Interactions of fungip with toxic metals

New Phytologist 124, 25-60 DOI: 10.1111/j.1469-8137.1993.tb03796.x

Citation Report

#	Article	IF	CITATIONS
1	<i>In vitro</i> experiments concerning the state of polyphosphate in the yeast vacuole. Canadian Journal of Microbiology, 1984, 30, 236-246.	1.7	18
2	Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. , 1994, , .		85
3	The Roles of Magnesium in Biotechnology. Critical Reviews in Biotechnology, 1994, 14, 311-354.	9.0	107
4	Metal accumulation by fungi: Applications in environmental biotechnology. Journal of Industrial Microbiology, 1994, 13, 126-130.	0.9	117
5	Copper resistance mechanisms in bacteria and fungi. FEMS Microbiology Reviews, 1994, 14, 121-137.	8.6	326
6	Influence of copper on proton efflux fromSaccharomyces cerevisiaeand the protective effect of calcium and magnesium. FEMS Microbiology Letters, 1994, 122, 33-38.	1.8	30
7	Effects of heavy metals and acid irrigation on the birch rust, Melampsoridium betulinum. Forest Pathology, 1994, 24, 171-180.	1.1	3
8	Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 1994, 92, 364-368.	5.2	248
9	Interactions of Fungi with Toxic Metals. , 1994, , 361-374.		34
10	Element Distribution in Mycelium of Pisolithus arrhizus Treated with Cadmium Dust. Annals of Botany, 1994, 74, 137-142.	2.9	34
11	Metal Resistance in Trees: The Role of Mycorrhizae. Oikos, 1995, 72, 298.	2.7	83
12	Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycological Research, 1995, 99, 987-993.	2.5	115
13	Sorption of toxic metals by fungi and clay minerals. Mycological Research, 1995, 99, 1429-1438.	2.5	121
14	Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. Journal of Industrial Microbiology, 1995, 14, 76-84.	0.9	118
15	Nickel resistance mechanisms in yeasts and other fungi. Journal of Industrial Microbiology, 1995, 14, 164-168.	0.9	78
16	A rapid screening method for the isolation of metal-accumulating microorganisms. Journal of Industrial Microbiology, 1995, 14, 213-217.	0.9	15
17	Metal ion binding byPithomyces chartarum conidia. Journal of Industrial Microbiology, 1995, 14, 233-239.	0.9	1
18	Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. Journal of Industrial Microbiology, 1995, 14, 240-246.	0.9	45

#	Article	IF	CITATIONS
19	Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: Cellular location of reduced selenium and implications for tolerance. Journal of Industrial Microbiology, 1995, 14, 300-311.	0.9	94
20	Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnology Letters, 1995, 17, 551-556.	2.2	64
21	Responses of pine needle endophytes to air pollution. New Phytologist, 1995, 131, 223-229.	7.3	31
22	The role of microorganisms in biosorption of toxic metals and radionuclides. International Biodeterioration and Biodegradation, 1995, 35, 17-40.	3.9	148
23	A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration and Biodegradation, 1995, 35, 129-153.	3.9	69
24	Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme and Microbial Technology, 1995, 17, 791-796.	3.2	115
25	Reaction of some decomposer basidiomycetes to toxic elements. Nordic Journal of Botany, 1995, 15, 305-318.	0.5	24
26	Microbial interactions with caesium—implications for biotechnology. Journal of Chemical Technology and Biotechnology, 1995, 62, 3-16.	3.2	32
27	Mycorrhizae: Ectomycorrhiza and Ectendomycorrhiza. , 1995, , 430-456.		0
28	"The Waters Were Made Sweet". Advances in Ion Exchange Technology. Industrial & Engineering Chemistry Research, 1995, 34, 2841-2848.	3.7	12
29	Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biology and Biochemistry, 1995, 27, 1459-1465.	8.8	51
30	Determination of metals and metal fluxes in algae and fungi. Science of the Total Environment, 1995, 176, 107-115.	8.0	18
31	Metal cation uptake by yeast: a review. Applied Microbiology and Biotechnology, 1995, 43, 579-584.	3.6	185
32	Metal ion adsorption by pseudosclerotial plates ofPhellinus weirii. Mycologia, 1996, 88, 98-103.	1.9	11
33	Fungal interactions with metals and radionuclides for environmental bioremediation. , 1996, , 282-298.		9
34	Fungal sequestration, mobilization and transformation of metals and metalloids. , 1996, , 235-256.		32
35	Metal Ion Adsorption by Pseudosclerotial Plates of Phellinus weirii. Mycologia, 1996, 88, 98.	1.9	14
36	Dictyostelium discoideum cobB mutants show reduced heavy metal accumulation associated with gene amplification. Molecular Genetics and Genomics, 1996, 253, 65-73.	2.4	2

	CITATION	Report	
#	Article	IF	Citations
37	Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. Journal of Environmental Radioactivity, 1996, 30, 139-171.	1.7	167
38	Copper Resistance and Accumulation in the Zygomycete Mucor rouxii. Current Microbiology, 1996, 33, 163-166.	2.2	11
39	Influence of microorganisms on the environmental fate of radionuclides. Endeavour, 1996, 20, 150-156.	0.4	113
40	Volatilization of selenite in aqueous medium by a Penicillium species. Mycological Research, 1996, 100, 955-961.	2.5	37
41	Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycological Research, 1996, 100, 1367-1374.	2.5	62
42	Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to lead. Mycological Research, 1996, 100, 486-488.	2.5	8
43	Inhibition of H+ efflux from Saccharomyces cerevisiae by insoluble metal phosphates and protection by calcium and magnesium: inhibitory effects a result of soluble metal cations?. Mycological Research, 1996, 100, 707-713.	2.5	22
44	Fungal melanins and their interactions with metals. Enzyme and Microbial Technology, 1996, 19, 311-317.	3.2	249
45	Copper adsorption by inactivated cells of Mucor rouxii: Effect of esterification of carboxyl groups. Journal of Hazardous Materials, 1996, 48, 171-180.	12.4	33
46	A study of the effects of competing ions on the biosorption of metals. International Biodeterioration and Biodegradation, 1996, 38, 19-29.	3.9	67
47	Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant and Soil, 1996, 184, 195-205.	3.7	120
48	In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant and Soil, 1996, 179, 141-150.	3.7	107
49	Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant and Soil, 1996, 180, 241-249.	3.7	186
50	Bioaccumulation and biosorption of Co2+ by Neurospora crassa. Biotechnology Letters, 1996, 18, 1205-1208.	2.2	30
51	Amplification of a gene for metallothionein by tandem repeat in a strain of cadmium-resistant yeast cells. FEMS Microbiology Letters, 1996, 136, 269-273.	1.8	11
52	Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics. Microbiology (United Kingdom), 1996, 142, 1159-1167.	1.8	38
53	Transport of Small Ions and Molecules through the Plasma Membrane of Filamentous Fungi. Critical Reviews in Microbiology, 1997, 23, 1-46.	6.1	52
54	Influence of altered plasma membrane fatty acid composition on cesium transport characteristics and toxicity in <i>Saccharomyces cerevisiae</i> . Canadian Journal of Microbiology, 1997, 43, 954-962.	1.7	12

#	Article	IF	CITATIONS
55	The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environmental and Experimental Botany, 1997, 38, 165-179.	4.2	127
56	Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. Studies in Environmental Science, 1997, , 27-50.	0.0	24
57	Biosorption of lead(II) from aqueous solutions by Phellinus badius. Minerals Engineering, 1997, 10, 947-957.	4.3	65
58	Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology and Biochemistry, 1997, 29, 179-190.	8.8	247
59	Ectomycorrhizae of Young and Mature Scots Pine Trees in Industrial Regions in Poland. Environmental Pollution, 1997, 98, 315-324.	7.5	17
60	Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiology Reviews, 1997, 20, 503-516.	8.6	276
61	The role of cations in the biodegradation of wood by the brown rot fungi. International Biodeterioration and Biodegradation, 1997, 39, 165-179.	3.9	107
62	Biosorption sites of selected metals using electron microscopy. Comparative Biochemistry and Physiology A, Comparative Physiology, 1997, 118, 481-487.	0.6	27
63	Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycological Research, 1997, 101, 653-661.	2.5	169
64	Zinc resistance in Neurospora crassa. BioMetals, 1997, 10, 147-156.	4.1	20
65	Characterization of a cobalt-resistant mutant of Neurospora crassa with transport block. BioMetals, 1997, 10, 175-183.	4.1	15
66	Effects of cadmium, copper, and zinc on growth and thiol content of aquatic hyphomycetes. Hydrobiologia, 1997, 346, 77-84.	2.0	55
67	Title is missing!. Plant and Soil, 1997, 189, 303-319.	3.7	155
68	Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1997, 47, 180-184.	3.6	41
69	Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1997, 48, 539-545.	3.6	59
70	Microbes and metals. Applied Microbiology and Biotechnology, 1997, 48, 687-692.	3.6	233
71	Copperâ€binding proteins in ectomycorrhizal fungi. New Phytologist, 1997, 135, 123-131.	7.3	96
72	Toxic interactions of metal ions (Cd 2+ , Pb 2+ , Zn 2+ and Sb 3â^') on in vitro biomass production of ectomycorrhizal fungi. New Phytologist, 1997, 137, 551-562.	7.3	54

