 2014, 6, 13787-13794.	2.8	19
3864	An alternative methodology for anchoring organic sensitizers onto TiO ₂ semiconductors for photoelectrochemical applications. Journal of Materials Chemistry A, 2014, 2, 20748-20759.	5.2	21
3865	Embossed Hollow Hemisphereâ€Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor. Advanced Functional Materials, 2014, 24, 2038-2043.	7.8	124
3866	A Homoleptic Trisbidentate Ru(II) Complex of a Novel Bidentate Biheteroaromatic Ligand Based on Quinoline and Pyrazole Groups: Structural, Electrochemical, Photophysical, and Computational Characterization. Inorganic Chemistry, 2014, 53, 12778-12790.	1.9	10
3867	Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 4285-4290.	2.1	22
3868	Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Physical Chemistry Chemical Physics, 2014, 16, 26684-26690.	1.3	55
3869	Effect of the Amount of H ₂ O on the Crystallization of TiO ₂ Films Prepared from Alkoxide Solutions Containing Acetylacetone. Journal of the American Ceramic Society, 2014, 97, 1091-1095.	1.9	5
3870	Dye-sensitized solar cells based on porous conjugated polymer counter electrodes. Thin Solid Films, 2014, 573, 112-116.	0.8	19
3871	Hydrophobic Electrolyte Pastes for Highly Durable Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2014, 161, H214-H219.	1.3	4
3872	Pyridineâ€∢i>Nâ€Oxide 2â€Carboxylic Acid: An Acceptor Group for Organic Sensitizers with Enhanced Anchoring Stability in Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2014, 3, 140-152.	1.3	18
3873	Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 12330-12396.	23.0	839
3874	The influence of blocking layer on the photovoltaic performance of organometal halide perovskite solar cell. , 2014, , .		2
3875	Synthesis and Characterization of Two New Organic Dyes for Dye-Sensitized Solar Cells. Synthetic Communications, 2014, 44, 779-787.	1.1	20

#	Article	IF	CITATIONS
3876	β-(p-Carboxyaminophenyl)porphyrin derivatives: new dyes for TiO2 dye-sensitized solar cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
3877	SYNERGISTIC EFFECT OF SURFACE PLASMON RESONANCE AND CONSTRUCTED THREE-DIMENSIONAL INTERWOVEN STRUCTURED TIO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS. Nano, 2014, 09, 1440012.	0.5	1
3878	Replacing TCO electrodes in dye sensitized solar cells by metal grids. Proceedings of SPIE, 2014, , .	0.8	0
3879	Dye-sensitized solar cell using natural dyes extracted from <i>Morus atba Lam</i> fruit and <i>Striga hermonthica</i> flower. Journal of Photonics for Energy, 2014, 4, 043091.	0.8	6
3880	Study of Thiophene in Phthalocyanine Sensitized SnO ₂ Photo Catalytic Oxidation's Oil. Applied Mechanics and Materials, 0, 608-609, 985-990.	0.2	0
3881	Effect of Anti-Reflective Layer in Dye-Sensitized Solar Cells. Applied Mechanics and Materials, 0, 705, 320-323.	0.2	3
3882	Screening Effect of Phosphate on Photoelectrocatalytic Activity of TiO ₂ Electrode. Advanced Materials Research, 0, 953-954, 1099-1104.	0.3	0
3883	Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry, 2014, 2, 36.	1.8	65
3884	Efficient mesoporous/nanostructured Ag-doped alloy semiconductor for solar hydrogen generation. Journal of Photonics for Energy, 2014, 4, 044099.	0.8	12
3885	Investigation of the optical and the electrical characteristics of thin titanium dioxide films. Materials Research Innovations, 2014, 18, S3-26-S3-30.	1.0	0
3886	Facile method for synthesis of TiO2 film and its application in high efficiency dye sensitized-solar cell (DSSC). , 2014, , .		0
3887	Evaluation of Annealing Effects on TiO ₂ Nanorod Arrays for Dye-Sensitized Solar Cells by Equivalent Circuit Analysis. Key Engineering Materials, 0, 609-610, 152-158.	0.4	3
3888	Theoretical Insight into Organic Dyes Incorporating Triphenylamine-Based Donors and Binary <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">i€</mml:mi </mml:mrow></mml:math> -Conjugated Bridges for Dwe-Sensitized Solar Cells, International Journal of Photoenergy, 2014, 2014, 1-9	1.4	3
3889	Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	1
3890	Dye-Sensitized Solar Cells Composed of Well-Aligned ZnO Nanorod Array Grown with Chemical Bath Deposition Method as the Photo-Electrode. Molecular Crystals and Liquid Crystals, 2014, 597, 120-127.	0.4	2
3891	Enhanced Light Harvesting and Electron Lifetime of Front Side-illuminated CdSe Quantum Dot-assembled TiO ₂ Nanotube Arrays for Quantum Dot-sensitized Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 144-153.	0.4	2
3892	DSSC anchoring groups: a surface dependent decision. Journal of Physics Condensed Matter, 2014, 26, 195302.	0.7	24
3893	Light harvesting properties of some new heteroleptic dithiocarbimate–diamine/diimine complexes of Ni, Pd and Pt studied as photosensitizer in dye-sensitized TiO ₂ solar cells. New Journal of Chemistry, 2014, 38, 97-108.	1.4	17

#	Article	IF	CITATIONS
3894	New fabrication process of long-life dye-sensitized solar cells by in situ gelation of quasi-solid polymer electrolytes. Journal of Power Sources, 2014, 247, 939-946.	4.0	16
3895	Biofuel from biomass via photo-electrochemical reactions: An overview. Journal of Power Sources, 2014, 259, 33-42.	4.0	64
3896	Application of MnTiO3 nanoparticles as coating layer of high performance TiO2/MnTiO3 dye-sensitized solar cell. Journal of Industrial and Engineering Chemistry, 2014, 20, 3646-3648.	2.9	17
3897	Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115, 255-262.	2.6	24
3898	Synthesis of monodisperse colloidal TiO2 microspheres and performance of their dye-sensitized solar cells. Applied Surface Science, 2014, 308, 301-305.	3.1	11
3899	Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorganica Chimica Acta, 2014, 414, 145-152.	1.2	14
3900	Structures, frontier molecular orbitals and UV–vis spectra of RuX(PPh3)(NHCPh2)L (XÂ=ÂTp and Cp*;) Tj ETQq0	0 0 0 rgBT 0.8 rgBT	/Qverlock 1

3901	Improved performance of dye-sensitized solar cells with novel conjugated organic dye using aluminum oxide-coated nanoporous titanium oxide films. Journal of Power Sources, 2014, 249, 385-391.	4.0	8
3902	Push–pull effect on the geometries, electronic and optical properties of thiophene based dye-sensitized solar cell materials. Journal of Saudi Chemical Society, 2014, 18, 914-919.	2.4	35
3903	A computational approach to the electronic, optical and acid–base properties of Ru(II) dyes for photoelectrochemical solar cells applications. Polyhedron, 2014, 82, 88-103.	1.0	3
3904	Redox- and photovoltaic-active nanocomposite thin films of graphene oxide and a ruthenium terpyridyl complex. Electrochimica Acta, 2014, 134, 319-326.	2.6	16
3905	Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO2 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 187, 75-82.	1.7	16
3906	Low-Dose Imidazolium Cation Grafted Polymeric Nanotubes for Quasi-solid-state Dye-sensitized Solar Cells. Electrochimica Acta, 2014, 133, 446-452.	2.6	3
3907	A DFT study on structures, frontier molecular orbitals and UV–vis spectra of RuX(PPh3)(NHCPh2)L (X=Tp and Cp; L=Cl and N3). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 650-656.	2.0	6
3908	Periodic density functional theory study on the interaction mode and mechanism of typical additives with TiO2 substrates for dye-sensitized solar cell applications. Journal of Power Sources, 2014, 246, 10-18.	4.0	16
3909	Quasi solid state dye-sensitized solar cells based on polyvinyl alcohol (PVA) electrolytes containing \$\$mathbf{I}^{mathbf{-}}/mathbf{I}_{mathbf{3}}^{mathbf{-}}\$\$I-/I3-redox couple. Optical and Quantum Electronics, 2014, 46, 143-154.	1.5	41
3910	Dependence of Dye Regeneration and Charge Collection on the Pore-Filling Fraction in Solid-State Dye-Sensitized Solar Cells. Advanced Functional Materials, 2014, 24, 668-677.	7.8	29
3911	Designing Cyclometalated Ruthenium(II) Complexes for Anodic Electropolymerization. Chemistry - A European Journal, 2014, 20, 2357-2366.	1.7	23

#	Article	IF	CITATIONS
3912	High performance of Pt-free dye-sensitized solar cells based on two-step electropolymerized polyaniline counter electrodes. Journal of Materials Chemistry A, 2014, 2, 3452-3460.	5.2	80
3913	Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device. Applied Energy, 2014, 120, 16-22.	5.1	71
3914	Extended Ï€â€Bridge in Organic Dyeâ€Sensitized Solar Cells: the Longer, the Better?. Advanced Energy Materials, 2014, 4, 1301485.	10.2	61
3915	Management of Water Quality in Moldova. Water Science and Technology Library, 2014, , .	0.2	9
3916	Novel Ru-based sunlight harvesters bearing dithienylpyrrolo (DTP)-bipyridine ligands: Synthesis, characterization and photovoltaic properties. Dyes and Pigments, 2014, 101, 318-328.	2.0	7
3917	Simulation on the carrier transport process inside the semiconductor of dye sensitized solar cells by wxAMPS software. Electrochimica Acta, 2014, 125, 218-224.	2.6	5
3918	A novel trigeminal zinc porphyrin and corresponding porphyrin monomers for dye-sensitized solar cells. RSC Advances, 2014, 4, 10439.	1.7	8
3919	DFT study of the effect of different metals on structures and electronic spectra of some organic-metal compounds as sensitizing dyes. Optics and Spectroscopy (English Translation of Optika I) Tj ETQqI	10027843	51 ⊕ rgBT /Ov
3920	UV–vis absorption spectrum of a novel Ru(II) complex intercalated in DNA: [Ru(2,2′-bipy)(dppz)(2,2′-ArPy)]+. Journal of Molecular Modeling, 2014, 20, 2082.	0.8	16
3921	Room temperature synthesis of rutile titania nanoparticles: a thermodynamic perspective. European Physical Journal D, 2014, 68, 1.	0.6	7
3922	Performance of dye-sensitized solar cells based on various sensitizers applied on TiO2-Nb2O5 core/shell photoanode structure. Journal of Solid State Electrochemistry, 2014, 18, 1601-1609.	1.2	7
3923	Fabrication and characterization of a new dye sensitized solar cell with a new Schiff base cobalt complex as a redox mediator. RSC Advances, 2014, 4, 15961.	1.7	16
3924	N-Alkyl- and N-aryl-dithieno[3,2-b:2′,3′-d]pyrrole-containing organic dyes for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 2141-2150.	1.0	16
3925	A combined theoretical and experimental investigation on the solvatochromism of ESIPT3-(1,3-benzothiazol-2-yl)-2-hydroxynaphthalene-1-carbaldehyde. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 16-24.	2.0	9
3926	Varying numbers and positions of carboxylate groups on Ru dyes for dye-sensitized solar cells: uptake on TiO2, cell performance and cell stability. RSC Advances, 2014, 4, 10165-10175.	1.7	7
3927	Fabrication of thin film nanocrystalline TiO2 solar cells using ruthenium complexes with carboxyl and sulfonyl groups. Journal of Industrial and Engineering Chemistry, 2014, 20, 474-479.	2.9	6
3928	Tuning the photophysical and electrochemical properties of iridium(III) 2-aryl-1-phenylbenzimidazole complexes. Inorganica Chimica Acta, 2014, 415, 22-30.	1.2	12
3929	Study on the stability of CH ₃ NH ₃ PbI ₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials	5.2	963

#	Article	IF	CITATIONS
3930	Mesoporous TiO2 implants for loading high dosage of antibacterial agent. Applied Surface Science, 2014, 303, 140-146.	3.1	43
3931	Theoretical investigation of new thiazolothiazole-based D-ï€-A organic dyes for efficient dye-sensitized solar cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 646-654.	2.0	79
3932	Electron injection efficiency in dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 1-16.	5.6	128
3933	A simple access to "Black-Dye―analogs with good efficiencies in dye-sensitized solar cells. Renewable Energy, 2014, 66, 588-595.	4.3	7
3934	Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochimica Acta, 2014, 127, 427-432.	2.6	78
3935	Heteroleptic Ru(II) complexes containing aroyl hydrazone and 2,2′-bipyridyl: Synthesis, X-ray crystal structures, electrochemical and DFT studies. Polyhedron, 2014, 72, 115-121.	1.0	11
3936	Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. Chemical Reviews, 2014, 114, 4149-4174.	23.0	470
3937	Organic dyes containing indolo[2,3-b]quinoxaline as a donor: synthesis, optical and photovoltaic properties. Tetrahedron, 2014, 70, 6318-6327.	1.0	40
3938	Self-assembled monolayer modified ITO in P3HT:PC61BM organic solar cells with improved efficiency. Solar Energy Materials and Solar Cells, 2014, 124, 98-102.	3.0	21
3939	Novel dye sensitizers of main chain polymeric metal complexes based on complexes of diaminomaleonitrile with Cd(II), Ni(II): Synthesis, characterization, and photovoltaic performance for dye-sensitized solar cells. Journal of Organometallic Chemistry, 2014, 749, 26-33.	0.8	19
3940	Plasmon-enhanced Performance of Dye-sensitized Solar Cells Based on Electrodeposited Ag Nanoparticles. Journal of Materials Science and Technology, 2014, 30, 1-7.	5.6	33
3941	Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. Journal of Polymer Research, 2014, 21, 1.	1.2	29
3942	Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice?. Journal of Power Sources, 2014, 264, 333-343.	4.0	76
3943	Structure–property relationship of heteroâ€aromaticâ€electronâ€donor antennas of polypyridyl Ru (II) complexes for high efficiency dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 958-969.	4.4	25
3944	Novel organic sensitizer based on directly linked oligothiophenes to donor nitrogen atom for efficient dye-sensitized solar cells. Synthetic Metals, 2014, 193, 102-109.	2.1	4
3945	Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews, 2014, 114, 10095-10130.	23.0	669
3946	Rediscovering a Key Interface in Dye-Sensitized Solar Cells: Guanidinium and Iodine Competition for Binding Sites at the Dye/Electrolyte Surface. Journal of the American Chemical Society, 2014, 136, 7286-7294.	6.6	43
3947	Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 6323-6348.	23.0	378
#	Article	IF	CITATIONS
------	--	------	-----------
3948	Nearâ€IR Sensitization of Dyeâ€Sensitized Solar Cells Using Thiocyanateâ€Free Cyclometalated Ruthenium(II) Complexes Having a Pyridylquinoline Ligand. European Journal of Inorganic Chemistry, 2014, 2014, 1303-1311.	1.0	21
3949	Ruthenium complexes with tridentate ligands for dye-sensitized solar cells. Polyhedron, 2014, 82, 37-49.	1.0	18
3951	Triarylene linked spacer effect for dye-sensitized solar cells. Thin Solid Films, 2014, 558, 330-336.	0.8	12
3952	A comparison of the electronic and photovoltaic properties of novel twin-anchoring organic dyes containing varying lengths of π-bridges in dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 285-292.	2.0	21
3953	Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 6437-6445.	6.6	224
3954	An Organic "Donorâ€Free―Dye with Enhanced Openâ€Circuit Voltage in Solidâ€State Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400166.	10.2	35
3955	Toward Higher Energy Conversion Efficiency for Solid Polymer Electrolyte Dye-Sensitized Solar Cells: Ionic Conductivity and TiO ₂ Pore-Filling. Journal of Physical Chemistry Letters, 2014, 5, 1249-1258.	2.1	68
3956	Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. Journal of Power Sources, 2014, 247, 906-914.	4.0	54
3957	Effective nanostructred morphologies for efficient hybrid solar cells. Solar Energy, 2014, 106, 1-22.	2.9	45
3958	Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application. Polyhedron, 2014, 67, 381-387.	1.0	22
3959	Engineering of Ru(<scp>ii</scp>) dyes for interfacial and light-harvesting optimization. Dalton Transactions, 2014, 43, 2726-2732.	1.6	21
3960	Effect of electrolyte constituents on the motion of ionic species and recombination kinetics in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 5242.	1.3	17
3961	From marine plants to photovoltaic devices. Energy and Environmental Science, 2014, 7, 343-346.	15.6	21
3962	Carbon nanostructure counter electrodes for low cost and stable dye-sensitized solar cells. Nano Energy, 2014, 4, 157-175.	8.2	109
3963	Novel organic dyes incorporating a carbazole or dendritic 3,6-diiodocarbazole unit for efficient dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 269-277.	2.0	32
3964	2% ZnO increases the conversion efficiency of TiO2 based dye sensitized solar cells by 12%. Journal of Alloys and Compounds, 2014, 583, 414-418.	2.8	4
3965	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300831.	10.2	28
3966	A comparative study on properties of two phenoxazine-based dyes for dye-sensitized solar cells. Dyes and Pigments, 2014, 101, 67-73.	2.0	39

#	Article	IF	CITATIONS
3967	Theoretical and Experimental Study of a Dye-Sensitized Solar Cell. Industrial & Engineering Chemistry Research, 2014, 53, 5234-5247.	1.8	27
3968	Synthesis of 1, 3-dihexyl-2-(phenylthio)-1H-benzo[d]imidazol-3-ium iodide—A new ionic liquid for dye sensitized solar cell applications. Journal of Molecular Liquids, 2014, 193, 185-188.	2.3	5
3969	Synergistic effect in Fe/N co-doped anatase TiO2(101) surface and the adsorption of di-, tri- and polyatomic gases: A DFT investigation. Journal of Molecular Structure, 2014, 1061, 160-165.	1.8	12
3970	Computational modeling of single- versus double-anchoring modes in di-branched organic sensitizers on TiO ₂ surfaces: structural and electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 4709-4719.	1.3	28
3971	Influence of co-existing species on charge transfer in dye-sensitized nanocrystalline oxide semiconductors in aqueous suspension for H2 evolution under visible light. Applied Catalysis B: Environmental, 2014, 147, 770-778.	10.8	19
3972	Anthracene based organic dipolar compounds for sensitized solar cells. Tetrahedron, 2014, 70, 262-269.	1.0	26
3973	Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 31, 386-396.	8.2	316
3974	Influence of different substituents linked on fluorene spacer in organic sensitizers on photovoltaic properties. Dyes and Pigments, 2014, 104, 8-14.	2.0	7
3975	Novel Environmental Analytical System based on Combined Biodegradation and Photoelectrocatalytic Detection Principles for Rapid Determination of Organic Pollutants in Wastewaters. Environmental Science & Technology, 2014, 48, 1762-1768.	4.6	22
3976	Red-Emitting [Ru(bpy) ₂ (N-N)] ²⁺ Photosensitizers: Emission from a Ruthenium(II) to 2,2′-Bipyridine ³ MLCT State in the Presence of Neutral Ancillary "Super Donor―Ligands. Inorganic Chemistry, 2014, 53, 1679-1689.	1.9	33
3978	Influence of different electron acceptors in organic sensitizers on the performance of dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 126-132.	2.0	20
3979	Direct Evidence of Förster Resonance Energy Transfer for the Enhanced Photocurrent Generation in Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 16319-16327.	1.5	11
3980	Sensitized Zinc–Cobalt–Oxide Spinel p-Type Photoelectrode. Journal of Physical Chemistry C, 2014, 118, 25340-25349.	1.5	16
3981	Ruthenium(II) Photosensitizers with Electronâ€Rich Diarylaminoâ€Functionalized 2,2′â€Bipyridines and Their Application in Dyeâ€5ensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 5322-5330.	1.0	10
3982	An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells. Journal of Power Sources, 2014, 268, 941-949.	4.0	45
3983	Rational modifications on champion porphyrin dye SM315 using different electron-withdrawing moieties toward high performance dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24994-25003.	1.3	40
3984	Eu ³⁺ -Doped NaGdF ₄ Nanocrystal Down-Converting Layer for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17454-17462.	4.0	37
3985	Composite Gel Polymer Electrolytes Containing Layered Mg-Al Hydrotalcite for Quasi-Solid Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2014, 161, H17-H20.	1.3	9

#	Article	IF	CITATIONS
3986	A new composite membrane based on Keggin polyoxotungstate/poly(vinylidene fluoride) and its application in photocatalysis. RSC Advances, 2014, 4, 61226-61231.	1.7	19
3987	Electron injection dynamics in dye-sensitized semiconductor nanocrystalline films. Surface Science Reports, 2014, 69, 389-441.	3.8	36
3988	Efficient Ruthenium Sensitizer with a Terpyridine Ligand Having a Hexylthiophene Unit for Dye‧ensitized Solar Cells: Effects of the Substituent Position on the Solar Cell Performance. European Journal of Inorganic Chemistry, 2014, 2014, 4734-4739.	1.0	10
3989	Role of synthesis medium of TiO2 nanoparticles in enhancing the open circuit voltage and efficiency in dye-sensitized solar cell. Journal of Solid State Electrochemistry, 2014, 18, 3407-3414.	1.2	5
3990	Comparison of several protocols for the computational prediction of the maximum absorption wavelength of chrysanthemin. Journal of Molecular Modeling, 2014, 20, 2378.	0.8	18
3991	Understanding and Promoting Molecular Interactions and Charge Transfer in Dye-Mediated Hybrid Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 25374-25391.	1.5	5
3992	Linker-Assisted Attachment of CdSe Quantum Dots to TiO ₂ : Time- and Concentration-Dependent Adsorption, Agglomeration, and Sensitized Photocurrent. Langmuir, 2014, 30, 13293-13300.	1.6	17
3993	Polymethylmethacrylate (PMMA) based quasi-solid electrolyte with binary iodide salt for efficiency enhancement in TiO 2 based dye sensitized solar cells. Solid State Ionics, 2014, 265, 85-91.	1.3	44
3994	Efficient Quasisolid Dye- and Quantum-Dot-Sensitized Solar Cells Using Thiolate/Disulfide Redox Couple and CoS Counter Electrode. ACS Applied Materials & Interfaces, 2014, 6, 20768-20775.	4.0	29
3995	Nickel cobalt sulfide nanoneedle array as an effective alternative to Pt as a counter electrode in dye sensitized solar cells. RSC Advances, 2014, 4, 8289.	1.7	82
3996	Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(ii) sensitizers for dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5418-5426.	5.2	25
3997	Ruthenium sensitizers having an ortho-dicarboxyl group as an anchoring unit for dye-sensitized solar cells: synthesis, photo- and electrochemical properties, and adsorption behavior to the TiO ₂ surface. Dalton Transactions, 2014, 43, 13208-13218.	1.6	13
3998	Enhanced stereoselectivity in a di-Ru(<scp>ii</scp>) complex of an achiral bis-bidentate ligand. Chemical Communications, 2014, 50, 3303-3305.	2.2	20
3999	Synthesis of heteroleptic Ru(II) complexes ligated with 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta[1]phenanthren-2-one and application in dye-sensitized solar cells. Synthetic Metals, 2014, 198, 260-266.	2.1	7
4000	Molecular design of organic sensitizers absorbing over a broadened visible region for dye-sensitized solar cells. RSC Advances, 2014, 4, 57916-57922.	1.7	5
4001	New organic dyes based on a dibenzofulvene bridge for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 14181-14188.	5.2	31
4002	Systematic evaluation of HOMO energy levels for efficient dye regeneration in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15945-15951.	5.2	20
4003	Improvement of photovoltaic performance of DSSCs by modifying panchromatic zinc porphyrin dyes with heterocyclic units. Journal of Materials Chemistry A, 2014, 2, 20841-20848.	5.2	12

#	Article	IF	Citations
4004	Unraveling the photoelectrochemical properties of ionic liquids: cognizance of partially reversible redox activity. Physical Chemistry Chemical Physics, 2014, 16, 22735-22744.	1.3	9
4005	Range-Separated Hybrid Density Functional Study of Organic Dye Sensitizers on Anatase TiO ₂ Nanowires. Journal of Physical Chemistry C, 2014, 118, 24776-24783.	1.5	2
4006	Shielding effects of additives in a cobalt(ii/iii) redox electrolyte: toward higher open-circuit photovoltages in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 10532.	5.2	21
4007	Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Materials Science in Semiconductor Processing, 2014, 27, 733-739.	1.9	76
4008	Thermally Activated Delayed Fluorescence (TADF) and Enhancing Photoluminescence Quantum Yields of [Cu ^I (diimine)(diphosphine)] ⁺ Complexes—Photophysical, Structural, and Computational Studies. Inorganic Chemistry, 2014, 53, 10854-10861.	1.9	198
4009	Direct Spectroscopic Evidence for Constituent Heteroatoms Enhancing Charge Recombination at a TiO ₂ â^'Ruthenium Dye Interface. Journal of Physical Chemistry C, 2014, 118, 17079-17089.	1.5	20
4010	Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation. Lab on A Chip, 2014, 14, 3368.	3.1	80
4011	Stability of ruthenium/organic dye co-sensitized solar cells: a joint experimental and computational investigation. RSC Advances, 2014, 4, 57620-57628.	1.7	14
4012	The impact of an indeno[1,2-b]thiophene spacer on dye-sensitized solar cell performances of cyclic thiourea functionalized organic sensitizers. Journal of Materials Chemistry A, 2014, 2, 12931.	5.2	26
4013	Substitution of a hydroxamic acid anchor into the MK-2 dye for enhanced photovoltaic performance and water stability in a DSSC. Physical Chemistry Chemical Physics, 2014, 16, 16629-16641.	1.3	53
4014	Fluorene-bridged organic dyes with di-anchoring groups for efficient co-adsorbent-free dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 7086.	2.7	33
4015	Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications. Physical Chemistry Chemical Physics, 2014, 16, 21496-21505.	1.3	30
4016	Control of physicochemical properties and catalytic activity of tris(2,2′-bipyridine)iron(<scp>ii</scp>) encapsulated within the zeolite Y cavity by alkaline earth metal cations. Dalton Transactions, 2014, 43, 1132-1138.	1.6	17
4017	Stereoselective formation of a meso-diruthenium(ii,ii) complex and tuning the properties of its monoruthenium analogues. Dalton Transactions, 2014, 43, 6567.	1.6	18
4018	In situ growth of mirror-like platinum as highly-efficient counter electrode with light harvesting function for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 1641-1646.	5.2	18
4019	Aggregation behaviour and electron injection/recombination dynamics of symmetrical and unsymmetrical Zn-phthalocyanines on TiO ₂ film. Physical Chemistry Chemical Physics, 2014, 16, 1015-1021.	1.3	25
4020	Efficient quasi-solid-state dye-sensitized solar cells based on organic sensitizers containing fluorinated quinoxaline moiety. Journal of Materials Chemistry A, 2014, 2, 19515-19525.	5.2	20
4021	Post-treatment on dye-sensitized solar cells with TiCl4 and Nb2O5. RSC Advances, 2014, 4, 6746.	1.7	13

#	Article	IF	CITATIONS
4022	Quasi-Photonic Crystal Effect of TiCl ₃ /Electrolyte Matrix in Unipolar Dye–Absorber Devices. ACS Applied Materials & Interfaces, 2014, 6, 14399-14404.	4.0	5
4023	pH-induced photocurrent switching based on a highly stable drop-casting film of imidazole moiety-containing dinuclear Ru(II) Complex. Electrochimica Acta, 2014, 146, 776-783.	2.6	16
4024	Dye-Sensitized Solar Cells Employing Doubly or Singly Open-Ended TiO ₂ Nanotube Arrays: Structural Geometry and Charge Transport. ACS Applied Materials & Interfaces, 2014, 6, 15388-15394.	4.0	21
4025	Formic Acid on TiO _{2–<i>x</i>} (110): Dissociation, Motion, and Vacancy Healing. Journal of Physical Chemistry C, 2014, 118, 14876-14887.	1.5	15
4026	Organic D–π–A sensitizer with pyridinium as the acceptor group for dye-sensitized solar cells. RSC Advances, 2014, 4, 34644-34648.	1.7	7
4027	CH ₃ NH ₃ PbI _(3â^'x) (BF ₄) _x : molecular ion substituted hybrid perovskite. Chemical Communications, 2014, 50, 9741.	2.2	98
4028	Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Advances, 2014, 4, 26621-26634.	1.7	119
4029	One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews, 2014, 114, 9385-9454.	23.0	1,045
4030	Theoretical studies on organic D-Ï€-A sensitizers with planar triphenylamine donor and different Ï€-linkers for dyes-sensitized solar cells. Journal of Molecular Modeling, 2014, 20, 2309.	0.8	17
4031	Photo-stable substituted dihydroindolo[2,3-b]carbazole-based organic dyes: tuning the photovoltaic properties by optimizing theÄï€Âstructure for panchromatic DSSCs. Tetrahedron, 2014, 70, 8122-8128.	1.0	12
4032	Acetonitrile Solution Effect on Ru N749 Dye Adsorption and Excitation at TiO ₂ Anatase Interface. Journal of Physical Chemistry C, 2014, 118, 16863-16871.	1.5	14
4033	Recent Developments in Dye ensitized Solar Cells. ChemPhysChem, 2014, 15, 3902-3927.	1.0	79
4034	Solvothermal Growth and Photophysical Characterization of a Ruthenium(II) Tris(2,2′-Bipyridine)-Doped Zirconium UiO-67 Metal Organic Framework Thin Film. Journal of Physical Chemistry C, 2014, 118, 14200-14210.	1.5	59
4035	An Integrated Experimental and Theoretical Approach to the Spectroscopy of Organicâ€Dyeâ€Sensitized TiO ₂ Heterointerfaces: Disentangling the Effects of Aggregation, Solvation, and Surface Protonation. ChemPhysChem, 2014, 15, 1116-1125.	1.0	26
4036	A benzothiazole–cyclopentadithiophene bridged D–A–π–A sensitizer with enhanced light absorption for high efficiency dye-sensitized solar cells. Chemical Communications, 2014, 50, 3965-3968.	2.2	69
4037	Impact of Molecular Charge-Transfer States on Photocurrent Generation in Solid State Dye-Sensitized Solar Cells Employing Low-Band-Gap Dyes. Journal of Physical Chemistry C, 2014, 118, 16825-16830.	1.5	13
4038	Sulfide Modification of Dye-Sensitized Solar Cell Gold Cathodes for Use with Cobalt Polypyridyl Mediators. Journal of Physical Chemistry C, 2014, 118, 16643-16650.	1.5	3
4039	Kinetics of the Regeneration by lodide of Dye Sensitizers Adsorbed on Mesoporous Titania. Journal of Physical Chemistry C, 2014, 118, 17108-17115.	1.5	26

ARTICLE IF CITATIONS Optical Enhancement in Heteroleptic Ru(II) Polypyridyl Complexes Using Electron-Donor Ancillary 4040 1.5 2 Ligands. Journal of Physical Chemistry C, 2014, 118, 8747-8755. Mn^{II/III} Complexes as Promising Redox Mediators in Quantum-Dot-Sensitized Solar Cells. 4041 ACS Applied Materials & amp; Interfaces, 2014, 6, 15061-15067. Novel ruthenium sensitizers with a dianionic tridentate ligand for dye-sensitized solar cells: the 4042 relationship between the solar cell performances and the electron-withdrawing ability of 21 1.6 substituents on the ligand. Dalton Transactions, 2014, 43, 8026. Development of Triphenylamine Functional Dye for Selective Photoelectrochemical Sensing of 4043 3.2 Cysteine. Analytical Chemistry, 2014, 86, 5922-5928. Plasmonic enhancement of the performance of dye-sensitized solar cell by core–shell AuNRs@SiO2 in 4044 4.0 25 composite photoanode. Journal of Power Sources, 2014, 272, 1100-1105. Effect of iodine intercalation in nanosized layered double hydroxides for the preparation of quasi-solid electrolyte in DSSC devices. Solar Energy, 2014, 107, 692-699. 4045 Preparation and Characterization of Squaraine Dyes containing Mono- and Bis-Anchoring Groups as 4046 2.6 16 the Light Absorber in Dye Sensitized Solar Cells. Electrochimica Acta, 2014, 138, 148-154. A Novel Carboxyethyltin Functionalized Sandwich-type Germanotungstate: Synthesis, Crystal Structure, Photosensitivity, and Application in Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 7876-7884. 4047 4.0 A Highly Efficient Dye-sensitized Solar Cell with a Blocking Layer and TiCl₄Treatment to 4048 Suppress Dark Reaction. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 1.2 2 36, 1810-1817. Effect of a Long Alkyl Group on Cyclopentadithiophene as a Conjugated Bridge for D–Aâ^'π–A Organic Sensitizers: IPCE, Electron Diffusion Length, and Charge Recombination. ACS Applied Materials & amp; 4049 Interfaces, 2014, 6, 14621-14630. An overview on the spectrum of sensitizers: The heart of Dye Sensitized Solar Cells. Solar Energy, 4050 2.9 73 2014, 108, 479-507. Injection and Ultrafast Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 1.5 Well-Defined All-Conducting Block Copolymer Bilayer Hybrid Nanostructure: Selective Positioning of 4052 7.3 10 Lithium Ions and Efficient Charge Collection. ACS Nano, 2014, 8, 6893-6901. Interface Stability of a TiO₂/3â€Methoxypropionitrileâ€Based Electrolyte: First Evidence for 1.0 Solid Electrolyte Interphase Formation and Implications. ChemPhysChem, 2014, 15, 1126-1137. Theoretical Studies on the Interaction of Ruthenium Sensitizers and Redox Couple in Different 4054 12 1.1 Deprotonation Situations. Journal of Physical Chemistry A, 2014, 118, 2244-2252. Rethinking Band Bending at the P3HT–TiO₂ Interface. ACS Applied Materials & amp; Interfaces, 2014, 6, 4394-4401. Iridium dimer complex for dye sensitized solar cells using electrolyte combinations with different 4056 1.9 11 ionic liquids. Materials Science in Semiconductor Processing, 2014, 27, 532-540. Convergent study of Ru–ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes. Molecular Physics, 2014, 112, 2063-2077.

