Allozyme analysis reveals six species within the Anophe mosquitoes in Papua New Guinea

Medical and Veterinary Entomology 7, 37-48 DOI: 10.1111/j.1365-2915.1993.tb00649.x

Citation Report

#	Article	IF	CITATIONS
1	Electrophoretic keys to identify members of the Anopheles punctulatus complex of vector mosquitoes in Papua New Guinea. Medical and Veterinary Entomology, 1993, 7, 49-53.	1.5	19
2	Impact of permethrinâ€impregnated mosquito nets compared with DDT houseâ€spraying against malaria transmission by Anopheles farauti and An.punctulatus in the Solomon Islands. Medical and Veterinary Entomology, 1993, 7, 333-338.	1.5	47
3	Review of the internal classification of the genus <i>Anopheles</i> (Diptera: Culicidae): the foundation for comparative systematics and phylogenetic research. Bulletin of Entomological Research, 1994, 84, 331-342.	1.0	86
4	The Anopheles punctulatus group of mosquitoes in the Solomon Islands and Vanuatu surveyed by allozyme electrophoresis. Medical and Veterinary Entomology, 1994, 8, 340-350.	1.5	58
5	Malaria sporozoite rates for <i>Anopheles farauti</i> s.s. Laveran (Diptera: Culicidae) from Vanuatu. Annals of Tropical Medicine and Parasitology, 1995, 89, 305-307.	1.6	7
6	Electrophoretically-detected allozyme variation reveals only moderate differentiation between Chinese and Philippine Schistosoma japonicum. Acta Tropica, 1995, 60, 101-108.	2.0	12
7	Permethrinâ€impregnated bednets are more effective than DDT houseâ€spraying to control malaria in Solomon Islands. Medical and Veterinary Entomology, 1996, 10, 145-148.	1.5	25
8	SYSTEMATICS OF MOSQUITO DISEASE VECTORS (DIPTERA, CULICIDAE):Impact of Molecular Biology and Cladistic Analysis. Annual Review of Entomology, 1997, 42, 351-369.	11.8	70
9	Responses of mosquitoes of the Anopheles farauti complex to 1-octen-3-ol and light in combination with carbon dioxide in northern Queensland, Australia. Medical and Veterinary Entomology, 1997, 11, 177-180.	1.5	26
10	Evolution and Systematics ofAnopheles:Insights from a Molecular Phylogeny of Australasian Mosquitoes. Molecular Phylogenetics and Evolution, 1998, 9, 262-275.	2.7	104
11	The first report of Anopheles farauti sensu stricto below the nineteenth parallel at Mackay, Queensland. Medical Journal of Australia, 1998, 169, 89-90.	1.7	5
12	A Phylogenetic Study of the Anopheles punctulatus Group of Malaria Vectors Comparing rDNA Sequence Alignments Derived from the Mitochondrial and Nuclear Small Ribosomal Subunits. Molecular Phylogenetics and Evolution, 2000, 17, 430-436.	2.7	37
13	Subset partitioning of the ribosomal DNA small subunit and its effects on the phylogeny of the Anopheles punctulatus group. Insect Molecular Biology, 2000, 9, 515-520.	2.0	22
14	Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands. Medical and Veterinary Entomology, 2000, 14, 102-104.	1.5	3
15	Shared salinity tolerance invalidates a test for the malaria vector Anopheles farauti s.s. on Guadalcanal, Solomon Islands. Medical and Veterinary Entomology, 2000, 14, 450-452.	1.5	10
16	Systematics of malaria vectors with particular reference to the Anopheles punctulatus group. International Journal for Parasitology, 2000, 30, 1-17.	3.1	37
17	Rediscovery of <i>Anopheles</i> (<i>Cellia</i>) <i>clowi</i> (Diptera: Culicidae), a Rarely Recorded Member of the <i>Anopheles punctulatus</i> Group. Journal of Medical Entomology, 2000, 37, 840-845.	1.8	13
18	Seasonal Abundance of <i>Anopheles farauti</i> (Diptera: Culicidae) Sibling Species in Far North Queensland, Australia. Journal of Medical Entomology, 2000, 37, 153-161.	1.8	6