#	Article	IF	CITATIONS
73	Enhanced copper adsorption and morphological alterations of cells of copperâ€stressed <i>Mucor rouxii</i> . Environmental Toxicology and Chemistry, 1997, 16, 435-441.	4.3	21
74	Ionic Competition Effects in a Continuous Uranium Biosorptive Recovery Process. Journal of Chemical Technology and Biotechnology, 1997, 70, 198-206.	3.2	12
75	Mechanism of aluminum interference on uranium biosorption by Rhizopus arrhizus. , 1997, 55, 16-27.		50
76	Cobalt resistance in Neurospora crassa: overproduction of a cobaltoprotein in a resistant strain. BioMetals, 1998, 11, 33-40.	4.1	10
77	Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. , 1998, 11, 101-106.		77
78	Effect of cadmium on growth of potentially pathogenic soil fungi. Mycopathologia, 1998, 141, 93-100.	3.1	20
79	Gas hydrate crystals may help build reefs. Nature, 1998, 391, 648-649.	27.8	128
80	Role for lichen melanins in uranium remediation. Nature, 1998, 391, 649-650.	27.8	58
81	Enrichment with a polyunsaturated fatty acid enhances the survival ofSaccharomyces cerevisiaein the presence of tributyltin. FEMS Microbiology Letters, 1998, 167, 321-326.	1.8	17
82	The alkaline single cell gel electrophoresis: a new test for assessing DNA single strand breaks in Neurospora crassa. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 405, 29-34.	1.0	6
83	Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycological Research, 1998, 102, 825-830.	2.5	99
84	Influence of the carbon, nitrogen and phosphorus source on the solubilization of insoluble metal compounds by Aspergillus niger. Mycological Research, 1998, 102, 1050-1054.	2.5	23
85	Fungal processes for bioremediation of toxic metal and radionuclide pollution. Journal of Chemical Technology and Biotechnology, 1998, 71, 364-366.	3.2	8
86	Ectomycorrhizal fungi with edible fruiting bodies 2.Boletus edulis. Economic Botany, 1998, 52, 44-56.	1.7	77
87	Manganese toxicity towards Saccharomyces cerevisiae  : Dependence on intracellular and extracellular magnesium concentrations. Applied Microbiology and Biotechnology, 1998, 49, 751-757.	3.6	39
88	Tolerance and uptake of cadmium, arsenic and lead by Fusarium pathogens of cereals. International Biodeterioration and Biodegradation, 1998, 42, 55-62.	3.9	15
89	X-ray Imaging and Microspectroscopy of Plants and Fungi. Journal of Synchrotron Radiation, 1998, 5, 1390-1395.	2.4	46
90	Influence of quercetin, a bioflavonoid, on the toxicity of copper to Fusarium culmorum. Letters in Applied Microbiology, 1998, 26, 363-366.	2.2	4

		CITATION REPORT		
#	ARTICLE		IF	Citations
91	Mucor biosorbent for chromium removal from tanning effluent. Water Research, 1998, 32,	, 1407-1416.	11.3	112
92	Ectomycorrhizas and amelioration of metal stress in forest trees. Chemosphere, 1998, 36,	757-762.	8.2	59
93	Ultrastructural Responses of the LichenBryoria fuscescensto Simulated Acid Rain and Heav Deposition. Annals of Botany, 1998, 82, 735-746.	y Metal	2.9	42
94	Microalgal Removal of Organic and Inorganic Metal Species from Aqueous Solution. , 1998	, , 55-72.		9
95	Mechanisms of Lichen Resistance to Metallic Pollution. Environmental Science & Tech 1998, 32, 3325-3330.	nology,	10.0	173
96	Structural Determination of Zn and Pb Binding Sites inPenicillium chrysogenumCell Walls b Spectroscopy. Environmental Science & Technology, 1998, 32, 1648-1655.	by EXAFS	10.0	176
97	Wastewater Treatment with Algae. , 1998, , .			25
98	Response of Saltmarsh Fungi to the Presence of Mercury and Polychlorinated Biphenyls at Superfund Site. Mycologia, 1998, 90, 777.	a	1.9	12
99	<title>Using x-ray microprobes for environmental research</title> . , 1998, 3449, 45.			0
100	Bioaccumulation of metals by lichens; uptake of aqueous uranium by Peltigera membranar function of time and pH. American Mineralogist, 1998, 83, 1494-1502.	icea as a	1.9	58
101	Response of saltmarsh fungi to the presence of mercury and polychlorinated biphenyls at a site. Mycologia, 1998, 90, 777-784.	ı Superfund	1.9	16
102	Stress responses of fungal colonies towards toxic metals. , 1999, , 178-200.			13
103	Development of a bioremediation process for mining wastewaters. Process Metallurgy, 199	99, , 547-558.	0.1	0
104	Metal Pollution and Forest Decline. , 1999, , 253-272.			20
105	Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect toxicity. Tree Physiology, 1999, 19, 189-196.	t copper	3.1	33
106	Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiology, 1999,	19, 23-30.	3.1	50
107	Solubilisation of zinc compounds by fungi associated with the hyperaccumulator <i>Thlasp caerulescens</i> . Botanical Journal of Scotland, 1999, 51, 237-247.	i	0.3	12
108	Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysospc mycelium. Process Biochemistry, 1999, 34, 725-730.	rium	3.7	85

		CITATION RE	PORT	
#	Article		IF	CITATIONS
109	Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 1	999, 70, 95-104.	9.6	623
110	Using copper-tolerant fungi to biodegrade wood treated with copper-based preservativ International Biodeterioration and Biodegradation, 1999, 44, 17-27.	es.	3.9	33
111	Cross-colonization of Scots pine (Pinus sylvestris) seedlings by the ectomycorrhizal fun involutusin the presence of inhibitory levels of Cd and Zn. New Phytologist, 1999, 142,	gusPaxillus 141-149.	7.3	13
112	Natural Levels of Saline Elements in Lichens: Determination of Cellular Fractions and Th Importance as Saline Tracers. Lichenologist, 1999, 31, 183-196.	eir	0.8	22
113	Root Length and Distribution of Chromium in Corylus Avellana with Tuber Albidum Myc Water, Air, and Soil Pollution, 1999, 113, 33-41.	orrhyzas.	2.4	5
114	Chromium Tolerant Yeast Strains Isolated from Industrial Effluents and Their Possible U Environmental Clean-Up. Bulletin of Environmental Contamination and Toxicology, 199		2.7	9
115	Microbial activity in grassland soil amended with sewage sludge containing varying rate combinations of Cu, Ni and Zn. Biology and Fertility of Soils, 1999, 30, 202-209.	es and	4.3	29
116	Action of Inorganic Tin and Organotins on a Hydrocarbon-Using Yeast, Candida maltos Environmental Contamination and Toxicology, 1999, 36, 7-12.	a. Archives of	4.1	14
117	Cation (K+, Mg2+, Ca2+) exchange in Pb2+ accumulation by Saccharomyces cerevisiae Biosystems Engineering, 1999, 21, 383-387.	. Bioprocess and	0.5	8
118	The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruit edible mushrooms. European Food Research and Technology, 1999, 209, 317-324.	ing bodies of	3.3	40
119	Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the gra dactylon, from gold and uranium mine tailings. Nuclear Instruments & Methods in Phys 1999, 158, 335-343.	ıss, Cynodon ics Research B,	1.4	83
120	Isolation and regeneration of protoplasts from two strains of the ericoid mycorrhizal fu Oidiodendron maius: Sensitivity to chemicals and heavy metals. Microbiological Resear 105-111.	ngus ch, 1999, 154,	5.3	5
121	Fungitoxicity of oxine and copper oxinate: effects of pH, metals and chelating agents o Mycological Research, 1999, 103, 1085-1097.	n activity.	2.5	12
122	Removal of cadmium byPleurotus sajor-caju basidiomycetes. Acta Biotechnologica, 199	9, 19, 171-177.	0.9	26
123	Continuous fixed bed biosorption of Cu2+ ions: application of a simple two parameter model. Journal of Chemical Technology and Biotechnology, 1999, 74, 71-77.	mathematical	3.2	47
124	Heavy Metal Stress in Plants. , 1999, , .			96
125	Co-evolution of Mycorrhizal Symbionts and their Hosts to Metal-contaminated Environ Advances in Ecological Research, 1999, 30, 69-112.	ments.	2.7	193
126	Fungal biomass grown on media containing clay as a sorbent of radionuclides. Process 1999, , 245-254.	Metallurgy,	0.1	3