		CITATION REPORT		
#	Article		IF	Citations
4058	Self-powered ion detectors based on dye-sensitized photovoltaics. Nanoscale, 2014, 6	, 11019-11023.	2.8	2
4059	Probing Raman Enhancement in a Dopamine–Ti ₂ O ₄ Hybri Molecular Geometries. Journal of Physical Chemistry A, 2014, 118, 1196-1202.	d Using Stretched	1.1	8
4060	Effect of acidic additives on the structure and performance of TiO 2 films prepared by a nanopowder for dye-sensitized solar cells. Renewable Energy, 2014, 72, 164-173.	a commercial	4.3	32
4061	The evolution of the dye sensitized solar cells from GrÃæel prototype to up-scaled sola A life cycle assessment approach. Renewable and Sustainable Energy Reviews, 2014, 3	r applications: 9, 124-138.	8.2	138
4062	Excited State Geometries and Vertical Emission Energies of Solvated Dyes for DSSC: A Benchmark Study. Journal of Chemical Theory and Computation, 2014, 10, 3925-3933	PCM/TD-DFT	2.3	80
4063	Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-sensit applications. RSC Advances, 2014, 4, 6970.	ized solar cell	1.7	94
4064	A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 20 17615-17638.	014, 4,	1.7	127
4065	Ultrathin Exfoliated TiO ₂ Nanosheets Modified with ZrO ₂ fo Solar Cells. Journal of Physical Chemistry C, 2014, 118, 18917-18923.	r Dye-Sensitized	1.5	22
4066	Flexible photoanodes of TiO2 particles and metallic single-walled carbon nanotubes for dye-sensitized solar cells. Carbon, 2014, 79, 337-345.	r flexible	5.4	10
4067	Multiscale Modelling of Organic and Hybrid Photovoltaics. Topics in Current Chemistry	v, 2014, , .	4.0	24
4068	DNA-Mediated Fast Synthesis of Shape-Selective ZnO Nanostructures and Their Potent in Catalysis and Dye-Sensitized Solar Cells. Industrial & amp; Engineering Chemistry Res 13667-13679.	tial Applications search, 2014, 53,	1.8	44
4069	Enhanced Near-Infrared to Visible Upconversion Nanoparticles of Ho ³⁺ -Yb ³⁺ -F ^{â€"} Tri-Doped TiO ₂ a Dye-Sensitized Solar Cells with 37% Improvement in Power Conversion Efficiency. Inor Chemistry, 2014, 53, 8045-8053.	nd Its Application in ganic	1.9	71
4070	Novel Ruthenium Sensitizers Having Different Numbers of Carboxyl Groups for Dye-Set Cells: Effects of the Adsorption Manner at the TiO ₂ Surface on the Solar (Performance. Inorganic Chemistry, 2014, 53, 9375-9384.	nsitized Solar Cell	1.9	22
4071	Organic Dyes Containing Carbazole as Donor and ï€-Linker: Optical, Electrochemical, a Properties. ACS Applied Materials & Interfaces, 2014, 6, 2528-2539.	nd Photovoltaic	4.0	170
4072	First-Principles Study of Lead Iodide Perovskite Tetragonal and Orthorhombic Phases for Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 19565-19571.	or	1.5	220
4073	SYNTHESIS, CHARACTERISTICS AND APPLICATIONS OF ZnO NANOWIRE SOLAR CELLS VIA WATER BATH METHOD. Nano, 2014, 09, 1450061.	ES IN DYE-SENSITIZED	0.5	1
4074	Synthesis and ultravioletâ€visible spectroscopic and electrochemical analyses of dyes of 2â€aminobenzothiazole, and study of their adsorption on titanium dioxide. Coloration 2014, 130, 243-249.	derived from Technology,	0.7	7
4075	Thiocyanate linkage isomerism in the isobutyl ester form of the ruthenium dye known of Coordination Chemistry, 2014, 67, 17-28.	as N3. Journal	0.8	5

#	Article	IF	CITATIONS
4076	Design of D–A–π–A organic dyes with different acceptor and auxiliary acceptor for highly efficient dye-sensitized solar cells: a computational study. RSC Advances, 2014, 4, 50338-50350.	1.7	43
4077	Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies. RSC Advances, 2014, 4, 53588-53601.	1.7	35
4078	Fabrication, morphology formation mechanism and properties of nanometer Cu 2 O thin film with KCl-doping. Materials Chemistry and Physics, 2014, 148, 727-733.	2.0	9
4079	Grape pigment (malvidin-3-fructoside) as natural sensitizer for dye-sensitized solar cells. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	1.5	10
4080	Molecular dipole, dye structure and electron lifetime relationship in efficient dye sensitized solar cells based on donor–i̇̃€â€"acceptor organic sensitizers. Organic Electronics, 2014, 15, 3162-3172.	1.4	8
4081	Investigation of the regeneration kinetics of organic dyes with pyridine ring anchoring groups by scanning electrochemical microscopy. RSC Advances, 2014, 4, 51374-51380.	1.7	11
4082	Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging. Nature Communications, 2014, 5, 5111.	5.8	236
4083	Understanding TiO ₂ Photocatalysis: Mechanisms and Materials. Chemical Reviews, 2014, 114, 9919-9986.	23.0	4,658
4084	Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells. Electrochimica Acta, 2014, 145, 319-326.	2.6	24
4085	Synthesis, Characterization, and Biological Evaluation of New Ru(II) Polypyridyl Photosensitizers for Photodynamic Therapy. Journal of Medicinal Chemistry, 2014, 57, 7280-7292.	2.9	149
4086	Novel 4′-functionalized 4,4′′-dicarboxyterpyridine ligands for ruthenium complexes: near-IR sensitization in dye sensitized solar cells. Dalton Transactions, 2014, 43, 14992-15003.	1.6	13
4087	A new cosensitization method using the Lewis acid sites of a TiO ₂ photoelectrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 6398-6401.	2.2	57
4088	Thick titania films with hierarchical porosity assembled from ultrasmall titania nanoparticles as photoanodes for dye-sensitized solar cells. New Journal of Chemistry, 2014, 38, 1996-2001.	1.4	10
4089	DFT and TD-DFT studies on osmacycle dyes with tunable photoelectronic properties for solar cells. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	9
4090	New layer-by-layer Nb ₂ O ₅ –TiO ₂ film as an effective underlayer in dye-sensitised solar cells. RSC Advances, 2014, 4, 10310-10316.	1.7	19
4091	Di-n-alkylphosphinic acids as coadsorbents for metal-free organic dye-sensitized solar cells. Synthetic Metals, 2014, 197, 188-193.	2.1	7
4092	Efficient Copper Mediators Based on Bulky Asymmetric Phenanthrolines for DSSCs. ACS Applied Materials & Interfaces, 2014, 6, 13945-13955.	4.0	53
4093	Synthesis and photophysical properties of new ruthenium(II) charge-transfer sensitizers containing a 4,7-bis(E-carboxyvinyl)-1,10-phenanthroline ligand. Monatshefte Fżr Chemie, 2014, 145, 1101-1108.	0.9	10

#	ARTICLE	IF	Citations
4094	Theoretical insight into electronic and photoelectrochemical properties of orcein dyes relevant to dye-sensitized solar cells. Monatshefte Für Chemie, 2014, 145, 1529-1537.	0.9	8
4095	Theoretical insight on novel donor-acceptor exTTF-based dyes for dye-sensitized solar cells. Journal of Molecular Modeling, 2014, 20, 2188.	0.8	3
4096	Theoretical studies on effective metal-to-ligand charge transfer characteristics of novel ruthenium dyes for dye sensitized solar cells. Journal of Computer-Aided Molecular Design, 2014, 28, 565-575.	1.3	5
4097	Double-Layer TiO2 Electrodes with Controlled Phase Composition and Morphology for Efficient Light Management in Dye-Sensitized Solar Cells. Journal of Cluster Science, 2014, 25, 1029-1045.	1.7	14
4098	A combined computational and experimental study of the [Co(bpy)3]2+/3+ complexes as one-electron outer-sphere redox couples in dye-sensitized solar cell electrolyte media. Physical Chemistry Chemical Physics, 2014, 16, 11481.	1.3	37
4099	Atomic-Scale Observation of Multiconformational Binding and Energy Level Alignment of Ruthenium-Based Photosensitizers on TiO ₂ Anatase. Nano Letters, 2014, 14, 563-569.	4.5	67
4100	ORAC and VIS spectroscopy as a guideline for unmodified red–purple natural dyes selection in dye-sensitized solar cells. Solar Energy, 2014, 107, 38-43.	2.9	15
4101	High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. International Journal of Hydrogen Energy, 2014, 39, 19270-19276.	3.8	32
4102	DFT/TDDFT Study of the Adsorption of N3 and N719 Dyes on ZnO(101Ì0) Surfaces. Journal of Physical Chemistry A, 2014, 118, 5885-5893.	1.1	20
4103	Enhanced photovoltaic properties of modified redox electrolyte in dye-sensitized solar cells using tributyl phosphate as additive. Journal of Power Sources, 2014, 262, 140-146.	4.0	16
4104	Carbonaceous allotropes modified ionic liquid electrolytes for efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2014, 130, 587-593.	2.6	12
4105	Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 233-242.	4.0	44
4106	Low temperature fabrication of high performance p-n junction on the Ti foil for use in large-area flexible dye-sensitized solar cells. Electrochimica Acta, 2014, 117, 1-8.	2.6	12
4107	Lessons Learned: From Dye‧ensitized Solar Cells to All‧olid‧tate Hybrid Devices. Advanced Materials, 2014, 26, 4013-4030.	11.1	144
4108	Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents. Journal of Materials Research, 2014, 29, 935-941.	1.2	33
4109	Highly conjugated electron rich thiophene antennas on phenothiazine and phenoxazine-based sensitizers for dye sensitized solar cells. Synthetic Metals, 2014, 195, 208-216.	2.1	36
4110	A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells. Polyhedron, 2014, 82, 173-180.	1.0	12
4111	Adapting Ruthenium Sensitizers to Cobalt Electrolyte Systems. Journal of Physical Chemistry Letters, 2014, 5, 501-505.	2.1	15

#	Article	IF	CITATIONS
4112	Theoretical studies of structures and spectroscopic properties of [(tpy)(bpy)RuC≡CC6H4R]+ (tpy =) Tj ETQqC 2014, 57, 725-733.	0 0 rgBT 2.0	/Overlock 10 1
4113	Optimization of dye loading time for SnO2 based Rose Bengal dye-sensitized solar cell. Indian Journal of Physics, 2014, 88, 1067-1071.	0.9	4
4114	Combination of Optical and Electrical Loss Analyses for a Si-Phthalocyanine Dye-Sensitized Solar Cell. Journal of Physical Chemistry B, 2014, 118, 14027-14036.	1.2	7
4115	Synthesis and characterisation of eight organic dyes for dye sensitised solar cells. Materials Technology, 2014, 29, 112-117.	1.5	10
4116	Polypyrrole/poly(vinyl alcohol-co-ethylene) quasi-solid gel electrolyte for iodine-free dye-sensitized solar cells. Journal of Power Sources, 2014, 268, 557-564.	4.0	18
4117	D–π–A Structured Zn ^{II} â€Porphyrin Dyes with Thiophene Moiety for Highly Efficient Dye‧ensitized Solar Cells. ChemElectroChem, 2014, 1, 637-644.	1.7	13
4118	Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups. Dalton Transactions, 2014, 43, 9202-9215.	1.6	20
4119	Modulated Charge Injection in p-Type Dye-Sensitized Solar Cells Using Fluorene-Based Light Absorbers. ACS Applied Materials & Interfaces, 2014, 6, 3448-3454.	4.0	48
4121	Substituting TiCl ₄ –Carbon Nanohorn Interfaces for Dye‣ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301577.	10.2	20
4122	Density of state determination of two types of intra-gap traps in dye-sensitized solar cells and its influence on device performance. Physical Chemistry Chemical Physics, 2014, 16, 11626-11632.	1.3	26
4123	Dependence of the Efficiency Improvement of Blackâ€Dyeâ€Based Dyeâ€Sensitized Solar Cells on Alkyl Chain Length of Quaternary Ammonium Cations in Electrolyte Solutions. ChemPhysChem, 2014, 15, 1201-1206.	1.0	42
4124	Atomic Layer Deposition of TiO ₂ on Mesoporous nanoITO: Conductive Core–Shell Photoanodes for Dye-Sensitized Solar Cells. Nano Letters, 2014, 14, 3255-3261.	4.5	71
4125	Co-grafting of surfactants: a facile and effective method for the performance enhancement of plastic crystal based solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 9803.	5.2	12
4126	Pt-graphene electrodes for dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 190, 47-51.	1.7	21
4127	Effect of hot-pressing on an electrospun TiO2electrode for dye-sensitized solar cells. Applied Physics Express, 2014, 7, 072301.	1.1	6
4128	Indolo[3,2,1-jk]carbazole Derivatives-Sensitized Solar Cells: Effect of π-Bridges on the Performance of Cells. Journal of Physical Chemistry C, 2014, 118, 14211-14217.	1.5	41
4129	Submicrometer@nano Bimodal TiO ₂ Particles as Easily Sintered, Crack-Free, and Current-Contributed Scattering Layers for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16951-16958.	1.5	5
4130	Efficient dye-sensitized solar cells with surface-modified photoelectrodes. Solar Energy, 2014, 110, 260-267.	2.9	21

#	Article	IF	CITATIONS
4131	The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Advances, 2014, 4, 21379-21404.	1.7	125
4132	Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells. Chemical Communications, 2014, 50, 13952-13955.	2.2	64
4133	Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 4281-4286.	1.0	34
4134	Electronic and Optical Properties of Dye-Sensitized TiO2 Interfaces. Topics in Current Chemistry, 2014, 347, 1-45.	4.0	18
4135	Reaction in photofuel cells using allophane–titania nanocomposite electrodes. Applied Catalysis B: Environmental, 2014, 147, 246-250.	10.8	17
4136	The role of terminal groups in electronic structures and related properties: The case of push–pull porphyrin dye sensitizers for solar cells. Computational and Theoretical Chemistry, 2014, 1039, 62-70.	1.1	12
4137	Enhanced performance of dye-sensitized solar cells with TiO2 blocking layers and Pt counter electrodes prepared by physical vapor deposition (PVD). Electrochimica Acta, 2014, 116, 334-342.	2.6	15
4138	New simple panchromatic dyes based on thiadiazolo[3,4-c]pyridine unit for dye-sensitized solar cells. Dyes and Pigments, 2014, 102, 196-203.	2.0	29
4139	Benzo[1,2-b:4,5-bâ€2]dithiophene and benzo[1,2-b:4,5-bâ€2]difuran based organic dipolar compounds for sensitized solar cells. Dyes and Pigments, 2014, 109, 81-89.	2.0	14
4140	Quantum dot-sensitized mesoporous spherical TiO2 paste with cyclic calcination for photoelectrochemical cells. Electrochimica Acta, 2014, 132, 98-102.	2.6	2
4141	Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy. Surface Science, 2014, 626, 14-20.	0.8	11
4142	Comparative study of copper complexes with different anchoring groups by molecular modeling and its application to dye-sensitized solar cells. Polyhedron, 2014, 82, 33-36.	1.0	6
4143	Optimizing the photovoltaic performance of thiocyanate-free ruthenium photosensitizers by structural modification of C^N cyclometalating ligand in dye-sensitized solar cells. Polyhedron, 2014, 82, 71-79.	1.0	9
4144	Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2014, 24, 1-8.	1.9	27
4145	Synthesis of bifunctional Ru complexes with 1,2-dithiolane and carboxylate-substituted ligands. Tetrahedron, 2014, 70, 6271-6275.	1.0	3
4146	Thiocyanate-free ruthenium(II) 2,2′-bipyridyl complexes for dye-sensitized solar cells. Polyhedron, 2014, 82, 50-56.	1.0	36
4147	Ruthenium(II) bipyridine complexes bearing quinoline–azoimine (NN′N″) tridentate ligands: Synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 125, 375-383.	2.0	8
4148	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. Computational and Theoretical Chemistry, 2014, 1030, 59-66.	1.1	38

#	Article	IF	CITATIONS
4149	Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays. Journal of Alloys and Compounds, 2014, 607, 163-168.	2.8	20
4150	Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell. Applied Surface Science, 2014, 318, 32-36.	3.1	49
4151	Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces. Thin Solid Films, 2014, 560, 34-38.	0.8	1
4152	Synthesis of organic dye containing an alkylenesulfanyl-bridged bithienyl π-linker and its use in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 275, 47-53.	2.0	7
4153	Effects of the acceptors in triphenylamine-based D–A′–ï€â€"A dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839.	4.0	37
4154	Influence of polar solvents on photovoltaic performance of Monascus red dye-sensitized solar cell. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 126, 76-80.	2.0	24
4155	Design of Ru(II) sensitizers endowed by three anchoring units for adsorption mode and light harvesting optimization. Thin Solid Films, 2014, 560, 86-93.	0.8	9
4156	Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 2014, 114, 9890-9918.	23.0	447
4157	Ruthenium Polypyridine Complexes Bearing Pyrroles and π-Extended Analogues. Synthesis, Spectroelectronic, Electrochemical, and Photovoltaic Properties. Organometallics, 2014, 33, 4590-4606.	1.1	16
4158	Strategy to Improve Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid as a Tridentate Anchoring Group. ACS Applied Materials & Interfaces, 2014, 6, 6697-6703.	4.0	60
4159	A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2014, 37, 397-407.	8.2	163
4160	Ionic liquids for energy, materials, and medicine. Chemical Communications, 2014, 50, 9228-9250.	2.2	447
4161	Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells. Dalton Transactions, 2014, 43, 9166-9176.	1.6	26
4162	Multidirectional Lightâ€Harvesting Enhancement in Dye Solar Cells by Surface Patterning. Advanced Optical Materials, 2014, 2, 879-884.	3.6	14
4164	Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells. Optics Express, 2014, 22, A301.	1.7	40
4165	Modulation on charge recombination and light harvesting towardÂhigh-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: A theoretical investigation. Journal of Power Sources, 2014, 267, 300-308.	4.0	65
4166	Monitoring N3 Dye Adsorption and Desorption on TiO ₂ Surfaces: A Combined QCM-D and XPS Study. ACS Applied Materials & Interfaces, 2014, 6, 9093-9099.	4.0	18
4167	All-Nano-TiO ₂ Compact Film for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 10421-10428.	4.0	20

#	Article	IF	CITATIONS
4168	New class of NCS-free cyclometalated ruthenium(II) complexes with 6-phenylpyridine-2-carboxylate for use as near-infrared sensitizers in dye-sensitized solar cells. Inorganic Chemistry Communication, 2014, 46, 137-139.	1.8	9
4169	Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 477-484.	2.0	40
4170	Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode. Journal of Power Sources, 2014, 268, 163-170.	4.0	78
4171	High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8646-8650.	4.0	17
4172	Photo-electrochemical properties of variously-sized titanium dioxide nanoparticle-based dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2014, 26, 354-359.	1.9	3
4173	Nanocellulose aerogel membranes for optimal electrolyte filling in dye solar cells. Nano Energy, 2014, 8, 95-102.	8.2	51
4174	A comparison of carboxypyridine isomers as sensitizers for dye-sensitized solar cells: assessment of device efficiency and stability. Tetrahedron, 2014, 70, 6285-6295.	1.0	27
4175	Donor–ľ€â€"acceptor organic hybrid TiO2 interfaces for solar energy conversion. Thin Solid Films, 2014, 560, 49-54.	0.8	7
4176	An approach toward TiO2 nanostructure growth with tunable properties: Influence of reaction time in a hydrothermal process. Journal of Alloys and Compounds, 2014, 591, 213-217.	2.8	13
4177	Study of the effect of aliphatic and π-conjugated systems on the photophysical properties of polypyridinic Ruthenium II complexes as potential semiconductor materials for iTMC type LEC. Inorganica Chimica Acta, 2014, 421, 255-259.	1.2	2
4179	Comparative study of TiO2nanoparticles applied to dye-sensitized solar cells. EPJ Applied Physics, 2014, 65, 20101.	0.3	5
4180	A Novel Method to Enhance the Performance of Quasi-solid-state Dye-sensitized Solar Cells Based on Polyacrylonitrile Gel Electrolyte and Nanoparticles of ZnO with Indoline D-358 as the Dye. Chemistry Letters, 2014, 43, 681-683.	0.7	2
4181	Utilization of Titania Surface Complex for Dye-Sensitized Solar Cells. Bulletin of Japan Society of Coordination Chemistry, 2014, 64, 28-31.	0.1	1
4182	Preparation of Silver Orthophosphate Photocatalytic Coating on Glass Substrate. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 399-400.	0.1	1
4183	Graphene layer reduced back-transport reaction and increased power conversion efficiency of dye-sensitised solar cells. Materials Research Innovations, 2015, 19, S5-316-S5-319.	1.0	1
4184	Effect of substituents moiety in organic sensitiser based on carbazole on the performance of nanostructure dye-sensitised solar cells. Pigment and Resin Technology, 2015, 44, 292-299.	0.5	2
4185	Comparison of the DSSC Efficiency on Synthetic N3 Dyes. Advanced Materials Research, 0, 1131, 165-168.	0.3	4
4186	The fabrication of solid state dye-sensitised solar cells with 12 doped CuI as the hole conductors. International Journal of Materials Engineering Innovation, 2015, 6, 32.	0.2	1

	CHATION RE	PORT	
#	Article	IF	CITATIONS
4189	Highly Efficient Cosensitized Plastic-Substrate Dye-Sensitized Solar Cells with Black Dye and Pyridine-Anchor Organic Dye. Bulletin of the Chemical Society of Japan, 2015, 88, 366-374.	2.0	13
4190	Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 01A135.	0.9	6
4191	ZnO Tetrapods: Synthesis and Applications in Solar Cells. Nanomaterials and Nanotechnology, 2015, 5, 19.	1.2	34
4192	Squaraine Dyes with BODIPY Skeletons for the Application to Dye-Sensitized Solar Cells. Journal of the Japan Society of Colour Material, 2015, 88, 208-217.	0.0	1
4193	Anatase TiO2 nanowires functionalized by organic sensitizers for solar cells: A screened Coulomb hybrid density functional study. Journal of Applied Physics, 2015, 118, 194301.	1.1	5
4194	Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization. Japanese Journal of Applied Physics, 2015, 54, 04DR08.	0.8	8
4196	Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO ₂ nanocrystals. EPJ Applied Physics, 2015, 69, 20401.	0.3	10
4197	Growth of Polyglycidol in Porous TiO ₂ Nanoparticle Networks via Initiated Chemical Vapor Deposition: Probing Polymer Confinement Under High Nanoparticle Loading. Advanced Materials Interfaces, 2015, 2, 1500341.	1.9	8
4198	Optimization of Titania Postâ€Necking Treatment of TaON Photoanodes to Enhance Waterâ€Oxidation Activity under Visible‣ight Irradiation. ChemElectroChem, 2015, 2, 1270-1278.	1.7	17
4199	Connecting Direct Câ^'H Arylation Reactions with Dyeâ€Sensitized Solar Cells: A Shortcut to D–A–π–A Organic Dyes. ChemSusChem, 2015, 8, 3222-3227.	3.6	17
4200	Thieno[3,2â€ <i>b</i>][1]benzothiophene Derivative as a New Ï€â€Bridge Unit in D–π–A Structural Organic Sensitizers with Over 10.47% Efficiency for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500300.	10.2	138
4201	Fiveâ€Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene. Angewandte Chemie, 2015, 127, 7295-7298.	1.6	19
4202	Singleâ€Walled TiO ₂ Nanotubes: Enhanced Carrierâ€Transport Properties by TiCl ₄ Treatment. Chemistry - A European Journal, 2015, 21, 9204-9208.	1.7	25
4203	A Bis(tridentate)cobalt Polypyridine Complex as Mediator in Dye‣ensitized Solar Cells. European Journal of Inorganic Chemistry, 2015, 2015, 3299-3306.	1.0	9
4204	On fundamental mechanisms in dye sensitized solar cells through the behaviour of different mesoporous titanium dioxide films. EPJ Applied Physics, 2015, 72, 20404.	0.3	3
4205	Study of Allylsilyl and Hydrosilyl Groups as Anchor Moieties of Sensitizing Dyes for Dye-Sensitized Solar Cells. Key Engineering Materials, 0, 643, 21-26.	0.4	0
4206	Computational Designing of Triphenylamine Dyes with Broad and Redâ€shifted Absorption Spectra for Dyeâ€sensitized Solar Cells using Multiâ€Thiophene Rings in Ï€â€Spacer. Bulletin of the Korean Chemical Society, 2015, 36, 2615-2620.	1.0	77
4207	Visibleâ€Lightâ€Assisted Selective Catalytic Reduction of Nitric Oxide with Ammonia over Dyeâ€Modified Titania Photocatalysts. ChemCatChem, 2015, 7, 1818-1825.	1.8	25

#	Article	IF	CITATIONS
4208	Developing a Polymer Semiconductor Education Kit and Curriculum for High School Science Classrooms. Macromolecular Symposia, 2015, 355, 43-51.	0.4	4
4209	Efficiency Records in Mesoscopic Dyeâ€Sensitized Solar Cells. Chemical Record, 2015, 15, 803-828.	2.9	41
4210	Correlation between Energy and Spatial Distribution of Intragap Trap States in the TiO ₂ Photoanode of Dye‧ensitized Solar Cells. ChemPhysChem, 2015, 16, 2253-2259.	1.0	28
4212	<i>In situ</i> thermal polymerization of an ionic liquid monomer for quasiâ€solidâ€state dyeâ€sensitized solar cells. Journal of Applied Polymer Science, 2015, 132, .	1.3	5
4213	Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 27646-27653.	4.0	15
4214	Theoretical Studies of Electronic Structure and Photophysical Properties of a Series of Indoline Dyes with Triphenylamine Ligand. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	10
4215	Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl ₄ /Al ₂ O ₃ Doped TiO ₂ Nanotube Array Photoelectrodes. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	5
4217	New thiocyanate-free ruthenium(<scp>ii</scp>) sensitizers with different pyrid-2-yl tetrazolate ligands for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 11788-11796.	1.6	28
4218	Light reharvesting and enhanced efficiency of dye-sensitized solar cells based 3D-CNT/graphene counter electrodes. Journal of Materials Chemistry A, 2015, 3, 12307-12313.	5.2	30
4219	Marine seaweed <i>Sargassum wightii</i> extract as a low-cost sensitizer for ZnO photoanode based dye-sensitized solar cell. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 035008.	0.7	27
4220	Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode. Philosophical Magazine, 2015, 95, 1490-1498.	0.7	7
4221	Effects of heterocycles containing different atoms as π-bridges on the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 16334-16340.	1.3	28
4222	Hydrothermal synthesis, characterization and light harvesting applications of zinc oxide nanostructures. Journal of Materials Science: Materials in Electronics, 2015, 26, 5839-5846.	1.1	18
4223	CdSe Quantum Dot-Sensitized Solar Cell: Effect of Size and Attach Mode of Quantum Dot. Journal of Nano Research, 0, 30, 78-85.	0.8	7
4224	Dual Sensitization Strategy for High-Performance Core/Shell/ <i>Quasi-shell</i> Quantum Dot Solar Cells. Chemistry of Materials, 2015, 27, 4848-4859.	3.2	56
4225	Correlations between Photovoltaic Characteristics, Adsorption Number, and Regeneration Kinetics in Dye-Sensitized Solar Cells Revealed by Scanning Photocurrent Microscopy. Langmuir, 2015, 31, 7158-7165.	1.6	3
4226	Picolinic acid as an efficient tridentate anchoring group adsorbing at Lewis acid sites and BrÃ,nsted acid sites of the TiO ₂ surface in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 14809-14816.	5.2	30
4227	Enhanced photoactive and photoelectrochemical properties of TiO2 sol–gel coated steel by the application of SiO2 intermediate layer. Applied Catalysis B: Environmental, 2015, 174-175, 533-543.	10.8	7

#	Article	IF	CITATIONS
4228	Modulation of Electron Injection Dynamics of Ruâ€Based Dye/TiO ₂ System in the Presence of Three Different Organic Solvents: Role of Solvent Dipole Moment and Donor Number. ChemPhysChem, 2015, 16, 1657-1662.	1.0	7
4229	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
4230	Organometallic Versus Organic Molecules for Energy Conversion in Organic Light-Emitting Diodes and Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 1-28.	0.4	0
4231	Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	36
4232	Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. Journal of Solid State Electrochemistry, 2015, 19, 2883-2890.	1.2	62
4233	Highly efficient benzodifuran based ruthenium sensitizers forÂthin-film dye-sensitized solar cells. Dyes and Pigments, 2015, 121, 79-87.	2.0	17
4234	Ultrahigh Ionic Liquid Content Supramolecular Ionogels for Quasi-Solid-State Dye Sensitized Solar Cells. Electrochimica Acta, 2015, 165, 98-104.	2.6	25
4235	Extending the photoelectrocatalytic detection range of KHP by eliminating self-inhibition at TiO2 nanoparticle electrodes. Journal of Electroanalytical Chemistry, 2015, 738, 209-216.	1.9	8
4236	Earth-abundant Cu2SnSe3 thin film counter electrode for high-efficiency quantum dot-sensitized solar cells. Journal of Power Sources, 2015, 292, 7-14.	4.0	40
4237	Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells. Nano Energy, 2015, 13, 368-375.	8.2	39
4238	Enhancement Mechanism of the Conversion Effficiency of Dye-Sensitized Solar Cells Based on Nitrogen-, Fluorine-, and Iodine-Doped TiO ₂ Photoanodes. Journal of Physical Chemistry C, 2015, 119, 13425-13432.	1.5	21
4239	Degradation mechanisms of dye-sensitized solar cells: Light, bias and temperature effects. , 2015, , .		2
4240	Fabrication of layered hydroxide zinc nitrate films and their conversion to ZnO nanosheet assemblies for use in dye-sensitized solar cells. Journal of Asian Ceramic Societies, 2015, 3, 144-150.	1.0	15
4241	Surface modification of TiO2 by an ionic liquid electrolyte in dye-sensitized solar cells using a molecular insulator. RSC Advances, 2015, 5, 33855-33862.	1.7	4
4242	Ruthenium-Based Photosensitizers for Dye-Sensitized Solar Cells. Green Chemistry and Sustainable Technology, 2015, , 91-114.	0.4	9
4243	Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells. Nanoscale Research Letters, 2015, 10, 219.	3.1	33
4244	Conical-shaped titania nanotubes for optimized light management in DSSCs reach back-side illumination efficiencies > 8%. Journal of Materials Chemistry A, 2015, 3, 12603-12608.	5.2	27
4245	First application of diethyl oxalate as efficient additive in high performance dye-sensitized solar cells based on iodide/triiodide electrolyte. Electrochimica Acta, 2015, 174, 521-531.	2.6	7

#	Article	IF	CITATIONS
4246	Spectroscopic Investigations on Degradative Processes of cis-Bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato) Ruthenium(II) Anchored on Anatase TiO2Surface. Molecular Crystals and Liquid Crystals, 2015, 622, 158-163.	0.4	0
4247	Characterization of the photoelectron behavior of working electrodes modified with a titanium-dioxide window layer in dye-sensitized solar cells. Journal of the Korean Physical Society, 2015, 67, 1899-1903.	0.3	1
4248	Rational modifications on ruthenium terpyridine sensitizers with large J _{sc} for dye-sensitized solar cells: combined DFT and relativistic TDDFT studies. RSC Advances, 2015, 5, 100169-100175.	1.7	2
4249	Role of water in TiO2 screen-printing inks for dye-sensitized solar cells. Solar Energy, 2015, 122, 497-507.	2.9	16
4250	Optical properties of dye based on hydroxamate improved with designed tridentate ligands for dye sensitized solar cell: a theoretical study. Chemical Research in Chinese Universities, 2015, 31, 830-834.	1.3	3
4251	Ultrafast Spectroscopy of Photonic Materials. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2015, 85, 507-517.	0.8	0
4252	Gold nanoparticles functionalised with Ru-dicarboxybipyridine-trimercaptotriazine: SERS effect and application in plasmonic dye solar cells. International Journal of Nanotechnology, 2015, 12, 263.	0.1	2
4253	Synthesis, characterisation, electrochemical study and photovoltaic measurements of a new terpyridine and pyridine-quinoline based mixed chelate ruthenium dye. Polyhedron, 2015, 102, 615-626.	1.0	12
4254	Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chinese Journal of Catalysis, 2015, 36, 2171-2177.	6.9	19
4255	Hierarchical DSSC structures based on "single walled―TiO ₂ nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy and Environmental Science, 2015, 8, 849-854.	15.6	111
4256	Novel Cu-carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells. International Journal of Energy Research, 2015, 39, 668-680.	2.2	21
4257	New photosensitizers containing the dipyridoquinoxaline moiety and their use in dye-sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 14-25.	1.7	6
4258	FRET-designed dye-sensitized solar cells to enhance light harvesting. Materials Science in Semiconductor Processing, 2015, 31, 358-362.	1.9	20
4259	The position effect of electron-deficient quinoxaline moiety in porphyrin based sensitizers. Journal of Power Sources, 2015, 279, 36-47.	4.0	27
4260	Fe ₃ W ₃ C/WC/Graphitic Carbon Ternary Nanojunction Hybrids for Dye ensitized Solar Cells. ChemSusChem, 2015, 8, 726-733.	3.6	16
4261	New generation solar cells: concepts, trends and perspectives. Chemical Communications, 2015, 51, 3957-3972.	2.2	170
4262	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
4263	Functionalized Ruthenium Dialkynyl Complexes with High Second-Order Nonlinear Optical Properties and Good Potential as Dye Sensitizers for Solar Cells. Organometallics, 2015, 34, 94-104.	1.1	27

#	Article	IF	CITATIONS
4264	Effect of Auxiliary Chromophores on the Optical, Electrochemical, and Photovoltaic Properties of Carbazoleâ€Based Dyes. Asian Journal of Organic Chemistry, 2015, 4, 69-80.	1.3	10
4265	Efficiency enhancement of dye-sensitized TiO2solar cell based on ruthenium(II) terpyridyl complex photosensitizer. International Journal of Energy Research, 2015, 39, 977-992.	2.2	6
4266	The improvement of light scattering of dye-sensitized solar cells aided by a new dandelion-like TiO2 nanostructures. Solar Energy Materials and Solar Cells, 2015, 137, 113-123.	3.0	40
4267	Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 2015, 632, 321-325.	2.8	277
4268	Electrochemical and photovoltaic study of sunset yellow and tartrazine dyes. Monatshefte Für Chemie, 2015, 146, 1631-1640.	0.9	25
4269	Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode. Journal of Luminescence, 2015, 161, 426-430.	1.5	19
4270	Mimicking the Heteroleptic Dyes for an Efficient 1D-ZnO Based Dye-Sensitized Solar Cell Using the Homoleptic Ruthenium(II) Dipyridophenazine Complex as a Photosensitizer. Journal of Physical Chemistry C, 2015, 119, 3892-3902.	1.5	24
4271	Siloxaneâ€Based Hybrid Semiconducting Polymers Prepared by Fluorideâ€Mediated Suzuki Polymerization. Angewandte Chemie - International Edition, 2015, 54, 4657-4660.	7.2	20
4272	Flower-shaped ZnO nanocrystallite aggregates synthesized through a template-free aqueous solution method for dye-sensitized solar cells. Applied Physics Letters, 2015, 106, .	1.5	10
4273	Novel heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and application in dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5369-5378.	1.6	10
4274	Functional tuning of organic dyes containing 2,7-carbazole and other electron-rich segments in the conjugation pathway. RSC Advances, 2015, 5, 17953-17966.	1.7	20
4275	Three-dimensional network electrolytes with highly efficient ion-transporting channels for quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 282, 51-57.	4.0	9
4276	Exploring excited states of Pt(<scp>ii</scp>) diimine catecholates for photoinduced charge separation. Dalton Transactions, 2015, 44, 11705-11716.	1.6	21
4277	Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews, 2015, 115, 2136-2173.	23.0	852
4278	Photoelectrochemical determination of intrinsic kinetics of photoelectrocatalysis processes at {001} faceted anatase TiO ₂ photoanodes. RSC Advances, 2015, 5, 12860-12865.	1.7	17
4279	The effect of porphyrins suspended with different electronegative moieties on the photovoltaic performance of monolithic porphyrin-sensitized solar cells with carbon counter electrodes. New Journal of Chemistry, 2015, 39, 2889-2900.	1.4	11
4280	A detailed study on the working mechanism of a heteropoly acid modified TiO ₂ photoanode for efficient dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 6778-6785.	1.3	10
4281	Double D–π–A Dye Linked by 2,2′â€Bipyridine Dicarboxylic Acid: Influence of <i>paraâ€</i> and <i>metaâ€</i> Substituted Carboxyl Anchoring Group. ChemPhysChem, 2015, 16, 1035-1041.	1.0	6

#	Article	IF	CITATIONS
4282	Morphological dependence of light backscattering from metallic back reflector films: Application in dyeâ€sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 785-790.	0.8	3
4283	Ruthenium Sensitizers with a Hexylthiophene-Modified Terpyridine Ligand for Dye-Sensitized Solar Cells: Synthesis, Photo- and Electrochemical Properties, and Adsorption Behavior to the TiO ₂ Surface. ACS Applied Materials & amp; Interfaces, 2015, 7, 3152-3161.	4.0	26
4284	6H-Indolo[2,3-b]quinoxaline-based organic dyes containing different electron-rich conjugated linkers for highly efficient dye-sensitized solar cells. Journal of Power Sources, 2015, 280, 573-580.	4.0	31
4285	Organic dyes containing dithieno[2,3-d:2′,3′-d′]thieno[3,2-b:3′,2′-b′]dipyrrole core for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 4865-4874.	5.2	55
4286	Efficient improvements in the performance of Ru(II) π-expanded terpyridyl dyes in dye-sensitized solar cells: A theoretical study. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 301, 40-46.	2.0	11
4287	Novel organic dyes containing N-bridged oligothiophene coplanar cores for dye-sensitized solar cells. Organic Electronics, 2015, 18, 8-16.	1.4	20
4288	Upconversion enhancement of lanthanide-doped NaYF4 for quantum dot-sensitized solar cells. Electrochimica Acta, 2015, 155, 357-363.	2.6	34
4289	Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties. Physical Chemistry Chemical Physics, 2015, 17, 6347-6358.	1.3	28
4290	Facet-Dependent Electron Trapping in TiO ₂ Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 1913-1920.	1.5	55
4291	A novel route to 4,4′-disubstituted bipyridyl ligands in ruthenium complexes for dye-sensitized solar cells. Polyhedron, 2015, 89, 45-48.	1.0	4
4292	Heteroleptic Ru(II)-terpyridine complex and its metal-containing conducting polymer: Synthesis and characterization. Synthetic Metals, 2015, 200, 109-116.	2.1	5
4293	Enhanced Electron Lifetime of CdSe/CdS Quantum Dot (QD) Sensitized Solar Cells Using ZnSe Core–Shell Structure with Efficient Regeneration of Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2297-2307.	1.5	43
4294	Ruthenium sensitizers with various 2-thiophenimidazo[4,5-f][1,10]phenanthroline based ancillary ligands and their performance for dye-sensitized solar cells. Dyes and Pigments, 2015, 117, 100-107.	2.0	11
4295	Efficiency enhancement of dye-sensitized solar cells by optimization of electrospun ZnO nanowire/nanoparticle hybrid photoanode and combined modification. Electrochimica Acta, 2015, 163, 330-337.	2.6	22
4296	Ordered porous TiO2 films obtained by freezing and the application in dye sensitized solar cells. Current Applied Physics, 2015, 15, 662-668.	1.1	23
4297	Quantitative structure–property relationship modeling of ruthenium sensitizers for solar cells applications: novel tools for designing promising candidates. RSC Advances, 2015, 5, 23865-23873.	1.7	14
4298	The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells. New Journal of Chemistry, 2015, 39, 3736-3746.	1.4	21
4299	Low temperature preparation of TiO ₂ nanoparticle chains without hydrothermal treatment for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 4477-4483.	5.2	22

#	Article	IF	CITATIONS
4300	Graphene oxide supported mononuclear aquaruthenium complex ultrathin films with enhanced photoelectric conversion and electrocatalytic water oxidation. Electrochimica Acta, 2015, 172, 77-87.	2.6	13
4301	Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Applied Catalysis B: Environmental, 2015, 174-175, 193-202.	10.8	18
4302	Mass transport effect on the photovoltaic performance of ruthenium-based quasi-solid dye sensitized solar cells using cobalt based redox couples. Dyes and Pigments, 2015, 117, 83-91.	2.0	24
4303	A nanocomposite p-type semiconductor film for possible application in solar cells: Photo-electrochemical studies. Solar Energy Materials and Solar Cells, 2015, 137, 274-279.	3.0	19
4304	Synthesis and photovoltaic performance of asymmetric di-anchoring organic dyes. Dyes and Pigments, 2015, 122, 13-21.	2.0	22
4305	Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. Journal of Materials Science, 2015, 50, 7495-7536.	1.7	114
4306	Two-component relativistic time-dependent density functional theory study on spin-forbidden transitions for metal polypyridyl complexes. Chemical Physics Letters, 2015, 635, 152-156.	1.2	9
4307	Molecular Engineering and Theoretical Investigation of Novel Metal-Free Organic Chromophores for Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 176, 868-879.	2.6	39
4308	Efficient dye-sensitized solar cells based on carbon-doped TiO2 hollow spheres and nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 8863-8876.	1.1	12
4309	Design of TiO2 dye-sensitized solar cell photoanode electrodes with different microstructures and arrangement modes of the layers. Journal of Sol-Gel Science and Technology, 2015, 76, 666-678.	1.1	23
4310	Photoacoustic calorimetry study of ligand photorelease from the Ru(II)bis(2,2′-bipyridine)(6,6′-dimethyl-2,2′-bipyridine) complex in aqueous solution. Chemical Physics Letters, 2015, 619, 214-218.	1.2	4
4311	Organic dyes containing fluoreneamine donor and carbazole π-linker for dye-sensitized solar cells. Dyes and Pigments, 2015, 123, 154-165.	2.0	31
4312	Theoretical study on a high-efficient porphyrin-sensitizer in a local electric field: How does the local electric field affects the performance of dye-sensitized solar cells?. Organic Electronics, 2015, 26, 164-175.	1.4	17
4313	Exploring the regeneration process of ruthenium(II) dyes by cobalt mediator in dye-sensitized solar cells from first-principle calculations. Journal of Power Sources, 2015, 294, 264-271.	4.0	12
4314	Fabrication of a counter electrode using glucose as carbon material for dye sensitized solar cells. Materials Science in Semiconductor Processing, 2015, 40, 331-336.	1.9	27
4315	Efficient dye-sensitized solar cells based on CNTs and Zr-doped TiO2 nanoparticles. Materials Science in Semiconductor Processing, 2015, 40, 383-390.	1.9	21
4316	Synthesis of novel dyes having EDOT-containing oligothiophenes as π-linker for panchromatic dye-sensitized solar cells. Synthetic Metals, 2015, 207, 65-71.	2.1	12
4317	Tuning Interfacial Electron Transfer in Nanostructured Cuprous Oxide Photoelectrochemical Cells with Charge-Selective Molecular Coatings. ACS Applied Materials & amp; Interfaces, 2015, 7, 16133-16137.	4.0	7