#	Article	IF	CITATIONS
19	Descriptions of theAnopheles(Cellia)farauticomplex of sibling species (Diptera: Culicidae) in Australia. Bulletin of Entomological Research, 2001, 91, 389-410.	1.0	20
20	Variation in Malaria Endemicity in Relation to Microenvironmental Conditions in the Admiralty Islands, Papua New Guinea. Asia-Pacific Journal of Public Health, 2001, 13, 85-90.	1.0	4
21	Speciation and Distribution of the Members of the <i>Anopheles punctulatus</i> (Diptera: Culicidae) Group in Papua New Guinea. Journal of Medical Entomology, 2002, 39, 16-27.	1.8	68
22	Exploring the diversity of flies (Diptera). Biodiversity, 2002, 3, 3-27.	1.1	60
23	Distribution and evolution of the Anopheles punctulatus group (Diptera: Culicidae) in Australia and Papua New Guinea. International Journal for Parasitology, 2002, 32, 563-574.	3.1	53
24	Health research in Papua New Guinea. Trends in Parasitology, 2003, 19, 241-245.	3.3	4
25	The epidemiology of malaria in Papua New Guinea. Trends in Parasitology, 2003, 19, 253-259.	3.3	148
26	Lymphatic filariasis in Papua New Guinea: interdisciplinary research on a national health problem. Trends in Parasitology, 2003, 19, 260-263.	3.3	11
27	A morphological study of the Anopheles punctulatus group (Diptera: Culicidae) in the Solomon Islands, with a description of Anopheles (Cellia) irenicus Schmidt, sp.n Bulletin of Entomological Research, 2003, 93, 515-526.	1.0	16
28	Population Structure and Dispersal of the Freshwater Mosquitoes <i>Culex annulirostris</i> and <i>Culex palpalis</i> (Diptera: Culicidae) in Papua New Guinea and Northern Australia. Journal of Medical Entomology, 2003, 40, 165-169.	1.8	22
29	Eco-Ethological Heterogeneity of the Members of theAnopheles minimusComplex (Diptera: Culicidae) in Southeast Asia and Its Consequences for Vector Control. Journal of Medical Entomology, 2004, 41, 366-374.	1.8	22
30	Medical entomology: changes in the spectrum of mosquito-borne disease in Australia and other vector threats and risks, 1972-2004. Australian Journal of Entomology, 2004, 43, 271-282.	1.1	66
31	Population structure of the peridomestic mosquito Ochlerotatus notoscriptus in Australia. Medical and Veterinary Entomology, 2004, 18, 180-190.	1.5	23
32	The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships. Bulletin of Entomological Research, 2004, 94, 537-553.	1.0	262
33	Distribution and proportion of anopheline mosquitoes identified by the PCR-RFLP analysis method in Wewak and Maprik Districts of East Sepik Province, Papua New Guinea. Medical Entomology and Zoology, 2006, 57, 255-264.	0.1	2
34	Molecular systematics of the Philippine malaria vector Anopheles flavirostris. Medical and Veterinary Entomology, 2006, 20, 44-52.	1.5	5
35	Species-richness of the Anopheles annulipes complex (Diptera: Culicidae) revealed by tree and model-based allozyme clustering analyses. Biological Journal of the Linnean Society, 0, 91, 523-539.	1.6	2
36	Distribution of sibling species of the Anopheles annulipes complex (Diptera: Culicidae) in the Townsville region of Australia. Australian Journal of Entomology, 2007, 46, 133-139.	1.1	0

		CITATION REPORT		
#	Article		IF	Citations
37	Malaria vectors of Papua New Guinea. International Journal for Parasitology, 2009, 39, 3	1495-1501.	3.1	54
39	The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrenc distribution maps and bionomic pr \tilde{A} ©cis. Parasites and Vectors, 2011, 4, 89.	e data,	2.5	401
40	High Throughput Multiplex Assay for Species Identification of Papua New Guinea Malar Members of the Anopheles punctulatus (Diptera: Culicidae) Species Group. American Jo Tropical Medicine and Hygiene, 2011, 84, 166-173.	a Vectors: ournal of	1.4	16
41	Multiplex Assay for Species Identification and Monitoring of Insecticide Resistance in A punctulatus Group Populations of Papua New Guinea. American Journal of Tropical Mec Hygiene, 2012, 86, 140-151.	nopheles licine and	1.4	15
42	Population structure, mitochondrial polyphyly and the repeated loss of human biting at anopheline mosquitoes from the southwest Pacific. Molecular Ecology, 2012, 21, 4327	vility in -4343.	3.9	22
43	Mitochondrial genome sequences reveal deep divergences among Anopheles punctulat species in Papua New Guinea. Malaria Journal, 2013, 12, 64.	us sibling	2.3	35
44	Development of a multiplex PCR assay for the identification of eight species members of Hyrcanus Group (Diptera: Culicidae). Applied Entomology and Zoology, 2013, 48, 469-4	of the Thai 176.	1.2	16
45	Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infection, Gene Evolution, 2013, 18, 191-201.	tics and	2.3	20
46	The Phylogeny and Classification of Anopheles. , 0, , .			52
47	The Systematics and Bionomics of Malaria Vectors in the Southwest Pacific. , 0, , .			9
48	Wholeâ€genome sequencing reveals absence of recent gene flow and separate demog for <i>Anopheles punctulatus</i> mosquitoes in Papua New Guinea. Molecular Ecology 1263-1274.	raphic histories , 2015, 24,	3.9	13
49	The mosquito <i><scp>A</scp>nopheles</i> (<i><scp>C</scp>ellia</i>) <i>oreios</i> species 6 of the <scp>A</scp> ustralasian <i><scp>A</scp>nopheles farauti</i> comple review of its biology and relation to disease. Medical and Veterinary Entomology, 2015,	p. n., formerly x, and a critical 29, 68-81.	1.5	4
50	Malaria transmission dynamics surrounding the first nationwide long-lasting insecticida distribution in Papua New Guinea. Malaria Journal, 2016, 15, 25.	lnet	2.3	42
51	Plasticity of host selection by malaria vectors of Papua New Guinea. Parasites and Vecto	ors, 2017, 10, 95.	2.5	21
53	The epidemiology of Plasmodium falciparum and Plasmodium vivax in East Sepik Provin Guinea, pre- and post-implementation of national malaria control efforts. Malaria Journa 198.	ce, Papua New 11, 2020, 19,	2.3	12
54	Molecular characterization of Anopheles fluviatilis species complex in the Islamic Repub Eastern Mediterranean Health Journal, 2021, 9, 257-265.	lic of Iran.	0.8	33
55	Isolation of Japanese encephalitis virus from mosquitoes (Diptera: Culicidae) collected i Province of Papua New Guinea, 1997-1998 American Journal of Tropical Medicine and 631-638.	n the Western Hygiene, 2000, 62,	1.4	93
56	POLYMERASE CHAIN REACTION DIAGNOSIS AND THE CHANGING PATTERN OF VECTOR MALARIA TRANSMISSION DYNAMICS IN PAPUA NEW GUINEA. American Journal of Trop Hygiene, 2004, 71, 277-284.	ECOLOGY AND ical Medicine and	1.4	45