#	Article	IF	CITATIONS
127	Densities of endophytic fungi and performance of leafminers (Lepidoptera: Eriocraniidae) on birch along a pollution gradient. Environmental Pollution, 1999, 104, 99-105.	7.5	35
128	Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution, 1999, 104, 121-129.	7.5	70
129	The Zinc Violet and its Colonization by Arbuscular Mycorrhizal Fungi. Journal of Plant Physiology, 1999, 154, 709-717.	3.5	215
130	Improving the use of lichens as biomonitors of atmospheric metal pollution. Science of the Total Environment, 1999, 232, 67-77.	8.0	98
131	THEDARKSIDE OF THEMYCELIUM: Melanins of Phytopathogenic Fungi. Annual Review of Phytopathology, 1999, 37, 447-471.	7.8	311
132	Fungal Production of Citric and Oxalic Acid: Importance in Metal Speciation, Physiology and Biogeochemical Processes. Advances in Microbial Physiology, 1999, 41, 47-92.	2.4	547
133	Bioavailability of Heavy Metals in the Mycorrhizosphere. , 2000, , .		14
134	Chemical stimulation of the virulence of entomopathogenic fungi. Archives of Phytopathology and Plant Protection, 2000, 33, 219-223.	1.3	1
135	Effects of Lichens on Uranium Migration. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	3
136	Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist, 2000, 147, 367-379.	7.3	127
137	A new dawn – the ecological genetics of mycorrhizal fungi. New Phytologist, 2000, 147, 236-239.	7.3	14
138	Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions. New Phytologist, 2000, 147, 591-599.	7.3	35
139	Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies - Hebeloma crustuliniforme ectomycorrhizas. Plant, Cell and Environment, 2000, 23, 1257-1265.	5.7	77
140	Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 2000, 109, 107-116.	5.2	242
141	Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. International Biodeterioration and Biodegradation, 2000, 46, 69-76.	3.9	58
142	Comparative Influence of Flavonoids on the Toxicity of Copper to <i>Alternaria alternata</i> . Journal of Phytopathology, 2000, 148, 597-599.	1.0	0
143	Effects of heavy metals on nitrogen uptake by Paxillus involutus and mycorrhizal birch seedlings. FEMS Microbiology Ecology, 2000, 33, 61-67.	2.7	20
144	Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycological Research, 2000, 104, 338-344.	2.5	91

#	Article	IF	CITATIONS
145	Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi. Mycological Research, 2000, 104, 825-833.	2.5	26
146	Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 2000, 226, 227-234.	3.7	377
147	Mercury uptake and removal by Euglena gracilis. Archives of Microbiology, 2000, 174, 175-180.	2.2	61
148	The cadmium-resistant gene, CAD2 , which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Current Genetics, 2000, 37, 79-86.	1.7	57
149	Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology (United Kingdom), 2000, 146, 1109-1117.	1.8	178
150	Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 151-156.	2.4	25
151	In vivo chitin–cadmium complexation in cell wall of Neurospora crassa. Biochimica Et Biophysica Acta - General Subjects, 2000, 1523, 21-28.	2.4	59
152	Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 2000, 104, 1366-1371.	2.5	128
153	Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycological Research, 2001, 105, 883-889.	2.5	50
154	Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Critical Reviews in Plant Sciences, 2001, 20, 309-371.	5.7	299
155	Ectomycorrhizas: their role in forest ecosystems under the impact of acidifying pollutants. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4, 13-27.	2.7	27
156	Dielectric spectroscopy of Schizosaccharomyces pombe using electrorotation and electroorientation. Biochimica Et Biophysica Acta - General Subjects, 2001, 1568, 135-146.	2.4	34
157	Fungal Cells and Vegetative Growth. , 2001, , 85-184.		7
158	Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biology and Biochemistry, 2001, 33, 1741-1747.	8.8	87
160	Heavy Metal Removal by the Waste Biomass of Penicillium chrysogenum. Water Quality Research Journal of Canada, 2001, 36, 793-803.	2.7	33
161	Pathogenic properties of fungal melanins. Mycologia, 2001, 93, 1-8.	1.9	65
162	Decomposition of alder leaves in two heavy metal-polluted streams in central Germany. Aquatic Microbial Ecology, 2001, 26, 73-80.	1.8	88
164	Impact of heavy metals on the selective phenotypical markers of Pseudomonas aeruginosa. Microbial Ecology, 2001, 42, 99-107.	2.8	6

#	ARTICLE	IF	CITATIONS
165	Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 2001, 150, 203-213.	7.3	81
166	Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresource Technology, 2001, 77, 41-49.	9.6	103
167	Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 2001, 80, 121-129.	9.6	182
168	Title is missing!. Plant and Soil, 2001, 236, 129-138.	3.7	36
169	Title is missing!. Biotechnology Letters, 2001, 23, 2027-2034.	2.2	75
170	Heavy metals have different effects on mycelial morphology of Achlya bisexualis as determined by fractal geometry. FEMS Microbiology Letters, 2001, 201, 259-263.	1.8	12
171	Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiology Letters, 2001, 204, 311-316.	1.8	53
172	Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 205, 231-236.	1.8	23
173	Heavy metal distribution in Suillus luteus mycorrhizas – as revealed by micro-PIXE analysis. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 649-658.	1.4	46
174	Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 2001, 105, 1261-1267.	2.5	72
175	Toxic Effects of Ag(I) and Hg(II) on Candida albicans and C. maltosa : a Flow Cytometric Evaluation. Applied and Environmental Microbiology, 2001, 67, 4030-4035.	3.1	17
176	Metal toxicity in yeasts and the role of oxidative stress. Advances in Applied Microbiology, 2001, 49, 111-142.	2.4	130
177	Copper-Induced Inhibition of Growth of Desulfovibrio desulfuricans G20: Assessment of Its Toxicity and Correlation with Those of Zinc and Lead. Applied and Environmental Microbiology, 2001, 67, 4765-4772.	3.1	170
178	Mycorrhizae confer aluminum resistance to tulip-poplar seedlings. Canadian Journal of Forest Research, 2001, 31, 694-702.	1.7	57
179	Changes of EPR Spectra of Wood Impregnated with Copper-Based Preservatives during Exposure to Several Wood-Rotting Fungi. Holzforschung, 2002, 56, 229-238.	1.9	29
180	Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geochemistry: Exploration, Environment, Analysis, 2002, 2, 121-130.	0.9	37
181	Intraspecific variability in growth response to cadmium of the wood-rotting fungus <i>Piptoporus betulinus</i> . Mycologia, 2002, 94, 428-436.	1.9	62
184	Chapter 6 Microbial interactions with metals/radionuclides: The basis of bioremediation. Radioactivity in the Environment, 2002, 2, 179-203.	0.2	20

#	Article	IF	CITATIONS
185	Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Journal of Environmental Management, 2002, 7, 123-138.	1.7	178
186	Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 2002, 106, 107-117.	2.5	47
187	Biosorption from aqueous solutions by eggshell membranes andRhizopus oryzae: equilibrium and kinetic studies. Journal of Chemical Technology and Biotechnology, 2002, 77, 539-545.	3.2	73
188	Investigation of the response of wood-rotting fungi to copper stress by size-exclusion chromatography and capillary zone electrophoresis with ICP MS detection. Analytical and Bioanalytical Chemistry, 2002, 372, 453-456.	3.7	10
189	Viability and release of complexing compounds during accumulation of heavy metals by a brewer's yeast. Applied Microbiology and Biotechnology, 2002, 58, 836-841.	3.6	31
190	Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 2002, 59, 382-388.	3.6	92
191	Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytologist, 2002, 153, 143-152.	7.3	129
192	In Vitro Selection of Boreal Ectomycorrhizal Fungi for Use in Reclamation of Saline-Alkaline Habitats. Restoration Ecology, 2002, 10, 43-51.	2.9	56
193	Molecular diversity and phylogenetic affinities of symbiotic rootâ€associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytologist, 2002, 155, 131-148.	7.3	176
194	Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry, 2002, 37, 601-610.	3.7	129
195	Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchemical Journal, 2002, 72, 63-76.	4.5	170
196	Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 2002, 213, 1-6.	1.8	285
197	Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiology Ecology, 2002, 42, 359-366.	2.7	78
198	Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius. Molecular and Cellular Biochemistry, 2002, 231, 179-185.	3.1	24
199	Title is missing!. Plant and Soil, 2002, 240, 287-297.	3.7	166
200	Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 2002, 244, 41-53.	3.7	77
201	Cobalt-resistance in wall-less mutant (fz; sg; os-1) of Neurospora crassa. BioMetals, 2003, 16, 529-537.	4.1	3
202	The Concentrations and Bioconcentration Factors of Copper and Zinc in Edible Mushrooms. Archives of Environmental Contamination and Toxicology, 2003, 44, 180-188.	4.1	131