#	Article	IF	CITATIONS
4318	New ruthenium complexes (Ru[3+2+1]) bearing ï€-extended 4-methylstyryl terpyridine and unsymmetrical bipyridine ligands for DSSC applications. Inorganica Chimica Acta, 2015, 435, 46-52.	1.2	7
4319	An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 17914-17938.	5.2	99
4320	Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells. Applied Surface Science, 2015, 358, 175-180.	3.1	35
4321	Novel organic dyes with anchoring group of barbituric/thiobarbituric acid and their application in dye-sensitized solar cells. Synthetic Metals, 2015, 209, 1-10.	2.1	36
4322	Development of Dye Sensitized Solar Cell Using Eco-Friendly Dyes Extracted from Natural Resources. Advanced Materials Research, 0, 1086, 68-74.	0.3	1
4323	Precursor Concentration Dependent Morphology-Tunable Hierarchical TiO ₂ Nanostructure for Dye Sensitized Solar Cells. Journal of Nano Research, 2015, 33, 106-117.	0.8	0
4324	Tuning the Photovoltaic Performance of Benzocarbazole-Based Sensitizers for Dye-Sensitized Solar Cells: A Joint Experimental and Theoretical Study of the Influence of π-Spacers. Journal of Physical Chemistry C, 2015, 119, 17053-17064.	1.5	60
4325	Computational characterization of organometallic ligands coordinating metal: Case of azopyridine ligands. Journal of Theoretical and Computational Chemistry, 2015, 14, 1550006.	1.8	6
4326	ZnO Nanostructures for Alternate Energy Generation. Lecture Notes in Electrical Engineering, 2015, , 41-57.	0.3	0
4327	Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye. Organic Electronics, 2015, 25, 295-307.	1.4	47
4328	Photovoltaic properties of dye sensitised solar cells using TiO 2 nanotube arrays for photoanodes: Role of hydrochloric acid treatment. Applied Surface Science, 2015, 355, 256-261.	3.1	14
4329	Correlating Changes in Electron Lifetime and Mobility on Photocatalytic Activity at Network-Modified TiO ₂ Aerogels. Journal of Physical Chemistry C, 2015, 119, 17529-17538.	1.5	42
4330	Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2. Scientific Reports, 2015, 5, 11482.	1.6	131
4331	Pyridomethene–BF ₂ complex/phenothiazine hybrid sensitizer with high molar extinction coefficient for efficient, sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 16831-16842.	5.2	30
4332	Self-assembled ultrathin titania nanosheets as blocking layers for significantly enhanced photocurrent and photovoltage of dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 17042-17049.	5.2	8
4333	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	1.3	10
4334	Synergistically enhanced photoelectrochemical properties of a layer-by-layer hybrid film based on graphene oxide and a free terpyridyl-grafted ruthenium complex. Journal of Materials Chemistry A, 2015, 3, 3441-3449.	5.2	18
4335	A triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy)porphyrin triad for sensitizers in DSSCs. Dalton Transactions, 2015, 44, 13550-13564.	1.6	16

#	Article	IF	CITATIONS
4336	Molecular design of new organic sensitizers based on thieno[1,4]benzothiazine for dye-sensitized solar cells. RSC Advances, 2015, 5, 56865-56871.	1.7	6
4337	Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells. Electrochimica Acta, 2015, 174, 494-501.	2.6	24
4338	A DFT study on structures, frontier molecular orbitals and UV–vis spectra of [M(L)(N3)(C7H5N)(PPh3)] (M= Ru and Fe; L= Tp and Cp). Journal of Organometallic Chemistry, 2015, 791, 72-81.	0.8	15
4339	5-Arylvinylene-2,2′-bipyridyls: Bright "push–pull―dyes as components in fluorescent indicators for zinc ions. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 1-15.	2.0	46
4340	Carboxy derivatised lr(<scp>iii</scp>) complexes: synthesis, electrochemistry, photophysical properties and photocatalytic hydrogen generation. Dalton Transactions, 2015, 44, 10423-10430.	1.6	17
4341	2-Ethynyl-6-methylthieno[3,2- b]thiophene as an efficient π spacer for porphyrin-based dyes. Dyes and Pigments, 2015, 122, 168-176.	2.0	7
4342	Thermal Fluctuations on Förster Resonance Energy Transfer in Dyadic Solar Cell Sensitizers: A Combined Ab Initio Molecular Dynamics and TDDFT Investigation. Journal of Physical Chemistry C, 2015, 119, 16490-16499.	1.5	6
4343	A D–Ĩ€â€"A–Ĩ€â€"A type dye for highly efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 37574-375	8 D 7	13
4344	Chromogenic Homo-Dinuclear Ruthenium(II) Monolayer as a Tunable Molecular Memory Module for Multibit Information Storage. Journal of Physical Chemistry C, 2015, 119, 5138-5145.	1.5	11
4345	Growth of Inorganic Solid Nanorods by Hot Filament Chemical Vapor Deposition Technique. Molecular Crystals and Liquid Crystals, 2015, 609, 228-234.	0.4	1
4346	Synthesis of arylsulfanyl-subphthalocyanines and their ring expansion reaction. Journal of Porphyrins and Phthalocyanines, 2015, 19, 688-694.	0.4	6
4347	Enhanced charge transport properties by strengthened necks between TiO2 aggregates for dye sensitized solar cells. Thin Solid Films, 2015, 588, 19-25.	0.8	16
4348	Highly-durable optofluidic microreactor for photocatalytic water splitting. Energy, 2015, 83, 797-804.	4.5	19
4349	Injection Kinetics and Electronic Structure at the N719/TiO ₂ Interface Studied by Means of Ultrafast XUV Photoemission Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 9099-9107.	1.5	22
4350	Fiveâ€Membered Cyclic Metal Carbyne: Synthesis of Osmapentalynes by the Reactions of Osmapentalene with Allene, Alkyne, and Alkene. Angewandte Chemie - International Edition, 2015, 54, 7189-7192.	7.2	66
4351	Formate dehydrogenase catalyzed CO ₂ reduction in a chlorin-e ₆ sensitized photochemical biofuel cell. Journal of Porphyrins and Phthalocyanines, 2015, 19, 459-464.	0.4	7
4352	Molecular design of corroleâ€based Dâ€Ï€â€A sensitizers for dyeâ€sensitized solar cell applications. International Journal of Quantum Chemistry, 2015, 115, 745-752.	1.0	17
4353	Dye-sensitized solar cells composed of photoactive composite photoelectrodes with enhanced solar energy conversion efficiency. Journal of Materials Chemistry A, 2015, 3, 11130-11136.	5.2	27

#	Article	IF	CITATIONS
4354	Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer. Electronic Materials Letters, 2015, 11, 271-275.	1.0	22
4355	Non-aggregated Zn(<scp>ii</scp>)octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.	1.6	83
4356	A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Scientific Reports, 2015, 5, 8592.	1.6	24
4357	Cadmium selenide quantum dots solar cells featuring nickel sulfide/polyaniline as efficient counter electrode provide 4.15% efficiency. RSC Advances, 2015, 5, 42101-42108.	1.7	12
4358	Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell. Journal of Sol-Gel Science and Technology, 2015, 75, 487-494.	1.1	25
4359	Ruthenium(II) complexes containing benzimidazolic tripodal ligands. Inorganica Chimica Acta, 2015, 431, 258-265.	1.2	8
4360	DOPAMINE ADSORPTION CONFIGURATIONS ON ANATASE (101) SURFACE. Surface Review and Letters, 2015, 22, 1550052.	0.5	1
4361	Construction of hybrid films of silver nanoparticles and polypyridine ruthenium complexes on substrates. Dalton Transactions, 2015, 44, 15244-15249.	1.6	3
4362	Photovoltaic application of Si nanoparticles fabricated by multihollow plasma discharge CVD: Dye and Si co-sensitized solar cells. Japanese Journal of Applied Physics, 2015, 54, 01AD02.	0.8	4
4364	Tailored SrTiO ₃ /TiO ₂ heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. Journal of Materials Chemistry A, 2015, 3, 13390-13401.	5.2	76
4365	Push–pull porphyrins with different anchoring group orientations for fully printable monolithic dye-sensitized solar cells with mesoscopic carbon counter electrodes. New Journal of Chemistry, 2015, 39, 5231-5239.	1.4	19
4366	Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 11401-11411.	1.3	28
4367	Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2015, 137, 4414-4423.	6.6	243
4368	Exploring the sensitization properties of thienyl-functionalized tripyrrole Ru(II) complexes on TiO2 (101) surface: a theoretical study. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	7
4369	A PEDOT-coated quantum dot as efficient visible light harvester for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2015, 179, 113-121.	10.8	40
4370	Metal-free synthesis of bisthiophene-core donor acceptor organic photosensitizers for dye-sensitized solar cells. Tetrahedron, 2015, 71, 7260-7266.	1.0	9
4371	Synthesis and dye sensitized solar cell applications of Bodipy derivatives with bis-dimethylfluorenyl amine donor groups. New Journal of Chemistry, 2015, 39, 4086-4092.	1.4	38
4372	Structural alternation of tandem dye-sensitized solar cells based on mesh-type of counter electrode. Electrochimica Acta, 2015, 179, 206-210.	2.6	4

#	Article	IF	CITATIONS
4373	Theoretical studies on the spectroscopic properties of porphyrin derivatives for dye-sensitized solar cell application. RSC Advances, 2015, 5, 33653-33665.	1.7	30
4374	Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell. Thin Solid Films, 2015, 583, 102-107.	0.8	9
4376	Dye Sensitized Solar Cells for Conversion of Solar Energy into Electricity. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 807-816.	1.2	13
4377	Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells. Journal of Power Sources, 2015, 286, 118-123.	4.0	72
4378	Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2015, 167, 379-387.	2.6	7
4379	Identification of the dye adsorption modes in dye-sensitised solar cells with X-ray spectroscopy techniques: a computational study. Physical Chemistry Chemical Physics, 2015, 17, 10849-10855.	1.3	11
4380	Carbon Nanotubes for Dye-Sensitized Solar Cells. Small, 2015, 11, 2963-2989.	5.2	122
4381	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
4382	Aqueous dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3431-3473.	18.7	389
4383	New D–Ĩ€â€"A organic dyes containing a tert-butyl-capped indolo[3,2,1-jk]carbazole donor with bithiophene unit as I€-linker for dye-sensitized solar cells. RSC Advances, 2015, 5, 32967-32975.	1.7	21
4384	Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells. Chemical Record, 2015, 15, 636-650.	2.9	38
4385	An Ironâ€Based Photosensitizer with Extended Excitedâ€State Lifetime: Photophysical and Photovoltaic Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2469-2477.	1.0	124
4386	New insights into electrolyte-component biased and transfer- and transport-limited charge recombination in dye-sensitized solar cells. RSC Advances, 2015, 5, 84959-84966.	1.7	5
4387	One-Dimensional Photonic Crystals for Light Management in Organic Solar Cells. , 2015, , 303-320.		2
4388	Structural, mesomorphic, photoluminescence and thermoelectric studies of mononuclear and polymeric complexes of copper(<scp>ii</scp>) with 2-hexyldecanoato and 4,4′-bipyridine ligands. Journal of Materials Chemistry C, 2015, 3, 11036-11045.	2.7	13
4389	A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis – towards the understanding of dye sensitized solar cell performances. Physical Chemistry Chemical Physics, 2015, 17, 28647-28657.	1.3	20
4390	Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Applied Surface Science, 2015, 357, 1499-1510.	3.1	22
4391	Substituents role in zinc phthalocyanine derivatives used as dye-sensitized solar cells. A theoretical study using Density Functional Theory. Chemical Physics Letters, 2015, 639, 172-177.	1.2	18

#	Article	IF	CITATIONS
4392	Dynamic Characteristics of Aggregation Effects of Organic Dyes in Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 22504-22514.	4.0	39
4393	Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity. Energy and Environmental Science, 2015, 8, 3192-3197.	15.6	269
4394	Synthesis and photophysical properties of donor–acceptor system based bipyridylporphyrins for dye-sensitized solar cells. Journal of Energy Chemistry, 2015, 24, 779-785.	7.1	5
4395	Substituent effects on the croconate dyes in dye sensitized solar cell applications: a density functional theory study. Journal of Molecular Modeling, 2015, 21, 297.	0.8	5
4396	Electrochemical grafting of TiO2-based photo-anodes and its effect in dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2015, 758, 85-92.	1.9	12
4397	Smarter Actuator Design with Complementary and Synergetic Functions. Advanced Materials, 2015, 27, 4418-4422.	11.1	44
4398	Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 3495-3514.	15.6	225
4399	A fast approach to optimize dye loading of photoanode via ultrasonic technique for highly efficient dye-sensitized solar cells. Journal of Energy Chemistry, 2015, 24, 750-755.	7.1	3
4400	Diastereoisomers of Ruthenium Dyes with Unsymmetric Ligands for DSC: Fundamental Chemistry and Photovoltaic Performance. Inorganic Chemistry, 2015, 54, 10483-10489.	1.9	20
4401	Photon Upconversion and Photocurrent Generation via Self-Assembly at Organic–Inorganic Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 4510-4517.	2.1	70
4402	Synthesis of novel isophorone-based dyes for dye-sensitized solar cells. RSC Advances, 2015, 5, 96428-96436.	1.7	6
4403	A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode. Journal of Porous Materials, 2015, 22, 1617-1626.	1.3	11
4404	DFT and TD-DFT study on structures, related energies, frontier molecular orbitals and UV–Vis spectra of [M(Tp)(PPh3)(Cl)(L)] (M = Ru and Fe; L = C3H4N2 and C13H11N). Polyhedron, 2015, 102, 216-223.	1.0	2
4405	Pyridine derivatives; new efficient additives in bromide/tribromide electrolyte for dye sensitized solar cells. RSC Advances, 2015, 5, 86191-86198.	1.7	13
4406	Cyclometalated ruthenium(<scp>ii</scp>) complexes with bis(benzimidazolyl)benzene for dye-sensitized solar cells. RSC Advances, 2015, 5, 90001-90009.	1.7	15
4407	Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p -type dye-sensitized solar cells. Applied Surface Science, 2015, 356, 911-920.	3.1	44
4408	High open-circuit voltage dye-sensitized solar cells based on a nanocomposite photoelectrode. Journal of Photonics for Energy, 2015, 5, 053088.	0.8	5
4409	Efficient charge-transport in hybrid lead iodide perovskite solar cells. Dalton Transactions, 2015, 44, 16914-16922.	1.6	20

#	Article	IF	CITATIONS
4410	Unravel the Impact of Anchoring Groups on the Photovoltaic Performances of Diketopyrrolopyrrole Sensitizers for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2389-2396.	3.2	65
4411	Photo-induced recovery, optical detection, and separation of noxious SeO ₃ ^{2â^'} using a mesoporous nanotube hybrid membrane. Journal of Materials Chemistry A, 2015, 3, 17578-17589.	5.2	45
4412	Statistical TiO2/dye-mass dependence and dye-regeneration efficiency on dye-sensitized solar cells. Nano Energy, 2015, 16, 383-388.	8.2	3
4413	Investigations of tungsten carbide nanostructures treated with different temperatures as counter electrodes for dye sensitized solar cells (DSSC) applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 7977-7986.	1.1	15
4414	First-Principles Screening and Design of Novel Triphenylamine-Based Dâ^'ï€â€"A Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 21852-21859.	1.5	39
4415	New thieno[3,2-b][1]benzothiophene-based organic sensitizers containing π-extended thiophene spacers for efficient dye-sensitized solar cells. RSC Advances, 2015, 5, 80859-80870.	1.7	16
4416	Photovoltaic performance of curcumin as sensitizer in a solid-state solar cell. Optik, 2015, 126, 3366-3370.	1.4	11
4417	Mesoporous TiO ₂ -Based Photoanode Sensitized by BiOI and Investigation of Its Photovoltaic Behavior. Langmuir, 2015, 31, 10279-10284.	1.6	57
4418	Stable, High-Efficiency Pyrrolidinium-Based Electrolyte for Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 21381-21390.	4.0	29
4419	D‑'π‑'A system based on zinc porphyrin dyes for dye-sensitized solar cells: Combined experimental and DFT‑'TDDFT study. Polyhedron, 2015, 100, 313-320.	1.0	29
4420	Fabrication of Core-Shell Structured TiO ₂ /MgO Electrodes for Dye-Sensitized Solar Cells. Applied Mechanics and Materials, 0, 787, 3-7.	0.2	5
4421	Efficient dye-sensitized solar cell with a pure thin film of a hybrid polyoxometalate covalently attached organic dye as a working electrode in a cobalt redox mediator system. RSC Advances, 2015, 5, 76875-76882.	1.7	14
4422	Effects of different treatment of TiO2 electrodes on photovoltaic characteristics of dye-sensitized solar cells. Surface Engineering and Applied Electrochemistry, 2015, 51, 394-400.	0.3	4
4423	Dye sensitized solar cells with carbon black as counter electrodes. , 2015, , .		1
4424	Ruthenium Dye N749 Covalently Functionalized Reduced Graphene Oxide: A Novel Photocatalyst for Visible Light H ₂ Evolution. Journal of Physical Chemistry C, 2015, 119, 27892-27899.	1.5	14
4425	Nature of Excited States of Ruthenium-Based Solar Cell Dyes in Solution: A Comprehensive Spectroscopic Study. Inorganic Chemistry, 2015, 54, 11697-11708.	1.9	15
4426	Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27831-27837.	4.0	45
4427	Effect of Isonicotinate derivatives as additive on the photovoltaic performance of Carbazole-dye sensitized nanostructured TiO2 solar cells. Electrochimica Acta, 2015, 186, 43-49.	2.6	6

#	Article	IF	CITATIONS
4428	Amorphous TiO ₂ Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405.	3.2	197
4429	Photovoltaic performance of a N719 dye based dye-sensitized solar cell with transparent macroporous anti-ultraviolet photonic crystal coatings. RSC Advances, 2015, 5, 102803-102810.	1.7	16
4430	Enhanced electrical model for dye-sensitized solar cell characterization. Solar Energy, 2015, 122, 700-711.	2.9	14
4431	Possibility of NCS Group Anchor for Ru Dye Adsorption to Anatase TiO2(101) Surface: A Density Functional Theory Investigation. Journal of Physical Chemistry C, 2015, 119, 234-241.	1.5	4
4432	Cyclometalated Fe(II) Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2015, 54, 560-569.	1.9	78
4433	A facile and convenient synthesis and photovoltaic characterization of novel thieno[2,3-b]indole dyes for dye-sensitized solar cells. Synthetic Metals, 2015, 199, 152-158.	2.1	35
4434	Green synthesis of Co3O4 nanoparticles and their applications in thermal decomposition of ammonium perchlorate and dye-sensitized solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 181-188.	1.7	88
4435	Trisâ€Heteroleptic Ruthenium–Dipyrrinate Chromophores in a Dye‧ensitized Solar Cell. Chemistry - A European Journal, 2015, 21, 2173-2181.	1.7	23
4436	Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells. Applied Surface Science, 2015, 328, 78-85.	3.1	34
4437	Effects of various π-conjugated spacers in thiadiazole[3,4-c]pyridine-cored panchromatic organic dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 3103-3112.	5.2	41
4438	Enhancing the performance of dye-sensitized solar cells: doping SnO ₂ photoanodes with Al to simultaneously improve conduction band and electron lifetime. Journal of Materials Chemistry A, 2015, 3, 3066-3073.	5.2	51
4439	Promising efficiency enhancement in cobalt redox couple-based back-illuminated dye-sensitized solar cells with titanium foil substrate. Journal of Power Sources, 2015, 278, 32-37.	4.0	16
4440	Structural heterogeneity and dynamics of dyes on TiO ₂ : implications for charge transfer across organic–inorganic interfaces. Physical Chemistry Chemical Physics, 2015, 17, 3731-3740.	1.3	5
4441	Synthesis and characterization of novel carbazole-based terpyridyl photosensitizers for dye-sensitized solar cells (DSSCs). Dyes and Pigments, 2015, 115, 81-87.	2.0	20
4442	2,5-Dithienylpyrrole (DTP) as a donor component in DTP–π–A organic sensitizers: photophysical and photovoltaic properties. RSC Advances, 2015, 5, 4041-4050.	1.7	16
4443	Structural and photovoltaic characteristics of hierarchical ZnO nanostructures electrodes. Applied Surface Science, 2015, 334, 145-150.	3.1	9
4444	Panchromatic Ru (II) Dipyrrins as NCS Free Sensitizers Showing Highest Efficiency for DSSCs. Electrochimica Acta, 2015, 153, 343-351.	2.6	16
4445	Room temperature nitrogen dioxide sensors based on N719-dye sensitized amorphous zinc oxide sensors performed under visible-light illumination. Sensors and Actuators B: Chemical, 2015, 209, 69-77.	4.0	56

#	ARTICLE Highly improved performance of ZnII tetraarylporphyrinates in DSSCs by the presence of octyloxy	IF	CITATIONS
4447	chains in the aryl rings. Journal of Materials Chemistry A, 2015, 3, 2954-2959. Facile fabrication of sub-100â€nm mesoscale inverse opal films and their application in dye-sensitized solar cell electrodes. Scientific Reports, 2014, 4, 6804.	1.6	38
4448	The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. Journal of Power Sources, 2015, 274, 937-942.	4.0	37
4449	P3HT:PC61BM based solar cells employing solution processed copper iodide as the hole transport layer. Solar Energy Materials and Solar Cells, 2015, 133, 255-259.	3.0	62
4450	Improved photovoltaic efficiency on TiO2/In2S3 double layered electrodes. Materials Chemistry and Physics, 2015, 149-150, 302-308.	2.0	9
4451	Electrochemical characterisation of TiO2 nanotube array photoanodes for dye-sensitized solar cell application. Solar Energy Materials and Solar Cells, 2015, 133, 76-81.	3.0	33
4452	Printable solar cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4, 51-73.	1.9	10
4453	Photoinduced electron transfer in rhodamine B-containing amorphous titania gels. Research on Chemical Intermediates, 2015, 41, 3803-3816.	1.3	3
4454	A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability. Scientific Reports, 2014, 4, 4033.	1.6	168
4455	Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 737-742.	2.0	39
4456	Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4- <i>tert</i> -Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers. Journal of Physical Chemistry B, 2015, 119, 7162-7169.	1.2	15
4457	Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Transactions, 2015, 44, 448-463.	1.6	529
4458	CuInSe ₂ and CuInSe ₂ –ZnS based high efficiency "green―quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 1649-1655.	5.2	108
4459	Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs. Journal of Materials Chemistry A, 2015, 3, 1333-1344.	5.2	72
4460	Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolate–disulfide redox electrolyte. Journal of Power Sources, 2015, 275, 681-687.	4.0	30
4461	Azo-coupled zinc phthalocyanines: Towards broad absorption and application in dye-sensitized solar cells. Polyhedron, 2015, 85, 864-873.	1.0	27
4463	New heteroleptic benzimidazole functionalized Ru-sensitizer showing the highest efficiency for dye-sensitized solar cells. Inorganic Chemistry Communication, 2015, 51, 61-65.	1.8	12
4464	Effects of the Alkyl Chain Length of Imidazolium Iodide in the Electrolyte Solution on the Performance of Black-Dye-Based Dye-Sensitized Solar Cells. Electrochimica Acta, 2015, 151, 447-452.	2.6	8

#	Article	IF	CITATIONS
4465	A highly efficient nanostructured quinary photocatalyst for hydrogen production. International Journal of Energy Research, 2015, 39, 516-523.	2.2	18
4466	A "click-chemistry―approach for the synthesis of porphyrin dyads as sensitizers for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 1734-1747.	1.6	29
4467	Graphene below the percolation threshold in TiO ₂ for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 2580-2588.	5.2	70
4468	Photoelectrochemical performance of dye sensitized solar cells based on aluminum-doped titanium dioxide structures. Materials Science in Semiconductor Processing, 2015, 30, 208-217.	1.9	16
4469	Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation. Journal of Power Sources, 2015, 274, 156-164.	4.0	25
4470	Transparent conductive oxideâ€less back contact dyeâ€sensitized solar cells using cobalt electrolyte. Progress in Photovoltaics: Research and Applications, 2015, 23, 1100-1109.	4.4	17
4471	Effect of the anchoring group in the performance of carbazole-phenothiazine dyads for dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 536-545.	2.0	30
4472	Synthesis, optical, electrochemical and photovoltaic properties of organic dyes containing trifluorenylamine donors. Dyes and Pigments, 2015, 113, 78-86.	2.0	20
4473	Novel dye sensitizers of main chain polymeric metal complexes based on complexes of 2-(2′-pyridyl)benzimidazole derivative with Zn(II), Co(II): synthesis, characterization, and photovoltaic performance for dye-sensitized solar cells. Journal of the Iranian Chemical Society, 2015, 12, 397-404.	1.2	4
4474	Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 241-246.	15.6	49
4475	Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect. Dyes and Pigments, 2015, 113, 378-389.	2.0	17
4476	Green grasses as light harvesters in dye sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 947-952.	2.0	48
4477	Triphenylamine-functionalized corrole sensitizers for solar-cell applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 194-202.	0.8	26
4478	Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015, 18, 155-162.	8.3	609
4479	Theoretical studies of electronic and optical properties of the triphenylamine-based organic dyes with diketopyrrolopyrrole chromophore. Dyes and Pigments, 2015, 113, 87-95.	2.0	50
4480	Integrated Design of Organic Hole Transport Materials for Efficient Solid‧tate Dye‧ensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1401185.	10.2	59
4481	Enhanced dye-sensitized solar cell performance using TiO2:Nb blocking layer deposited by soft chemical method. Ceramics International, 2015, 41, 205-209.	2.3	13
4482	Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Applied Nanoscience (Switzerland), 2015, 5, 297-303.	1.6	15

ARTICLE IF CITATIONS New D-i€-A type indole based chromogens for DSSC: Design, synthesis and performance studies. Dyes 4483 2.0 70 and Pigments, 2015, 112, 183-191. Carbazole-bridged double D–A dye for efficient dye-sensitized solar cell. Journal of Photochemistry 4484 and Photobiology A: Chemistry, 2015, 296, 1-10. 4485 5. Organic-type solar cells. , 2016, , 69-108. 0 nQuasi-solid-state Electrolyte for Dye Sensitized Solar Cells Based on Nanofiber PMA-PVDF and 4486 0.5 PMA-PVDF / PEG Membranes. International Journal of Electrochemical Science, 2016, 11, 6064-6077. Influence of Pore Size on the Optical and Electrical Properties of Screen Printed<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML 4487 id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mtext>2</mml:mtext Films. Advances in Materials Science and Engineering, 2016, 2016, 1-7. Theoretical Study of the <i>i∈ </i> -Bridge Influence with Different Units of Thiophene and Thiazole in Coumarin Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2016, 2016, 1-8. 4488 1.4 An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical 4489 1.3 54 Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials, 2016, 9, 813. 4490 Towards Renewable lodide Sources for Electrolytes in Dye-Sensitized Solar Cells. Energies, 2016, 9, 241. 1.6 One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite 4491 23 1.6 Solar Cells. Energies, 2016, 9, 1030. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies. International Journal of Molecular Sciences, 4492 1.8 2016, 17, 487. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as 4493 1.3 15 Efficient Photoanode in Dye-Sensitized Solar Cells. Materials, 2016, 9, 69. Effect of Solvent Variations in the Alcothermal Synthesis of Template-Free Mesoporous Titania for 4494 1.1 Dye-Sensitized Solar Cells Applications. PLoS ONE, 2016, 11, e0164670. Beneficial Effect of Electron-Withdrawing Groups on the Sensitizing Action of Squaraines for 4495 1.5 48 <i>p</i>-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16340-16353. Enhancements of Trifluoroacetic Acylated Fiveâ€membered Heterocyclic Compounds Using as Additives 4496 0.8 in Dye Sensitized Solar Cells. Journal of the Chinese Chemical Society, 2016, 63, 345-352. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials. 4497 1.0 3 Electronic Materials Letters, 2016, 12, 512-516. Effects of structural optimization on the performance of dye-sensitized solar cells: spirobifluorene as a promising building block to enhance V_{oc}. Journal of Materials Chemistry A, 2016, 4, 4498 5.2 11782-11788 Defects in Porous Networks of WO₃ Particle Aggregates. ChemElectroChem, 2016, 3, 4499 1.7 11 658-667. Strongly Coupled Cyclometalated Ruthenium Triarylamine Chromophores as Sensitizers for DSSCs. Chemistry - A European Journal, 2016, 22, 8915-8928.

#	Article	IF	CITATIONS
4501	Developments in and prospects for photocathodic and tandem dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28, 44-71.	5.6	42
4502	Electrophoretic separation and deposition of metal–graphene nanocomposites and their application as electrodes in solar cells. RSC Advances, 2016, 6, 64097-64109.	1.7	9
4503	Heteroleptic Ruthenium Sensitizers with Hydrophobic Fusedâ€ThioÂphenes for Use in Efficient Dyeâ€ÂSensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 1214-1224.	1.0	20
4504	Solvent effects on adsorption kinetics, dye monolayer, and cell performance of porphyrin-sensitized solar cells. RSC Advances, 2016, 6, 114037-114045.	1.7	2
4505	Improvement of DSSC performance by voltage stress application. , 2016, , .		0
4506	Effect of sintering temperatures and screen printing types on TiO2 layers in DSSC applications. AIP Conference Proceedings, 2016, , .	0.3	4
4507	Dye sensitized solar cells with carbon black as counter electrodes. Japanese Journal of Applied Physics, 2016, 55, 03CE01.	0.8	3
4508	Eosin-Y and Rose Bengal sensitized solar cell characteristics of N-doped nanocrystalline TiO <inf>2</inf> films. , 2016, , .		0
4509	ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells. AIP Conference Proceedings, 2016, , .	0.3	2
4510	Effect of screen printing type on transparent TiO2 layer as the working electrode of dye sensitized solar cell (DSSC) for solar windows applications. Journal of Physics: Conference Series, 2016, 776, 012011.	0.3	3
4511	Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. Journal Physics D: Applied Physics, 2016, 49, 295601.	1.3	16
4512	Yttrium doped TiO 2 porous film photoanode for dye-sensitized solar cells with enhanced photovoltaic performance. Results in Physics, 2016, 6, 1051-1058.	2.0	29
4513	Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion. Journal of Chemical Physics, 2016, 145, 104310.	1.2	5
4514	Natural Dye Extracted From <i>Saraca asoca</i> Flowers as Sensitizer for TiO ₂ -Based Dye-Sensitized Solar Cell. Journal of Solar Energy Engineering, Transactions of the ASME, 2016, 138, 051006.	1.1	38
4515	A robust and efficient visible light driven photocatalyst for hydrogen evolution based on ruthenium dye N3 covalently immobilized on reduced graphene oxide. RSC Advances, 2016, 6, 34699-34707.	1.7	7
4516	Synthesis and Characterization of Phenothiazineâ€Based Platinum(II)–Acetylide Photosensitizers for Efficient Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 3750-3757.	1.7	27
4517	SnO2–TiO2 hybrid nanofibers for efficient dye-sensitized solar cells. Solar Energy, 2016, 132, 395-404.	2.9	44
4518	Tuning of the lowest excited states in mixed ruthenium(ii) polypyridyl complexes having RuN6 cores by the conformation of the ancillary ligand. Emission from a 3ligand-to-ligand-charge-transfer state. New Journal of Chemistry, 2016, 40, 5002-5009.	1.4	5

		CITATION REPORT	
#	Article	IF	CITATIONS
4519	Plasmonic Effects of Infiltrated Silver Nanoparticles Inside TiO ₂ Film: Enhanced Photovoltaic Performance in DSSCs. Journal of the American Ceramic Society, 2016, 99, 167-173	. 1.9	24
4520	Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect. Nano Energy, 2016, 26, 297-304.	8.2	23
4521	Two new bulky substituted Zn porphyrins bearing carboxylate anchoring groups as promising dy DSSCs. New Journal of Chemistry, 2016, 40, 5930-5941.	es for 1.4	12
4522	Versatile copper complexes as a convenient springboard for both dyes and redox mediators in dy sensitized solar cells. Coordination Chemistry Reviews, 2016, 322, 69-93.	e 9.5	76
4523	Synthesis and characterization of alkynylrhenium(I) tricarbonyl diimine complexes with fused thiophene and cyanoacrylic acid moiety. Polyhedron, 2016, 116, 144-152.	1.0	5
4524	Co-sensitization of Dithiafulvenyl-Phenothiazine Based Organic Dyes with N719 for Efficient Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 211, 364-374.	2.6	60
4525	Sub-100 nm TiO2 tubular architectures for efficient solar energy conversion. Journal of Materials Chemistry A, 2016, 4, 9375-9380.	5.2	26
4526	A novel ruthenium sensitizer with –OMe substituted phenyl-terpyridine ligand for dye sensitize cells. Solar Energy, 2016, 134, 107-118.	d solar 2.9	18
4527	High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics. Journal of Physical Chemistry Letters, 2016, 7, 2009-2014.	2.1	61
4528	A Study of the Efficiency Enhancement of the Gel Electrolyte-based SnO2 Dye-sensitized Solar Co Through the Use of Thin Insulating Layers. Electrochimica Acta, 2016, 210, 138-146.	ells 2.6	9
4529	<i>In Situ</i> Formation of Continuous Charge Transfer Pathways for Highly Efficient, Solvent-Fr Polymer Electrolyte-Based Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering 4, 4013-4020.	3e, 3, 2016, 3.2	8
4530	Optical absorption spectrum of the N3 solar cell sensitizer by second-order multireference perturbation theory. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	11
4531	Dye-sensitized solar cells, based on electrochemically functionalized porphyrins. Journal of the Iranian Chemical Society, 2016, 13, 1357-1365.	1.2	6
4532	Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency excee 7%. Journal of Materials Chemistry A, 2016, 4, 7214-7221.	ding 5.2	101
4533	Impact of strength and size of donors on the optoelectronic properties of D–π–A sensitizers Advances, 2016, 6, 37347-37361.	. RSC 1.7	10
4534	Integrated Photon Upconversion Solar Cell via Molecular Self-Assembled Bilayers. ACS Energy Let 2016, 1, 3-8.	ters, 8.8	86
4535	Effect of mixed valence state of titanium on reduced recombination for natural dye-sensitized so cell applications. Journal of Solid State Electrochemistry, 2016, 20, 1921-1932.	ar 1.2	35
4536	Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence c anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents. Superlattices and Microstructures, 2016, 94, 74-84.	f 1.4	11

			0
#	ARTICLE	IF	CITATIONS
4537	composite photoanode. Journal of Alloys and Compounds, 2016, 680, 373-380.	2.8	15
4538	Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 14279-14285.	1.3	41
4539	An affordable green energy source—Evolving through current developments of organic, dye sensitized, and perovskite solar cells. International Journal of Green Energy, 2016, 13, 859-906.	2.1	4
4540	A high efficiency ruthenium(<scp>ii</scp>) tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. RSC Advances, 2016, 6, 46487-46494.	1.7	19
4541	Improving performance of copper(I)-based dye sensitized solar cells through I3â^'/Iâ^' electrolyte manipulation. Dyes and Pigments, 2016, 132, 72-78.	2.0	22
4542	A new record excited state ³ MLCT lifetime for metalorganic iron(<scp>ii</scp>) complexes. Physical Chemistry Chemical Physics, 2016, 18, 12550-12556.	1.3	132
4543	Bilayer structured supramolecular light harvesting arrays based on zinc porphyrin coordination polymers for enhanced photocurrent generation in dye sensitized solar cells. Dalton Transactions, 2016, 45, 16283-16289.	1.6	13
4544	Stable and Enhanced Visible-Light Water Electrolysis Using C, N, and S Surface Functionalized ZnO Nanorod Photoanodes: Engineering the Absorption and Electronic Structure. ACS Sustainable Chemistry and Engineering, 2016, 4, 5693-5702.	3.2	40
4545	TiO2nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H2generation. Nanoscale, 2016, 8, 16868-16873.	2.8	30
4546	Push-pull type material having spirobifluorene as π-spacer for dye sensitized solar cells. International Journal of Hydrogen Energy, 2016, 41, 21293-21299.	3.8	6
4547	Improving Process Efficiency by Waste Heat Recuperation. , 2016, , 475-498.		0
4548	Photoelectrochemical starch-O2 biofuel cell consisting of chlorophyll derivative-sensitized TiO2 anode and enzyme-based cathode. Research on Chemical Intermediates, 2016, 42, 7761-7770.	1.3	5
4549	Impact of preparation method of TiO 2 -RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochimica Acta, 2016, 219, 38-48.	2.6	53
4550	Accessing the charge separation effects in dye-sensitized solar cells based on a vectorial planning of supramolecular ruthenium dyes. Inorganica Chimica Acta, 2016, 453, 764-770.	1.2	6
4551	The influence of an inner electric field on the performance of three types of Zn-porphyrin sensitizers in dye sensitized solar cells: a theoretical study. Journal of Materials Chemistry C, 2016, 4, 10130-10145.	2.7	31
4552	Urea treated WO <inf>3</inf> and SnO <inf>2</inf> as cost effective and efficient counter electrodes of dye sensitized solar cells. , 2016, , .		2
4553	Fe-ions implantation to modify TiO2trilayer films for dye-sensitized solar cells. Optical Engineering, 2016, 55, 067107.	0.5	4
4554	The Effect of Additives on a Molecular Organic Conductor Based Electrolyte System for Solid State Dye Sensitized Solar Cells. ChemistrySelect, 2016, 1, 2244-2248.	0.7	0

#	Article	IF	CITATIONS
4555	Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell. Electronic Materials Letters, 2016, 12, 628-637.	1.0	7
4556	Dual donor–ï€â€"acceptor type organic dyes for efficient dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 9725-9738.	1.4	11
4557	Stochastic electrochemistry and photoelectrochemistry of colloidal dye-sensitized anatase nanoparticles at a Pt ultramicroelectrode. Faraday Discussions, 2016, 193, 313-325.	1.6	14
4558	Insight into the effects of modifying π-bridges on the performance of dye-sensitized solar cells containing triphenylamine dyes. Physical Chemistry Chemical Physics, 2016, 18, 29555-29560.	1.3	16
4559	Convenient synthesis of EDOT-based dyes by CH-activation and their application as dyes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 15655-15661.	5.2	15
4560	Panchromatic dyes having diketopyrrolopyrrole and ethylenedioxythiophene applied to dye-sensitized solar cells. Organic Electronics, 2016, 37, 465-473.	1.4	8
4561	Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chemical Reviews, 2016, 116, 9485-9564.	23.0	225
4562	Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Solar Energy, 2016, 136, 553-559.	2.9	42
4564	Low-Cost Electricity Production from Sunlight: Third-Generation Photovoltaics and the Dye-Sensitized Solar Cell. , 2016, , 93-153.		0
4565	Callindra haematocephata and Peltophorum pterocarpum flowers as natural sensitizers for TiO 2 thin film based dye-sensitized solar cells. Optical Materials, 2016, 60, 270-276.	1.7	45
4566	Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chemistry of Materials, 2016, 28, 5702-5709.	3.2	194
4567	Hydrophilic Ethyleneâ€Glycolâ€Based Ruthenium Sensitizers for Aqueous Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 33-39.	1.0	10
4568	A sol-hydrothermal route to truncated tetragonal bipyramid nanocrystals and hierarchical hollow microspheres of anatase TiO2 for application in dye-sensitized solar cells. RSC Advances, 2016, 6, 69798-69806.	1.7	1
4569	Spacer Effects of Donor-ï€ Spacer-Acceptor Sensitizers on Photophysical Properties in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 21272-21284.	1.5	40
4570	Ionic Liquid-Induced Local Charge Compensation: Effects on Back Electron-Transfer Rates in Dye-Sensitized TiO2Thin Films. Journal of Physical Chemistry C, 2016, 120, 20016-20023.	1.5	10
4571	A co-sensitized approach to efficiently fill the absorption valley, avoid dye aggregation and reduce the charge recombination. Electrochimica Acta, 2016, 215, 506-514.	2.6	40
4572	The influence of a dye–TiO ₂ interface on DSSC performance: a theoretical exploration with a ruthenium dye. RSC Advances, 2016, 6, 81976-81982.	1.7	28
4573	Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale, 2016, 8, 15309-15316.	2.8	42

ARTICLE IF CITATIONS Biological activity and binding properties of [Ru(II)(dcbpy)2Cl2] complex to bovine serum albumin, 4574 1.8 9 phospholipase A2 and glutathione. BioMetals, 2016, 29, 921-933. Hierarchical rutile TiO2 aggregates: A high photonic strength material for optical and optoelectronic devices. Acta Materialia, 2016, 119, 92-103. 3.8 30 Effect of orientation and density of hydroxide precursor films on performance of dye-sensitized ZnO 4576 0.5 3 solar cells. Journal of the Ceramic Society of Japan, 2016, 124, 673-677. Theoretical design and characterization of high-efficiency organic dyes with different electron-withdrawing groups based on C275 toward dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 9320-9328. 1.4 Improved performance of dye-sensitized solar cell based on TiO 2 photoanode with FTO glass and film 4578 1.3 15 both treated by TiCl 4. Physica B: Condensed Matter, 2016, 500, 48-52. Porous–Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis. ACS Applied Materials & amp; Interfaces, 2016, 8, 19994-20002. 4579 4.0 Are Very Small Emission Quantum Yields Characteristic of Pure Metal-to-Ligand Charge-Transfer 4580 Excited States of Ruthenium(II)-(Acceptor Ligand) Chromophores?. Inorganic Chemistry, 2016, 55, 1.9 8 7341-7355. A strategy to minimize the energy offset in carrier injection from excited dyes to inorganic semiconductors for efficient dye-sensitized solar energy conversion. Physical Chemistry Chemical 1.3 Physics, 2016, 18, 22244-22253. The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun 4582 2.0 18 fibers. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 46-53. Modified pyrene based organic sensitizers with thiophene-2-acetonitrile as i€-spacer for dye sensitized 1.4 solar cell applications. Organic Electronics, 2016, 37, 326-335. An imidazolium iodide–containing hyperbranched polymer ionic liquid that improves the performance 4584 1.2 8 of dye-sensitized solar cells. Journal of Polymer Research, 2016, 23, 1. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell. Optical Materials, 2016, 57, 202-211 Biâ€anchoring Organic Dyes that Contain Benzimidazole Branches for Dyeâ€Sensitized Solar Cells: Effects 4586 1.7 32 of πâ€...Spacer and Peripheral Donor Groups. Chemistry - an Asian Journal, 2016, 11, 2564-2577. Mono and binuclear ruthenium(II) complexes containing 5-chlorothiophene-2-carboxylic acid ligands: Spectroscopic analysis and computational studies. Journal of Molecular Structure, 2016, 1123, 416-425. 1.8 Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy 4588 8.2 139 Reviews, 2016, 65, 183-213. Design and synthesis of new Ru-complexes as potential photo-sensitizers: experimental and TD-DFT 14 insights. RSC Advances, 2016, 6, 69647-69657. The layer boundary effect on multi-layer mesoporous TiO₂ film based dye sensitized solar 4590 1.7 3 cells. RSC Advances, 2016, 6, 98167-98170. Chapter 4 Review on Performance Affected Parameters for Dye Sensitized Solar Cell., 2016, 93-112.

#	Article	IF	CITATIONS
4592	Intriguing Photochemistry of the Additives in the Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 27768-27781.	1.5	10
4593	DFT/TDâ€DFT Studies of Metalâ€Free Nâ€Annulated Perylene Based Organic Sensitizers for Dyeâ€Sensitized Solar Cells: Is Thiophene Spacer Essential for Improving the DSSC Performance?. ChemistrySelect, 2016, 1, 5854-5862.	0.7	26
4594	Dye-sensitized solar cells using natural dye as light-harvesting materials extracted from Acanthus sennii chiovenda flower and Euphorbia cotinifolia leaf. Journal of Science: Advanced Materials and Devices, 2016, 1, 488-494.	1.5	56
4595	Strategy for Improved Photoconversion Efficiency in Thin Photoelectrode Films by Controlling Ï€-Spacer Dihedral Angle. Journal of Physical Chemistry C, 2016, 120, 24655-24666.	1.5	24
4596	Twenty-five years of low-cost solar cells. Nature, 2016, 538, 463-464.	13.7	70
4598	Performance enhancers for gel polymer electrolytes based on Lil and RbI for quasi-solid-state dye sensitized solar cells. RSC Advances, 2016, 6, 103683-103691.	1.7	19
4599	Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications. Science China Materials, 2016, 59, 867-883.	3.5	13
4600	Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moieties and out-of-plane branched alkyl chains on dye cell performance. Journal of Materials Chemistry A, 2016, 4, 18910-18921.	5.2	21
4601	Microscopic observation of dye molecules for solar cells on a titania surface. Scientific Reports, 2016, 6, 24616.	1.6	8
4602	Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy. Scientific Reports, 2016, 6, 24422.	1.6	24
4603	Stark Spectroscopy of Absorption and Emission of Indoline Sensitizers: A Correlation with the Performance of Photovoltaic Cells. Journal of Physical Chemistry C, 2016, 120, 26206-26216.	1.5	26
4604	Coumarinyl azoimidazolyl complexes of osmium(II) hydridocarbonyls: spectroscopic and structural characterization, oxidation catalysis, photovoltaic effect and density functional theory computation. Applied Organometallic Chemistry, 2016, 30, 323-334.	1.7	4
4605	A greener procedure for the synthesis of [Bu ₄ N] ₂ -cis-[Ru(4-carboxy-4′-carboxylate-2,2′-bipyridine) ₂ (NCS) <su (N719), a benchmark dye for DSSC applications. RSC Advances, 2016, 6, 55768-55777.</su 	ıb 12 <td>>]2</td>	>]2
4606	Optical and electrical properties of purpurin and alizarin complexone as sensitizers for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 8027-8039.	1.1	18
4607	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	1.9	80
4608	Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples. ACS Applied Materials & Interfaces, 2016, 8, 16677-16683.	4.0	19
4609	Influence of Meso-Substitution of the Porphyrin Ring on Enhanced Hydrogen Evolution in a Photochemical System. Journal of Physical Chemistry C, 2016, 120, 13873-13890.	1.5	38
4610	Low temperature rapid synthesis of direct mesoporous anatase TiO2nano-aggregates and its application in dye-sensitized solar cell. Materials Today: Proceedings, 2016, 3, 2413-2421.	0.9	7
#	Article	IF	CITATIONS
------	---	-----	-----------
4611	Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment. Dalton Transactions, 2016, 45, 13631-13647.	1.6	63
4612	Synthesis and integration of poly(1-vinylimidazole) polymer electrolyte in dye sensitized solar cells by initiated chemical vapor deposition. Chemical Engineering Science, 2016, 154, 136-142.	1.9	22
	Spectrometric measurements and DFT studies on new complex of copper (II) with		

4613

#	Article	IF	Citations
4629	Synthesis and characterization of simple cost-effective trans-A ₂ BC porphyrins with various donor groups for dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 5704-5713.	1.4	14
4630	Dye-sensitized solar cells based on two-dimensional TiO2 nanosheets as the scattering layers. Research on Chemical Intermediates, 2016, 42, 5653-5664.	1.3	5
4631	Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon, 2016, 100, 386-394.	5.4	76
4632	Enhanced performance of dye-sensitized solar cells with Y-shaped organic dyes containing di-anchoring groups. New Journal of Chemistry, 2016, 40, 2799-2805.	1.4	24
4633	Selenorhodamine Dye-Sensitized Solar Cells: Influence of Structure and Surface-Anchoring Mode on Aggregation, Persistence, and Photoelectrochemical Performance. Langmuir, 2016, 32, 1521-1532.	1.6	37
4634	Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation. Applied Surface Science, 2016, 366, 59-66.	3.1	8
4635	Shifting UV-vis absorption spectrum through rational structural modifications of zinc porphyrin photoactive compounds. RSC Advances, 2016, 6, 15345-15353.	1.7	17
4636	Significant improvement of photocurrent in dye-sensitized solar cells by incorporation thiophene into electrolyte as an inexpensive and efficient additive. Organic Electronics, 2016, 29, 57-65.	1.4	15
4637	Structures and photophysical properties of a family of [Ru(dcmb)2]2+ based complexes having pyridyl and amino acid ancillary ligands. Polyhedron, 2016, 104, 37-45.	1.0	5
4638	Black-Dye-Based Dye-Sensitized Solar Cells using the Electrolyte Solutions Containing a Quaternary Phosphonium Iodide with a Various Alkyl Chain Length. Electrochimica Acta, 2016, 187, 73-80.	2.6	4
4639	Novel azobenzene nickel(II) sensitizer for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 318, 90-96.	2.0	12
4640	Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells. Materials Research Bulletin, 2016, 74, 380-386.	2.7	21
4641	Predicting Structures of Ru-Centered Dyes: A Computational Screening Tool. Journal of Physical Chemistry A, 2016, 120, 2135-2143.	1.1	13
4642	Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident. Solar Energy, 2016, 132, 1-14.	2.9	24
4643	Structural and electronic properties of dye-sensitized TiO ₂ for solar cell applications: from single molecules to self-assembled monolayers. Journal of Materials Chemistry C, 2016, 4, 4346-4373.	2.7	46
4644	Effect of electron-donor ancillary ligands on the heteroleptic ruthenium complexes: synthesis, characterization, and application in high-performance dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 11213-11219.	1.3	11
4645	Self-assemblies formed by isonicotinic acid analogues axially coordinating with zinc porphyrin via pyridyl unit: synthesis and application in dye sensitized solar cells. Tetrahedron Letters, 2016, 57, 1867-1872.	0.7	16
4646	Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	13

#	Article	IF	CITATIONS
4647	Gold nanoparticles as an ultrathin scattering layer for efficient dye-sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 3614-3620.	2.7	25
4648	TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells. Electrochimica Acta, 2016, 193, 166-171.	2.6	26
4650	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.	1.7	18
4651	Dye anchored counter electrode: novel architecture towards enhanced performance for multiple dye sensitized solar cells. RSC Advances, 2016, 6, 22620-22624.	1.7	6
4652	Novel Alizarin palladacyclic complexes as sensitizers in high durable dye-sensitized solar cells. Polyhedron, 2016, 109, 40-46.	1.0	6
4653	Multicomponent syntheses of functional chromophores. Chemical Society Reviews, 2016, 45, 2825-2846.	18.7	242
4654	New dinuclear hydrido-carbonyl rhenium complexes designed as photosensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2016, 40, 2910-2919.	1.4	24
4655	Effects of 2-hexylthiophene on the performance of triphenylamine based organic dye for dye-sensitized solar cells. Synthetic Metals, 2016, 214, 56-61.	2.1	9
4656	Organic Photovoltaics for Energy Efficiency in Buildings. , 2016, , 321-355.		2
4657	Theoretical study on spin-forbidden transitions of osmium complexes by two-component relativistic time-dependent density functional theory. Chemical Physics Letters, 2016, 648, 60-65.	1.2	9
4658	Modification of photoelectrode with thiol-functionalized Calix[4]arenes as interface energy barrier for high efficiency in dye-sensitized solar cells. Journal of Power Sources, 2016, 307, 796-805.	4.0	52
4659	Samarium Ions Doped Titania Photoelectrodes for Efficiency Influence of Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2016, 163, A644-A649.	1.3	11
4660	Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 3-37.	1.9	29
4661	Broad spectral-response organic D–A–π–A sensitizer with pyridine-diketopyrrolopyrrole unit for dye-sensitized solar cells. RSC Advances, 2016, 6, 13433-13441.	1.7	21
4662	Physical Model for Interfacial Carrier Dynamics. Lecture Notes in Energy, 2016, , 67-91.	0.2	0
4663	Probing the Noninnocent π-Bonding Influence of <i>N</i> -Carboxyamidoquinolate Ligands on the Light Harvesting and Redox Properties of Ruthenium Polypyridyl Complexes. Inorganic Chemistry, 2016, 55, 2460-2472.	1.9	17
4664	One Electron Changes Everything. A Multispecies Copper Redox Shuttle for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 3731-3740.	1.5	45
4665	Computational study of the influence of the π-bridge conjugation order of novel molecular derivatives of coumarins for dye-sensitized solar cells using DFT. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	5

#	Article	IF	Citations
4666	Facile formation of a hierarchical TiO ₂ –SnO ₂ nanocomposite architecture for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 25114-25122.	1.7	23
4667	Molecular degradation of D35 and K77 sensitizers when exposed to temperatures exceeding 100 ŰC investigated by photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 8598-8607.	1.3	3
4668	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.0	1
4669	Heteroleptic Cu(I) complexes integrating functionalized chromophores for dye-sensitized solar cells: An in-depth analysis of electronic structure, spectrum, excitation, and intramolecular electron transfer. Organic Electronics, 2016, 29, 142-150.	1.4	17
4670	Efficient dye-sensitized solar cells based on TiO 2 nanoparticles and skein-like nanotubes: Effect of arrangement modes of the layers and TiCl 4 treatment. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 138-146.	2.7	19
4671	Water reduction by a p-GalnP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nature Materials, 2016, 15, 456-460.	13.3	215
4672	On the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs. Physical Chemistry Chemical Physics, 2016, 18, 5949-5956.	1.3	24
4673	Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand. Journal of Materials Chemistry A, 2016, 4, 1762-1770.	5.2	59
4674	Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells. Dyes and Pigments, 2016, 126, 270-278.	2.0	10
4675	Comparative study of accurate experimentally determined and calculated band gap of amorphous ZnO layers. Materials Letters, 2016, 166, 206-209.	1.3	8
4676	Effect of recombination and binding properties on the performance of dye sensitized solar cells based on propeller shaped triphenylamine dyes with multiple binding groups. Solar Energy, 2016, 124, 227-241.	2.9	31
4677	Morphology–photoactivity relationship: WO 3 nanostructured films for solar hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 866-872.	3.8	44
4678	Efficient eco-friendly inverted quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 827-837.	5.2	30
4679	Recombination reduction on lead halide perovskite solar cells based on low temperature synthesized hierarchical TiO ₂ nanorods. Nanoscale, 2016, 8, 6271-6277.	2.8	28
4680	Incorporation of plasmonic Au nanostars into photoanodes for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 545-551.	5.2	47
4681	Natural sensitizer for low cost dye sensitized solar cell based on Strontium Titanate nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 2467-2472.	1.1	10
4682	Photocatalytic decomposition of hydrogen peroxide over nanoparticles of TiO 2 and Ni(II)-porphyrin-doped TiO 2 : A relationship between activity and porphyrin anchoring mode. Applied Catalysis B: Environmental, 2016, 182, 405-413.	10.8	16
4683	Unlocking the effects of ancillary electron-donors on light absorption and charge recombination in phenanthrocarbazole dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 519-528.	5.2	31

#	Article	IF	CITATIONS
4684	Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Physical Chemistry Chemical Physics, 2016, 18, 932-938.	1.3	56
4685	Novel dye sensitizers of polymeric metal complexes with benzodithiophene derivatives as donor and their photovoltaic performance. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 681-687.	2.0	7
4686	Probing electron transfer dynamics of phenosafranine with iodide. Journal of Luminescence, 2016, 169, 245-250.	1.5	1
4687	Novel D–π–A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells. Dyes and Pigments, 2016, 125, 116-123.	2.0	17
4688	Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles. Journal of Applied Electrochemistry, 2016, 46, 47-58.	1.5	53
4689	Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-l€-A dye sensitizers in molecular photovoltaics: a density functional theory approach. Research on Chemical Intermediates. 2016. 42. 4605-4619.	1.3	11
4690	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	15.6	1,457
4691	Highly efficient dye-sensitized solar cells based on metal-free and copper(II) phthalocyanine bearing 2-phenylphenoxy moiety. Dyes and Pigments, 2016, 124, 180-187.	2.0	39
4692	Quantum yield measurements of light-induced H2 generation in a photosystem l–[FeFe]-H2ase nanoconstruct. Photosynthesis Research, 2016, 127, 5-11.	1.6	7
4693	Synthesis, characterization and molecular modeling of new ruthenium(II) complexes with nitrogen and nitrogen/oxygen donor ligands. Arabian Journal of Chemistry, 2017, 10, 389-397.	2.3	20
4694	Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Advances in Colloid and Interface Science, 2017, 244, 199-266.	7.0	73
4695	Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine) ₂] ^{2+/1+} redox shuttle. RSC Advances, 2017 7, 4611-4615.	, 1.7	48
4696	The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2017, 140, 169-178.	2.0	15
4697	Synthesis and characterization of Zn and Co monocarboxy-phthalocyanines and investigation of their photocatalytic efficiency as TiO2 composites. Journal of Organometallic Chemistry, 2017, 832, 18-26.	0.8	25
4698	Preparation of TiO2 paste starting from organic colloidal suspension for semi-transparent DSSC photo-anode application. Materials Science in Semiconductor Processing, 2017, 61, 137-144.	1.9	18
4699	Elucidation of solar cells efficiency by studying the effect of calcination on the synthesized titania nanostructured rods. Surfaces and Interfaces, 2017, 6, 202-208.	1.5	0
4700	Experimental and theoretical investigation of dye sensitized solar cells integrated with crosslinked poly(vinylpyrrolidone) polymer electrolyte using initiated chemical vapor deposition. Thin Solid Films, 2017, 635, 9-16.	0.8	11
4701	Control and Monitoring of Dye Distribution in Mesoporous TiO ₂ Film for Improving Photovoltaic Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 2572-2580.	4.0	10

щ		15	CITATIONS
# 4702	Pyrene based $D\hat{a}\in\tilde{i}\in\hat{a}\inA$ architectures: synthesis, density functional theory, photophysics and electron	ır 1.3	27
4703	Function of CN group in organic sensitizers: The first principle study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 227-232.	2.0	4
4704	Overview of Solar Photovoltaic Technology. Springer Theses, 2017, , 1-30.	0.0	0
4705	Functionalized white graphene – Copper oxide nanocomposite: Synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate. Journal of Colloid and Interface Science, 2017, 494, 64-73.	5.0	24
4706	Dependence of photovoltaic parameters on the size of cations adsorbed by TiO2 photoanode in dye-sensitized solar cells. Ionics, 2017, 23, 2895-2900.	1.2	12
4707	High efficiency dye sensitized solar cell made by carbon derived from sucrose. Optical Materials, 2017, 64, 401-405.	1.7	25
4708	A dye-sensitized solar cell containing an anchoring porphyrin. Journal of Coordination Chemistry, 2017, 70, 780-789.	0.8	11
4709	Spin–orbit coupling and Lorentz force enhanced efficiency of TiO ₂ â€based dye sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600691.	0.8	6
4710	Enhancing the power conversion efficiency of dye-sensitized solar cells via molecular plasmon-like excitations. Chemical Communications, 2017, 53, 2423-2426.	2.2	6
4711	D–π–A Dyes with an Intramolecular B–N Coordination Bond as a Key Scaffold for Electronic Structural Tuning and Their Application in Dye-Sensitized Solar Cells. Bulletin of the Chemical Society of Japan, 2017, 90, 441-450.	2.0	25
4712	Effects of release agents on the film morphology of TiO2 photoanodes for FDSSCs by the roll-to-roll method. Journal of Alloys and Compounds, 2017, 702, 366-371.	2.8	2
4713	In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2017, 343, 148-155.	4.0	18
4714	New dyes for DSSC containing triphenylamine based extended donor: Synthesis, photophysical properties and device performance. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 178, 106-113.	2.0	14
4715	Implementation of Singleâ€Walled Carbon Nanohorns into Solar Cell Schemes. Advanced Energy Materials, 2017, 7, 1601883.	10.2	22
4716	Fine-tuning π-spacer for high efficiency performance DSSC: A theoretical exploration with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>D</mml:mi><mml:mo>â^</mml:mo><mml:mi>Ï€</mml:mi><mbr></mbr>based organic dye. Dyes and Pigments, 2017, 141, 251-261.</mml:mrow></mml:math 	â^ 2:0 â^⊄/mml:r	no> <mml:mi< td=""></mml:mi<>
4717	Structural Effects on the Incident Photon-to-Current Conversion Efficiency of Zn Porphyrin Dyes on the Low-Index Planes of TiO ₂ . ACS Omega, 2017, 2, 128-135.	1.6	7
4718	The role of layer-by-layer, compact TiO ₂ films in dye-sensitized photoelectrosynthesis cells. Sustainable Energy and Fuels, 2017, 1, 112-118.	2.5	11
4719	Unravelling the structural-electronic impact of arylamine electron-donating antennas on the performances of efficient ruthenium sensitizers for dye-sensitized solar cells. Journal of Power Sources, 2017, 346, 71-79.	4.0	26

#	Article	IF	CITATIONS
4720	A study of electrochemical behavior of quinazolin derivatives as novel additives and their specific effects on the performance of dye-sensitized solar cells. Ionics, 2017, 23, 1591-1599.	1.2	5
4721	Computational investigation on structural and electronic properties of various metal complexes of (2,2′;6′,2′,2″-terpyridine)-4-mercaptobenzoic acid ligand. Applied Surface Science, 2017, 418, 275-279	9. ^{3.1}	4
4722	Transparent Conductive Oxide Films for High-Performance Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 518-524.	1.5	9
4723	Reaction Kinetics on Allophane–Titania Nanocomposite Electrodes for Photofuel Cells. Chemistry Letters, 2017, 46, 659-661.	0.7	5
4724	Cross-Dehydrogenative Coupling (CDC) as Key-Transformations to Various Dâ°Ï€â€"A Organic Dyes: C–H/C–H Synthetic Study Directed toward Dye-Sensitized Solar Cells Applications. Journal of Organic Chemistry, 2017, 82, 3538-3551.	1.7	15
4725	A highly efficient pn junction nanocomposite solar-energy-material [nano-photovoltaic] for direct conversion of water molecules to hydrogen solar fuel. Solar Energy Materials and Solar Cells, 2017, 165, 9-16.	3.0	21
4726	Dye-sensitized solar cells based on cobalt-containing room temperature ionic liquid redox shuttles. RSC Advances, 2017, 7, 13689-13695.	1.7	14
4727	Effect of annealing process in TiO2 thin films: Structural, morphological, and optical properties. Applied Surface Science, 2017, 424, 111-114.	3.1	22
4728	Comparative analysis of triarylamine and phenothiazine sensitizer donor units in dye-sensitized solar cells. Chemical Communications, 2017, 53, 2367-2370.	2.2	25
4729	Co-sensitization of ZnO solar cells by organic dyes. Journal of Renewable and Sustainable Energy, 2017, 9, 013503.	0.8	5
4730	The conventional cell and the primitive cell electronic structure of anatase titanium dioxide crystal. Materials Research Express, 2017, 4, 036301.	0.8	0
4731	A theoretical study of phosphorescent Cu(I) complexes with 2-(2'quinolyl)imidazole and POP mixed ligands. Organic Electronics, 2017, 45, 9-19.	1.4	13
4732	TiO ₂ –BaTiO ₃ nanocomposite for electron capture in dyeâ€sensitized solar cells. Journal of the American Ceramic Society, 2017, 100, 2144-2153.	1.9	33
4733	Nanomaterials: Solar Energy Conversion. , 2017, , 1-33.		2
4734	Engineering of Ruthenium(II) Photosensitizers with Nonâ€Innocent Oxyquinolate and Carboxyamidoquinolate Ligands for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 7497-7507.	1.7	15
4735	Effects of donors of bodipy dyes on the performance of dye-sensitized solar cells. Dyes and Pigments, 2017, 141, 148-160.	2.0	31
4736	Novel diyne-bridged dyes for efficient dye-sensitized solar cells. Materials Chemistry and Physics, 2017, 195, 1-9.	2.0	19
4737	The emerging roles of carbon dots in solar photovoltaics: a critical review. Environmental Science: Nano, 2017, 4, 1216-1263.	2.2	128

#	Article	IF	CITATIONS
4738	Recent developments in tetrathiafulvalene and dithiafulvalene based metal-free organic sensitizers for dye-sensitized solar cells: a mini-review. Sustainable Energy and Fuels, 2017, 1, 678-688.	2.5	38
4739	Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 72-81.	1.3	96
4740	Molecular design of porphyrin dyes for dye sensitized solar cells: A quantitative structure property relationship study. International Journal of Quantum Chemistry, 2017, 117, e25385.	1.0	9
4741	New Acetyleneâ€Bridged 9,10â€Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2017, 7, 1700032.	10.2	137
4742	Phase modification and morphological evolution in Nb2O5 thin films and its influence in dye- sensitized solar cells. Applied Surface Science, 2017, 419, 720-732.	3.1	30
4743	Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research, 2017, 41, 2446-2467.	2.2	141
4744	Chemical functionalization of graphene oxide and its electrochemical potential towards the reduction of triiodide. Journal of Materials Science: Materials in Electronics, 2017, 28, 6664-6672.	1.1	5
4745	The effect of relative position of the π -spacer center between donor and acceptor on the overall performance of D- π -A dye: a theoretical study with organic dye. Electrochimica Acta, 2017, 241, 440-448.	2.6	27
4746	A scalable monitoring method of dye uptake in dye-sensitized solar cells and modules: Optimization of Z907 impregnation time for long term stability. Solar Energy, 2017, 150, 83-89.	2.9	4
4747	Size-controlled synthesis of ZIF-8 particles and their pyrolytic conversion into ZnO aggregates as photoanode materials of dye-sensitized solar cells. CrystEngComm, 2017, 19, 2844-2851.	1.3	27
4748	Recent progress and utilization of natural pigments in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2017, 78, 301-317.	8.2	156
4749	Correlation Between Charge Recombination and Lateral Hole-Hopping Kinetics in a Series of <i>cis</i> -Ru(phenâ€2)(dcb)(NCS) ₂ Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 33446-33454.	4.0	41
4752	Bis(phenothiazylâ€ethynylene)â€Based Organic Dyes Containing Diâ€Anchoring Groups with Efficiency Comparable to N719 for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 332-340.	1.7	9
4753	Inexpensive organic dyes-sensitized zinc oxide nanoparticles photoanode for solar cells devices. Journal of Photonics for Energy, 2017, 7, 025504.	0.8	11
4754	Significant enhancement in the performance of porphyrin for dye-sensitized solar cells: aggregation control using chenodeoxycholic acid. New Journal of Chemistry, 2017, 41, 7081-7091.	1.4	17
4755	Artificial Photosynthesis Based on 1,10-Phenanthroline Complexes. , 2017, , 389-405.		0
4756	A Peryleneâ€Based Polycyclic Aromatic Hydrocarbon Electron Donor for a Highly Efficient Solar Cell Dye. ChemSusChem, 2017, 10, 2962-2967.	3.6	28
4757	Ferrocenyl benzimidazole with carboxylic and nitro anchors as potential sensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2017, 41, 7312-7321.	1.4	21

#	Article	IF	CITATIONS
4758	Synthesis and characterization of push-pull bithiophene and thieno[3,2-b]thiophene derivatives bearing an ethyne linker as sensitizers for dye-sensitized solar cells. Organic Electronics, 2017, 49, 194-205.	1.4	24
4759	Highâ€Performance Ruthenium Sensitizers Containing Imidazolium Counterions for Efficient Dye Sensitization in Water. ChemSusChem, 2017, 10, 2914-2921.	3.6	4
4760	Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies. Ionics, 2017, 23, 3545-3554.	1.2	20
4761	Synthesis and Photophysical Characterization of Cyclometalated Ruthenium Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2017, 36, 2397-2403.	1.1	24
4762	Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 2017, 5, 14124-14133.	5.2	86
4763	Thiocyanate-free ruthenium(<scp>ii</scp>) sensitizers with a bi-imidazole ligand in dye-sensitized solar cells (DSSCs). New Journal of Chemistry, 2017, 41, 6272-6277.	1.4	16
4764	Hetero-epitaxial growth control of single-crystalline anatase TiO ₂ nanosheets predominantly exposing the {001} facet on oriented crystalline substrates. CrystEngComm, 2017, 19, 4734-4741.	1.3	4
4765	Review—Single-Walled Carbon Nanohorn-Based Dye-Sensitized Solar Cells. ECS Journal of Solid State Science and Technology, 2017, 6, M3140-M3147.	0.9	6
4766	Towards a high open-circuit voltage by co-additives in electrolyte for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2017, 359, 142-146.	4.0	13
4767	Rose Bengal sensitized niobium pentaoxide photoanode for dye sensitized solar cell application. AIP Conference Proceedings, 2017, , .	0.3	9
4768	A new method to evaluate the feasibility of a dye in DSSC application. International Journal of Energy Research, 2017, 41, 2173-2183.	2.2	19
4769	Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Advances, 2017, 7, 28234-28290.	1.7	171
4770	Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017, 79, 814-829.	8.2	212
4771	Density functional theory study of adsorption geometries and electronic structures of azo-dye-based molecules on anatase TiO2 surface for dye-sensitized solar cell applications. Journal of Molecular Graphics and Modelling, 2017, 76, 551-561.	1.3	41
4772	A Strategy for Breaking Polyoxometalateâ€based MOFs To Obtain High Loading Amounts of Nanosized Polyoxometalate Clusters to Improve the Performance of Dyeâ€sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 8871-8878.	1.7	31
4773	Synthesis, Crystal Structures and Photosensitizing Activities of Ni(II) and Pd(II) Heteroleptic Dithiolate–dppf Complexes. ChemistrySelect, 2017, 2, 2655-2664.	0.7	11
4774	Zirconium oxide films: deposition techniques and their applications in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017, 21, 2531-2545.	1.2	9
4775	Diatom silica, an emerging biomaterial for energy conversion and storage. Journal of Materials Chemistry A, 2017, 5, 8847-8859.	5.2	82

#	Article	IF	Citations
4776	Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results in Physics, 2017, 7, 1283-1288.	2.0	84
4778	Choosing the right nanoparticle size – designing novel ZnO electrode architectures for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 7516-7522.	5.2	8
4779	Solution-derived ZnO nanoflowers based photoelectrodes for dye-sensitized solar cells. Materials Research Bulletin, 2017, 96, 211-217.	2.7	16
4780	Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Science China Materials, 2017, 60, 295-303.	3.5	35
4781	Pyrrolo[3,2,1-kl]phenothiazine-based D- π -A type organic dyes for efficient dye-sensitized solar cells. Dyes and Pigments, 2017, 139, 292-299.	2.0	15
4782	Performance improvement of modified dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2017, 71, 602-617.	8.2	74
4783	Fabrication and Characterization of Front-Illuminated Dye-Sensitized Solar Cells with Anodic Titanium Oxide Nanotubes. Journal of the Electrochemical Society, 2017, 164, H78-H84.	1.3	10
4784	Long-term Stability of Conducting Polymers in Iodine/iodide Electrolytes: Beyond Conventional Platinum Catalysts. Electrochimica Acta, 2017, 227, 95-100.	2.6	9
4785	Effects of different electron donating groups on dye regeneration and aggregation in phenothiazine-based dye-sensitized solar cells. Organic Electronics, 2017, 42, 234-243.	1.4	25
4786	Photoactive Zeolitic Imidazolate Framework as Intrinsic Heterogeneous Catalysts for Light-Driven Hydrogen Generation. ACS Energy Letters, 2017, 2, 75-80.	8.8	64
4787	EFFECTS OF TIO2 FILM THICKNESS AND ELECTROLYTE CONCENTRATION ON PHOTOVOLTAIC PERFORMANCE OF DYE-SENSITIZED SOLAR CELL. Surface Review and Letters, 2017, 24, 1750065.	0.5	13
4788	Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Solar Energy Materials and Solar Cells, 2017, 161, 255-262.	3.0	30
4789	Probing the Relative Photoinjection Yields of Monomer and Aggregated Dyes into ZnO Crystals. Langmuir, 2017, 33, 468-474.	1.6	3
4790	Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons, 2017, 4, 319-344.	6.4	152
4791	Synthesis, characterization, electrochemical and theoretical study of substituted phenyl-terpyridine and pyridine-quinoline based mixed chelate ruthenium complexes. Journal of Coordination Chemistry, 2017, 70, 451-462.	0.8	4
4792	Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 2981-2989.	1.3	8
4793	Optimization of ultrafast reverse saturable to saturable absorption transition in Ru dioxolene complex for all-optical logic applications. Optical and Quantum Electronics, 2017, 49, 1.	1.5	11
4794	Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye-sensitized and tandem solar cells. Journal of Materials Chemistry A, 2017, 5, 2297-2308.	5.2	200

#	Article	IF	CITATIONS
4795	Spaced TiO ₂ nanotube arrays allow for a high performance hierarchical supercapacitor structure. Journal of Materials Chemistry A, 2017, 5, 1895-1901.	5.2	62
4796	Characterization of dye-sensitized solar cells using five pure anthocyanidin 3-O-glucosides possessing different chromophores. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 230-238.	2.0	11
4797	Heteroleptic Ru(<scp>ii</scp>) cyclometalated complexes derived from benzimidazole-phenyl carbene ligands for dye-sensitized solar cells: an experimental and theoretical approach. Materials Chemistry Frontiers, 2017, 1, 947-957.	3.2	12
4798	A membrane electrode assembled photoelectrochemical cell with a solar-responsive cadmium sulfide-zinc sulfide-titanium dioxide/mesoporous silica photoanode. Journal of Power Sources, 2017, 371, 96-105.	4.0	11
4799	Selective, Photoenhanced Trapping/Detrapping of Arsenate Anions Using Mesoporous Blobfish Head TiO ₂ Monoliths. ACS Sustainable Chemistry and Engineering, 2017, 5, 10826-10839.	3.2	51
4800	High efficiency dye-sensitized solar cells based on the ZnO nanoparticle aggregation sphere. Materials Chemistry and Physics, 2017, 202, 234-244.	2.0	12
4801	Electrostatic blocking barrier as an effective strategy to inhibit electron recombination in DSSCs. Electrochimica Acta, 2017, 255, 92-98.	2.6	18
4802	Preparation of hierarchical rutile TiO2 microspheres as scattering centers for efficient dye-sensitized solar cells. Electrochimica Acta, 2017, 255, 187-194.	2.6	24
4803	Efficient Solar Cells Based on Porphyrin Dyes with Flexible Chains Attached to the Auxiliary Benzothiadiazole Acceptor: Suppression of Dye Aggregation and the Effect of Distortion. ACS Applied Materials & Interfaces, 2017, 9, 36875-36885.	4.0	84
4804	New Rh ₂ (II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity. Journal of the American Chemical Society, 2017, 139, 14724-14732.	6.6	36
4805	HOMO inversion as a strategy for improving the light-absorption properties of Fe(<scp>ii</scp>) chromophores. Chemical Science, 2017, 8, 8115-8126.	3.7	52
4806	Improved photovoltaic performances of Ru (II) complex sensitized DSSCs by co-sensitization of carbazole based chromophores. Inorganic Chemistry Communication, 2017, 86, 241-245.	1.8	15
4807	Dye-sensitized solar cell based on TiO2/MnO2 composite film as working electrode. Journal of Physics: Conference Series, 2017, 877, 012005.	0.3	14
4808	A biphasic sol–gel route to synthesize anatase TiO ₂ particles under controlled conditions and their DSSC application. Journal of Asian Ceramic Societies, 2017, 5, 427-435.	1.0	13
4809	Preparation of plasmonic monolayer with Ag and Au nanoparticles for dye-sensitized solar cells. Chemical Physics Letters, 2017, 687, 152-157.	1.2	12
4810	Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017, 46, 5975-6023.	18.7	609
4811	Dinuclear rhenium pyridazine complexes containing bridging chalcogenide anions: synthesis, characterization and computational study. New Journal of Chemistry, 2017, 41, 11268-11279.	1.4	8
4812	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	5.2	90