#	Article	IF	CITATIONS
203	Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycological Research, 2003, 107, 861-871.	2.5	57
204	Micro-pixe study on sorption behaviors of cobalt by lichen biomass. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 407-411.	1.4	13
205	Application of micro-PIXE technique to uptake study of cesium by Saccharomyces cerevisiae. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 378-382.	1.4	14
206	Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 2003, 35, 133-141.	8.8	149
207	Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biology and Biochemistry, 2003, 35, 1203-1210.	8.8	111
208	Toxicity of lead in aqueous medium to <i>Desulfovibrio desulfuricans</i> G20. Environmental Toxicology and Chemistry, 2003, 22, 252-260.	4.3	32
209	Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 2003, 78, 23-34.	3.2	59
210	Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 2003, 32, 78-91.	3.2	539
211	Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 2003, 52, 167-174.	10.2	120
212	Growth and Function of Fungal Mycelia in Heterogeneous Environments. Bulletin of Mathematical Biology, 2003, 65, 447-477.	1.9	83
213	Elemental composition of ectomycorrhizal mycelia identified by PCR–RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 2003, 44, 57-65.	2.7	11
214	Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 2003, 101, 285-300.	12.4	200
215	Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. International Biodeterioration and Biodegradation, 2003, 51, 139-144.	3.9	65
216	Copper tolerance of brown-rot fungi: time course of oxalic acid production. International Biodeterioration and Biodegradation, 2003, 51, 145-149.	3.9	99
217	Copper biosorption by Auricularia polytricha. Letters in Applied Microbiology, 2003, 37, 133-137.	2.2	44
218	Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environmental Microbiology, 2003, 5, 133-138.	3.8	45
219	Elemental composition of ectomycorrhizal mycelia identified by PCR–RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology, 2003, 44, 57-65.	2.7	66
220	Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Canadian Journal of Microbiology, 2003, 49, 336-343.	1.7	66

#	Article	IF	Citations
221	Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere, 2003, 52, 541-547.	8.2	117
222	Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 2003, 67, 1127-1155.	1.4	335
223	Geomycology: fungi in mineral substrata. The Mycologist, 2003, 17, 98-107.	0.4	170
224	Microbiologically active nanocomposite media. , 2003, 5218, 244.		6
225	Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. European Physical Journal Special Topics, 2003, 107, 311-314.	0.2	15
226	Uranium Biosorption by the LichenTrapelia involutaat a Uranium Mine. Geomicrobiology Journal, 2004, 21, 159-167.	2.0	44
227	Zinc Phosphate and Pyromorphite Solubilization by Soil Plant-Symbiotic Fungi. Geomicrobiology Journal, 2004, 21, 351-366.	2.0	122
228	Mycotransformation of organic and inorganic substrates. The Mycologist, 2004, 18, 60-70.	0.4	78
229	Cadmium-Responsive Thiols in the Ectomycorrhizal Fungus Paxillus involutus. Applied and Environmental Microbiology, 2004, 70, 7413-7417.	3.1	127
230	Zinc ions differentially affect chitin synthase gene expression in an ericoid mycorrhizal fungus. Plant Biosystems, 2004, 138, 271-277.	1.6	7
231	Effect of Cadmium, Copper, and Lead on Different Enzyme Activities in a Native Forest Soil. Communications in Soil Science and Plant Analysis, 2004, 35, 1309-1321.	1.4	47
232	Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biology and Biochemistry, 2004, 36, 443-451.	8.8	100
233	Bioremediation of 60Co from simulated spent decontamination solutions. Science of the Total Environment, 2004, 328, 1-14.	8.0	21
234	The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. Mycological Research, 2004, 108, 1415-1422.	2.5	32
235	Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. BioMetals, 2004, 17, 183-188.	4.1	70
236	Accumulation of Heavy Metals by Ectomycorrhizal Fungi Colonizing Birch Trees Growing in an Industrial Desert Soil. World Journal of Microbiology and Biotechnology, 2004, 20, 427-430.	3.6	49
237	Bacterial Degradation of Technogenic Radioactive Particles. Doklady Biochemistry and Biophysics, 2004, 397, 228-232.	0.9	4
238	PHYSICAL AND BIOCHEMICAL INTERACTIONS OF SOIL FUNGI WITH ASBESTOS FIBERS. Environmental Toxicology and Chemistry, 2004, 23, 938.	4.3	28

#	Article	IF	Citations
239	Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 2004, 14, 11-18.	2.8	50
240	Effects of Zinc on Leaf Decomposition by Fungi in Streams: Studies in Microcosms. Microbial Ecology, 2004, 48, 366-374.	2.8	47
241	Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 2004, 63, 477-494.	3.6	124
242	The effects of toxic metals, content of nutrients and inoculation with mycorrhizal fungi on the level of phenolics in roots and growth of Scots pine seedlings. Acta Physiologiae Plantarum, 2004, 26, 177-186.	2.1	3
243	Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology, 2004, 47, 31-37.	2.7	101
244	Availability and speciation of cadmium added to a calcareous soil under various managements. European Journal of Soil Science, 2004, 55, 123-133.	3.9	56
245	Effects of ectomycorrhizal inoculants on survival and growth of interior Douglas-fir seedlings on reforestation sites and partially rehabilitated landings. Canadian Journal of Forest Research, 2004, 34, 2074-2088.	1.7	28
246	Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122, 109-109.	5.1	2
247	Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122, 109-119.	5.1	611
248	Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Letters, 2004, 576, 423-427.	2.8	49
249	The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 2004, 130, 317-323.	7.5	468
250	The importance of microorganisms in organic agriculture. Outlooks on Pest Management, 2005, 16, 52-55.	0.2	12
251	Bioavailability of Trace Elements in Relation to Root Modification in the Rhizosphere. , 2005, , 25-37.		2
252	Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management, 2005, 77, 85-92.	7.8	241
253	Role of the fungal mycelium in the retention of radiocaesium in forest soils. Journal of Environmental Radioactivity, 2005, 78, 77-92.	1.7	32
254	Modification of surface properties of mycelia by physical and chemical methods: evaluation of their Cr removal efficiencies from aqueous medium. Journal of Hazardous Materials, 2005, 119, 219-229.	12.4	112
255	Influence of a nitrogen supplement on the growth of wood decay fungi and decay of wood. International Biodeterioration and Biodegradation, 2005, 56, 34-39.	3.9	19
256	Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides. Electrochemistry Communications, 2005, 7, 305-311.	4.7	35

#	Article	IF	CITATIONS
257	Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica. FEMS Microbiology Ecology, 2005, 53, 445-453.	2.7	38
258	Synergistic fungicidal activity of Cu2+ and allicin, an allyl sulfur compound from garlic, and its relation to the role of alkyl hydroperoxide reductase 1 as a cell surface defense in Saccharomyces cerevisiae. Toxicology, 2005, 215, 205-213.	4.2	36
259	Evidence for functional laccases in the acidophilic ascomyceteHortaea acidophilaand isolation of laccase-specific gene fragments. FEMS Microbiology Letters, 2005, 245, 161-168.	1.8	21
260	Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 203-211.	4.7	119
261	Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chemistry, 2005, 92, 499-506.	8.2	96
262	Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biology and Biochemistry, 2005, 37, 133-139.	8.8	112
263	Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 2005, 37, 851-866.	8.8	231
264	Lipid and fatty acid variations inCiona intestinalis ovary after tri-n-butyltin(IV)chloride exposure. Applied Organometallic Chemistry, 2005, 19, 23-29.	3.5	19
265	Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochemistry, 2005, 40, 2351-2358.	3.7	143
266	Uptake of chromium by Aspergillus foetidus. Journal of Material Cycles and Waste Management, 2005, 7, 88-92.	3.0	85
267	Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza, 2005, 15, 193-201.	2.8	42
268	Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations. Mycorrhiza, 2005, 15, 333-344.	2.8	14
269	Influence of pH on copper and zinc sensitivity of ericoid mycobionts in vitro. Mycorrhiza, 2005, 15, 231-234.	2.8	8
270	Contribution of Arbuscular Mycorrhizal and Saprobe Fungi to the Tolerance of Eucalyptus globulus to Pb. Water, Air, and Soil Pollution, 2005, 166, 31-47.	2.4	47
271	Fungal degradation of calcium-, lead- and silicon-bearing minerals. BioMetals, 2005, 18, 269-281.	4.1	85
272	Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides. 3. Influence of Chemical Speciation and Bioavailability on Contaminants Immobilization/Mobilization Bio-processes. Reviews in Environmental Science and Biotechnology, 2005, 4, 185-212.	8.1	53
273	Fungal roles and function in rock, mineral and soil transformations. , 0, , 201-232.		13
274	Copper influence on polyphosphate metabolism of Cunninghamella elegans. Brazilian Journal of Microbiology, 2005, 36, 315.	2.0	6