#	Article	IF	CITATIONS
4813	Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 27670-27681.	1.3	11
4814	Synthesis and characterization of Nb 2 O 5 mesostructures with tunable morphology and their application in dye-sensitized solar cells. Materials Chemistry and Physics, 2017, 202, 289-301.	2.0	14
4815	<i>C_s</i> -Symmetric Triphenylamine-Linked Bisthiazole-Based Metal-Free Donor–Acceptor Organic Dye for Efficient ZnO Nanoparticles-Based Dye-Sensitized Solar Cells: Synthesis, Theoretical Studies, and Photovoltaic Properties. ACS Omega, 2017, 2, 5981-5991.	1.6	5
4816	Molecular Control of the Band Edge Movement and the Recombination Process in Donor–Acceptor Hemicyanine-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21836-21847.	1.5	6
4817	Urea-Treated Electrolytes for Higher Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 21225-21230.	1.5	15
4818	Dinuclear Ru(II) complexes bridged with 5-(2-[2,2′-bipyridin]-5-ylethynyl)-2,2′-bipyridine ligand and ligated to ancillary α-diimine ligand: synthesis and application to dye-sensitized solar cells. Monatshefte Für Chemie, 2017, 148, 2051-2059.	0.9	5
4819	Increasing the Open-Circuit Voltage of Dye-Sensitized Solar Cells via Metal-Ion Coordination. Inorganic Chemistry, 2017, 56, 11168-11175.	1.9	36
4820	A comparative study of the influence of N,N′-dialkyl vs. N,N′-diaryl-based electron donor ancillary ligands on photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Physical Chemistry Chemical Physics, 2017, 19, 20847-20860.	1.3	22
4821	Synthesis and photovoltaic property characterization of CeO ₂ film deposited on ITO substrate for dye sensitized solar cell. Materials Research Innovations, 0, , 1-7.	1.0	13
4822	Plasmonic silver nanowires for higher efficiency dye-sensitized solar cells. Materials Today Energy, 2017, 5, 237-242.	2.5	13
4823	4â€ <i>Tert</i> â€butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700683.	10.2	115
4824	Photovoltaic performance of SnO 2 /CaCO 3 -based dye-sensitized solar cells co-sensitized using metal-free organic dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 541-547.	2.0	0
4825	Electron transport properties in dye-sensitized solar cells with {001} facet-dominant TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22129-22140.	1.3	12
4826	Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 726, 1286-1294.	2.8	19
4827	Structure–Property Relationship Study of Donor and Acceptor 2,6â€Disubstituted BODIPY Derivatives for High Performance Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 14747-14759.	1.7	19
4828	Synthesis and Characterization of a Series of Bis-homoleptic Cycloruthenates with Terdentate Ligands as a Family of Panchromatic Dyes. Inorganic Chemistry, 2017, 56, 9903-9912.	1.9	5
4829	A Comparative Study on Two RullComplexes with Thiophene-Based Ancillary Ligands for High-Efficiency Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 3690-3697.	1.0	18
4830	Influence of electropolymerized polypyrrole optical properties on bifacial Dye-Sensitized Solar Cells. Polymer, 2017, 125, 208-216.	1.8	17

#	Δρτιςι ε	IF	CITATIONS
4831	Combined effect of alkaline cations and organic additives for iodide ion conducting gel polymer	2.6	8
	Structural and ionia conductivity studies on proton conducting colid biopolymor electrolyte based		
4832	on 2hydroxyethyl cellulose incorporated DTAB. AIP Conference Proceedings, 2017, , .	0.3	1
4833	Bay-Region Functionalisation of Ar-BIAN Ligands and Their Use Within Highly Absorptive Cationic Iridium(III) Dyes. Scientific Reports, 2017, 7, 15520.	1.6	14
4834	Photoinduced Interfacial Electron Transfer in 2,2'â€Bipyridyl Iron(III) Complexâ€TiO ₂ Nanoparticles in Aqueous Medium. ChemistrySelect, 2017, 2, 10648-10653.	0.7	3
4835	Solvothermal synthesis of hexagonal pyramidal and bifrustum shaped ZnO nanocrystals: natural betacyanin dye and organic Eosin Y dye sensitized DSSC efficiency, electron transport, recombination dynamics and solar photodegradation investigations. Journal of Materials Science: Materials in Electronics, 2017, 28, 15565-15595.	1.1	19
4836	Influence of a D–ï€â€"A system through a linked unit of double and triple bonds in a triarylene bridge for dye-sensitised solar cells. New Journal of Chemistry, 2017, 41, 8016-8025.	1.4	11
4837	Electronic and charge transfer properties of bio-inspired flavylium ions for applications in TiO2-based dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2017, 16, 1400-1414.	1.6	18
4838	The effect of D–[D _e –Ĩ€â€"A] _n (n = 1, 2, 3) type dyes on the overall performance of DSSCs: a theoretical investigation. Journal of Materials Chemistry C, 2017, 5, 7510-7520.	2.7	22
4839	An integrative method to prepare low-platinum/fluorine doped tin oxide counter electrode for cost-effective dye-sensitized solar cells. Solar Energy, 2017, 155, 593-600.	2.9	2
4840	Mechanoresponsiveness of human adipose stem cells on nanocomposite and microâ€hybrid composite. Journal of Biomedical Materials Research - Part A, 2017, 105, 2986-2994.	2.1	3
4841	The impact of adjusting auxiliary donors on the performance of dye-sensitized solar cells based on phenothiazine D-D-Ï€-A sensitizers. Dyes and Pigments, 2017, 146, 127-135.	2.0	26
4842	Increasing phosphorescent quantum yields and lifetimes of platinum-alkynyl complexes with extended conjugation. Dalton Transactions, 2017, 46, 9794-9800.	1.6	11
4843	Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells. Journal of Sol-Gel Science and Technology, 2017, 81, 693-703.	1.1	12
4844	Synthesis and characterization of new triphenylamine-based dyes with novel anchoring groups for dye-sensitized solar cell applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 1859-1868.	1.1	3
4845	NbCl ₅ â€Promoted Synthesis of Fluorescein Dye Derivatives: Spectroscopic and Spectrometric Characterization and Their Application in Dye‣ensitized Solar Cells. ChemPlusChem, 2017, 82, 261-269.	1.3	18
4846	Enhanced Light Harvesting in Plasmonic Dye-Sensitized Solar Cells Using Gold Topological Light Trapping Layer. Springer Theses, 2017, , 81-91.	0.0	0
4847	Shelf-Life Studies on an Ionic-Liquid-Stabilized Dye-Sensitized Solar Cell. IEEE Journal of Photovoltaics, 2017, 7, 177-183.	1.5	8
4848	Electronic structure and optical properties calculation of Zn-porphyrin with N-annulated perylene adsorbed on TiO2 model for dye-sensitized solar cell applications: A DFT/TD-DFT study. Computational Materials Science, 2017, 126, 514-527.	1.4	17

#	Article	IF	CITATIONS
4849	Theoretical design and study on hexamolybdate-based organic-inorganic hybrids with double D-ï€-A chains for high performance p-type dye-sensitized solar cells (DSSCs). Dyes and Pigments, 2017, 137, 372-377.	2.0	9
4850	Tri-iodide reduction activity of ultra-small size PtFe nanoparticles supported nitrogen-doped graphene as counter electrode for dye-sensitized solar cell. Journal of Colloid and Interface Science, 2017, 488, 309-316.	5.0	34
4851	Stable and charge recombination minimized π-extended thioalkyl substituted tetrathiafulvalene dye-sensitized solar cells. Materials Chemistry Frontiers, 2017, 1, 460-467.	3.2	30
4852	Synthesis of dye-sensitised solar cells utilising platinised counter electrode. Materials Research Innovations, 2017, 21, 244-248.	1.0	5
4853	Investigating the Role of 4â€ <i>Tert</i> Butylpyridine in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601079.	10.2	106
4854	Theoretical design of push-pull porphyrin dyes with π-bridge modification for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 232-240.	2.0	18
4855	Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. Journal of Alloys and Compounds, 2017, 692, 67-76.	2.8	107
4856	Photovoltaic performances of DSCs fabricated with a screen-printable TiO2-submicrosphere paste. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 432-439.	2.0	3
4857	Preparation and improvement in photovoltaic performance of dye-sensitized solar cells using carbon dioxide. Ionics, 2017, 23, 337-342.	1.2	0
4858	Triphenylamine derivatives and the lithium-ion capture of [3.3]cyclophane used in organic dye-sensitized solar cells. Dyes and Pigments, 2017, 136, 761-772.	2.0	15
4859	Dye‧ensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	1.8	80
4860	Photocatalytic activity under UV/Visible light range of Nb-doped titanate nanostructures synthesized with Nb oxide. Applied Surface Science, 2017, 415, 126-131.	3.1	9
4861	Electronic effects on a D-π-A organic sensitizer upon heteroatom substitutions in the π-bridge. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 580-585.	2.0	3
4862	50 Years of Structure and Bonding $\hat{a} \in$ " The Anniversary Volume. Structure and Bonding, 2017, , .	1.0	2
4863	Organic-inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor. Journal of Power Sources, 2017, 339, 61-67.	4.0	33
4865	Triphenylamine-based organic sensitizers with π-spacer structural engineering for dye-sensitized solar cells: Synthesis, theoretical calculations, molecular spectroscopy and structure-property-performance relationships. Dyes and Pigments, 2017, 136, 496-504.	2.0	49
4866	Anchoring number-performance relationship of zinc-porphyrin sensitizers for dye-sensitized solar cells: A combined experimental and theoretical study. Dyes and Pigments, 2017, 136, 697-706.	2.0	19
4867	Enhanced Photovoltaic Performance via Co-sensitization of Ruthenium (II)-Based Complex Sensitizers with Metal-Free Indoline Dye in Dye-Sensitized Solar Cells. Organic Photonics and Photovoltaics, 2017, 5, .	1.3	4

#	Article	IF	CITATIONS
4868	Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells. ACS Omega, 2017, 2, 9231-9240.	1.6	19
4869	Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell. Nature Communications, 2017, 8, 1761.	5.8	35
4870	Square Pulse Galvanostatic Synthesis and Characterization of Nano- Copper Oxide. International Journal of Electrochemical Science, 2017, , 1492-1505.	0.5	2
4871	The energy conversion processes. , 2017, , 357-567.		1
4872	Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency. Nanomaterials, 2017, 7, 136.	1.9	40
4873	First Principle Modelling of Materials and Processes in Dye-Sensitized Photoanodes for Solar Energy and Solar Fuels. Computation, 2017, 5, 5.	1.0	15
4874	Natural pigment sensitized solar cells based on ZnO-TiO2-Fe2O3 nanocomposite in quasi-solid state electrolyte system. Bulletin of the Chemical Society of Ethiopia, 2017, 31, 263.	0.5	5
4875	Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2017, 2017, 1-31.	1.5	93
4877	Effect of Anodization Parameters on the Surface Morphology and Photoelectrochemical Properties of TiO2 Nanotubes. International Journal of Electrochemical Science, 2017, 12, 10714-10725.	0.5	14
4878	Free-Base and Metal Complexes of 5,10,15,20-Tetrakis(NMethyl Pyridinium L)Porphyrin: Catalytic and Therapeutic Properties. , 0, , .		4
4879	Third-Generation-Sensitized Solar Cells. , 0, , .		9
4880	Nanoarchitectonics for Energy and Environment. , 2017, , 279-323.		0
4881	Influence of binary solvent system on the stability and efficiency of liquid dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 70-75.	2.0	20
4882	Binaphthyl-containing Schiff base complexes with carboxyl groups for dye sensitized solar cell: An experimental and theoretical study. Journal of Molecular Structure, 2018, 1162, 54-62.	1.8	17
4883	Enhanced performance of dye-sensitized solar cells based on meso/macroporous phosphotungstic acid/TiO2 photoanodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 7718-7724.	1.1	2
4884	Theoretical Studies on the Structure, Optoelectronic and Photosensitizer Applications of NKX Class of Coumarin Dye Molecules. ChemistrySelect, 2018, 3, 2376-2385.	0.7	8
4885	Computational modelling on donor configuration for wide solar energy capture. Materials Letters, 2018, 219, 216-219.	1.3	2
4886	Synthesis and Characterization of Heteroleptic Ru(II) Complexes Based on 4,4′â€Bis((<i>E</i>)â€styryl)â€2,2′â€bipyridine as Ancillary Ligand and Application for Dyeâ€Sensitized Sola Helvetica Chimica Acta, 2018, 101, e1800030.	arıQells.	2

#	Article	IF	Citations
4887	Solvent volume-driven CuInAlS2 nanoflake counter electrode for effective electrocatalytic tri-iodide reduction in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 2485-2497.	1.2	6
4888	Biohybrid solar cells: Fundamentals, progress, and challenges. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 134-156.	5.6	76
4889	1,1′-Bis(diphenylphosphino)ferrocene-appended nickel(<scp>ii</scp>) dithiolates as sensitizers in dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 9306-9316.	1.4	18
4890	Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19, 336-369.	2.8	162
4891	Tunable Rh ₂ (II,II) Light Absorbers as Excited-State Electron Donors and Acceptors Accessible with Red/Near-Infrared Irradiation. Journal of the American Chemical Society, 2018, 140, 5161-5170.	6.6	31
4892	Computational Investigation of the Influence of Ï€â€Bridge Conjugation Order of Thiophene and Thiazole Units in Triphenylamine Based Dyes in Dyeâ€5ensitized Solar Cells. ChemistrySelect, 2018, 3, 3582-3590.	0.7	8
4893	The improved photovoltaic performance of phenothiazine-dithienopyrrole based dyes with auxiliary acceptors. Journal of Power Sources, 2018, 387, 117-125.	4.0	60
4894	Unusual Photooxidation of S-Bonded Mercaptopyridine in a Mixed Ligand Ruthenium(II) Complex with Terpyridine and Bipyridine Ligands. Inorganic Chemistry, 2018, 57, 4898-4905.	1.9	14
4895	A Lowâ€Energyâ€Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics. ChemSusChem, 2018, 11, 1460-1466.	3.6	12
4896	Magnetic and optical effects in TiO2 based dye sensitized solar cells. AIP Conference Proceedings, 2018,	0.3	0
4897	Synthesis, characterization, theoretical investigation, and properties of monoclinic-phase InWO4 hollow nanospheres. Nano Research, 2018, 11, 4664-4672.	5.8	3
4898	Semiempirical configuration interaction calculations for ruâ€centered dyes*. Journal of Computational Chemistry, 2018, 39, 1259-1266.	1.5	1
4899	Anatase TiO2 nanocrystals via dihydroxy bis (ammonium lactato) titanium (IV) acidic hydrolysis and its performance in dye-sensitized solar cells. Journal of Porous Materials, 2018, 25, 1499-1504.	1.3	2
4900	High photocatalytic performance of ruthenium complexes sensitizing g-C3N4/TiO2 hybrid in visible light irradiation. Applied Catalysis B: Environmental, 2018, 227, 366-375.	10.8	58
4901	NH2-rich silica nanoparticle as a universal additive in electrolytes for high-efficiency quasi-solid-state dye-sensitized solar cells and quantum dot sensitized solar cells. Electrochimica Acta, 2018, 262, 197-205.	2.6	20
4902	Enhancement of quantum efficiency by co-adsorbing small julolidine dye and bulky triphenylamine dye in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 403-410.	2.0	7
4903	Preparation of dye-sensitized solar cells using template free TiO2 nanotube arrays for enhanced power conversion. Journal of Sol-Gel Science and Technology, 2018, 85, 743-752.	1.1	6
4904	Effects of ethynyl unit and electron acceptors on the performance of triazatruxene-based dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 4133-4141.	1.4	11

ARTICLE IF CITATIONS Bisâ€Tridentateâ€Cyclometalated Ruthenium Complexes with Extended Anchoring Ligand and Their 4905 0.7 4 Performance in Dyeâ€Sensitized Solar Cells.. ChemistrySelect, 2018, 3, 1585-1592. Design of butterfly type organic dye sensitizers with double electron donors: The first principle 9 study. Spectrochimica Acta - Part Á: Molecular and Biomolecular Spectroscopy, 2018, 196, 385-391. Photosystem I Multilayer Films for Photovoltage Enhancement in Natural Dye-Sensitized Solar Cells. 4907 2.515 ACS Applied Energy Materials, 2018, 1, 301-305. Synthesis of 2-amino-4-(4-(methylamino)phenyl)-6-phenylnicotinonitrile as a new additive for the passivation of the TiO2 surface and retarding recombination in dye-sensitized solar cells. Electrochimica Acta, 2018, 266, 452-459. Effective Photocurrent Enhancement in Nanostructured CuO by Organic Dye Sensitization: Studies on 4909 1.5 15 Charge Transfer Kinetics. Journal of Physical Chemistry C, 2018, 122, 3690-3699. Gold leaf counter electrodes for dye-sensitized solar cells. Japanese Journal of Applied Physics, 2018, 0.8 57, 03EJ04. Efficiency-limiting processes in cyclopentadithiophene-bridged donor-acceptor-type dyes for 4911 1.2 12 solid-state dye-sensitized solar cells. Journal of Chemical Physics, 2018, 148, 044703. Spaced Titania Nanotube Arrays Allow the Construction of an Efficient Nâ€Doped Hierarchical 4012 Structure for Visibleâ€Light Harvesting. ChemistryOpen, 2018, 7, 131-135. A combined experimental and computational investigation on pyrene based D–̀–A dyes. Physical 4913 1.3 11 Chemistry Chemical Physics, 2018, 20, 6264-6273. Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron 1.3 injection/recombination dynamics. Physical Chemistry Chemical Physics, 2018, 20, 5117-5127. Singleâ€Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO₂â€Filmed 4915 7.2 54 Ultramicroelectrode. Angewandte Chemie - Ínternational Edition, 2018, 57, 3758-3762. DFT and TD-DFT calculations of metallotetraphenylporphyrin and metallotetraphenylporphyrin fullerene complexes as potential dye sensitizers for solar cells. Journal of Molecular Structure, 2018, 1.8 1160, 415-427 Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based 4917 2.8 108 materials. Nanoscale, 2018, 10, 4987-5034. Singleâ€Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO₂â€Filmed 4918 1.6 16 Ultramicroelectrode. Angewandte Chemie, 2018, 130, 3820-3824. Porphyrin-sensitized solar cells: systematic molecular optimization, coadsorption and 4919 2.2 138 cosensitization. Chemical Communications, 2018, 54, 1811-1824. Dye-Sensitized Photoelectrochemical Cells., 2018, , 503-565. Promising heterocyclic anchoring groups with superior adsorption stability and improved IPCE for 4921 high-efficiency noncarboxyl dye sensitized solar cells: A theoretical study. Organic Electronics, 2018, 1.4 59 54, 104-113. Core-shell structured CsxWO3@ZnO with excellent stability and high performance on near-infrared 4922 2.3 shielding. Ceramics International, 2018, 44, 2738-2744.

#	Article	IF	CITATIONS
4923	Low-cost synthesized organic compounds in solvent free quasi-solid state polyethyleneimine, polyethylene glycol based polymer electrolyte for dye-sensitized solar cells with high photovoltaic conversion efficiencies. Solar Energy, 2018, 160, 225-250.	2.9	25
4924	The Application of Heterostructured SrTiO ₃ -TiO ₂ Nanotube Arrays in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2018, 165, H3069-H3075.	1.3	14
4925	Coordination-Driven Self-Assembly of Ruthenium Polypyridyl Nodes Resulting in Emergent Photophysical and Electrochemical Properties. Inorganic Chemistry, 2018, 57, 3587-3595.	1.9	26
4926	Effect of graphene nanoplatelet edges on the iodide/triiodide redox reaction. Electrochemistry Communications, 2018, 87, 49-52.	2.3	3
4927	New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (NCSU-10). Journal of Energy Chemistry, 2018, 27, 351-360.	7.1	57
4929	β-Substituted ZnII porphyrins as dyes for DSSC: A possible approach to photovoltaic windows. Coordination Chemistry Reviews, 2018, 358, 153-177.	9.5	85
4930	Theoretical investigations on the unsymmetrical effect of β-link Zn–porphyrin sensitizers on the performance for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2018, 20, 3741-3751.	1.3	24
4931	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
4932	Application of paper industry waste materials containing TiO2 for dye-sensitized solar cells fabrication. Optik, 2018, 158, 469-476.	1.4	16
4933	New di-anchoring A-Ï€-D-Ï€-A configured organic chromophores for DSSC application: sensitization and co-sensitization studies. Photochemical and Photobiological Sciences, 2018, 17, 302-314.	1.6	47
4934	Tetracarboxylate Bisâ€Bipyridine Ruthenium Dyes: Synthesis, Structural and Electronic Characterisation. ChemPlusChem, 2018, 83, 691-703.	1.3	2
4935	Resonant tunneling via a Ru–dye complex using a nanoparticle bridge junction. Nanotechnology, 2018, 29, 245205.	1.3	3
4936	Synthesis, structure, theoretical studies and electrochemistry of Ru(II) N heterocyclic carbenes. Inorganica Chimica Acta, 2018, 479, 141-147.	1.2	7
4937	Improvement of photovoltaic performances by optimizing π-conjugated bridge for the C217-based dyes: A theoretical perspective. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 137-144.	2.0	2
4938	Synthesis and photovoltaic properties of new Ru(II) complexes for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 11045-11058.	1.1	11
4939	Dye Sensitized Solar Cell (DSSC) greenhouse shading: New insights for solar radiation manipulation. Renewable and Sustainable Energy Reviews, 2018, 92, 171-186.	8.2	121
4940	Revealing Bound Exciton Physics inÂStrongly Interacting Band Insulators. Springer Theses, 2018, , 109-168.	0.0	0
4941	Synthesis and characterization of carbon based counter electrode for dye sensitized solar cells (DSSCs) using organic precursor 2-2′Bipyridine (Bpy) as a carbon material. Journal of Alloys and Compounds, 2018, 748, 905-910.	2.8	32

ARTICLE IF CITATIONS Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized 4942 2.0 41 solar cells with near-IR light harvesting. Dyes and Pigments, 2018, 155, 292-299. Co-sensitization of ruthenium(II) dye-sensitized solar cells by coumarin based dyes. Chemical Physics 4943 1.2 Letters, 2018, 699, 32-39. Preparation of nanocrystalline TiO2 monoliths by using modified supercritical carbon dioxide. 4944 1.6 1 Journal of Supercritical Fluids, 2018, 137, 93-100. The preparation of hierarchical rutile TiO2 microspheres constructed with branched nanorods for 4945 2.8 efficient dye-sensitized solar cells. Journal of Alloy's and Compounds, 2018, 747, 729-737. Exploring the use of impedance spectroscopy in relaxation and electrochemical studies. Applied 4946 3.4 4 Spectroscopy Reviews, 2018, 53, 157-176. Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorods. Inorganica Chimica Acta, 2018, 470, 407-415. 4947 1.2 Preparation and dielectric properties of PVP-based polymer electrolyte films for solid-state battery 4948 1.7 45 application. Polymer Bulletin, 2018, 75, 925-945. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar 4040 3.1 cells. Applied Surface Science, 2018, 429, 37-41. Propping the optical and electronic properties of potential photo-sensitizers with different l̃€-spacers: 4950 TD-DFT insights. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 2.0 27 237-243. Using a low temperature method to fabrication of flexible dye sensitized solar cells with three 1.1 different counter electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 778-783. Exploratory synthesis and photovoltaic performance comparison of D–π–A structured Zn-porphyrins 4952 2.0 24 for dye-sensitized solar cells. Dyes and Pigments, 2018, 149, 341-347. Monodisperse TiO2 microspheres assembled by porous spindles for high performance dye-sensitized 2.3 solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 94-99. Recent Advances in Spiroâ€MeOTAD Hole Transport Material and Its Applications in Organicâ€"Inorganic 4954 1.9 316 Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1700623. Investigation of new carbazole based metal-free dyes as active photo-sensitizers/co-sensitizers for DSSCs. Dyes and Pigments, 2018, 149, 177-187. 4955 56 Two-dimensional optical fiber-based dye-sensitized solar cell simulation: the effect of different 4956 1.3 3 electrodes and dyes. Journal of Computational Electronics, 2018, 17, 329-336. Influence of structural changes on photophysical properties of terpyridine derivates: Experimental 1.8 studies and theoretical calculations. Journal of Molecular Structure, 2018, 1153, 282-291. Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and 4958 graphene quantum dots as a photo-sensitizer. Journal of Colloid and Interface Science, 2018, 511, 5.043 318-324. Recent advances in plasmonic dye-sensitized solar cells. Journal of Solid State Chemistry, 2018, 258, 4959 1.4 271-282.

#	Article	IF	CITATIONS
4960	Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium(II) tris-Heteroleptic Compounds or Natural Dyes. , 2018, , 69-106.		9
4961	Porphyrins as Multifunctional Interconnects in Networks of ZnO Nanoparticles and their Application in Dyeâ€&ensitized Solar Cells. ChemPhotoChem, 2018, 2, 213-222.	1.5	8
4962	Liquid Dye-Sensitized Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 109-149.	0.4	5
4963	Use of fumed silica nanoparticles to attain polymer free novel quasi-solid state electrolyte for high-efficiency dye-sensitized solar cells. Solar Energy, 2018, 159, 531-537.	2.9	12
4964	Di-branched triphenylamine dye sensitized TiO 2 nanocomposites with good photo-stability for sensitive photoelectrochemical detection of organophosphate pesticides. Analytica Chimica Acta, 2018, 1001, 24-31.	2.6	29
4965	Organic dye-sensitized solar cells containing alkaline iodide-based gel polymer electrolytes: influence of cation size. Physical Chemistry Chemical Physics, 2018, 20, 1276-1285.	1.3	16
4966	Phosphorescent molecular metal complexes in heterojunction solar cells. Polyhedron, 2018, 140, 84-98.	1.0	14
4967	A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochimica Acta, 2018, 259, 179-187.	2.6	18
4968	High-performance ZnO nanosheets/nanocrystalline aggregates composite photoanode film in dye-sensitized solar cells. Materials Letters, 2018, 214, 88-90.	1.3	13
4969	The latest trends in synthesis of dye-sensitized solar cells. IOP Conference Series: Materials Science and Engineering, 2018, 402, 012176.	0.3	1
4970	Electrolyte tuning in dye-sensitized solar cells with <i>N</i> -heterocyclic carbene (NHC) iron(II) sensitizers. Beilstein Journal of Nanotechnology, 2018, 9, 3069-3078.	1.5	13
4971	Nanostructured Titanium Dioxide for Functional Coatings. , 0, , .		1
4972	Green synthesis and characterization of metal ions-mixed titania for application in dye-sensitized solar cells. Toxicological and Environmental Chemistry, 2018, 100, 659-676.	0.6	2
4973	Improved performance induced by <i>in situ</i> ligand exchange reactions of copper bipyridyl redox couples in dye-sensitized solar cells. Chemical Communications, 2018, 54, 12361-12364.	2.2	33
4974	Changes of the dye adsorption state induced by ferroelectric polarization to improve photoelectric performance. Journal of Materials Chemistry A, 2018, 6, 24595-24602.	5.2	12
4975	Preparation of TiO <inf>2</inf> /Single Layer Grapgene Composite Photoanodes for Dye-Sensitized Solar Cells. , 2018, , .		0
4976	The interboundary properties and kinematics of N719 dye with titania photoanode framework and spectral responses with different electrolytes. Cogent Physics, 2018, 5, 1498146.	0.7	3
4977	Optimizing phthalocyanine based dye-sensitized solar cells: The role of reduced graphene oxide. Synthetic Metals, 2018, 246, 236-245.	2.1	7

#	Article	IF	CITATIONS
4978	Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement. Scientific Reports, 2018, 8, 17389.	1.6	16
4979	Ruthenium(II) Bipyridyl Complexes with C ^{â^§} C* Cyclometalated Mesoionic Carbene Ligands. Organometallics, 2018, 37, 4619-4629.	1.1	16
4980	Computational Prediction of Electronic and Photovoltaic Properties of Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2018, 2018, 1-17.	1.4	2
4981	Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 2018, 13, 381.	3.1	639
4982	Improvement in dye sensitized solar cells from past to present. Optical and Quantum Electronics, 2018, 50, 1.	1.5	27
4983	Metal Oxide Nanoparticles as Electron Transport Layer for Highly Efficient Dye-Sensitized Solar Cells. , 2018, , 39-79.		12
4984	Improvement in performance of N3 sensitized DSSCs with structurally simple aniline based organic co-sensitizers. Solar Energy, 2018, 174, 999-1007.	2.9	28
4985	Nanoplasmon–Semiconductor Hybrid for Interface Catalysis. Catalysts, 2018, 8, 429.	1.6	2
4986	Structure and Photoelectrical Properties of Natural Photoactive Dyes for Solar Cells. Applied Sciences (Switzerland), 2018, 8, 1697.	1.3	10
4987	Effect of Ni doping into chlorophyll dye on the efficiency of dye-sensitized solar cells (DSSC). AIP Conference Proceedings, 2018, , .	0.3	3
4988	Synthesis, characterization and ethanol sensing properties of carboxylic acid-terminated naphthoxy substituted phthalocyanines. Synthetic Metals, 2018, 246, 7-15.	2.1	15
4989	The researcher's guide to solid-state dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11903-11942.	2.7	87
4990	BIAN-Fluorene Copolymer Bearing Ruthenium Pendant as Sensitizer of Titanium Nanotubes for Photocatalytic Hydrogen Evolution. Journal of the Electrochemical Society, 2018, 165, J3166-J3172.	1.3	6
4991	Density functional theory study of promising polyene-diphenylaniline organic chromophores for dye-sensitized solar cell applications. Cogent Engineering, 2018, 5, 1532778.	1.1	1
4992	Research Progress on Photosensitizers for DSSC. Frontiers in Chemistry, 2018, 6, 481.	1.8	202
4993	Influence of nanostructured TiO2 film thickness in dye-sensitized solar cells using naturally extracted dye from Thunbergia erecta flowers as a photosensitizer. Optical Materials, 2018, 86, 239-246.	1.7	29
4994	Mechanistic Insights into the Stepwise Assembly of Ruthenium(II) Tris-heteroleptic Compounds. Inorganic Chemistry, 2018, 57, 13829-13839.	1.9	8
4995	Rational Design of High-Efficiency Organic Dyes in Dye-Sensitized Solar Cells by Multiscale Simulations. Journal of Physical Chemistry C, 2018, 122, 25219-25228.	1.5	32

ARTICLE IF CITATIONS 5000 Quantum Two-Level Model for Excitonic Solar Cells., 0,,. 0 Tuning substrate roughness to improve uniform growth and photocurrent response in anodic TiO2 5001 2.3 nanotube arrays. Ceramics International, 2018, 44, 22671-22679. Intramolecular Exciton-Coupled Squaraine Dyes for Dye-Sensitized Solar Cells. Journal of Physical 5002 1.5 40 Chemistry C, 2018, 122, 21745-21754. Zeolitic-imidazolate-framework (ZIF-8)/PEDOT:PSS composite counter electrode for low cost and 5003 1.4 efficient dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 17303-17310. Homo―and Heterodimeric Dyes for Dyeâ€Sensitized Solar Cells: Panchromatic Light Absorption and 5004 1.38 Modulated Open Circuit Potential. ChemPlusChem, 2018, 83, 998-1007. High-Throughput Computational Screening of Vertical 2D van der Waals Heterostructures for High-efficiency Excitonic Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 32142-32150. 4.0 Selective determination of nitrite/nitrate based on photoâ€induced redox activity of titanium dioxide. 5006 1.39 Journal of Separation Science, 2018, 41, 4075-4082. Effects of the terminal donor unit in dyes with D–Ìd–Ìd–A architecture on the regeneration 5007 1.3 mechanism in DSSCs: a computational study. Physical Chemistry Chemical Physics, 2018, 20, 23564-23577. Modulation of N3 and N719 dve·Â·A·TiO₂ Interfacial Structures in Dve-Sensitized Solar Cells 5008 As Influenced by Dye Counter lons, Dye Deprotonation Levels, and Sensitizing Solvent. ACS Applied 2.5 31 Energy Materials, 2018, 1, 2821-2831. The effect of <i>cis</i>–<i>trans</i> configurational difference on the performance of 5009 1.6 pyridylimine-based ruthenium sensitizers. Dalton Transactions, 2018, 47, 8356-8363. Highly efficient carbazole based co-sensitizers carrying electron deficient barbituric acid for NCSU-10 5010 2.9 27 sensitized DSSCs. Solar Energy, 2018, 169, 386-391. Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets 2.6 44 for dye-sensitized solar cells counter electrode. Electrochimica Acta, 2018, 280, 94-100. Brookite-Based Dye-Sensitized Solar Cells: Influence of Morphology and Surface Chemistry on Cell 5012 1.5 13 Performance. Journal of Physical Chemistry C, 2018, 122, 14277-14288. Co-sensitization of Ru(<scp>ii</scp>) complex with terthiophene-based D–Ĩ€â€"Ĩ€â€"A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance. New Journal of Chemistry, 2018, 42, 11430-11437. 1.4 On how ancillary ligand substitution affects the charge carrier dynamics in dye-sensitized solar 5014 1.7 3 cells. RSC Advances, 2018, 8, 19465-19469. Applications of cyclometalation reaction five-membered ring products. Journal of Organometallic Chemistry, 2018, 869, 88-105. Solar Energy Conversion., 2018, , 881-918. 7 5016 Intramolecular Charge Transfer and Local Excitation in Organic Fluorescent Photoredox Catalysts 1.5 Explained by RASCI-PDFT. Journal of Physical Chemistry C, 2018, 122, 12061-12070.

#	Article	IF	CITATIONS
5018	Hydrogen titanate nanotubes for dye sensitized solar cells applications: Experimental and theoretical study. Materials Research Bulletin, 2018, 106, 40-48.	2.7	16
5019	Investigation of properties for dye-sensitized solar cells in series-parallel connection modules. , 2018, , .		1
5020	Dye-Sensitized Solar Cells. , 2018, , 270-281.		20
5021	Improvement photovoltaic performance of quantum dot-sensitized solar cells using deposition of metal-doped ZnS passivation layer on the TiO2 photoanode. Microelectronic Engineering, 2018, 198, 8-14.	1.1	7
5022	Highly efficient ruthenium complexes with acetyl electron-acceptor unit for dye sensitized solar cells. Journal of Power Sources, 2018, 396, 559-565.	4.0	23
5023	Nanosensors for Biomedical Applications: A Tutorial. Nanostructure Science and Technology, 2018, , 145-167.	0.1	0
5024	Highly-efficient sensitizer with zinc porphyrin as building block: Insights from DFT calculations. Solar Energy, 2018, 173, 283-290.	2.9	27
5025	Synthesis and characterization of naphthalimide-based dyes for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 16565-16580.	1.1	6
5026	Photon Upconverted Emission Based on Dye-Sensitized Triplet–Triplet Annihilation in Silica Sol–Gel System. ACS Omega, 2018, 3, 8529-8536.	1.6	5
5027	Semiconductor Nanotechnology. Nanostructure Science and Technology, 2018, , .	0.1	7
5028	Solar Cells Based on Sol-Gel Films. , 2018, , 2555-2572.		0
5029	Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Organic Electronics, 2018, 61, 119-124.	1.4	36
5030	2.6 Dye-Sensitized Materials. , 2018, , 150-181.		1
5031	A solar responsive photocatalytic fuel cell with the membrane electrode assembly design for simultaneous wastewater treatment and electricity generation. Journal of Hazardous Materials, 2018, 358, 346-354.	6.5	40
5032	ZnO nanowire sensitization with Ru polypyridyl complexes: charge-transfer probed by spectral and relaxation photocurrent measurements. Materials Research Express, 2018, 5, 075020.	0.8	2
5033	Novel Precursor-Derived Meso-/Macroporous TiO2/SiOC Nanocomposites with Highly Stable Anatase Nanophase Providing Visible Light Photocatalytic Activity and Superior Adsorption of Organic Dyes. Materials, 2018, 11, 362.	1.3	20
5034	Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials, 2018, 11, 411.	1.3	38
5035	Ruthenium Complexes as Sensitizers in Dye-Sensitized Solar Cells. Inorganics, 2018, 6, 52.	1.2	98

#	Article	IF	CITATIONS
5036	Photocatalytic H ₂ production by dirhodium(<scp>ii</scp> , <scp>ii</scp>) photosensitizers with red light. Chemical Communications, 2018, 54, 8332-8334.	2.2	19
5037	Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. Journal of Materials Chemistry C, 2018, 6, 8874-8878.	2.7	67
5038	Ionic-Liquid-like Polysiloxane Electrolytes for Highly Stable Solid-State Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 4106-4114.	2.5	12
5039	Controllable hydrothermal synthesis of bundled ZnO nanowires using cerium acetate hydrate precursors. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 98-100.	1.3	6
5040	Electrical properties of graphene film for counter electrode in dye sensitized solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
5041	4,4′-Dihydroxy-2,2′-bipyridine complexes of Co(III), Cu(II) and Zn(II); structural and spectroscopic characterization. Polyhedron, 2018, 150, 61-68.	1.0	1
5042	Multi-layered TiO2 photoanodes from different precursors of nanocrystals for dye-sensitized solar cells. Solar Energy, 2018, 173, 752-758.	2.9	46
5043	Synthesis and characterization of carbene-pyridyl anchoring Ru(ii) dyes with various binding functionalities for photoelectrochemical cells. New Journal of Chemistry, 2018, 42, 15245-15252.	1.4	5
5044	Efficiency difference between furan- and thiophene-based D–π–A dyes in DSSCs explained by theoretical calculations. RSC Advances, 2018, 8, 29917-29923.	1.7	10
5045	Novel carboxylic acid terminated silicon(IV) and zinc(II) phthalocyanine photosensitizers: Synthesis, photophysical and photochemical studies. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1010-1021.	0.4	13
5046	DFT/TD-DFT calculations of the electronic and optical properties of bis-N,N-dimethylaniline-based dyes for use in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 332-346.	2.0	17
5047	Effect of functional group position change of pyridinesulfonic acid as interface-modified layer on perovskite solar cell. Applied Surface Science, 2018, 462, 517-525.	3.1	18
5048	Theoretical design of porphyrin sensitizers with different acceptors for application in dye-sensitized solar cells. RSC Advances, 2018, 8, 19804-19810.	1.7	10
5049	Influence of argon flow rate on structural and optical properties of TiO2 thin films deposited by RF sputtering. AIP Conference Proceedings, 2018, , .	0.3	3
5050	Dye-sensitized photoelectrochemical water oxidation through a buried junction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6946-6951.	3.3	25
5051	Dye-Sensitized Solar Cells. , 2018, , 183-239.		6
5052	Increasing the open-circuit voltage and adsorption stability of squaraine dye binding onto the TiO2 anatase (1 0 1) surface via heterocyclic anchoring groups used for DSSC. Applied Surface Science, 2018, 455, 1095-1105.	3.1	30
5053	Tuning bimodal porosity in TiO2 photoanodes towards efficient solid-state dye-sensitized solar cells comprising polysiloxane-based polymer electrolyte. Microporous and Mesoporous Materials, 2019, 273, 226-234.	2.2	14

# 5054	ARTICLE Electron injection into titanium dioxide by panchromatic dirhodium photosensitizers with low energy red light. Chemical Communications, 2019, 55, 10428-10431.	IF 2.2	CITATIONS 3
5055	Mononuclear Ru(II) Complexes of an Arene and Asymmetrically Substituted 2,2′-Bipyridine Ligands: Photophysics, Computation, and NLO Properties. Inorganic Chemistry, 2019, 58, 11470-11479.	1.9	12
5056	A facile method to produce TiO2 nanorods for high-efficiency dye solar cells. Journal of Power Sources, 2019, 438, 227012.	4.0	23
5057	Organic–inorganic hybrid perovskites based on methylamine lead halide solar cell. Solar Energy, 2019, 189, 421-425.	2.9	32
5058	Stability of the oxidized form of RuLL′(NCS)2 dyes in acetonitrile in the presence of water and pyridines – Why the dye-sensitized solar cell electrolyte should be dry. Solar Energy, 2019, 189, 235-243.	2.9	2
5059	The sensitization effect and microscopic essence of different additives on the electronic structure of nanocrystalline TiO2 in dye-sensitized solar cell. Solar Energy, 2019, 189, 372-384.	2.9	2
5060	Zipping Up NiFe(OH) _{<i>x</i>} -Encapsulated Hematite To Achieve an Ultralow Turn-On Potential for Water Oxidation. ACS Energy Letters, 2019, 4, 1983-1990.	8.8	82
5061	Unraveling the controversy over a catalytic reaction mechanism using a new theoretical methodology: One probe and non-equilibrium surface Green's function. Nano Energy, 2019, 63, 103863.	8.2	7
5062	Theoretical design and characterization of NIR porphyrin-based sensitizers for applications in dye-sensitized solar cells. Solar Energy, 2019, 188, 1031-1040.	2.9	15
5063	Electronic structure and optical properties of isolated and TiO ₂ â€grafted free base porphyrins for water oxidation: A challenging test case for DFT and TDâ€DFT. Journal of Computational Chemistry, 2019, 40, 2530-2538.	1.5	9
5064	Effect of the length of anodically grown titania nanotubes on the efficiency of a moisture-stable hole transport material (HTM)-free perovskite solar cell. CrystEngComm, 2019, 21, 4798-4810.	1.3	6
5065	Ru(II) porphyrins as sensitizers for DSSCs: Axial vs. peripheral carboxylate anchoring group. Journal of Porphyrins and Phthalocyanines, 2019, 23, 870-880.	0.4	1
5066	Synthesis and characterization of novel heteroleptic Ru(II) bipyridine complexes for dye-sensitized solar cell applications. Monatshefte Für Chemie, 2019, 150, 1445-1452.	0.9	4
5067	A Hole Delocalization Strategy: Photoinduced Mixed-Valence MLCT States Featuring Extended Lifetimes. Inorganic Chemistry, 2019, 58, 10898-10904.	1.9	13
5068	DFT Study of the CNS Ligand Effect on the Geometry, Spin-State, and Absorption Spectrum in Ruthenium, Iron, and Cobalt Quaterpyridine Complexes. ACS Omega, 2019, 4, 10991-11003.	1.6	13
5069	Metal-free organic dyes with di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole as an auxiliary donor for efficient dye-sensitized solar cells: Effect of the molecular engineering on the photovoltaic performance. Dyes and Pigments, 2019, 171, 107676.	2.0	18
5070	The effect of titanium (IV) chloride surface treatment to enhance charge transport and performance of dye-sensitized solar cell. Results in Physics, 2019, 15, 102725.	2.0	12
5071	Synthesis, spectroscopic and DFT studies of copper(I) complexes inserting the electron-donating groups into pyridine-imidazole ligands vis an acetylide linker. Inorganica Chimica Acta, 2019, 498, 119155.	1.2	4

\sim	T A T I	ON	DEDO	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
5073	Progress on Nanomaterials for Photoelectrochemical Solar Cells: from Titania to Perovskites. E3S Web of Conferences, 2019, 125, 14015.	0.2	1
5074	In situ synthesis of ZnO in Cucurbitaceae aqueous extracts solution: structural characterisation, antibacterial and adsorbent applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 045010.	0.7	2
5075	Emerging contaminants remediation by heterogeneous photocatalysis. , 2019, , 245-275.		9
5076	The effect of TiCl4 treatment on the performance of dye-sensitized solar cells. Journal of Chemical Physics, 2019, 151, 164704.	1.2	13
5077	Preparation, Characterization and Photosensitizing Activities of Homoleptic Cu(II) Dithiocarbamates in TiO ₂ â€Based DSSC. ChemistrySelect, 2019, 4, 11140-11148.	0.7	5
5079	Carboxylic Acid Functionalization at the Meso-Position of the Bodipy Core and Its Influence on Photovoltaic Performance. Nanomaterials, 2019, 9, 1346.	1.9	3
5080	Investigation on the initial oxidation behavior of TiAl alloy. Materials Research Express, 2019, 6, 106595.	0.8	14
5081	Investigation of cell-level potential-induced degradation mechanisms on perovskite, dye-sensitized and organic photovoltaics. Solar Energy, 2019, 190, 301-318.	2.9	9
5082	Functional panchromatic BODIPY dyes with near-infrared absorption: design, synthesis, characterization and use in dye-sensitized solar cells. Beilstein Journal of Organic Chemistry, 2019, 15, 1758-1768.	1.3	8
5083	Unusual Photoelectrochemical Properties of Electropolymerized Films of a Triphenylamine-Containing Organic Small Molecule. Langmuir, 2019, 35, 12620-12629.	1.6	9
5084	Mechanistic Insights into Solid-State p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2019, 123, 26151-26160.	1.5	3
5085	Particle Consolidation and Electron Transport in Anatase TiO ₂ Nanocrystal Films. ACS Applied Materials & Interfaces, 2019, 11, 39859-39874.	4.0	12
5086	Rutile TiO2 nanorod arrays incorporated with α-alumina for high efficiency dye sensitized solar cells. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
5087	Ternary catalysts based on amino-functionalized carbon quantum dots, graphitic carbon nitride nanosheets and cobalt complex for efficient H2 evolution under visible light irradiation. Carbon, 2019, 145, 488-500.	5.4	51
5088	Theoretical screening of promising donor and π-linker groups for POM-based Zn–porphyrin dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 3822-3831.	1.3	14
5089	Ab Initio Modeling of Solar Cell Dye Sensitizers: The Hunt for Red Photons Continues. European Journal of Inorganic Chemistry, 2019, 2019, 743-750.	1.0	7
5090	Synthesis of dipyrrolopyrazine-based sensitizers with a new π-bridge end-capped donor–acceptor framework for DSSCs: a combined experimental and theoretical investigation. New Journal of Chemistry, 2019, 43, 3017-3025.	1.4	13
5091	Effect of trap states on photocatalytic properties of boron-doped anatase TiO ₂ microspheres studied by time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 4349-4358.	1.3	19

#	Article	IF	CITATIONS
5092	Hierarchical TiO ₂ microspheres composed with nanoparticle-decorated nanorods for the enhanced photovoltaic performance in dye-sensitized solar cells. RSC Advances, 2019, 9, 3056-3062.	1.7	5
5093	Heteromultimetallic compounds based on polyfunctional carboxylate linkers. New Journal of Chemistry, 2019, 43, 3199-3207.	1.4	4
5094	Rational use of ligand to shift the UV–vis spectrum of Ru-complex sensitiser dyes for DSSC applications. Radiation Physics and Chemistry, 2019, 161, 66-71.	1.4	10
5095	Introducing Asymmetry Induced by Benzene Substitution in a Rigid Fused Ï€ Spacer of Dâ^'π–A-Type Solar Cells: A Computational Investigation. Journal of Physical Chemistry C, 2019, 123, 4007-4021.	1.5	41
5096	Blocking the Charge Recombination with Diiodide Radicals by TiO ₂ Compact Layer in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, B3203-B3208.	1.3	10
5097	Demagnetization field driven charge transport in a TiO2 based dye sensitized solar cell. Solar Energy, 2019, 187, 281-289.	2.9	18
5098	Improving energy transfer efficiency of dye-sensitized solar cell by fine tuning of dye planarity. Solar Energy, 2019, 187, 274-280.	2.9	24
5099	Chromium(VI) oxide-mediated oxidation of polyalkyl-polypyridines to polypyridine-polycarboxylic acids with periodic acid. Synthetic Communications, 2019, 49, 2210-2218.	1.1	2
5100	TiO2-based dye-sensitized solar cells. , 2019, , 127-144.		19
5101	ZnO-based dye-sensitized solar cells. , 2019, , 145-204.		4
5102	Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials, 2019, 12, 1998.	1.3	152
5103	Photochemical Properties of trans―[Ru(NH 3) 4 (bpa)(L)] 2+ (LÂ=Âpy, isn, 4â€acpy or 4â€pic). Photochemistry and Photobiology, 2019, 95, 1306-1310.	1.3	0
5104	SnO2 dye-sensitized solar cells. , 2019, , 205-285.		4
5105	Influence of synthesized pyridine and tetra ethylene glycol derivatives in poly (vinylidene) Tj ETQq1 1 0.784314 rg 2019, 188, 667-684.	BT /Overlo 2.9	ock 10 Tf 5(13
5106	Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells. Solar Energy, 2019, 188, 55-65.	2.9	20
5107	Chemical Control of Electronic Coupling between a Ruthenium Complex and Gold Electrode for Resonant Tunneling Conduction. ACS Applied Materials & amp; Interfaces, 2019, 11, 24331-24338.	4.0	2
5108	Highâ€Performance Organic Dyes with Electronâ€Deficient Quinoxalinoid Heterocycles for Dyeâ€Sensitized Solar Cells under One Sun and Indoor Light. ChemSusChem, 2019, 12, 3654-3665.	3.6	51
5109	Rapid growth of NiSx by atomic layer infiltration and its application as an efficient counter electrode for dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry, 2019, 77, 470-476.	2.9	10

#	Article	IF	CITATIONS
5110	Rational design of D-π-A organic dyes to prevent "trade off―effect in dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 221, 117167.	2.0	5
5111	Double connector to TiO2 surface in small molecule triphenyl amine dyes for DSSC applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 12523-12531.	1.1	2
5112	Amphiphilic photosensitizers in dye sensitized solar cells. Inorganica Chimica Acta, 2019, 495, 118955.	1.2	13
5113	Improving the Powerâ€Conversion Efficiency through Alloying in Common Anion CdZnX (X=S, Se) Nanocrystal Sensitized Solar Cells. ChemPhysChem, 2019, 20, 2662-2667.	1.0	2
5114	Intramolecular Path Determination of Active Electrons on Pushâ€Pull Oligocarbazole Dyesâ€Sensitized Solar Cells. ChemistryOpen, 2019, 8, 580-588.	0.9	7
5115	Pulsed Laser Fabrication of TiO2 Buffer Layers for Dye Sensitized Solar Cells. Nanomaterials, 2019, 9, 746.	1.9	10
5116	Improving the photovoltaic performance by employing alkyl chains perpendicular to the π-conjugated plane of an organic dye in dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 7249-7258.	2.7	29
5117	Homoleptic and Heteroleptic Copper Complexes as Redox Couples in Dyeâ€&ensitized Solar Cells. ChemPhotoChem, 2019, 3, 636-644.	1.5	12
5118	Multi-component eutectic salts to enhance the conductivity of solvent-free ionic liquid electrolytes for dye-sensitized solar cells. Electrochimica Acta, 2019, 314, 219-226.	2.6	9
5119	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327.	23.0	190
5119 5120	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250.	23.0 1.2	190 10
5119 5120 5121	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250. Polyacrylonitrile–poly(1â€vinyl pyrrolidoneâ€ <i>co</i> â€vinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810.	23.0 1.2 1.3	190 10 19
5119 5120 5121 5122	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250. Polyacrylonitrile– poly(1â€vinyl pyrrolidoneâ€ <i>co</i> â€vinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810. Thioethyl Porphyrazines: Attractive Chromophores for Second-Order Nonlinear Optics and DSSCs. Journal of Physical Chemistry C, 2019, 123, 13074-13082.	23.0 1.2 1.3 1.5	190 10 19 15
 5119 5120 5121 5122 5123 	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250. Polyacrylonitrile–poly(1â€vinyl pyrrolidoneâ€ <i>>co</i> â€vinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810. Thioethyl Porphyrazines: Attractive Chromophores for Second-Order Nonlinear Optics and DSSCs. Journal of Physical Chemistry C, 2019, 123, 13074-13082. Functional ï€-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929.	23.0 1.2 1.3 1.5 1.4	190 10 19 15 10
 5119 5120 5121 5122 5123 5124 	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250. Polyacrylonitrile– poly(1â€vinyl pyrrolidoneâ€ <i>>co</i> >ê€vinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810. Thioethyl Porphyrazines: Attractive Chromophores for Second-Order Nonlinear Optics and DSSCs. Journal of Physical Chemistry C, 2019, 123, 13074-13082. Functional Ĩ€-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929. Enhanced photovoltaic performance of dye-sensitized solar cells by the adsorption of Zn-porphyrin dye molecule on TiO2 surfaces. Journal of Alloys and Compounds, 2019, 794, 35-44.	23.0 1.2 1.3 1.5 1.4 2.8	 190 10 19 15 10 4
 5119 5120 5121 5122 5123 5124 5125 	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327.Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250.Polyacrylonitrile–poly(1â€vinyl pyrrolidoneâ€ <i>co</i> àêvinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810.Thioethyl Porphyrazines: Attractive Chromophores for Second-Order Nonlinear Optics and DSSCs. Journal of Physical Chemistry C, 2019, 123, 13074-13082.Functional Ĩ€-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929.Enhanced photovoltaic performance of dye-sensitized solar cells by the adsorption of Zn-porphyrin dye molecule on TiO2 surfaces. Journal of Alloys and Compounds, 2019, 794, 35-44.Enhancement in Dyeâ€6ensitized Solar Cells Using Surface Plasmon Resonance Effects from Colloidal Coreã€6hell Au@SiO2 Nanoparticles. ChemistrySelect, 2019, 4, 4995-5001.	23.0 1.2 1.3 1.5 1.4 2.8 0.7	 190 10 19 19 15 10 4 3
 5119 5120 5121 5122 5123 5124 5125 5126 	Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 2019, 119, 7279-7327. Photovoltaic Characteristics of Multiwalled Carbon Nanotube Counter-Electrode Materials for Dye-Sensitized Solar Cells Produced by Chemical Treatment and Addition of Dispersant. Coatings, 2019, 9, 250. Polyacrylonitrile–poly(1â€vinyl pyrrolidoneâ€ <i>co</i> â€vinyl acetate) blend based gel polymer electrolytes incorporated with sodium iodide salt for dyeâ€sensitized solar cell applications. Journal of Applied Polymer Science, 2019, 136, 47810. Thioethyl Porphyrazines: Attractive Chromophores for Second-Order Nonlinear Optics and DSSCs. Journal of Physical Chemistry C, 2019, 123, 13074-13082. Functional ΀-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929. Enhanced photovoltaic performance of dye-sensitized solar cells by the adsorption of Zn-porphyrin dye molecule on TiO2 surfaces. Journal of Alloys and Compounds, 2019, 794, 35-44. Enhancement in Dyeâ€6ensitized Solar Cells Using Surface Plasmon Resonance Effects from Colloidal Coreâ€6hell Au@SiO2 Nanoparticles. ChemistrySelect, 2019, 4, 4995-5001. Chiral Aggregates of Triphenylamineâ€Based Dyes for Depleting the Production of Hydrogen Peroxide in the Photochemical Waterá€6plitting Process. Helvetica Chimica Acta, 2019, 102, el900065.	 23.0 1.2 1.3 1.5 1.4 2.8 0.7 1.0 	 190 10 19 19 15 10 4 3 2

#	Apticie	IE	CITATIONS
# 5129	Exploitation of Nanoparticles as Photocatalysts for Clean and Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , 279-319.	0.3	2
5130	Development of dye sensitized TiO2 thin films for efficient energy harvesting. Journal of Alloys and Compounds, 2019, 790, 1001-1013.	2.8	35
5131	Studies on photosensitization of TiO2 nanoparticles by novel 1,3,4-oxadiazoles derivatives. Optik, 2019, 183, 732-741.	1.4	6
5132	Excitonâ^'Plasmon Interactions in Noble Metal–Semiconductor Oxide Hybrid Nanostructures. , 2019, , 157-178.		0
5133	Metal Coordination Complexes as Redox Mediators in Regenerative Dye-Sensitized Solar Cells. Inorganics, 2019, 7, 30.	1.2	79
5134	Triarylamine-based hydrido-carboxylate rhenium(i) complexes as photosensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 7534-7543.	1.3	19
5135	Halide Photoredox Chemistry. Chemical Reviews, 2019, 119, 4628-4683.	23.0	127
5136	Solvent Effects on Intra-/Intermolecular Charge Transfer in Indoloquinoxaline-Based Dyes. Journal of Physical Chemistry A, 2019, 123, 2831-2842.	1.1	9
5137	Overview of Dye-Sensitized Solar Cells. , 2019, , 1-49.		10
5138	Degradation pathways in standard and inverted DBP-C70 based organic solar cells. Scientific Reports, 2019, 9, 4024.	1.6	20
5139	Mathematical Modeling of Dye-Sensitized Solar Cells. , 2019, , 51-81.		22
5140	Insights Into Dye-Sensitized Solar Cells From Macroscopic-Scale First-Principles Mathematical Modeling. , 2019, , 83-119.		2
5141	Photovoltaic Performance of Natural Dyes for Dye-Sensitized Solar Cells. , 2019, , 203-229.		12
5142	Study on the spectral complementary composite dye molecules designed for high performance dye-sensitized solar cells: A theoretical investigation. Computational and Theoretical Chemistry, 2019, 1154, 44-49.	1.1	9
5143	Development of Paint-Type Dye-Sensitized Solar Cell Using Carbon Nanotube Paint. Journal of Nanotechnology, 2019, 2019, 1-6.	1.5	3
5144	Numerical simulation of renewable power generation using reverse electrodialysis. Energy, 2019, 176, 531-543.	4.5	30
5145	A new tool to rationally design highly efficient organic sensitizers for dye-sensitized solar cells: A three-dimensional quantitative structure-activity relationship (3D-QSAR) perspective. Solar Energy, 2019, 184, 187-194.	2.9	10
5146	Computational Investigation on Series of Metalâ€Free Sensitizers in Tetrahydroquinoline with Different Ï€â€spacer Groups for DSSCs. ChemistrySelect, 2019, 4, 4097-4104.	0.7	20

#	Article	IF	CITATIONS
5147	Efficient Sunlight Harvesting by A4 β-Pyrrolic Substituted ZnII Porphyrins: A Mini-Review. Frontiers in Chemistry, 2019, 7, 177.	1.8	26
5148	Organometallic radicals of iron and ruthenium: Similarities and dissimilarities of radical reactivity and charge delocalization. Coordination Chemistry Reviews, 2019, 388, 334-342.	9.5	22
5149	Thienochrysenocarbazole based organic dyes for transparent solar cells with over 10% efficiency. Journal of Materials Chemistry A, 2019, 7, 11338-11346.	5.2	28
5150	Photovoltaic Materials. , 2019, , 1033-1054.		0
5151	Designing new quinoline-based organic photosensitizers for dye-sensitized solar cells (DSSC): a theoretical investigation. Journal of Molecular Modeling, 2019, 25, 75.	0.8	20
5152	Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. Advanced Materials, 2019, 31, e1805132.	11.1	71
5153	Triazine-branched mono- and dianchoring organic dyes: Effect of acceptor arms on optical and photovoltaic properties. Dyes and Pigments, 2019, 165, 182-192.	2.0	7
5154	Relationship between photo-physical and electrochemical properties of D-ï€-A compounds regarding solar cell applications. 1. Substituent type effect in photovoltaic performance. Journal of Molecular Modeling, 2019, 25, 81.	0.8	2
5155	Photoelectrical characteristics of novel Ru(II) complexes based photodiode. Journal of Materials Science: Materials in Electronics, 2019, 30, 5516-5525.	1.1	17
5156	Fine tuning the absorption and photovoltaic properties of benzothiadiazole dyes by donor-acceptor interaction alternation via methyl position. Electrochimica Acta, 2019, 304, 1-10.	2.6	17
5157	Nanostructured photovoltaics. Nano Futures, 2019, 3, 012002.	1.0	9
5158	New semi-rigid triphenylamine donor moiety for D-ï€-A sensitizer: Theoretical and experimental investigations for DSSCs. Dyes and Pigments, 2019, 165, 1-10.	2.0	22
5159	Ferrocenylethenyl-substituted oxadiazoles with phenolic and nitro anchors as sensitizers in dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 4745-4756.	1.4	13
5160	Blue skies and red sunsets: Reliability of performance parameters of various p-n junction photovoltaic module technologies. Cogent Engineering, 2019, 6, .	1.1	5
5161	Invited: Possibility of dye-sensitized solar cell as energy harvester. , 2019, , .		0
5162	rGO based photo-anode in dye-sensitized solar cells (DSSC) and its photovoltaic characteristics. IOP Conference Series: Materials Science and Engineering, 2019, 622, 012008.	0.3	5
5163	<i>In situ</i> surface modification of TiO2 by CaTiO3 to improve the UV stability and power conversion efficiency of perovskite solar cells. Applied Physics Letters, 2019, 115, .	1.5	25
5164	Novel metal-free organic dyes constructed with the D-D A-ï€-A motif: Sensitization and co-sensitization study. Solar Energy, 2019, 194, 400-414.	2.9	28

#	Article	IF	CITATIONS
5165	Electrochemical Redox Reaction of Iodide/Triiodide on Molybdenum Disulfide/Graphene Nanoplatelet Composites Prepared with Simple Mixing. Chemistry Letters, 2019, 48, 1171-1173.	0.7	0
5166	Near-infrared (NIR) surface-enhanced Raman spectroscopy (SERS) study of novel functional phenothiazines for potential use in dye sensitized solar cells (DSSC). RSC Advances, 2019, 9, 37365-37375.	1.7	8
5167	Methodologies in Spectral Tuning of DSSC Chromophores through Rational Design and Chemical-Structure Engineering. Materials, 2019, 12, 4024.	1.3	5
5169	N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study. Journal of Physical Chemistry A, 2019, 123, 10930-10939.	1.1	28
5170	Platinum counter electrodes for dye-sensitized solar cells prepared by one-step dipping process. Japanese Journal of Applied Physics, 2019, 58, 124001.	0.8	9
5171	Dye-sensitized TiO2 nanotube membranes act as a visible-light switchable diffusion gate. Nanoscale Advances, 2019, 1, 4844-4852.	2.2	3
5172	Hydrothermal synthesis and characterization of nanostructured titanium monoxide films. RSC Advances, 2019, 9, 40727-40735.	1.7	5
5173	pH-sensitive and biodegradable charge-transfer nanocomplex for second near-infrared photoacoustic tumor imaging. Nano Research, 2019, 12, 49-55.	5.8	70
5174	Internal path investigation of the acting electrons during the photocatalysis of panchromatic ruthenium dyes in dye-sensitized solar cells. Comptes Rendus Chimie, 2019, 22, 34-45.	0.2	3
5175	Highly efficient plasmonic dye-sensitized solar cells with silver nanowires and TiO2 nanofibres incorporated multi-layered photoanode. Electrochimica Acta, 2019, 298, 330-338.	2.6	30
5176	Theory for IMPS on Rough and Finite Fractal Dye Sensitized SolarÂCell. Journal of the Electrochemical Society, 2019, 166, H3047-H3064.	1.3	4
5177	Influence of synthesized thiourea derivatives as a prolific additive with tris(1,10-phenanthroline)cobalt(II/III)bis/tris(hexafluorophosphate)/ hydroxypropyl cellulose gel polymer electrolytes on dye-sensitized solar cells. Electrochimica Acta, 2019, 298, 237-247.	2.6	23
5178	Advances in Solar Energy: Solar Cells and Their Applications. Energy, Environment, and Sustainability, 2019, , 75-127.	0.6	1
5179	Dynamical and Environmental Effects on the Optical Properties of an Heteroleptic Ru(II)–Polypyridine Complex: A Multilevel Approach Combining Accurate Ground and Excited State QM-Derived Force Fields, MD and TD-DFT. Journal of Chemical Theory and Computation, 2019, 15, 529-545.	2.3	17
5180	Metal–Organic Frameworks in Dye-Sensitized Solar Cells. Energy, Environment, and Sustainability, 2019, , 175-219.	0.6	8
5181	A facile synthesis of highly fluorescent pyrido[2,3-d]pyrimidines and 1,8-naphthyridines via oxazine transformation and enaminic addition reactions. Journal of the Iranian Chemical Society, 2019, 16, 723-732.	1.2	20
5182	Absorption spectra, thermal analysis, photoelectrochemical characterization and stability test of vegetable-based dye-sensitized solar cells. Optical Materials, 2019, 88, 24-29.	1.7	19
5183	Development of Nextâ€Generation Organicâ€Based Solar Cells: Studies on Dyeâ€5ensitized and Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1802967.	10.2	36

	Сітатіс	on Report	
#	Article	IF	CITATIONS
5184	Polyoxometalates in dye-sensitized solar cells. Chemical Society Reviews, 2019, 48, 260-284.	18.7	261
5185	High Power Output of Solid-state Dye-sensitized Solar Cells with Strongly Basic Pyridine Compounds under Low-intensity Illumination. Chemistry Letters, 2019, 48, 242-244.	0.7	5
5186	Recent advances in photoinduced catalysis for water splitting and environmental applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 31-49.	2.9	43
5187	Synthesis, textural and magnetic properties of doped and undoped CuO nanoparticles. Journal of Coordination Chemistry, 2019, 72, 83-101.	0.8	7
5188	Theoretical insights on the rigidified dithiophene effects on the performance of near-infrared cis-squaraine-based dye-sensitized solar cells with panchromatic absorption. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 369, 150-158.	2.0	13
5189	Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based "push-pull―fluorophores. Dyes and Pigments, 2019, 162, 324-330.	2.0	11
5190	Evolution From Single to Hybrid Nanogenerator: A Contemporary Review on Multimode Energy Harvesting for Self-Powered Electronics. IEEE Nanotechnology Magazine, 2019, 18, 21-36.	1.1	47
5191	Theoretical study of high-efficiency organic dyes with the introduction of different auxiliary heterocyclic acceptors based on IQ1 toward dye-sensitized solar cells. Journal of Molecular Graphics and Modelling, 2019, 86, 170-178.	1.3	19
5192	Optical and structural properties of TiO2 as intermediate buffer layer prepared by DC reactive magnetron sputtering for solar cells. Optik, 2019, 181, 1122-1129.	1.4	11
5193	Structure-property relationship of novel monosubstituted Ru (II) complexes for high photocurrent and high efficiency DSSCs: Influence of donor versus acceptor ancillary ligand on DSSCs performance. Solar Energy, 2019, 177, 642-651.	2.9	23
5194	Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dye‧ensitized and Perovskite Solar Cells: A Review. Chemical Record, 2020, 20, 65-88.	2.9	52
5195	Influence of carbonyl group on photocurrent density of novel fluorene based D-ï€-A photosensitizers: Synthesis, photophysical and photovoltaic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112133.	2.0	18
5196	Effects of physical orientation of dye molecules and molecular orbitals on performance of solid-state dye sensitized solar cells. Materials Today: Proceedings, 2020, 23, 43-48.	0.9	5
5197	Improving the efficiency of thin-film fiber-shaped dye-sensitized solar cells by using organic sensitizers. Solar Energy Materials and Solar Cells, 2020, 204, 110209.	3.0	19
5198	Application of carbon dots in dyeâ€sensitized solar cells: A review. Journal of Applied Polymer Science, 2020, 137, 48443.	1.3	81
5199	New engineered and environmentally friendly dyeâ€sensitized solar cells: Efficient extraction of dyes from Cytisus, <i>Alcea rosea</i> , and Roselle. International Journal of Energy Research, 2020, 44, 309-324.	2.2	4
5200	Synthesis of a novel bipyrimidine dicarboxylic acid ligand for the preparation of panchromatic ruthenium dyes. Inorganica Chimica Acta, 2020, 499, 119194.	1.2	2
5201	High efficiency dye-sensitized solar cells based on a series of small dye molecules with N-methylcarbazole derivatives as donors. Materials Chemistry and Physics, 2020, 239, 121970.	2.0	10

#	Article	IF	CITATIONS
5202	Design and Synthesis of New Ruthenium Coordination Complex as Efficient Dye in DSSC Like Alternative Energy Resources With a Bird's Eye View on Strategies Towards GHGs Mitigation. , 2020, , 395-410.		0
5203	Carbonâ€Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar Rrl, 2020, 4, 1900190.	3.1	45
5204	Theoretical design of new triphenylamine based dyes for the fabrication of DSSCs: A DFT/TD-DFT study. Materials Today Communications, 2020, 22, 100731.	0.9	23
5205	Axial-symmetric conjugated group promoting intramolecular charge transfer performances of triphenylamine sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2020, 174, 108029.	2.0	19
5206	Diketopyrrolopyrrole/perylene-diimide and thiophene based D-ï€-A low bandgap polymer sensitizers for application in dye sensitized solar cells. Dyes and Pigments, 2020, 174, 108032.	2.0	14
5207	Photo-driven water splitting photoelectrochemical cells by tandem organic dye sensitized solar cells with Iâ^'/I3â^' as redox mediator. Science China Chemistry, 2020, 63, 228-236.	4.2	2
5208	Influence of Electrolyte Composition on Ultrafast Interfacial Electron Transfer in Fe-Sensitized TiO ₂ -Based Solar Cells. Journal of Physical Chemistry C, 2020, 124, 1794-1811.	1.5	19
5209	The effect of encapsulation of lithium atom on supramolecular triad complexes performance in solar cell by using theoretical approach. Adsorption, 2020, 26, 471-489.	1.4	11
5210	Influence of Oxidized Graphene Quantum Dots as Photosensitizers. Journal of Nanoscience and Nanotechnology, 2020, 20, 3432-3436.	0.9	5
5211	Theoretical insights into the effect of pristine, doped and hole graphene on the overall performance of dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2020, 7, 157-168.	3.0	9
5212	Room Temperature Phosphorescent (RTP) Nâ€Acetylphenothiazines. ChemPhotoChem, 2020, 4, 282-286.	1.5	10
5213	Molecularly engineered ruthenium polypyridyl complexes for using in dye-sensitized solar cell. Inorganic Chemistry Communication, 2020, 112, 107737.	1.8	12
5214	Insights into the role of Dâ€Aâ€ï€â€A type proâ€aromatic organic dyes with thieno[3,4â€b]pyrazine as A accepto group into dyeâ€sensitized solarâ€cells. A TDâ€DFT/periodic DFT study. International Journal of Quantum Chemistry, 2020, 120, e26108.	r 1.0	6
5215	Role of Modifying Photoanodes by Organic Titanium on Charge Collection Efficiency Enhancement in Dyeâ€ S ensitized Solar Cells. Advanced Engineering Materials, 2020, 22, 1901071.	1.6	8
5216	A review on spectral converting nanomaterials as a photoanode layer in dyeâ€sensitized solar cells with implementation in energy storage devices. Energy Storage, 2020, 2, e120.	2.3	14
5217	Rational design of SM315-based porphyrin sensitizers for highly efficient dye-sensitized solar cells: A theoretical study. Journal of Molecular Structure, 2020, 1205, 127567.	1.8	5
5218	Efficiency enhancement of pyridinium ylide dye-sensitized solar cells by introduction of benzothiadiazolyl chromophore: A computational study. Materials Today Communications, 2020, 22, 100839.	0.9	2
5219	Dyeâ€Sensitized Heterogeneous Photocatalysts for Green Redox Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 899-917.	1.0	37

#	Article	IF	CITATIONS
5220	4,4′â€Ðiaminodiphenylsulfone; an efficient coâ€additive in dyeâ€sensitized nanocrystalline TiO 2 solar cells. Applied Organometallic Chemistry, 2020, 34, e5284.	1.7	0
5221	S7ynthesis and investigation of double alternating azo group in novel para-azo dyes containing nitro anchoring group for solar cell application. Journal of Molecular Structure, 2020, 1203, 127432.	1.8	9
5222	Photochemical and antibacterial properties of ruthenium complex of N,N'-bis(benzimidazole-2yl-ethyl)ethylenediamine under visible light: Experimental and theoretical studies. Journal of Molecular Structure, 2020, 1203, 127377.	1.8	8
5223	Synthesis of a series of novel imidazolium-containing ionic liquid copolymers for dye-sensitized solar cells. Polymer, 2020, 210, 123074.	1.8	16
5224	Aminosilicate modified mesoporous anatase TiO2@graphene oxide nanocomposite for dye-sensitized solar cells. Solar Energy, 2020, 211, 789-798.	2.9	13
5225	A theoretical approach of star-shaped molecules with triphenylamine core as sensitizer for their potential application in dye sensitized solar cells. Journal of Molecular Graphics and Modelling, 2020, 101, 107704.	1.3	4
5226	Comprehensive performance analysis of dye-sensitized solar cells using single layer TiO2 photoanode deposited using screen printing technique. Optik, 2020, 223, 165595.	1.4	10
5227	Machine learning based approach for shape memory polymer behavioural characterization. Array, 2020, 7, 100036.	2.5	4
5228	New examples of Ru(ii)-tetrazolato complexes as thiocyanate-free sensitizers for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 14543-14555.	1.6	4
5229	Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Solar Energy, 2020, 207, 874-892.	2.9	113
5230	Anthocyanin components for dye-sensitized solar cells extracted from Teclea Shimperi fruit as light-harvesting materials. Materials Science for Energy Technologies, 2020, 3, 889-895.	1.0	0
5231	The Role of Titanium Dioxide on the Hydration of Portland Cement: A Combined NMR and Ultrasonic Study. Molecules, 2020, 25, 5364.	1.7	19
5232	Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	69
5233	Photovoltaic performance of bipyridine and dipyridophenazine ligands anchored ruthenium complex sensitizers for efficient dye-sensitized solar cells. Solid State Sciences, 2020, 107, 106368.	1.5	4
5234	A microscopic and macroscopic investigation of the adsorption of N719 dye on ZnO nanopowders (ZNP) and ZnO nanorods (ZNR) for dye sensitized solar cells using statistical physics treatment and DFT simulation. RSC Advances, 2020, 10, 27615-27632.	1.7	12
5235	Aromatic βâ€Diketone as a Novel Anchoring Ligand in Iridium(III) Complexes for Dyeâ€&ensitized Solar Cells. European Journal of Inorganic Chemistry, 2020, 2020, 3277-3286.	1.0	18
5236	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	4.6	272
5237	Strategy for functionalization of electrodes with discrete, unmodified small molecules exhibiting aqueous stability. Journal of Materials Chemistry A, 2020, 8, 15681-15686.	5.2	0

#	Article	IF	CITATIONS
5238	Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20430-20437.	3.3	23
5239	The influence of the structural variations in the π-bridge of D-π-A organic dyes on the efficiency of dye-sensitized solar cells (DSSCs): A DFT computational study. , 2020, , .		1
5240	Imine–carbene-based ruthenium complexes for dye-sensitized solar cells: the effect of isomeric mixture on the photovoltaic performance. New Journal of Chemistry, 2020, 44, 20568-20573.	1.4	4
5241	Cyclometalated Ru(<scp>ii</scp>) complexes with tunable redox and optical properties for dye-sensitized solar cells. Dalton Transactions, 2020, 49, 16935-16945.	1.6	12
5243	The Performanceâ€Determining Role of Lewis Bases in Dyeâ€Sensitized Solar Cells Employing Copperâ€Bisphenanthroline Redox Mediators. Advanced Energy Materials, 2020, 10, 2002067.	10.2	22
5244	Optoelectronic properties of type-II SePtTe/InS van der Waals heterojunction. Journal of Applied Physics, 2020, 128, .	1.1	12
5245	Theoretical Analysis on Heteroleptic Cu(I)-Based Complexes for Dye-Sensitized Solar Cells: Effect of Anchors on Electronic Structure, Spectrum, Excitation, and Intramolecular and Interfacial Electron Transfer. Molecules, 2020, 25, 3681.	1.7	16
5247	Effect of TiO2 Photoanodes Morphology and Dye Structure on Dye-Regeneration Kinetics Investigated by Scanning Electrochemical Microscopy. Electrochem, 2020, 1, 329-343.	1.7	1
5248	Theoretical study of the surface structure of anatase nanoparticles: effect on dye adsorption and photovoltaic properties. New Journal of Chemistry, 2020, 44, 17267-17276.	1.4	6
5249	Perspectives on Dye Sensitization of Nanocrystalline Mesoporous Thin Films. Journal of the American Chemical Society, 2020, 142, 16099-16116.	6.6	21
5250	Molecular engineering of pyrene carbazole dyes with a single bond and double bond as the mode of linkage. New Journal of Chemistry, 2020, 44, 16511-16525.	1.4	11
5251	Bifacial Dye-Sensitized Solar Cells with Enhanced Light Scattering and Improved Power Conversion Efficiency under Full Sun and Indoor Light Conditions. ACS Applied Energy Materials, 2020, 3, 12584-12595.	2.5	33
5252	Ligands and Coordination Compounds Used as New Photosensitized Materials for the Construction of Solar Cells. , 2020, , .		2
5253	Efficiency Considerations for SnO ₂ -Based Dye-Sensitized Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 23923-23930. Excited-State Properties of Metal-Free	4.0	24
5254	((<i>Z</i>)-2-Cyano-3-(4-((<i>E</i>)-2-(6-(4-methoxyphenyl)-9-octyl-9 <i>H</i> -carbazol-3-yl)vinyl)phenyl)acrylic) T	j ETQq0 0 1.1	0 rgBT /Ove 3
	(N/19 and 2907) Dyes and Photoinduced Charge Transfer Processes in FTO/TiCl ₄ /TiO ₂ /Dye Photoanodes Fabricated by Conventional Staining and Potential-Assisted Adsorption, Journal of Physical Chemistry A, 2020, 124, 4333-4344.		
5255	Metastability at Defective Metal Oxide Interfaces and Nanoconfined Structures. Advanced Materials Interfaces, 2020, 7, 1902090.	1.9	20
5256	N-methylferrocenyl-N-ethylhydroxy ammonium nitrate: synthesis, characterization, and sensitizer in dye-sensitized solar cells. Transition Metal Chemistry, 2020, 45, 457-465.	0.7	3
5257	Synthesis and DSSC application of BODIPY decorated triazole bridged and benzene nucleus cored conjugated dendrimers. RSC Advances, 2020, 10, 18390-18399.	1.7	5