#	Article	IF	Citations
π 275	Metabolism of Bismuth Subsalicylate and Intracellular Accumulation of Bismuth by Fusarium sp. Strain Bl. Applied and Environmental Microbiology, 2005, 71, 876-882.	3.1	42
	Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria		
276	caledonica. Applied and Environmental Microbiology, 2005, 71, 371-381.	3.1	241
278	Influence of acidification of CCB (Cu/Cr/B) impregnated wood on fungal copper tolerance. Chemosphere, 2005, 58, 743-749.	8.2	17
279	Microorganisms in Toxic Metal-Polluted Soils. , 2005, , 325-356.		46
280	Cell-wall-bound metal ions are not taken up inNeurospora crassa. Canadian Journal of Microbiology, 2005, 51, 1021-1026.	1.7	14
281	METALS AND METALLOIDS, TRANSFORMATION BY MICROORGANISMS. , 2005, , 438-447.		5
282	REMEDIATION OPTIONS FOR THE TREATMENT OF ELECTROPLATING AND LEATHER TANNING EFFLUENT CONTAINING CHROMIUM—A REVIEW. Mineral Processing and Extractive Metallurgy Review, 2006, 27, 99-130.	5.0	127
283	The biotransformation of mercury in pH-stat cultures of microfungi. Canadian Journal of Botany, 2006, 84, 254-260.	1.1	25
284	Biomineralization of Fungal Hyphae with Calcite (CaCO3) and Calcium Oxalate Mono- and Dihydrate in Carboniferous Limestone Microcosms. Geomicrobiology Journal, 2006, 23, 599-611.	2.0	115
285	Metal Accumulation without Enhanced Oxalate Secretion in Wood Degraded by Brown Rot Fungi. Applied and Environmental Microbiology, 2006, 72, 5662-5665.	3.1	21
286	Organic acids production by white rot Basidiomycetes in the presence of metallic oxides. Canadian Journal of Microbiology, 2006, 52, 779-785.	1.7	34
287	Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 2006, 63, 1815-1823.	8.2	93
288	Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International, 2006, 32, 711-717.	10.0	87
289	Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 2006, 140, 124-135.	7.5	260
290	Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Research in Microbiology, 2006, 157, 108-118.	2.1	91
291	Integrated nutrient cycles in boreal forest ecosystems – the role of mycorrhizal fungi. , 2006, , 28-50.		15
292	Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility. , 2006, , 236-266.		24
293	Lichen biogeochemistry. , 0, , 344-376.		28

#	Article	IF	CITATIONS
294	Mixed ligand complexes of toxic metal ions with L-glutamic acid and L-methionine in urea-water mixtures. Chemical Speciation and Bioavailability, 2006, 18, 143-151.	2.0	7
295	Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiology Letters, 2006, 152, 293-298.	1.8	140
296	Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 2006, 154, 29-35.	1.8	74
297	Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 2006, 254, 173-181.	1.8	265
298	Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresource Technology, 2006, 97, 1167-1173.	9.6	152
299	Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris. Journal of Hazardous Materials, 2006, 138, 288-292.	12.4	36
300	TOXIC EFFECTS OF URANIUM ON DESULFOVIBRIO DESULFURICANS G20. Environmental Toxicology and Chemistry, 2006, 25, 1231.	4.3	32
301	Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza, 2006, 16, 99-109.	2.8	54
302	Comparison of growth characteristics and tolerance to serpentine soil of three ectomycorrhizal spruce seedlings in northern Japan. Trees - Structure and Function, 2006, 20, 430-440.	1.9	22
303	Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association. Microbial Ecology, 2006, 52, 322-333.	2.8	50
304	Effects of cadium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences, 2006, 18, 1135-1141.	6.1	167
305	Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. Science of the Total Environment, 2006, 372, 148-156.	8.0	30
306	Metal tolerance of yeasts isolated from water, soil and plant environments. Journal of Basic Microbiology, 2006, 46, 145-152.	3.3	68
307	Dependence of Synergistic Fungicidal Activity of Cu2+ and Allicin, an Allyl Sulfur Compound from Garlic, on Selective Accumulation of the Ion in the Plasma Membrane Fraction via Allicin-Mediated Phospholipid Peroxidation. Planta Medica, 2006, 72, 875-880.	1.3	25
308	Molecular Biological Detection of Anaerobic Gut Fungi (Neocallimastigales) from Landfill Sites. Applied and Environmental Microbiology, 2006, 72, 5659-5661.	3.1	64
309	Mercury Analysis of Acid- and Alkaline-Reduced Biological Samples: Identification of meta -Cinnabar as the Major Biotransformed Compound in Algae. Applied and Environmental Microbiology, 2006, 72, 361-367.	3.1	40
310	Tolerance and biosorption of copper and zinc byPseudomonas putidaCZ1 isolated from metal-polluted soil. Canadian Journal of Microbiology, 2006, 52, 308-316.	1.7	60
312	Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment. Archives of Agronomy and Soil Science, 2006, 52, 161-169.	2.6	10

#	Article	IF	CITATIONS
313	Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiology, 2007, 27, 1103-1112.	3.1	53
314	Measurement of Cation Exchange Capacity (CEC) of Plant Cell Walls by X-Ray Microanalysis (EDX) in the Transmission Electron Microscope. Microscopy and Microanalysis, 2007, 13, 233-244.	0.4	35
315	First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia, 2007, 99, 161-174.	1.9	27
316	Factors affecting metal mobility and bioavailability in the superficial intertidal sediment layer of the Scheldt estuary. Aquatic Ecosystem Health and Management, 2007, 10, 33-40.	0.6	23
317	Transformation and Mobilization of Metals, Metalloids, and Radionuclides by Microorganisms. , 2007, , 53-96.		11
318	First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in <i>Boletus edulis</i> . Mycologia, 2007, 99, 161-174.	1.9	43
319	Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta. Ecotoxicology and Environmental Safety, 2007, 66, 36-43.	6.0	44
320	Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety, 2007, 67, 67-74.	6.0	79
321	Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environmental Pollution, 2007, 147, 723-728.	7.5	59
322	Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environmental Pollution, 2007, 147, 609-614.	7.5	114
323	Fungal Deterioration of Barrier Concrete used in Nuclear Waste Disposal. Geomicrobiology Journal, 2007, 24, 643-653.	2.0	51
324	Algae and Cyanobacteria in Extreme Environments. Cellular Origin and Life in Extreme Habitats, 2007, , .	0.3	116
326	Barite (BaSO ₄) biomineralization at Flybye Springs, a cold sulphur spring system in Canada's Northwest Territories. Canadian Journal of Earth Sciences, 2007, 44, 835-856.	1.3	13
327	Validation of an Electrothermal Atomization Atomic Absorption Spectrometry Method for Quantification of Total Chromium and Chromium(VI) in Wild Mushrooms and Underlying Soils. Journal of Agricultural and Food Chemistry, 2007, 55, 7192-7198.	5.2	31
328	Biosorption and Biovolatilization of Arsenic by Heat-Resistant Fungi (5 pp). Environmental Science and Pollution Research, 2007, 14, 31-35.	5.3	55
329	Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by <i>Saprolegnia delica</i> and <i>Trichoderma viride</i> at Different pH Values and Temperature Degrees. Mycobiology, 2007, 35, 135.	1.7	18
330	Mineral transformations and biogeochemical cycles: a geomycological perspective. , 2007, , 77-111.		6
332	Metal and mineral transformations: a mycoremediation perspective. , 0, , 236-254.		5