#	Article	IF	CITATIONS
5258	A rational design of low cost and flexible carbon composite dye sensitized solar cell. Electrochimica Acta, 2020, 344, 136050.	2.6	7
5259	Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices. Japanese Journal of Applied Physics, 2020, 59, SO0802.	0.8	1
5260	New Oxindole-Bridged Acceptors for Organic Sensitizers: Substitution and Performance Studies in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 2159.	1.7	6
5261	Configuration effect in polyoxometalate-based dyes on the performance of DSSCs: an insight from a theoretical perspective. Physical Chemistry Chemical Physics, 2020, 22, 16032-16039.	1.3	3
5262	1,3,4-Oxadiazole based ruthenium amphiphile for Langmuir-Blodgett films and photo-responsive logic gate construction. Electrochimica Acta, 2020, 350, 136350.	2.6	2
5263	Tailoring dual-channel anchorable organic sensitizers with indolo[2,3-b]quinoxaline moieties: Correlation between structure and DSSC performance. Solar Energy, 2020, 206, 443-454.	2.9	11
5264	Graphene/polyaniline nanocomposite as platinum-freeÂcounter electrode material for dye-sensitized solar cell: its fabrication and photovoltaic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 10288-10297.	1.1	16
5265	Zwitterion Effect of Cow Brain Protein towards Efficiency Improvement of Dye-Sensitized Solar Cell (DSSC). Scientific World Journal, The, 2020, 2020, 1-12.	0.8	3
5266	Quantum confinement effects of thin ZnO films by experiment and theory. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 120, 114072.	1.3	16
5267	Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells. Energy and Environmental Science, 2020, 13, 1617-1657.	15.6	178
5268	Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies, 2020, 3, 472-481.	1.0	62
5269	Density functional theory study on the donating strength of donor systems in dye-sensitized solar cells. New Journal of Chemistry, 2020, 44, 7200-7209.	1.4	28
5270	Comparison between Benzothiadizole–Thiophene- and Benzothiadizole–Furan-Based D–Aâ^'π–A Dyes Applied in Dye-Sensitized Solar Cells: Experimental and Theoretical Insights. ACS Omega, 2020, 5, 16856-16864.	1.6	21
5271	A computational investigation of the influence of acceptor moieties on photovoltaic performances and adsorption onto the TiO2 surface in triphenylamine-based dyes for DSSC application. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112745.	2.0	18
5272	Synthesis of improved dye-sensitized solar cell for renewable energy power generation. Solar Energy, 2020, 206, 918-934.	2.9	40
5273	Synthesis, crystal structures, photophysical, electrochemical studies, DFT and TD-DFT calculations and Hirshfeld analysis of new 2,2′:6′,2′′-terpyridine ligands with pendant 4′-(trimethoxyphenyl) gro and their homoleptic ruthenium complexes. New Journal of Chemistry, 2020, 44, 11471-11489.	up <i>s</i> i	6
5274	Incorporation of Carbon Dots on the ZnO Nanosheets as Metal–Organic Framework Photoanodes for High Efficient Dye Sensitized Solar Cell Applications. Journal of Cluster Science, 2020, 32, 795.	1.7	5
5275	Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Solar Energy, 2020, 207, 59-76.	2.9	90
#	Article	IF	CITATIONS
------	---	-----	-----------
5276	Photoelectric performance evaluation of DSSCs using the dye extracted from different color petals of Leucanthemum vulgare flowers as novel sensitizers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 233, 118198.	2.0	38
5277	Photodegradation of ibuprofen and four other pharmaceutical pollutants on natural pigments sensitized TiO ₂ nanoparticles. Water Environment Research, 2020, 92, 1152-1161.	1.3	14
5278	Recent Developments in Copper and Iron Based Dyes as Light Harvesters. Springer Transactions in Civil and Environmental Engineering, 2020, , 107-114.	0.3	1
5279	Porphyrin dyes bearing heterocyclic anchoring groups for dye-sensitized solar cells with enhanced efficiency and long-term stability: Further optimization of champion porphyrin dye SM315. Applied Surface Science, 2020, 513, 145844.	3.1	8
5281	Effect of graphene between photoanode and sensitizer on the intramolecular and intermolecular electron transfer process. Physical Chemistry Chemical Physics, 2020, 22, 6391-6400.	1.3	32
5282	Vibrational Spectra of the Ruthenium–Tris-Bipyridine Dication and Its Reduced Form in Vacuo. Journal of Physical Chemistry A, 2020, 124, 2449-2459.	1.1	11
5283	Electron-Selective Layers for Dye-Sensitized Solar Cells Based on TiO ₂ and SnO ₂ . Journal of Physical Chemistry C, 2020, 124, 6512-6521.	1.5	34
5284	Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 2020, 24, 303-320.	2.4	41
5285	Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights. Renewable and Sustainable Energy Reviews, 2020, 121, 109678.	8.2	91
5286	Surfactant mediated TiO2 photoanodes and Cu2ZnSnS4 counter electrodes for high efficient dye sensitized solar cells. Materials Letters, 2020, 265, 127407.	1.3	17
5287	Synthesis and characterization of novel tetra anchoring A2-D-D-D-A2 architecture sensitizers for efficient dye-sensitized solar cells. Solar Energy, 2020, 198, 25-35.	2.9	28
5288	Structural studies and photovoltaic investigation of indolo[2,3- <i>b</i>]quinoxaline-based sensitizers/co-sensitizers achieving highly efficient DSSCs. New Journal of Chemistry, 2020, 44, 2797-2812.	1.4	20
5290	Design and fabrication of hybrid carbon dots/titanium dioxide (CDs/TiO2) photoelectrodes for highly efficient dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 3492-3499.	1.1	8
5291	Synthetic Strategies for Trapping the Elusive <i>trans</i> -Dirhodium(II,II) Formamidinate Isomer: Effects of Cis versus Trans Geometry on the Photophysical Properties. Inorganic Chemistry, 2020, 59, 2255-2265.	1.9	1
5292	Nearâ€Infrared Electrochemiluminescence from Bistridentate Ruthenium(II) Di(quinolineâ€8â€yl)pyridine Complexes in Aqueous Media. ChemPlusChem, 2020, 85, 346-352.	1.3	13
5293	Solar cells sensitized by porphyrin dyes containing a substituted carbazole donor with synergistically extended absorption and suppressed the dye aggregation. Chinese Chemical Letters, 2020, 31, 1927-1930.	4.8	31
5294	Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells. Solar Energy, 2020, 198, 283-294.	2.9	24
5295	A simple D-A-Ï€-A configured carbazole based dye as an active photo-sensitizer: A comparative investigation on different parameters of cell. Journal of Molecular Liquids, 2020, 310, 113189.	2.3	27

#	Article	IF	CITATIONS
5296	Design, Synthesis and Photophysical Analysis of New Unsymmetrical Carbazole-Based Dyes for Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112521.	2.0	13
5297	Design and synthesis of <scp>Dâ€i€â€A</scp> fluorescent dyes based on nicotinonitrile and azobenzene derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 2738-2747.	1.4	7
5298	Effects of 2-Amino-4,6-Dimethoxypyrimidine on PVDF/KI/I2-Based Solid Polymer Electrolytes for Dye-Sensitized Solar Cell Application. Journal of Electronic Materials, 2020, 49, 3728-3734.	1.0	2
5299	Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co ^{2+/3+} Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.	1.5	10
5300	Excited-State Switching Frustrates the Tuning of Properties in Triphenylamine-Donor-Ligand Rhenium(I) and Platinum(II) Complexes. Inorganic Chemistry, 2020, 59, 6736-6746.	1.9	16
5301	Improvement of dye-sensitized solar cell performance through introducing TiO2 in acetylene carbon black-graphite composite electrode. Thin Solid Films, 2020, 706, 138042.	0.8	6
5302	Efficient phenothiazine-ruthenium sensitizers with high open-circuit voltage (Voc) for high performance dye-sensitized solar cells. Dyes and Pigments, 2020, 180, 108454.	2.0	8
5303	Design and Synthesis of the Dâ^'π–A-Structured Coadsorbents with the Phenanthraquinone Core and Its Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2020, 124, 9886-9899.	1.5	7
5304	Poly(ethylene glycol)–poly(propylene glycol)–poly(ethylene glycol) and polyvinylidene fluoride blend doped with oxydianiline-based thiourea derivatives as a novel and modest gel electrolyte system for dye-sensitized solar cell applications. RSC Advances, 2020, 10, 14768-14777.	1.7	10
5305	A career in photophysicochemical and electrochemical properties of phthalocyanine — a Linstead Career Award paper. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1300-1319.	0.4	1
5306	Photoexcitation Processes in Oligomethine Cyanine Dyes for Dye-Sensitized Solar Cells—Synthesis and Computational Study. Nanomaterials, 2020, 10, 662.	1.9	11
5307	Spiro[fluorene-9,9′-phenanthren]-10′-one as auxiliary acceptor of D-A-ï€-A dyes for dye-sensitized solar cells under one sun and indoor light. Journal of Power Sources, 2020, 458, 228063.	4.0	37
5308	Theoretical and Conceptual Framework to Design Efficient Dye-Sensitized Solar Cells (DSSCs): Molecular Engineering by DFT Method. Journal of Cluster Science, 2021, 32, 243-253.	1.7	80
5309	Effects of structure and electronic properties of D-ï€-A organic dyes on photovoltaic performance of dye-sensitized solar cells. Journal of Energy Chemistry, 2021, 54, 208-216.	7.1	37
5310	Microwaveâ€assisted hydrothermal synthesis of Cuâ€doped <scp> TiO ₂ </scp> nanoparticles for efficient dyeâ€sensitized solar cell with improved openâ€circuit voltage. International Journal of Energy Research, 2021, 45, 5423-5432.	2.2	27
5311	Improving the optoelectronic efficiency of novel meta-azo dye-sensitized TiO2 semiconductor for DSSCs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119143.	2.0	17
5312	Influence of the donor and conjugation at D–ï€â€"A organic sensitizers for dye-sensitized solar cells: a first principle study. Chemical Papers, 2021, 75, 197-203.	1.0	0
5313	Y-shaped organic dyes with D2–Ĩ€â€"A configuration as efficient co-sensitizers for ruthenium-based dye sensitized solar cells. Journal of Power Sources, 2021, 481, 228952.	4.0	29

#	Article	IF	CITATIONS
5314	New carbazole-based organic dyes with different acceptors for dye-sensitized solar cells: Synthesis, characterization, dssc fabrications and density functional theory studies. Journal of Molecular Structure, 2021, 1225, 129297.	1.8	52
5315	Effect of different acceptors on N-hexyl carbazole moiety for dye-sensitized solar cells: design, characterization, molecular structure, and DSSC fabrications. Journal of the Iranian Chemical Society, 2021, 18, 949-960.	1.2	12
5316	Morphology dependent photovoltaic performance of zinc oxide-cobalt oxide nanoparticle/nanorod composites synthesized by simple chemical co-precipitation method. Journal of Alloys and Compounds, 2021, 852, 156997.	2.8	30
5317	A facile approach to construct organic D–Ĩ€â€"A dyes via sequential condensation reactions for dye-sensitized solar cells. Sustainable Energy and Fuels, 2021, 5, 289-296.	2.5	6
5318	Experimental and theoretical study of the synthesis of N-doped TiO2 by N ion implantation of TiO2 thin films. Applied Surface Science, 2021, 541, 148493.	3.1	21
5319	Double Fence Porphyrins that are Compatible with Cobalt(II/III) Electrolyte for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 4886-4893.	7.2	35
5320	Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules. Sustainable Energy and Fuels, 2021, 5, 144-153.	2.5	48
5321	Role of ZnO chelation for boosting photoresponse performance of isatin hydrazone/p-Si organic/inorganic heterojunctions for energy conversion approach. Solar Energy, 2021, 214, 326-336.	2.9	3
5322	Double Fence Porphyrins that are Compatible with Cobalt(II/III) Electrolyte for Highâ€Efficiency Dye‧ensitized Solar Cells. Angewandte Chemie, 2021, 133, 4936-4943.	1.6	5
5323	Effect of zinc oxide quantum dots on the photovoltaic properties of natural dyeâ€sensitized solar cells. International Journal of Energy Research, 2021, 45, 4170-4183.	2.2	8
5324	Photovoltaic and spectroscopic properties of bacteriochlorin-based photosensitizer: molecular approach. Research on Chemical Intermediates, 2021, 47, 1071-1085.	1.3	5
5325	Electrolyte/Dye/TiO ₂ Interfacial Structures of Dye-Sensitized Solar Cells Revealed by <i>In Situ</i> Neutron Reflectometry with Contrast Matching. Langmuir, 2021, 37, 1970-1982.	1.6	6
5326	Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 15303-15311.	1.4	11
5327	Studies on Dye-Sensitized Solar Cells Incorporated with Perovskite as Sensitizer Dye. , 2021, , 45-81.		0
5328	Band Gap Modulation Enabled by TCNQ Loading in a Ru-Based Metal–Organic Framework for Enhanced Near-Infrared Absorption and Photothermal Conversion. Crystal Growth and Design, 2021, 21, 729-734.	1.4	8
5329	Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq1 1	0,78431 0.2	4 ggBT /Overl
5330	Enhanced CO ₂ Photocatalysis by Indium Oxide Hydroxide Supported on TiN@TiO ₂ Nanotubes. Nano Letters, 2021, 21, 1311-1319.	4.5	35
5331	Hybrid photoanode of TiO2-ZnO synthesized by co-precipitation route for dye-sensitized solar cell using phyllanthus reticulatas pigment sensitizer. Solar Energy, 2021, 214, 517-530.	2.9	20

#	Article	IF	Citations
5332	Chemometric Modeling of Absorption Maxima of Carbazole Dyes Used in Dye-Sensitized Solar Cells. Challenges and Advances in Computational Chemistry and Physics, 2021, , 207-232.	0.6	1
5333	Functional materials for various organic electronic devices. , 2021, , 119-165.		2
5334	Record power conversion efficiencies for iron(<scp>ii</scp>)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization. Journal of Materials Chemistry A, 2021, 9, 3540-3554.	5.2	25
5335	Organometallic Photosensitizers. , 2021, , .		2
5336	Double anchor indolo[3,2- <i>b</i>]indole-derived metal-free dyes with extra electron donors as efficient sensitizers for dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 7542-7554.	1.4	5
5337	Candle soot based carbon counter electrode for cost-effective dye sensitized solar cells. , 2021, , .		1
5338	The influence of the shape and configuration of sensitizer molecules on the efficiency of DSSCs: a theoretical insight. RSC Advances, 2021, 11, 5556-5567.	1.7	7
5339	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
5340	Boosting the photoelectric conversion efficiency of DSSCs through graphene quantum dots: insights from theoretical study. Materials Chemistry Frontiers, 2021, 5, 5814-5825.	3.2	10
5341	A review on the use of carbon matrix incorporated with macrocyclic metal complexes as counter electrodes for platinum free dye sensitized solar cells. Journal of Coordination Chemistry, 2021, 74, 543-562.	0.8	6
5342	Molecular Devices. , 2021, , 206-240.		2
5343	Density functional theory design of double donor dyes and electron transfer on dye/TiO ₂ (101) composite systems for dye-sensitized solar cells. RSC Advances, 2021, 11, 3071-3078.	1.7	10
5344	Significant role of thorny surface morphology of polyaniline on adsorption of triiodide ions towards counter electrode in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 5958-5970.	1.4	11
5345	Advanced research trends in dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 10527-10545.	5.2	205
5346	Promising DSSCs Involving Organic D–i̇́€â€"A and Similar Structures for n- and p-type Semiconductors—A Theoretical Approach. Challenges and Advances in Computational Chemistry and Physics, 2021, , 127-165.	0.6	1
5347	Synthetic, natural and bioinspired dyes as TiO2 sensitizers in sustainable solar cells. , 2021, , 169-209.		0
5348	Dye-Sensitized Solar Cell. , 2021, , 325-372.		0
5349	Non-innocent ligand flavone and curcumin inspired ruthenium photosensitizers for solar energy conversion. Physical Chemistry Chemical Physics, 2021, 23, 16516-16524.	1.3	2

C	 D	
		DT
CILAD	NLFU	

#	Article	IF	CITATIONS
5350	Photoenergy Conversion (Dye-Sensitized Solar Cells). , 2021, , 469-540.		1
5351	Biotemplated Synthesis of Titanium Oxide Nanoparticles in the Presence of Root Extract of Kniphofia schemperi and Its Application for Dye Sensitized Solar Cells. International Journal of Photoenergy, 2021, 2021, 1-12.	1.4	16
5352	Molecular engineering of triphenylamineâ€based metalâ€free organic dyes for dyeâ€sensitized solar cells. International Journal of Quantum Chemistry, 2021, 121, e26620.	1.0	7
5353	A novel Ru (II) complex with high absorbance coefficient: efficient sensitizer for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 9345-9356.	1.1	8
5354	The Rise of Dye‣ensitized Solar Cells: From Molecular Photovoltaics to Emerging Solid‣tate Photovoltaic Technologies. Helvetica Chimica Acta, 2021, 104, e2000230.	1.0	18
5355	First principle investigation of new metal-free organic dye molecular for DSSCs: effects of ï€-conjugated groups. Molecular Simulation, 0, , 1-7.	0.9	2
5356	Effect of the photoanode fabrication condition, electrolyte type and illumination type on dye-sensitized solar cells performance. Bulletin of Materials Science, 2021, 44, 1.	0.8	5
5357	Novel Red Light-Absorbing Organic Dyes Based on Indolo[3,2-b]carbazole as the Donor Applied in Co-Sensitizer-Free Dye-Sensitized Solar Cells. Materials, 2021, 14, 1716.	1.3	3
5358	Polyaniline/Ag2S–CdS Nanocomposites as Efficient Electrocatalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. Catalysts, 2021, 11, 507.	1.6	4
5359	Computational study of the effect of π-spacers on the optoelectronic properties of carbazole-based organic dyes. Journal of Molecular Modeling, 2021, 27, 122.	0.8	6
5360	Electron Injection Process of Porphyrin Dye into a Heterogeneous TiO2/Re(I) Photocatalyst. Journal of Physical Chemistry C, 2021, 125, 7625-7636.	1.5	6
5361	Effects of side substituents in bithiophene spacer on the performance of dye-sensitized solar cells with cobalt electrolyte. Solar Energy, 2021, 218, 503-511.	2.9	9
5362	Adhesion improvement of polyaniline counter electrode in dye-sensitized solar cell using bio-based alkyd. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
5363	Optical-electronic performance and mechanism investigation of dihydroindolocarbazole-based organic dyes for DSSCs. Results in Physics, 2021, 23, 103939.	2.0	8
5364	Helical Copper Redox Mediator with Low Electron Recombination for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5252-5259.	3.2	6
5365	Aerosol-assisted chemical vapour deposition synthesis of fluorine-doped tin oxide (FTO) for dye-sensitized dollar cells (DSSCs): Effect of doping with fluorine. IOP Conference Series: Materials Science and Engineering, 2021, 1107, 012117.	0.3	0
5366	Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. Arabian Journal of Chemistry, 2021, 14, 103080.	2.3	20
5367	Structural Engineering of Organic D–Aâ~ï€â€"A Dyes Incorporated with a Dibutyl-Fluorene Moiety for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 23513-23522.	4.0	30

#	Article	IF	CITATIONS
5368	A pressure-assisted low temperature sintering of particulate bismuth chalcohalides BiSX (X = Br, I) for fabricating efficient photoelectrodes with porous structures. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 413, 113264.	2.0	5
5369	Coâ€sensitization of 4â€(thiopheneâ€2â€ylmethylene)thiazolidinâ€5â€one dyes with Ru(II) complex Nâ€719. Ap Organometallic Chemistry, 2021, 35, e6313.	olied 1.7	3
5370	New 3-Ethynylaryl Coumarin-Based Dyes for DSSC Applications: Synthesis, Spectroscopic Properties, and Theoretical Calculations. Molecules, 2021, 26, 2934.	1.7	12
5371	Synthesis, characterization and photovoltaic studies of $2,2\hat{a}\in^2$; $6\hat{a}\in^2,2\hat{E}^2$ -terpyridine-based ruthenium complexes with phenylamino, anthranyl and furfuryl substitutions at the $4\hat{a}\in^2$ -position. Journal of Coordination Chemistry, 2021, 74, 1382-1398.	0.8	2
5372	Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structureâ€property relationships. Electrochemical Science Advances, 2022, 2, e2100061.	1.2	7
5373	Effect of electropolymerization duration on the structure and performance of polypyrrole/graphene nanoplatelet counter electrode for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2021, 25, 2107-2113.	1.2	6
5374	The novel approach of stability aspect in organic oligoene dye for dye-sensitized solar cell applications. Journal of Solid State Electrochemistry, 2021, 25, 1949-1958.	1.2	1
5375	4,5-Diazafluorene ligands and their ruthenium(II) complexes with boronic acid and catechol anchoring groups: design, synthesis and dye-sensitized solar cell applications. Journal of Coordination Chemistry, 2021, 74, 1366-1381.	0.8	3
5376	Synthesis, characterization, and performance of oligothiophene cyanoacrylic acid derivatives for solar cell applications. International Journal of Advanced and Applied Sciences, 2021, 8, 128-135.	0.2	3
5377	Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO ₂ Cluster from Embedded Multiconfigurational Excited-State Theory. Journal of Physical Chemistry A, 2021, 125, 4998-5013.	1.1	5
5378	Synthesis of high polydispersity index polylactic acid and its application as gel electrolyte towards fabrication of dye-sensitized solar cells. Journal of Polymer Research, 2021, 28, 1.	1.2	9
5379	Synthesis and Magnetic Properties of Twoâ€Stepâ€Coordination Schiff Base Clusters. European Journal of Inorganic Chemistry, 2021, 2021, 2611-2617.	1.0	4
5380	Boyaya Duyarlı GÃ1⁄4neÅŸ Pillerinde Trifenilamin Tabanlı Organik Boyaların Kuantum Kimyasal Hesaplamalar/ Caucasian Journal of Science, 0, , .	.4 <u>+</u> . 0.2	0
5381	Ragi (finger millet) starch-based gel electrolytes for dye-sensitized solar cell application. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
5382	DFT/TD-DFT Study of Donorï€-Acceptor Organic Dye models contained Triarylamine for an Efficient Dye-Sensitized Solar Cell. Journal of Physics: Conference Series, 2021, 1963, 012012.	0.3	3
5383	Improved charge carrier dynamics through a type II staggered Ce MOF/mc BiVO4 n-n heterojunction for enhanced visible light utilisation. Applied Surface Science, 2021, 553, 149556.	3.1	16
5384	Comparison between Bi ₂ WO ₆ and TiO ₂ Photoanodes in Dye-Sensitized Solar Cells: Experimental and Computational Studies. Industrial & Engineering Chemistry Research, 2021, 60, 12292-12306.	1.8	9
5385	Structures, bonding, and electronic properties of metal thiocyanates. Journal of Physics and Chemistry of Solids, 2021, 154, 110085.	1.9	8

#	Article	IF	CITATIONS
5387	Fast processing of CrO4-ZnO nanocomposite material under UV and Solar-Light irradiation and DSSCs application. Materials Today: Proceedings, 2021, 48, 545-545.	0.9	0
5388	Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes and Pigments, 2021, 192, 109227.	2.0	100
5389	Performance of 4-Subsituted Pyridine Based Additive and Cobalt Redox in Poly(ethylene) Tj ETQq0 0 0 rgBT /Over Solar Cells. Energy & Fuels, 2021, 35, 15045-15057.	lock 10 Tf 2.5	50 667 Td (§
5390	Exploring the screening of perylene based organic sensitizers with different lengths and functional groups of acceptors via computational spectroscopic analysis. Chemical Data Collections, 2021, 34, 100729.	1.1	5
5391	Impact of 4-Tertiary-butylpyridine in Imidazolium Iodide/Triiodide Redox Couple-Based Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 9393-9401.	2.5	2
5392	Photoelectrochemical global approach to the behaviour of nanostructured anatase under different irradiation conditions. Catalysis Today, 2022, 397-399, 286-295.	2.2	8
5393	Development of the molecular engineering of disazo dye sensitizers and TiO2 semiconductor surface to improve the power conversion efficiency of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113408.	2.0	6
5394	ZnO hierarchical structures as sacrificial inclusions for enhanced performance under full sun and indoor light in bifacial dye sensitized solar cells. Solar Energy, 2021, 226, 214-224.	2.9	12
5395	Recent advances of organometallic complexes in emerging photovoltaics. Journal of Polymer Science, 2022, 60, 865-916.	2.0	23
5396	Highly efficient gel electrolytes by end group modified PEG-based ABA triblock copolymers for quasi-solid-state dye-sensitized solar cells. Chemical Engineering Journal, 2021, 420, 129899.	6.6	18
5397	Comprehensive study on dye sensitized solar cell in subsystem level to excel performance potential: A review. Solar Energy, 2021, 226, 192-213.	2.9	24
5398	A New Generation of Energy Harvesting Devices. , 0, , .		1
5399	Experimental and DFT study of natural curcumin derived dyes as n-type sensitizers. Solar Energy, 2021, 225, 305-315.	2.9	6
5400	Theoretical design study on the origin of the improved phosphorescent efficiency of DPEphos quinoline-substituted derivatives for OLEDs. Organic Electronics, 2021, 97, 106185.	1.4	1
5401	Dye-sensitized solar cell performance and photocatalytic activity enhancement using binary zinc oxide-copper oxide nanocomposites prepared via co-precipitation route. Ceramics International, 2021, 47, 30234-30246.	2.3	15
5402	Perovskite semiconductor-engineered cascaded molecular energy levels in naturally-sensitized photoanodes. Renewable and Sustainable Energy Reviews, 2021, 151, 111606.	8.2	5
5403	Plasmon-enhanced dye-sensitized solar cells through porphyrin-silver nanoparticle hybrid structures: Experimental and computational studies. Journal of Power Sources, 2021, 511, 230407.	4.0	6
5404	Physico-chemical interpretations of the adsorption isotherms of D–π–A sensitizers with pyridyl group on TiO2 for dye sensitized solar cells using statistical physics and density functional theory. Journal of Materials Research and Technology, 2021, 15, 369-383.	2.6	11

#	Article	IF	CITATIONS
5405	Synthesis, photophysical, electrochemical and DFT studies of two novel triazine-based perylene dye molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113525.	2.0	3
5406	Enhanced dye-sensitized solar cell performance using strontium titanate perovskite integrated photoanodes modified with plasmonic silver nanoparticles. Journal of Alloys and Compounds, 2021, 889, 161693.	2.8	17
5407	Dye-sensitized solar cells strike back. Chemical Society Reviews, 2021, 50, 12450-12550.	18.7	240
5408	Complexity of Electron Injection Dynamics and Light Soaking Effects in Efficient Dyes for Modern DSSC. Energies, 2021, 14, 407.	1.6	1
5409	Electrochemically switchable polymerization from surface-anchored molecular catalysts. Chemical Science, 2021, 12, 9042-9052.	3.7	15
5410	On the nature of plasmon-induced photocurrent enhancement in Bacteriochlorophyll c sensitized solar cells: Towards red light harvesting. Materials Chemistry and Physics, 2021, 258, 123932.	2.0	2
5411	On the diatomite-based nanostructure-preserving material synthesis for energy applications. RSC Advances, 2021, 11, 31884-31922.	1.7	17
5412	Electrolytes, Dyes, and Perovskite Materials in Third Generation Photovoltaic Cells. , 2022, , 621-634.		7
5413	Comparative hydrothermal synthesis of CeO ₂ crystals for use in light-scattering layers of dye-sensitized solar cells. CrystEngComm, 2021, 23, 1415-1422.	1.3	7
5414	Alternative <scp>lowâ€cost</scp> photon sensitizer for <scp>dyeâ€sensitized</scp> solar cells using less explored natural fabric dyes. International Journal of Energy Research, 2021, 45, 7764-7782.	2.2	4
5415	Recent improvements in dye-sensitized solar cells. , 2021, , 509-544.		2
5416	Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Physical Chemistry Chemical Physics, 2021, 23, 6182-6189.	1.3	13
5417	A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells. Molecules, 2021, 26, 225.	1.7	6
5418	Sterically hindered phenanthroimidazole ligands drive the structural flexibility and facile ligand exchange in cyclometalated iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2021, 50, 6889-6900.	1.6	17
5421	Low-Lying Electronic States and Photophysical Properties of Organometallic Pd(II) and Pt(II) Compounds. Modern Research Trends Presented in Detailed Case Studies. Topics in Current Chemistry, 2001, , 81-186.	4.0	145
5422	Recent Applications of Nanoscale Materials: Solar Cells. Nanostructure Science and Technology, 2009, , 1-31.	0.1	1
5423	Photoelectrolysis. , 2008, , 115-190.		4
5424	Photovoltaic - Electrolysis Cells. , 2008, , 485-516.		3

#	Article	IF	CITATIONS
5425	Fabrication of Photoelectrode Materials. , 2010, , 473-513.		2
5426	Mesoscopic Solar Cells. , 2013, , 79-96.		1
5428	Efficient Photovoltaic Solar Cells Based on Dye Sensitization of Nanocrystalline Oxide Films. , 1999, , 169-194.		3
5429	Electrochemical Synthesis of Metal Oxides for Energy Applications. Modern Aspects of Electrochemistry, 2014, , 217-239.	0.2	5
5431	Sol-Gel Coatings for Electrochromic Devices. , 2018, , 2745-2792.		2
5432	Fabrication of Charge Carrier Paths for High Efficiency Cells. Springer Series in Materials Science, 2009, , 251-262.	0.4	1
5433	Fiber Solar Cells. , 2013, , 145-200.		1
5434	Electrospun Oxide Nanofibers for Dye-Sensitized Solar Cells. Nanostructure Science and Technology, 2014, , 111-139.	0.1	1
5435	Femtosecond IR Study of Ultrafast Electron Injection in Nanocrystalline Thin Film Electrodes. Springer Series in Chemical Physics, 2001, , 450-452.	0.2	1
5436	Photoconductivity of dye-sensitized titanium dioxide films measured by time-resolved THz spectroscopy (TRTS). Springer Series in Chemical Physics, 2003, , 331-333.	0.2	2
5437	Conducting Polymers as Cost Effective Counter Electrode Material in Dye-Sensitized Solar Cells. Energy, Environment, and Sustainability, 2020, , 345-371.	0.6	8
5438	Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells. Applied Nanoscience (Switzerland), 2015, 5, 297-303.	1.6	1
5439	In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells. Chemical Engineering Journal, 2020, 396, 125302.	6.6	18
5440	New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Journal of Power Sources, 2020, 451, 227776.	4.0	47
5442	Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007, 107, 2891-2959.	23.0	658
5443	Strong Photon–Molecule Coupling Fields for Chemical Reactions. , 2011, , 228-255.		2
5444	Perylenediimides as more than just non-fullerene acceptors: versatile components in organic, hybrid and perovskite solar cells. Chemical Communications, 2020, 56, 3824-3838.	2.2	23
5446	Modeling of interfacial and bulk charge transfer in dye-sensitized solar cells. Cogent Engineering, 2017, 4, 1287231.	1.1	12

# 5447	ARTICLE Review of diffusion models for charge-carrier densities in dye-sensitized solar cells. Journal of Physics Communications, 2020, 4, 082001.	IF 0.5	CITATIONS
5448	Influence of the nature of the anchoring group on the interfacial energy level alignment in dye-sensitized solar cells: A theoretical perspective. Physical Review Materials, 2020, 4, .	0.9	4
5449	Recent advances in the application triplet–triplet annihilation-based photon upconversion systems to solar technologies. Journal of Photonics for Energy, 2017, 8, 1.	0.8	64
5450	A new carboxyl-functionalized P3HT/TiO2 composite photocatalyst: preparation, structure and prompted activity through interfacial engineering. Proceedings of the Nature Research Society, 0, 1, .	0.0	3
5451	The Essential Interface. , 2003, , .		1
5452	Current Status of Dye-Sensitized Solar Cells. , 2003, , .		4
5453	Beyond Photocatalytic Environmental Remediation. , 2005, , 369-390.		2
5454	Nanostructured Organic Solar Cells. , 2010, , 147-185.		2
5455	Application of Multiporphyrin Arrays to Solar Energy Conversion. , 2012, , 439-498.		1
5456	Push-Pull Porphyrins for Efficient Dye-Sensitized Solar Cells. , 2012, , 701-762.		2
5457	Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar Cells. , 2015, , 1-34.		1
5458	Dye-Sensitization Observed in Photoelectrochemically Etched n-Type Gallium Nitride. E-Journal of Surface Science and Nanotechnology, 2010, 8, 254-257.	0.1	3
5459	Structural, Morphological, Topographical Characterization of Titanium Dioxide Nanotubes Metal Substrates for Solar Cell Application. Journal of Material Science and Technology Research, 2017, 3, 17-31.	0.2	1
5460	Fruit extract dyes as photosensitizers in solar cells. Current Science, 2015, 109, 953.	0.4	24
5462	Nano-TiO2 for Solar Cells and Photocatalytic Water Splitting: Scientific and Technological Challenges for Commercialization. The Open Nanoscience Journal, 2011, 5, 64-77.	1.8	43
5463	Semiconductor Photocatalysis. Transient Absorption Spectroscopy of Semiconductor Nanoclusters The Review of Laser Engineering, 1997, 25, 417-424.	0.0	2
5464	DFT studies on the electronic structures of indoline dyes for dye-sensitized solar cells. Journal of the Serbian Chemical Society, 2010, 75, 259-269.	0.4	26
5465	Effect of Li-doped TiO ₂ Compact Layers for Dye Sensitized Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 819-822.	0.6	9

#	Article	IF	CITATIONS
5466	Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 907-915.	0.6	3
5467	Effect of SiO2Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes. Korean Journal of Materials Research, 2009, 19, 50-53.	0.1	7
5468	The Preparation of Dye-Sensitized Solar Cell Paste Used the Peroxo Titanium Complex and Characteristics by Annealing Temperature. Journal of Korean Powder Metallurgy Institute, 2015, 22, 396-402.	0.2	4
5469	Enhancement of Photocurrent in Dye-Sensitized Solar Cells Using Bismuth Doped TiO2- Graphene as a Hot Carrier Transport. Journal of Nanomaterials & Molecular Nanotechnology, 0, s1, .	0.1	1
5470	Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell. Journal of the Korean Ceramic Society, 2016, 53, 105-109.	1.1	7
5471	Properties of Working Electrodes with Nano YBO3:Eu3+ Phosphor in a Dye Sensitized Solar Cell. Journal of the Korean Ceramic Society, 2016, 53, 253-257.	1.1	3
5472	Optical and Electrochemical Properties of Non-Peripheral Thioaryl-Substituted Subphthalocyanine as Precursors for Dye-Sensitizer to Develop Photovoltaic Cells. American Journal of Analytical Chemistry, 2014, 05, 1037-1045.	0.3	5
5473	An Effective of Dye Molecules with Cadmium Sulfide Nanorods in Dye Sensitized Solar Cell (DSSCs). Advances in Materials Physics and Chemistry, 2019, 09, 37-47.	0.3	5
5474	Dye-Sensitized Solar Cell with Fluorinated Gel Electrolyte: Effect of TiO ₂ Particle Size on Performance. Advances in Nanoparticles, 2013, 02, 318-322.	0.3	5
5475	Visible Light Photoelectrocatalytic Degradation of Rhodamine B Using Ti/TiO2-NiO Photoanode. Journal of Environmental Protection, 2014, 05, 1630-1640.	0.3	16
5476	A Review of Visible-Light Sensitive TiO ₂ Synthesis via Sol-Gel N-Doping for the Degradation of Dissolved Organic Compounds in Wastewater Treatment. Journal of Materials Science and Chemical Engineering, 2014, 02, 28-40.	0.2	1
5477	Impact of Dye-Sensitized Solar Cell Anode Preparation on Performance. Open Journal of Applied Sciences, 2014, 04, 467-472.	0.2	1
5478	Photocatalysis of Low Concentration of Gaseous-Phase Benzene Using Visible-Light Irradiated N-doped and S-doped Titanium Dioxide. Environmental Engineering Research, 2008, 13, 171-176.	1.5	5
5479	Photocurrent Improvement by Incorporation of Single-Wall Carbon Nanotubes in TiO2Film of Dye-Sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2003, 24, 1501-1504.	1.0	29
5480	Effect of Phosphonate-Functionalized Surface Modification on Nanocrystalline TiO2Film Electrode. Bulletin of the Korean Chemical Society, 2003, 24, 1535-1537.	1.0	6
5481	Photoelectrochemical Studies of Nanocrystalline TiOâ,, Film Electrodes. Bulletin of the Korean Chemical Society, 2003, 24, 1155-1162.	1.0	22
5482	Dependence of TiO ₂ Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2004, 25, 742-744.	1.0	60
5483	Effect of TiO2 Inclusion in the Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Polymer Electrolyte of Dye-Sensitized Solar Cell. Bulletin of the Korean Chemical Society, 2006, 27, 322-324.	1.0	8

#	Article	IF	CITATIONS
5484	Method to Increase the Surface Area of Titania Films and Its Effects on the Performance of Dye-Sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2008, 29, 463-466.	1.0	16
5485	Synthesis of Nanocrystalline TiO2by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells. Bulletin of the Korean Chemical Society, 2008, 29, 1495-1498.	1.0	26
5486	Synthesis and Photovoltaic Properties of Novel Ruthenium(II) Sensitizers for Dye-sensitized Solar Cell Applications. Bulletin of the Korean Chemical Society, 2009, 30, 2329-2337.	1.0	7
5487	Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties. Bulletin of the Korean Chemical Society, 2010, 31, 2531-2536.	1.0	15
5488	The Effect of a Sol-gel Formed TiO2Blocking Layer on the Efficiency of Dye-sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2011, 32, 3629-3633.	1.0	18
5489	The Application of TiO2Hollow Spheres on Dye-sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2011, 32, 4382-4386.	1.0	7
5490	Synthesis of Alkyl-functionalized Organic Dyes and Their Application to Dye Sensitized Solar Cells (DSSCs). Bulletin of the Korean Chemical Society, 2012, 33, 293-296.	1.0	6
5491	Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications. Bulletin of the Korean Chemical Society, 2012, 33, 1204-1208.	1.0	5
5492	A Density Functional Theory Study of Additives in Electrolytes of a Dye Sensitized Solar Cell. Bulletin of the Korean Chemical Society, 2013, 34, 2491-2494.	1.0	9
5493	Aqueous Electrolytes Based Dye-sensitized Solar Cells using I-/I3-Redox Couple to Achieve ≥ 4% Power Conversion Efficiency. Bulletin of the Korean Chemical Society, 2014, 35, 1433-1439.	1.0	14
5494	Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell. Journal of the Korean Chemical Society, 2011, 55, 279-282.	0.2	3
5495	Construction of Light-Harvesting Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 480-489.	0.0	2
5497	Improved Tri-iodide Reduction Reaction of Co-TMPP/C as a Non-Pt Counter Electrode in Dye-Sensitized Solar Cells. Journal of Electrochemical Science and Technology, 2010, 1, 75-80.	0.9	3
5498	Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells. Journal of Electrochemical Science and Technology, 2011, 2, 68-75.	0.9	7
5499	CdSe Quantum Dots Sensitized TiO2Electrodes for Photovoltaic Cells. Journal of the Korean Electrochemical Society, 2007, 10, 257-261.	0.1	7
5500	Texture, Morphology and Photovoltaic Characteristics of Nanoporous F:SnO2Films. Journal of Electrical Engineering and Technology, 2009, 4, 93-97.	1.2	17
5501	Review of the Development of Dyes for Dye-Sensitized Solar Cells. Applied Science and Convergence Technology, 2019, 28, 194-206.	0.3	20
5502	Emerging Photovoltaic Technologies and Eco-Design—Criticisms and Potential Improvements. , 0, ,		5