#	Article	IF	Citations
333	Metal stress and the single yeast cell: Berkeley Award Lecture. , 0, , 161-186.		0
334	Grafting of vinyl acetate onto chitosan and biocidal activity of the graft copolymers. Journal of Applied Polymer Science, 2007, 103, 1651-1663.	2.6	32
335	Responses in the mycelial growth of <i>Aspergillus niger</i> isolates to arsenic contaminated environments and their resistance to exogenic metal stress. Journal of Basic Microbiology, 2007, 47, 295-300.	3.3	22
336	Microbial interactions with actinides and long-lived fission products. Comptes Rendus Chimie, 2007, 10, 1067-1077.	0.5	39
337	Heavy metal sorption in the lichen cationactive layer. Bioelectrochemistry, 2007, 71, 60-65.	4.6	17
338	Use of micro-PIXE in the study of arsenate uptake in lichens and its influence on element distribution and concentrations. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 245-253.	1.4	16
339	Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 2007, 98, 2557-2561.	9.6	366
340	Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chemistry, 2007, 103, 263-267.	8.2	93
341	Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management, 2007, 84, 93-99.	7.8	55
342	Fungal bioleaching of metals in preservative-treated wood. Process Biochemistry, 2007, 42, 798-804.	3.7	45
343	A study of steroid hydroxylation activity of Curvularia lunata mycelium. Applied Biochemistry and Microbiology, 2007, 43, 620-624.	0.9	8
344	X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environmental Microbiology, 2007, 9, 308-321.	3.8	64
345	Fungal transformations of uranium oxides. Environmental Microbiology, 2007, 9, 1696-1710.	3.8	101
346	Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of the Total Environment, 2007, 377, 233-243.	8.0	92
347	Accumulation of copper by Acremonium pinkertoniae, a fungus isolated from industrial wastes. Microbiological Research, 2007, 162, 219-228.	5.3	49
348	Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 2007, 111, 3-49.	2.5	1,015
349	Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. Journal of Environmental Sciences, 2007, 19, 848-853.	6.1	88
350	Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution. Russian Journal of Ecology, 2007, 38, 398-407.	0.9	21

#	Article	IF	CITATIONS
351	Molecular mechanisms of resistance to heavy metals in the protist <i>Euglena gracilis</i> . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1365-1378.	1.7	36
352	Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. BioMetals, 2007, 20, 93-105.	4.1	49
353	Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles, 2007, 11, 853-858.	2.3	39
354	Biosorption of Cu(II) and Pb(II) by Auricularia polytricha. Wuhan University Journal of Natural Sciences, 2007, 12, 755-761.	0.4	0
355	Development and characterization of nickel accumulating mutants of Aspergillus nidulans. Indian Journal of Microbiology, 2007, 47, 241-250.	2.7	9
356	Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant and Soil, 2008, 313, 39-54.	3.7	57
357	The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World Journal of Microbiology and Biotechnology, 2008, 24, 31-37.	3.6	37
358	Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Archives of Microbiology, 2008, 189, 271-278.	2.2	30
359	Dark septate endophyte (DSE) fungi isolated from metal polluted soils: Their taxonomic position, tolerance, and accumulation of heavy metals In Vitro. Journal of Microbiology, 2008, 46, 624-632.	2.8	91
360	The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var.) Tj ETQq1 1 0.7	78 423 81.4 rgl	3T2Øverloc
361	Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza, 2008, 18, 339-354.	2.8	59
362	Effect of heavy metals on cultural and morphological growth characteristics of halotolerant <i>Penicillium </i> morphotypes. Journal of Basic Microbiology, 2008, 48, 363-369.	3.3	22
363	Biosorption of Heavy Metals from Wastewater Using Australian Biomass. Asia-Pacific Journal of Chemical Engineering, 1997, 5, 101-114.	0.0	2
364	Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. Journal of Environmental Radioactivity, 2008, 99, 785-800.	1.7	48
365	Process optimization studies of lead (Pb(II)) biosorption onto immobilized cells of Pycnoporus sanguineus using response surface methodology. Bioresource Technology, 2008, 99, 8549-8552.	9.6	55
366	Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Chemistry, 2008, 109, 137-143.	8.2	89
367	Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist, 2008, 177, 1020-1033.	7.3	255
368	Bacterial and fungal geomicrobiology: a problem with communities?. Geobiology, 2008, 6, 278-284.	2.4	51

#	Article	IF	CITATIONS
369	Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlockâ€dominated forest plot in southern Ontario. Molecular Ecology, 2008, 17, 3037-3050.	3.9	78
370	Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biology and Biochemistry, 2008, 40, 2225-2236.	8.8	36
371	DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biology and Biochemistry, 2008, 40, 2358-2365.	8.8	47
372	Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. , 2008, , 99-134.		24
375	Chapter 12 Lichens and metals. British Mycological Society Symposia Series, 2008, 27, 175-200.	0.5	33
376	Fungi and Their Role in the Biosphere. , 2008, , 1709-1717.		26
378	Ectomycorrhizal community structure under willows at former ore mining sites. European Journal of Soil Biology, 2008, 44, 37-44.	3.2	47
379	Formation of Metallic Copper Nanoparticles at the Soilâ^'Root Interface. Environmental Science & Technology, 2008, 42, 1766-1772.	10.0	221
380	Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . Canadian Journal of Microbiology, 2008, 54, 103-110.	1.7	158
382	Mycorrhizae: Sustainable Agriculture and Forestry. , 2008, , .		76
383	Hidden diversity of endophytic fungi in an invasive plant. American Journal of Botany, 2008, 95, 1096-1108.	1.7	128
384	Fungos anamorfos do solo da região dos lagos no MunicÃpio de Santa Gertrudes, SP, Brasil. Revista Brasileira De Botanica, 2008, 31, .	1.3	2
385	Biossorção de cobre, manganês e cádmio por biomassas de Saprolegnia subterranea (Dissmann) R.L. Seym. e Pythium torulosum Coker & P. Patt. (Oomycetes). Acta Botanica Brasilica, 2008, 22, 217-223.	0.8	7
386	Biosorption of Cr(VI) from Aqueous Solutions Using <i>Trametes Versicolor Polyporus</i> Fungi. E-Journal of Chemistry, 2008, 5, 499-510.	0.5	9
387	Bioaccumulation of Arsenic by Fungi. American Journal of Environmental Sciences, 2009, 5, 364-370.	0.5	27
388	Biosorption of Inorganic Mercury onto Dead Biomass of Marine <i>Aspergillus niger</i> : Kinetic, Equilibrium, and Thermodynamic Studies. Environmental Engineering Science, 2009, 26, 531-539.	1.6	14
389	Acumulación de selenio en setas silvestres comestibles: captación y toxicidad Selenium accumulation in wild edible mushrooms: uptake and toxicity. CYTA - Journal of Food, 2009, 7, 217-223.	1.9	4
390	Cr (VI) Ion Uptake by the Yeast <i>S. Cerevisiae</i> UCM Y-1968 and its Protoplasts. Advanced Materials Research, 0, 71-73, 593-596.	0.3	0

#	Article	IF	CITATIONS
391	Influence of ectomycorrhizal colonization on the growth and mineral nutrition of <i>Populus deltoides</i> under Aluminum toxicity. Journal of Plant Interactions, 2009, 4, 93-99.	2.1	11
392	Phytoextraction of soil cadmium and zinc by microbes-inoculated Indian mustard (<i>Brassica) Tj ETQq1 1 0.784</i>	314 rgBT	/Oyerlock 10
393	Different Patterns of Regulation for the Copper and Cadmium Metallothioneins of the Ectomycorrhizal Fungus <i>Hebeloma cylindrosporum</i> . Applied and Environmental Microbiology, 2009, 75, 2266-2274.	3.1	77
394	Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Science of the Total Environment, 2009, 407, 5328-5334.	8.0	147
395	Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Science of the Total Environment, 2009, 407, 6179-6187.	8.0	43
396	Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biology and Biochemistry, 2009, 41, 930-935.	8.8	77
397	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226.	11.7	2,111
398	A calcium binding protein from cell wall of <i>Neurospora crassa</i> . Journal of Basic Microbiology, 2009, 49, 371-376.	3.3	2
399	Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 2009, 84, 13-28.	3.2	972
400	Regulation of low-molecular weight organic acid production in fungi. Fungal Biology Reviews, 2009, 23, 30-39.	4.7	82
401	Correlation between organic acid exudation and metal uptake by ectomycorrhizal fungi grown on pond ash inÂvitro. BioMetals, 2009, 22, 275-281.	4.1	29
402	Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology. BioMetals, 2009, 22, 401-410.	4.1	36
403	Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils. Plant and Soil, 2009, 315, 185-194.	3.7	43
404	Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Reviews in Environmental Science and Biotechnology, 2009, 8, 257-274.	8.1	23
405	Molecular characterization of soil microorganisms: effect of industrial pollution on distribution and biodiversity. World Journal of Microbiology and Biotechnology, 2009, 25, 215-224.	3.6	24
406	Functional stability of streamâ€ d welling microbial decomposers exposed to copper and zinc stress. Freshwater Biology, 2009, 54, 1683-1691.	2.4	37
407	Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. Journal of Applied Microbiology, 2009, 106, 1163-1174.	3.1	56
408	Removal of heavy metals using a brewer's yeast strain of <i>Saccharomyces cerevisiae</i> : advantages of using dead biomass. Journal of Applied Microbiology, 2009, 106, 1792-1804.	3.1	77