#	Article	IF	Citations
5503	Microstructural Observation of Photoelectrochemically Tailored Nano-Honeycomb TiO ₂ . Electrochemistry, 1999, 67, 1234-1236.	0.6	22
5504	ã,฿,ªãƒ³æ€§æ¶²ä¼2"ã,'電解質ã«ç"¨ã,"ãŸæ¹¿å¼å¤ẽ™1⁄2é›»æ±. Electrochemistry, 2002, 70, 190-194.	0.6	17
5505	Electron Transport in Nano-structured TiO ₂ Electrodes for Improvement of Dye-sensitized Solar Cells. Electrochemistry, 2002, 70, 399-401.	0.6	9
5506	Time- and Frequency-resolved Photoelectrochemical Investigations on Nano-honeycomb TiO ₂ Electrodes. Electrochemistry, 2002, 70, 453-456.	0.6	11
5507	Dye-sensitized Solar Cell with the Electrode of Chlorophyll Derivative Adsorbed on Titanium Dioxide Film. Electrochemistry, 2003, 71, 174-176.	0.6	7
5508	Measurement and Analysis of the Series Resistance in a Dye-Sensitized Solar Cell. Electrochemistry, 2005, 73, 60-66.	0.6	8
5509	Dye-Sensitized Solar Cells Based on ZnO Films and Natural Dyes. International Journal of Materials and Chemistry, 2012, 2, 105-110.	1.0	42
5510	Absorption Wavelength Extension for Dye-Sensitized Solar Cells by Varying the Substituents of Chiral Salen Cu(II) Complexes. Journal of Applied Solution Chemistry and Modeling, 2016, 5, 48-56.	0.4	3
5511	Multiscale Simulation of Dye-Sensitized Solar Cells Considering Schottky Barrier Effect at Photoelectrode. Japanese Journal of Applied Physics, 2011, 50, 04DP06.	0.8	5
5512	Polymer-Sensitized Solar Cells Using Polythiophene Derivatives with Directly Attached Carboxylic Acid Groups. Japanese Journal of Applied Physics, 2012, 51, 10NE04.	0.8	3
5513	Directly Determine an Additive-Induced Shift in Quasi-Fermi Level of TiO2Films in Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE15.	0.8	4
5514	Three Synthetic Routes to a Commercial N3 Dye. International Journal of Applied Physics and Mathematics, 2012, , 107-110.	0.3	12
5515	Mixed-Metal Cu–Zn Thiocyanate Coordination Polymers with Melting Behavior, Glass Transition, and Tunable Electronic Properties. Inorganic Chemistry, 2021, 60, 16149-16159.	1.9	2
5516	Efficient Solid-State Electrolytes Based on Aryl-Modified Imidazolium Ionic Crystals for Quantum Dot-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 10739-10747.	2.5	2
5517	Electronically Coupled TTA-UC Solar Cells. , 2022, , 209-237.		0
5518	lsomeric tetrazole-based organic dyes for dye-sensitized solar cells: Structure-property relationships. Journal of Molecular Structure, 2022, 1250, 131749.	1.8	9
5519	Enhancing spectral response towards high-performance dye-sensitised solar cells by multiple dye approach: A comprehensive review. Applied Materials Today, 2021, 25, 101204.	2.3	11
5520	Terminal π-group engineering of organic co-sensitizers for thiourea dye based dye-sensitized solar cells. Solar Energy, 2021, 230, 312-320.	2.9	8

#	Article	IF	CITATIONS
5521	Review of solar photovoltaic cooling systems technologies with environmental and economical assessment. Journal of Cleaner Production, 2021, 326, 129421.	4.6	46
5522	Photoanode modification of dye-sensitized solar cells with Ag/AgBr/TiO2 nanocomposite for enhanced cell efficiency. Solar Energy, 2021, 230, 59-72.	2.9	11
5523	Key Technologies for Next Generation Thin Film Silicon Solar Cells. Dye-sensitized Solar Cells for the Next Generation Hyomen Kagaku, 2000, 21, 288-293.	0.0	1
5524	Observation of competition between ultrafast electron injection and vibrational energy relaxation. , 2000, , .		0
5525	Parameters controlling electron injection kinetics in ruthenium bipyridyl dye sensitised titanium dioxide nanocrystalline films. , 2000, , .		0
5526	Recent developments in sensitized mesoporous heterojunction solar cells. Materials Research Society Symposia Proceedings, 2001, 708, 911.	0.1	0
5527	Nonergodic dye-to-semiconductor electron transfer. , 2002, , .		0
5528	Photoconductivity of dye-sensitized titanium dioxide films measured by time-resolved THz spectroscopy (TRTS). , 2002, , .		0
5529	Electrochemical Characterization. , 2003, , 626-668.		0
5530	Control of charge transfer and interface structures in nano-structured dye-sensitized solar cells. , 2003, , 83-104.		0
5531	Dynamic Properties of Nanoparticles. , 2003, , 562-594.		0
5532	Photo-Induced Electron Transfer Reactivity at NanoscaleSemiconductor-Solution Interfaces. , 2003, , .		2
5533	Dye-Sensitized Solar Cells Based on Mesoscopic Oxide Semiconductor Films. , 2003, , .		0
5534	有機å^†åā,'増感色ç´ã«ç"¨ã"ã¥è‰²ç´å¢—感å¤∕™1⁄₂é›»æ±. Electrochemistry, 2004, 72, 40-44.	0.6	0
5535	Microwave-assisted Pulverization of Perylene Pigment and Fabrication of Pigment-Sensitized Mesoporous TiO ₂ Solar Cells. Electrochemistry, 2004, 72, 490-494.	0.6	0
5536	Fabrication of High-performance Carbon Counter Electrode for Dye-sensitized Solar Cells. Journal of Korean Powder Metallurgy Institute, 2007, 14, 44-49.	0.2	0
5537	Direction to High Efficiency-dye-sensitized Solar Cells. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 573-576.	0.2	1
5538	New Type High Efficient Quasi-Solid-State Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. , 2008, , 1345-1347.		0

#	Article	IF	CITATIONS
5539	A New Approach to Alternative Counter Electrode for a Novel Type of Solar Cell. , 2008, , 1352-1356.		1
5540	Design, Synthesis and Characterization of Amphiphilic Bipyridyl Ruthenium (II) Sensitizers. , 2008, , 1275-1279.		0
5541	Property of the Nano-Thick TiO2Films Using an ALD at Low Temperature. Korean Journal of Materials Research, 2008, 18, 515-520.	0.1	3
5542	Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide. Journal of Environmental Science International, 2008, 17, 1195-1201.	0.0	0
5543	Preparation of Thin Films of TiO2 Nanoparticles using Electrophoresis Deposition Method. IEEJ Transactions on Fundamentals and Materials, 2009, 129, 620-626.	0.2	0
5544	Photomodulation of Interfacial Electron Transfer by Optical Switches. Springer Series in Chemical Physics, 2009, , 634-636.	0.2	0
5545	Silver /Silver Oxide Nanoparticles as Potential Sensitizers in Dye-Sensitized Solar Cells. , 2010, , .		0
5546	The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 5857.	0.2	2
5547	Recent Advances in Sensitized Solar Cells. Green Energy and Technology, 2010, , 153-168.	0.4	2
5548	Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency. Journal of Korean Powder Metallurgy Institute, 2010, 17, 449-455.	0.2	1
5549	Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 118203.	0.2	0
5550	The Present Status of Development of Dye-Sensitized Solar Cell. Journal of the Japan Society of Colour Material, 2011, 84, 92-98.	0.0	0
5552	Research of fluorescent properties of photo-induced electron transfer of 5(6)-carboxyfluorescein dye-sensitized TiO2 nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 090505.	0.2	0
5553	The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2012, 25, 558-562.	0.0	0
5554	The Enhancement of the Performance of Dye Sensitized Solar Cells Using Nb2O5-TiO2Compound. Transactions of the Korean Institute of Electrical Engineers, 2012, 61, 1153-1158.	0.1	0
5555	Synthesis of TiO2by Sol-gel Method and Electrochemical Properties of DSSCs with Controlling pH. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2012, 25, 620-625.	0.0	0
5556	Surface Treatment for Effective Dye Adsorption on Nanocrystalline TiO2. Japanese Journal of Applied Physics, 2012, 51, 10NE16.	0.8	0
5557	Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2012, 25, 902-905.	0.0	0

#	Article	IF	CITATIONS
5558	Di(isothiocyanato)bis(4-methyl-4'-vinyl-2,2'-bipyridine) Ruthenium(II) Films Deposited on Titanium Oxide-Coated, Fluorine-Doped Tin Oxide for an Efficient Solar Cell. Green and Sustainable Chemistry, 2013, 03, 61-67.	0.8	0
5559	Pt Deposition on Anode Enhances the Performance of Dye-Sensitized Solar Cell with Non-Cross-Linked Gel Electrolyte. Journal of Materials Science and Chemical Engineering, 2013, 01, 16-19.	0.2	2
5560	Plasmonic nanoparticles enhanced dye-sensitized solar cells. , 2013, , .		0
5561	Effect of Adsorbed Cations on Microcosmic Performances in Dye-Sensitized Solar Cells. , 2013, , .		0
5563	DSSCs Efficiency by Tape Casting Pt Counter Electrode and Different Thickness Between Two Substrates. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2013, 26, 209-215.	0.0	0
5564	Ferroelectric BiFeO3-coated TiO2Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2013, 26, 198-203.	0.0	0
5565	Optimization of Photoelectrode for Flexible Dye-sensitized Solar Cell and Preliminary Study of Tandem Cell. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 527-531.	0.6	1
5566	Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer. Journal of the Microelectronics and Packaging Society, 2013, 20, 39-46.	0.1	3
5567	Electrochemistry of Hydrogenases. Electroanalytical Chemistry, A Series of Advances, 2013, , 33-104.	1.7	0
5569	A Study on the Efficiency of Dye Sensitized Solar Cell Based on the Volume of Binder Addition. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2013, 26, 878-881.	0.0	0
5570	Nanoparticles Influence on Dye-Sensitized Solar Cells Based on TiO2. American Journal of Nanoscience and Nanotechnology, 2014, 2, 32.	0.5	0
5571	Passivating the Surface of TiO2 Photoelectrodes with Nb2O5 and Al2O3 for High-Efficiency Dye-Sensitized Solar Cells. Nanostructure Science and Technology, 2014, , 201-210.	0.1	0
5572	Electrochemical Solar Cells Based on Pigments. Water Science and Technology Library, 2014, , 35-59.	0.2	0
5573	Research and Development of Functional Colorants Materials. Korean Chemical Engineering Research, 2014, 52, 1-7.	0.2	1
5574	Photopatterning to Create New Structures on Surfaces. , 1997, , 53-67.		0
5576	Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. , 1999, , 323-327.		0
5577	Molecular Systems and Their Applications to Energy Conversion. , 1999, , 159-234.		0
5578	Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process. , 1999, , 404-408.		0

ARTICLE IF CITATIONS Nanoparticles: Charge Carrier Dynamics., 0,, 3165-3178. 0 5579 Electronic Properties of Noncrystalline Semiconductors. Springer Series in Materials Science, 2015, , 5580 0.4 193-228. Fabrication of TCO-less Dye-sensitized Solar Cells by Using Low Cost Ti Layer Deposited Glass 5581 Substrate. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 0.0 0 725-729. Characteristics of charge transport in nano-sized TiO2 particles/submicron spheres multilayer 5583 0.2 thin-film electrode. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 017301. NANOMATERIAIS: CONVERSÃfO DE ENERGIA SOLAR., 2015, , 1-40. 5584 0 A Study on the Design of Dye-sensitized Solar Cells Using Textile Photoelectrodes and Their Electrical Properties. Textile Science and Engineering, 2015, 52, 199-205. 5586 0.4 Properties of Dye Sensitized Solar Cells with Adding Nano Carbon Black into Blocking Layer. Journal 5587 1.1 1 of the Korean Ceramic Society, 2015, 52, 294-298. Study on Electrode Design to Increase the Cell Efficiencies and Electrical Properties of Dye-sensitized 5588 0.4 Solar Cells. Textile Science and Engineering, 2015, 52, 224-231. Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye 5589 0.0 1 Synthesized Solar Cell. Journal of the Korean Magnetics Society, 2015, 25, 156-161. FOTOVOLTAİK ÜRETİM TEKNOLOJİLERİ ÃœZERİNE BİR ARAÅžTIRMA. MuÄŸla Journal of Science and Technology, 2015 5590 1,27-27 Dye Sensitized Solar Cells., 2016, , 873-873. 5591 95 Sol–Gel Coatings for Electrochromic Devices. , 2016, , 1-49. 5592 Optimization of Dye-sensitized Solar Cells Prepared by Pechini Sol-Gel Method. Wuji Cailiao 5593 0.6 0 Xuebao/Journal of Inorganic Materials, 2016, 31, 739. 4,4â€²-(1,2-Diazaniumylethane-1,2-diyl)dibenzoate trihydrate. IUCrData, 2016, 1, . 5594 0.1 Synthesis and Characterization of an Organometallic Ruthenium Complex Bearing 4-Picolinic Acid Ligands for Dye-Sensitized Solar Cells (DSSCs). Journal of the Korean Institute of Electrical and 5595 0.00 Electronic Material Engineers, 2016, 29, 192-197. The Effects of WO₃Nanoparticles Addition to the TiO₂Photoelectrode in 5596 Dye-Sensitized Solar Cells. Current Photovoltaic Research, 2016, 4, 42-47. Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au 5597 0.1 1 Nano Thin Films. Korean Journal of Materials Research, 2016, 26, 417-421. 5598 Identification of Heterogeneous Surface Properties via Fluorescent Probes., 2016, , 353-370.

#	Article	IF	CITATIONS
5600	Sustainable Design of Photovoltaics. , 2017, , 416-493.		0
5601	Electrochemical Water Splitting. Electrochemical Energy Storage and Conversion, 2017, , 125-160.	0.0	0
5602	Sustainable Design of Photovoltaics. Advances in Chemical and Materials Engineering Book Series, 2017, , 412-489.	0.2	2
5603	Solar Cells Based on Sol–Gel Films. , 2017, , 1-19.		0
5604	Electro-deposition under a modulated electrical field as an enhanced method for the preparation of an efficient photoanode of dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 22, 157-167.	1.2	0
5605	Photovoltaic Materials. , 2018, , 1-22.		0
5606	Optical absorption spectroscopy of the blackberry dye applied in solar cell sensitizers and gamma radiation effects.‎. Arab Journal of Nuclear Sciences and Applications, 2018, .	0.1	0
5607	From Nanomaterials and Nanotechnologies to the Alternative Energy. Progress in Physics of Metals, 2018, 19, 442-486.	0.5	1
5608	CHAPTER 3. Dye-sensitised Solar Cells. Inorganic Materials Series, 2019, , 89-152.	0.5	1
5609	Basic Concepts, Engineering, and Advances in Dye-Sensitized Solar Cells. , 2020, , 185-233.		2
5610	Fabrication techniques and working principle of neoteric dye-sensitized solar cells. , 2022, , 159-179.		0
5611	Ferrocene Appended Asymmetric Sensitizers with Azine Spacers with phenolic/nitro anchors for Dye-Sensitized Solar Cells. Journal of Molecular Structure, 2022, 1249, 131630.	1.8	7
5613	Functional nanomaterial in energy and environmental science. , 2020, , 1-23.		2
5615	Spiroâ€sulfoneâ€based Auxiliary Acceptor in Dâ€Aâ€ï€â€A Dyeâ€sensitized Solar Cells Application under Indoor/Outdoor Light. Asian Journal of Organic Chemistry, 2021, 10, 3396-3405.	1.3	2
5616	Optimization of photovoltaic conversion performance of a TiO ₂ based dye sensitized solar cells (DSSCs). Engineering Research Express, 2021, 3, 045021.	0.8	3
5617	Highly efficient (N-benzothiazolyl)-cyanoacetamide based co-sensitizers for high efficiency dye-sensitized solar cells. Optik, 2022, 249, 168274.	1.4	14
5619	Investigation of solid hybrid solar cells based on molecular glasses. , 2006, 12, 96.		5
5620	Artificial foliage with remarkable quantum conversion efficiency in bicarbonate to formate. Sustainable Energy and Fuels, 0, , .	2.5	1

#	Article	IF	CITATIONS
5621	TiO2 modification with multi-acid treatment for efficient interfacial perovskite-TiO2 electron transport. Journal of Alloys and Compounds, 2022, 898, 162837.	2.8	4
5622	Synthesis and Study of the Physical and Photovoltaic Properties of Novel Heteroleptic Ruthenium(II) Complexes Ligated with Highly π-Conjugated Bipyridine Ancillary and Phenanthroline Anchoring Ligand for Dye-Sensitized Solar Cells. Journal of Chemistry, 2021, 2021, 1-10.	0.9	1
5623	A short review on the advancement in the development of TiO ₂ and ZnO based photo-anodes for the application of Dye-Sensitized Solar Cells (DSSCs). Engineering Research Express, 2021, 3, 042004.	0.8	5
5624	Dye-sensitized solar cells with polyaniline: A review. Inorganic Chemistry Communication, 2022, 135, 109087.	1.8	30
5625	Tailored TiO ₂ nanorod arrays for dye sensitized solar cell applications. EPJ Applied Physics, 2021, 96, 30104.	0.3	0
5626	Amphiphilic Indoline-Based Unsymmetrical Squaraine Dyes for Dye-Sensitized Solar Cells: Modulating the Dye-TiO2/Electrolyte Interface for Nonaqueous and Aqueous Electrolytes. ACS Applied Energy Materials, 0, , .	2.5	10
5627	Oxidative electropolymerization films of a styrene-appending ruthenium complex with highly performed electrochemical, solar photoelectric conversion and photoelectrochemical oxygen reduction properties. Electrochimica Acta, 2022, 403, 139672.	2.6	6
5628	Synthesis of benzidine-based conjugated organic materials bearing donor-acceptor groups: DFT studies and photovoltaic applications. Journal of Molecular Structure, 2022, 1251, 131939.	1.8	8
5629	Review on the Revolution of Polymer Electrolytes for Dye-Sensitized Solar Cells. Energy & Fuels, 2021, 35, 19320-19350.	2.5	13
5630	Low cost and efficient photovoltaic conversion by nanocrystalline solar cells. Journal of Chemical Sciences, 1995, 107, 607-619.	0.7	9
5631	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews, 2021, 50, 13372-13409.	18.7	10
5632	Solid-state dye-sensitized solar cells using polymeric hole conductors. RSC Advances, 2021, 11, 39570-39581.	1.7	9
5633	Ruthenium complexes bearing N-heterocyclic carbene based CNC and CN^CHC' pincer ligands: Photophysics, electrochemistry, and solar energy conversion. Journal of Organometallic Chemistry, 2022, 959, 122203.	0.8	6
5634	Low cost carbazole-based organic dyes bearing the acrylamide and 2-pyridone moieties for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113760.	2.0	19
5635	Starburst configured imidazole-arylamine organic sensitizers for DSSC applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113735.	2.0	5
5638	Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality. Chemical Science, 2021, 12, 16035-16053.	3.7	17
5639	Influence of Limonene from Orange Peel in Poly (Ethylene Oxide) PEO/I ^{â^'} /I ₃ ^{â^'} Based Nanocrystalline Dye‣ensitized Solar Cell. ChemistrySelect, 2022, 7, .	0.7	4
5640	Review on fabrication methodologies and its impacts on performance of dye-sensitized solar cells. Environmental Science and Pollution Research, 2022, 29, 15233-15251.	2.7	22

#	Article	IF	CITATIONS
5641	Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 1460-1470.	2.5	10
5642	Hydroxylation-induced defect states and formation of a bidentate acetate adstructure of TiO ₂ catalysts with acetic acid variation for catalytic application. Semiconductor Science and Technology, 2022, 37, 045008.	1.0	0
5643	Dye-sensitized solar cells. , 2022, , 195-244.		1
5644	Characterizing Interfacial Structures of Dye-Sensitized Solar Cell Working Electrodes. Langmuir, 2022, 38, 871-890.	1.6	3
5645	Electric Field Manipulation for Improved Rates of Photocatalysis by Mesoporous TiO2. Journal of Physical Chemistry C, 2022, 126, 1376-1388.	1.5	0
5646	Molecular engineering of ruthenium-based photosensitizers with superior photovoltaic performance in DSSCs: novel N-alkyl 2-phenylindole-based ancillary ligands. New Journal of Chemistry, 2022, 46, 2739-2746.	1.4	1
5647	Investigation of tropical plantâ€based natural dyes combination and adsorption optimization for natural dyeâ€sensitized solar cell. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	4
5648	Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Solar Energy, 2022, 233, 378-407.	2.9	52
5650	Visible-light photocatalysis promoted by solid- and liquid-phase immobilized transition metal complexes in organic synthesis. Coordination Chemistry Reviews, 2022, 458, 214331.	9.5	22
5651	Indoline-Based Donor-ï€-Acceptor Visible-Light Responsive Organic Dyes for Dye-Sensitized Solar Cells: Co-sensitization with Squaraine Dye for Panchromatic IPCE Response. ACS Applied Energy Materials, 2022, 5, 1858-1868.	2.5	18
5652	Improved performance of dye sensitized solar cell by exploration of photoanode and ruthenium based dye. Optical Materials, 2022, 125, 112042.	1.7	9
5653	Dft, Dftb and Td-Dft Theoretical Investigations of Î-Conjugated Molecules Based on Thieno[2,3-B] Indole for Dye-Sensitized Solar Cell Applications. SSRN Electronic Journal, 0, , .	0.4	0
5654	Recent Development and Future Prospects of Rigid and Flexible Dye-Sensitized Solar Cell: A Review. Lecture Notes in Electrical Engineering, 2022, , 85-109.	0.3	4
5655	Thin Film Fabrication by Pulsed Laser Deposition from TiO2 Targets in O2, N2, He, or Ar for Dye-Sensitized Solar Cells. Coatings, 2022, 12, 293.	1.2	7
5656	Analytical extraction of the single-diode model parameters for macro-porous silicon-based dye-sensitized solar cells using Lambert W-function. Journal of Solid State Electrochemistry, 2022, 26, 1193-1199.	1.2	0
5657	Computational analysis of carbazole-based newly efficient D-ï€-A organic spacer dye derivatives for dye-sensitized solar cells. Structural Chemistry, 2022, 33, 1097-1107.	1.0	7
5658	In2O3 Based Hybrid Materials: Interplay between Microstructure, Photoelectrical and Light Activated NO2 Sensor Properties. Chemosensors, 2022, 10, 135.	1.8	6
5659	Spatial separation strategies to control charge recombination and dye regeneration in p-type dye sensitized solar cells. Solar Energy, 2022, 236, 107-152.	2.9	14

#	Article	IF	CITATIONS
5660	Experimental and theoretical study of organic sensitizers for solid-state dye-sensitized solar cells (s-DSSCs). Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113890.	2.0	6
5661	DFT, DFTB and TD-DFT theoretical investigations of π-conjugated molecules based on thieno[2,3-b] indole for dye-sensitized solar cell applications. Physica B: Condensed Matter, 2022, 636, 413850.	1.3	16
5662	Terpyridyl Ruthenium Complexes Functionalized with Conjugated Heterocycles for Panchromatic Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 13461-13470.	2.5	3
5663	Phosphate Group-Derivated Bipyridine–Ruthenium Complex and Titanium Dioxide Nanoparticles for Electrochemical Sensing of Protein Kinase Activity. ACS Sensors, 2021, 6, 4451-4460.	4.0	6
5664	Dye-Sensitized Solar Cells (DSSCS) Based on a Natural Dye (<i>Mangifera indica</i>): A Mini Review. Key Engineering Materials, 0, 917, 146-153.	0.4	4
5665	Photoexcited Intramolecular Charge Transfer in Dye Sensitizers: Predictive In Silico Screening for Dye-Sensitized Solar Cell Devices. ACS Omega, 2022, 7, 13465-13474.	1.6	7
5666	Quantum Dots for Type III Photovoltaics. RSC Nanoscience and Nanotechnology, 2017, , 436-471.	0.2	1
5669	Characterization of excited electronic and vibronic states of platinum metal compounds with chelate ligands by highly frequency-resolved and time-resolved spectra. Topics in Current Chemistry, 1997, , 153-249.	4.0	0
5671	Deep eutectic solvent based on choline chloride and phenol as electrolyte additives in dye-sensitized solar cells: a comparison with 4-tert-butylpyridine. Journal of the Australian Ceramic Society, 2022, 58, 913-921.	1.1	2
5672	Hydrogen molecule as seen in electron and positron scattering. Molecular Physics, 0, , .	0.8	1
5673	Analysis of Pomegranate Dye Coated Titanium Nanotubes Anode for Solar Cell Application. Advances in Materials Science and Engineering, 2022, 2022, 1-7.	1.0	2
5674	Emergence of Copper(I/II) Complexes as Third-Generation Redox Shuttles for Dye-Sensitized Solar Cells. ACS Energy Letters, 2022, 7, 1926-1938.	8.8	25
5675	Tuning the HOMO and LUMO energy levels of dye sensitizers with electron-accepting capability and electron-drawing capability of substituents to optimize the efficiency of dye-sensitized solar cells: Approach of theoretical. Inorganic Chemistry Communication, 2022, 141, 109522.	1.8	0
5676	Mesoporous Dye-Sensitized Solar Cells. , 2012, , 447-462.		Ο
5677	Review—Recent Advancements in Dye-Sensitized Solar Cells; From Photoelectrode to Counter Electrode. Journal of the Electrochemical Society, 2022, 169, 066507.	1.3	28
5680	Dye-Sensitized Solar Cells. Springer Handbooks, 2022, , 1137-1214.	0.3	1
5682	3D Graphene Foam by Chemical Vapor Deposition: Synthesis, Properties, and Energy-Related Applications. Molecules, 2022, 27, 3634.	1.7	16
5683	Fine-tuning the ï€ bridge of organic dye molecules with triarylamino as an electron donor by using electron-rich/deficient groups for more efficient dye-sensitized solar cells. Molecular Physics, 2022, 120	0.8	2

#	Article	IF	CITATIONS
5684	Rutheniumâ€based complex dyes for dyeâ€sensitized solar cells. Journal of the Chinese Chemical Society, 2022, 69, 1242-1252.	0.8	4
5685	Costâ€effective dyes based on lowâ€cost donors and Pdâ€free synthesis for dyeâ€sensitized solar cells. Solar Rrl, 0, , .	3.1	0
5686	Insights into <scp> MoS ₂ </scp> and its composites for dyeâ€sensitized solar cells. International Journal of Energy Research, 0, , .	2.2	1
5687	A Review And Comparative Analysis Of Different Types Of Dyes For Applications In Dye-Sensitized Solar Cells. Brazilian Journal of Physics, 2022, 52, .	0.7	9
5688	Heteroleptic Cu(<scp>i</scp>) bis-diimine complexes as sensitizers in dye-sensitized solar cells (DSSCs): on some factors affecting intramolecular charge transfer. Physical Chemistry Chemical Physics, 2022, 24, 17217-17232.	1.3	8
5689	Improvements in photoelectric performance of dye-sensitised solar cells using ionic liquid-modified TiO ₂ electrodes. RSC Advances, 2022, 12, 19624-19631.	1.7	1
5690	Hydrophobic carbon/Whitlockite derived from expired yogurt as a counter electrode for dye-sensitized solar cell (DSSC). Journal of Materials Science: Materials in Electronics, 2022, 33, 16638-16654.	1.1	0
5691	Investigation on Dye Regeneration Kinetics at P-Type Sensitized Nanoparticle Nickel Oxide Film by Scanning Electrochemical Microscopy. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	1
5692	Synthesis and Luminescence Characterization of Downconversion and Downshifting Phosphor for Efficiency Enhancement of Solar Cells: Perspectives and Challenges. ACS Applied Electronic Materials, 2022, 4, 3354-3391.	2.0	9
5693	Rational design of ZLOO3-based organic dyes for highly efficient dye-sensitized solar cells: Influence of alkynyl group and π-spacers on photovoltaic performance. Journal of Molecular Structure, 2022, 1269, 133728.	1.8	6
5694	Photovoltaphores: pharmacophore models for identifying metal-free dyes for dye-sensitized solar cells. Npj Computational Materials, 2022, 8, .	3.5	4
5695	Spectrophotometric Determination of Formation Constants of Iron(III) Complexes with Several Ligands. Chemistry, 2022, 4, 701-716.	0.9	2
5696	Improvement of the fill factor characteristic of TiO2-based dye-sensitive solar cell using lichen Collema nigra. Optical Materials, 2022, 131, 112638.	1.7	1
5697	N719 dye as a sensitizer for dyeâ€sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Environmental Progress and Sustainable Energy, 2023, 42, .	1.3	13
5698	Review Penggunaan Reduced Graphene Oxide/TiO2 sebagai Fotoelektrode pada Dye-Sensitized Solar Cell. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 2022, 6, 1-9.	0.2	0
5699	Synthesis of innovative triphenylamine-functionalized organic photosensitizers outperformed the benchmark dye N719 for high-efficiency dye-sensitized solar cells. Scientific Reports, 2022, 12, .	1.6	13
5700	New metal free organic dyes incorporating heterocyclic Benzofuran core as conjugated spacer: Synthesis, Optoâ€electrochemical, <scp>DFT</scp> and <scp>DSSC</scp> studies. Journal of Heterocyclic Chemistry, 2023, 60, 63-73.	1.4	4
5701	Cold crystallization and morphology control of ZnO nanostructures for chemical sensors. International Journal of Applied Ceramic Technology, 0, , .	1.1	1

#	Article	IF	CITATIONS
5702	Tuning the photophysical properties of <scp>BODIPY</scp> dyes used in <scp>DSSCs</scp> as predicted by doubleâ€hybrid <scp>TDâ€DFT</scp> : The role of the methyl substituents. International Journal of Quantum Chemistry, 2022, 122, .	1.0	4
5703	Probing the interfacial interactions of N719 with MoS2 using intrinsic surface enhanced Raman scattering. Applied Surface Science, 2022, 604, 154581.	3.1	3
5704	Facile synthesis and optimization of CuONPs using Illicium verum & Polianthes tuberosa and their anticancer activity. Inorganic Chemistry Communication, 2022, 145, 109961.	1.8	1
5705	High stability tetradentate ligand copper complexes and organic small molecule hybrid electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2022, 432, 141108.	2.6	3
5706	Dye Sensitized and Quantum Dot Sensitized Solar Cell. Advances in Sustainability Science and Technology, 2022, , 131-149.	0.4	0
5707	Improving the performance of DSSCs by modulating the electron donor and electron acceptor of dye molecules with the DTPBT group as π-bridge. Molecular Physics, 0, , .	0.8	0
5708	First principle investigation of new dithienosilole-based dyes for DSSCs: effects of auxiliary acceptor groups. Theoretical Chemistry Accounts, 2022, 141, .	0.5	2
5709	Synergistically improved photovoltaic performances of dye-sensitized solar cells with metal-free organic cosensitizer and hybrid rGO-TiO2 photoanode. Dyes and Pigments, 2023, 209, 110892.	2.0	7
5710	Enhanced photovoltaic properties of eosin-Y sensitized solar cells using nanocrystalline N-doped TiO2 photoanode films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116050.	1.7	0
5711	Effect of deoxycholic acid co-sensitization in porphyrin dye on quasi-solid dye-sensitized solar cells comprising titania aerogel with a large surface area. Solid-State Electronics, 2022, 198, 108480.	0.8	0
5712	Towards panchromatic Fe(<scp>ii</scp>) NHC sensitizers <i>via</i> HOMO inversion. Inorganic Chemistry Frontiers, 0, , .	3.0	3
5713	Manifestation of the Enhanced Photovoltaic Performance in Eco-Friendly AgBiS ₂ Solar Cells Using Titanium Oxynitride as the Electron Transport Layer. Energy & Fuels, 2022, 36, 14393-14402.	2.5	4
5714	Efficient water reduction by ruthenium-picolinate dye-sensitized photocatalyst under red light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114412.	2.0	1
5715	Solvent-Dependent Functional Aggregates of Unsymmetrical Squaraine Dyes on TiO ₂ Surface for Dye-Sensitized Solar Cells. Langmuir, 2022, 38, 14808-14818.	1.6	9
5716	Quantum chemical and photovoltaic modeling of D-ï€-A organic dyes based on substituted arylamine electron donors in dye sensitized solar cells. Australian Journal of Chemistry, 2022, 75, 966-973.	0.5	1
5717	The Use of Copper-Quercetin Complex as Photosensitizer in Dye Sensitive Solar Cells and Its Photovoltaic Performance. Brazilian Journal of Physics, 2023, 53, .	0.7	1
5718	Optimal processing methodology for futuristic natural dye-sensitized solar cells and novel applications. Dyes and Pigments, 2023, 210, 110997.	2.0	18
5719	Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review. Dyes and Pigments, 2023, 213, 111087.	2.0	34

#	Article	IF	CITATIONS
5720	Butea monosperma, crown of thorns, red lantana camara and royal poinciana flowers extract as natural dyes for dye sensitized solar cells with improved efficiency. Electrochimica Acta, 2023, 441, 141793.	2.6	6
5721	A study on fabrication and characterization of dye sensitized solar cells with carissa spinuram, iresine herbstii and ipomoea purpurea as sensitizers in visible light. Optical and Quantum Electronics, 2023, 55, .	1.5	3
5722	Novel Fluorene-Based Functional "Click Polymers―for Dye-Sensitized Solar Cells. , 2012, , 468-483.		0
5723	Organic Dyes for Dye-Sensitized Solar Cells. , 2012, , 373-398.		Ο
5724	Novel triphenylamine-based porphyrins: Synthesis, structural characterization, and theoretical investigation for dye-sensitized solar cell applications. Journal of Molecular Structure, 2023, 1281, 135147.	1.8	2
5725	Significant improvement of dye-sensitized solar cell performance using low-band-gap chromophores based on triphenylamine and carbazole as strong donors. Dyes and Pigments, 2023, 214, 111206.	2.0	14
5726	Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications. Solar Energy Materials and Solar Cells, 2023, 254, 112247.	3.0	2
5727	Experimental and theoretical vibrational spectroscopic, quantum chemical analysis, and electronic properties investigations of novel ruthenium complexes (RuLCl2·2H2O; L: 4,4'-Dimethoxy-2,2'-Bipyridine,) ⁻	Γj ET Qq 1 1 (0.7 & 4314 rg <mark>B</mark>
5728	Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective. ACS Omega, 2023, 8, 6139-6163.	1.6	28
5729	Present status of metal-free photosensitizers for dye-sensitized solar cells. Materials Today: Proceedings, 2023, , .	0.9	3
5730	Computational analysis of the structural, optoelectronic and photovoltaic properties of triphenylamine-based dyes and their interaction with TiO2 / lodine. Research on Chemical Intermediates, 2023, 49, 1855-1878.	1.3	1
5731	New insights into the alkoxy effects on auxiliary adsorption and inhibiting charge recombination in dye-sensitized solar cells with high open circuit voltage: a theoretical investigation. Physical Chemistry Chemical Physics, 2023, 25, 8532-8543.	1.3	1
5732	Sulfonated polyaniline synthesis <i>via</i> moistureproof sulfonation of emeraldine salt polyaniline for graphite-based composite counter electrode in dye-sensitized solar cells. Polymer-Plastics Technology and Materials, 2022, 61, 1564-1577.	0.6	0
5733	Synthesis of efficient bi-anchoring bifuran/biphenyl derivatives for dye-sensitized solar cell applications. RSC Advances, 2023, 13, 9720-9731.	1.7	3
5734	Molecular designs, synthetic strategies, and properties for porphyrins as sensitizers in dye-sensitized solar cells. Journal of Materials Chemistry A, 2023, 11, 12659-12680.	5.2	14
5735	Improvement of dye-sensitized solar cells' performance via co-sensitization of new azo thiazole organic dyes with ruthenium (II) based N-719 dye. Journal of Saudi Chemical Society, 2023, 27, 101643.	2.4	6
5736	Environmentally Friendly Water-Based Electrolyte for Dye-Sensitized Solar Cells: Future Prospective and Outlook. Solar, 2023, 3, 229-252.	0.9	3
5737	Tailoring the π-system of benzimidazole ligands towards stable light-harvesting cyclometalated iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2023, 52, 6435-6450.	1.6	4

			<u>, </u>
#	Article	IF	CITATIONS
5766	State-of-the-Art of Dye-Sensitized Solar Cells. Materials Horizons, 2023, , 91-120.	0.3	1
5771	Transition of photoelectrochemical analysis to bioanalysis and its potential applications. , 2023, , 171-190.		0
5773	Intense NIR absorbing porphyrin based dyes with BODIPY as the acceptor. New Journal of Chemistry, 2023, 47, 16327-16331.	1.4	1
5779	DSSC to Perovskites – Overview. , 2023, , .		0
5780	Theoretical calculation of electronic rate at cis-bisisothiocyanatobis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II) N3 dye contact to GaAs semiconductor. AIP Conference Proceedings, 2023, , .	0.3	0
5789	Recent Progress on Phenothiazine Tethered Sensitizers for Dye-Sensitized Solar Cells. , 2023, , .		0
5796	Metal oxides for dye-sensitized solar cells. , 2024, , 543-576.		0
5801	Seaweed Photosynthetic Pigments as Eco-Friendly Sensitizer for Dye-Sensitized Solar Cell. , 2024, , .		0