#	Article	IF	CITATIONS
409	Pyrene degradation and copper and zinc uptake by <i>Fusarium solani</i> and <i>Hypocrea lixii</i> isolated from petrol station soil. Journal of Applied Microbiology, 2009, 108, 2030-40.	3.1	45
410	Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by <i>Vaccinium</i> . New Phytologist, 2009, 181, 708-718.	7.3	36
411	The complete <i>Glomus intraradices</i> mitochondrial genome sequence – a milestone in mycorrhizal research. New Phytologist, 2009, 183, 3-6.	7.3	17
412	454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 2009, 184, 449-456.	7.3	908
413	Brown rot decay of copper-chromated-phosphorus impregnated fence poles: Characterization by molecular analyses and microscopy. International Biodeterioration and Biodegradation, 2009, 63, 906-912.	3.9	5
414	Lead in edible mushroomsLevels and bioaccumulation factors. Journal of Hazardous Materials, 2009, 167, 777-783.	12.4	124
415	Influence of heavy metals on microbial growth kinetics including lag time: Mathematical modeling and experimental verification. Environmental Toxicology and Chemistry, 2009, 28, 2020-2029.	4.3	33
416	Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Critical Reviews in Biotechnology, 2009, 29, 120-130.	9.0	129
417	Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability. European Journal of Soil Biology, 2009, 45, 168-175.	3.2	34
418	Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution. Environmental Pollution, 2009, 157, 280-286.	7.5	32
419	Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 2009, 47, 2381-2388.	3.6	194
420	Cr(VI) reduction by an Aspergillus tubingensis strain: Role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(VI) contamination. Chemosphere, 2009, 76, 43-47.	8.2	31
421	Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Research, 2009, 43, 883-894.	11.3	145
422	Metal stress induces programmed cell death in aquatic fungi. Aquatic Toxicology, 2009, 92, 264-270.	4.0	27
423	Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. International Journal of Antimicrobial Agents, 2009, 33, 258-263.	2.5	66
424	Potential of Penicillium Species in the Bioremediation Field. International Journal of Environmental Research and Public Health, 2009, 6, 1393-1417.	2.6	188
427	Heavy Metal Pollutants: Environmental and Biotechnological Aspects. , 2009, , 321-334.		32
428	Trees, Mycorrhiza and Minerals –Field Relevance of <i>in vitro</i> Experiments. Geomicrobiology Journal, 2009, 26, 389-401.	2.0	39

#	Article	IF	CITATIONS
429	<i>Trichoderma atroviride</i> as a bioremediator of Cu pollution: An <i>in vitro</i> study. Toxicological and Environmental Chemistry, 2009, 91, 1305-1314.	1.2	20
430	Contribution of arbuscular mycorrhizal symbiosis to in vitro root metal uptake: from trace to toxic metal conditionsThis paper is one of the papers presented at the 50th Annual Meeting of the Canadian Society of Plant Physiologists (CSPP) held at the University of Ottawa, Ontario, in June 2008. Other papers from this meeting are presented in the July 2009 Special Issue of <i>Botany</i> Botany, 2009, 87,	1.0	15
431	Tolerance and Stress Response of Macrolepiota procera to Nickel. Journal of Agricultural and Food Chemistry, 2009, 57, 7145-7152.	5.2	35
432	Response of Î ² -Glucosidase and Proteases to Cadmium Addition in Andosols From a Forest and a Cultivated Field. Soil Science, 2009, 174, 621-628.	0.9	4
433	Bioavailability of copper and zinc to poplar and microorganisms in a biosolids-amended soil. Soil Research, 2010, 48, 459.	1.1	15
434	Geomicrobiology of Eukaryotic Microorganisms. Geomicrobiology Journal, 2010, 27, 491-519.	2.0	96
435	Lead toxicity in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 88, 1355-1361.	3.6	21
436	Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza, 2010, 20, 315-324.	2.8	60
437	Effect of Ectomycorrhiza on Cu and Pb Accumulation in Leaves and Roots of Silver Birch (Betula) Tj ETQq0 0 0 rg 227-240.	BT /Overlo 2.4	ck 10 Tf 50 4 31
438	Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant and Soil, 2010, 330, 345-356.	3.7	74
439	Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment, 2010, 165, 193-203.	2.7	97
440	Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Science of the Total Environment, 2010, 408, 2733-2744.	8.0	102
441	Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 2010, 158, 2757-2765.	7.5	152
442	Evaluation of metal toxicity by a modified method based on the fungus <i>Gerronema viridilucens</i> bioluminescence in agar medium. Environmental Toxicology and Chemistry, 2010, 29, 320-326.	4.3	23
443	Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil. Journal of Hazardous Materials, 2010, 173, 570-575.	12.4	16
444	Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling. Journal of Hazardous Materials, 2010, 174, 623-634.	12.4	124
445	Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of Hazardous Materials, 2010, 180, 347-353.	12.4	86
446	Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. Journal of Hazardous Materials, 2010, 182, 317-324.	12.4	95

#	Article	IF	CITATIONS
447	Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Letters in Applied Microbiology, 2010, 50, 18-23.	2.2	84
448	Serpentine soils promote ectomycorrhizal fungal diversity. Molecular Ecology, 2010, 19, 5566-5576.	3.9	30
449	Determining the Impact of the AM-Mycorrhizosphere on "Dwarf―Sunflower Zn Uptake and Soil-Zn Bioavailability. Journal of Botany, 2010, 2010, 1-11.	1.2	4
450	Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity. PLoS ONE, 2010, 5, e11757.	2.5	40
451	Biologic Origin of Iron Nodules in a Marine Terrace Chronosequence, Santa Cruz, California. Soil Science Society of America Journal, 2010, 74, 550-564.	2.2	26
452	Effects of metals on growth and sporulation of aquatic fungi. Drug and Chemical Toxicology, 2010, 33, 269-278.	2.3	37
453	The effects of subthreshold loadings of tebuconazole, DDAC, and boric acid on wood decay by Postia placenta. Holzforschung, 2010, 64, .	1.9	9
454	Effects of calcium-based materials and iron impurities on wood degradation by the brown rot fungus Serpula lacrymans. Holzforschung, 2010, 64, .	1.9	15
455	Biosorption in Environmental Remediation. , 2010, , 35-99.		11
456	Biosorption of cadmium(II) and lead(II) from aqueous solutions by fruiting body waste of fungus <i>Flammulina velutipes</i> . Desalination and Water Treatment, 2010, 20, 160-167.	1.0	14
457	Eukaryotic Microorganisms and Stone Biodeterioration. Geomicrobiology Journal, 2010, 27, 630-646.	2.0	69
458	Eukaryote-Dominated Biofilms and Their Significance in Acidic Environments. Geomicrobiology Journal, 2010, 27, 534-558.	2.0	34
459	Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology (United Kingdom), 2010, 156, 609-643.	1.8	1,496
461	Mineral Transformations by Mycorrhizal Fungi. Geomicrobiology Journal, 2010, 27, 609-623.	2.0	22
462	Microbial Role in Global Biogeochemical Cycling of Metals and Metalloids at the Interfaces in the Earth's Critical Zone. , 2010, , 5-7.		2
463	The effects of glyphosate on the in vitro linear growth of selected microfungi from a boreal forest soil. Canadian Journal of Microbiology, 2010, 56, 138-144.	1.7	26
464	Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biology, 2010, 114, 873-880.	2.5	29
465	Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicology and Environmental Safety, 2010, 73, 1255-1263.	6.0	45

ARTICLE IF CITATIONS # Effect of soil copper on the response of soil fungal communities to the addition of plant residues. 466 1.2 11 Pedobiologia, 2010, 53, 353-359. An open source chimera checker for the fungal ITS region. Molecular Ecology Resources, 2010, 10, 4.8 1076-1081. The serpentine syndrome below ground: ectomycorrhizas and hypogeous fungi associated with 468 1.7 13 conifers. Canadian Journal of Forest Research, 2010, 40, 1671-1679. Rock-Building Fungi. Geomicrobiology Journal, 2010, 27, 624-629. Effect of Heavy Metals on Saprotrophic Soil Fungi. Soil Biology, 2010, , 263-279. 471 0.8 19 Calcitic nanofibres in soils and caves: a putative fungal contribution to carbonatogenesis. Geological Society Special Publication, 2010, 336, 225-238. 1.3 Effect of Graded Doses of Heavy Metals on the Radial Growth Rate of Hyphomycetous Fungi from 473 1.4 3 Mangrove Sediments of the Qua Iboe Estuary, Nigeria. Geosystem Engineering, 2010, 13, 139-146. <i>Aspergillus tubingensis</i>Improves the Growth and Native Mycorrhizal Colonization of 474 Bermudagrass in Bauxite Residue. Bioremediation Journal, 2011, 15, 157-164. 475 Uranium and Fungi. Geomicrobiology Journal, 2011, 28, 471-482. 2.0 71 Endophytic Fungus Improves Growth and Metal Uptake of <i>Lolium Arundinaceum </i> 476 3.1 49 Schreb. International Journal of Phytoremediation, 2011, 13, 233-243. Potential of Biosorption Technology., 2011, , 7-17. 477 22 478 Endophytes of Forest Trees. Forestry Sciences, 2011, , . 0.4 30 Biomanagement of Metal-Contaminated Soils. Environmental Pollution, 2011, , . 479 0.4 32 Microbial Biosorption of Metals., 2011, , . 480 65 Mechanism of Metal Tolerance and Detoxification in Mycorrhizal Fungi. Environmental Pollution, 481 0.4 12 2011, , 225-240. Industrial Applications., 2011,,. 482 483 Diversity and Biotechnology of Ectomycorrhizae. Soil Biology, 2011, , . 0.8 4 484 Microbes and Microbial Technology., 2011, , .

#	Article	IF	CITATIONS
485	Metal Nanoparticles in Microbiology. , 2011, , .		81
486	Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biology, 2011, 115, 1030-1037.	2.5	72
487	Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biology, 2011, 115, 909-918.	2.5	17
488	Stable carbon and oxygen isotope signatures of pedogenic needle fibre calcite. Geoderma, 2011, 161, 74-87.	5.1	35
489	Effects of heavy metals on production of thiol compounds and antioxidant enzymes in Agaricus bisporus. Ecotoxicology and Environmental Safety, 2011, 74, 1685-1692.	6.0	44
490	Heavy metal tolerance of culturable bacteria and fungi in a long-term cultivated tropical ultisol. European Journal of Soil Biology, 2011, 47, 9-15.	3.2	14
491	The Fungi: 1, 2, 3 $\hat{a} \in \ 5.1$ million species?. American Journal of Botany, 2011, 98, 426-438.	1.7	1,057
492	Enzymatic Synthesis of Platinum Nanoparticles: Prokaryote and Eukaryote Systems. , 2011, , 103-134.		7
493	Antifungal effects of iron sulfate on grapevine fungal pathogens. Scientia Horticulturae, 2011, 130, 517-523.	3.6	14
494	Responses of Foliar Endophytes to Pollution. Forestry Sciences, 2011, , 175-188.	0.4	5
495	Optimization of biomass production with copper bioaccumulation by yeasts in submerged fermentation. Brazilian Archives of Biology and Technology, 2011, 54, 1027-1034.	0.5	10
496	Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 2011, 5, .	0.4	6
497	Potential capacity of Beauveria bassiana and Metarhizium anisopliae in the biosorption of Cd2+ and Pb2+. Journal of General and Applied Microbiology, 2011, 57, 347-355.	0.7	32
498	Wood preservative properties of Zn and Mn containing solution obtained by battery recycling process. International Wood Products Journal, 2011, 2, 81-88.	1.1	3
499	Metal-ion susceptibility of oral bacterial species. Letters in Applied Microbiology, 2011, 53, 324-328.	2.2	26
500	Role of cell wall bound calcium in Neurospora crassa. Microbiological Research, 2011, 166, 419-429.	5.3	7
501	Heavy metal tolerance of fungi. Scientia Iranica, 2011, 18, 502-508.	0.4	129
502	Biological removal of arsenic pollution by soil fungi. Science of the Total Environment, 2011, 409, 2430-2442.	8.0	177

ARTICLE IF CITATIONS # How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al?. 503 8.0 16 Science of the Total Environment, 2011, 409, 3749-3756. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a 504 6.1 143 freshwater ecosystem. Journal of Environmental Sciences, 2011, 23, 824-830. On the role of the cell wall in the phenomenon of copper tolerance in Silene paradoxa L. 505 4.2 74 Environmental and Experimental Botany, 2011, 72, 77-83. The relative impact of lichen symbiotic partners to repeated copper uptake. Environmental and 506 4.2 Experimental Botany, 2011, 72, 84-92. An ontology of fungal subcellular traits. American Journal of Botany, 2011, 98, 1504-1510. 507 1.7 13 Effect of trees on the decomposition rate of cellulose in soils under industrial pollution. Eurasian Soil Science, 2011, 44, 547-560. 508 1.6 Role of copper in poly R-478 decolorization by the marine cyanobacterium Phormidium valderianum 509 3.6 8 BDU140441. World Journal of Microbiology and Biotechnology, 2011, 27, 669-677. Characterization of melanin isolated from a dark septate endophyte (DSE), Exophiala pisciphila. World 510 3.6 Journal of Microbiology and Biotechnology, 2011, 27, 2483-2489. Development of an analytical procedure for evaluation of the protective behaviour of innovative 511 fungal patinas on archaeological and artistic metal artefacts. Analytical and Bioanalytical Chemistry, 22 3.7 2011, 399, 2899-2907. Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an 3.6 analytical and ecotoxicological approach. Applied Microbiology and Biotechnology, 2011, 90, 343-352. Lead induces oxidative stress and phenotypic markers of apoptosis in Saccharomyces cerevisiae. 513 3.6 37 Applied Microbiology and Biotechnology, 2011, 90, 679-687. Techno-economic evaluation of the integrated biosorption–pyrolysis technology for lead (Pb) recovery from aqueous solution. Bioresource Technology, 2011, 102, 6260-6265. 514 9.6 How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. 515 2.0 179 Annals of Forest Science, 2011, 68, 17-24. Bioconcentration Factors and Trace Elements Bioaccumulation in Sporocarps of Fungi Collected 3.5 29 from Quartzite Acidic Soils. Biological Trace Element Research, 2011, 143, 540-554. Reproduction of aquatic hyphomycetes at low concentrations of Ca²⁺, Zn²⁺ 517 4.3 11 Cu²⁺, and Cd²⁺. Environmental Toxicology and Chemistry, 2011, 30, 2868-2873. Effect of Lead Contamination on Soil Microbial Activity Measured by Microcalorimetry. Chinese Journal of Chemistry, 2011, 29, 1541-1547. Assessing the relative bioavailability of copper to fungi degrading treated wood. International 519 3.9 8 Biodeterioration and Biodegradation, 2011, 65, 18-22. Notice of Retraction: Study on Adsorption Kinetics and Mechanism of Cr (III) by Wool., 2011, , .

#	Article	IF	CITATIONS
522	Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology. , 2011, , 321-361.		5
523	Impact of fluorides on the removal of heavy metals from an electroplating effluent using a flocculent brewer's yeast strain ofSaccharomyces cerevisiae. Chemical Speciation and Bioavailability, 2011, 23, 237-242.	2.0	4
524	Geomycology. Encyclopedia of Earth Sciences Series, 2011, , 416-432.	0.1	19
525	Ultrastructural effects of trace elements and environmental pollution in Italian "Triangle of Death― on <i>Pseudevernia furfuracea</i> (L.) Zopf. Plant Biosystems, 2011, 145, 461-471.	1.6	16
526	Assessing the Importance of Organic Matrix Materials in Biofilm Chemical Reactivity: Insights from Proton and Cadmium Adsorption onto the Commercially Available Biopolymer Alginate. Geomicrobiology Journal, 2011, 28, 266-273.	2.0	14
527	Role of Mycorrhiza in Re-forestation at Heavy Metal-Contaminated Sites. Soil Biology, 2012, , 183-199.	0.8	3
528	An Ultrastructural Approach to Analogies between Fungal Structures and Needle Fiber Calcite. Geomicrobiology Journal, 2012, 29, 301-313.	2.0	24
529	Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Environmental Technology (United Kingdom), 2012, 33, 1661-1670.	2.2	71
531	Trivalent Arsenic Tolerance and Accumulation in Two Facultative Marine Fungi. Jundishapur Journal of Microbiology, 2012, 5, 542-545.	0.5	26
532	Firing Range Soils Yield a Diverse Array of Fungal Isolates Capable of Organic Acid Production and Pb Mineral Solubilization. Applied and Environmental Microbiology, 2012, 78, 6078-6086.	3.1	36
533	Role of Aspergillus niger <i>acrA</i> in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor. Applied and Environmental Microbiology, 2012, 78, 3855-3863.	3.1	31
534	Phytoremediation of Metal-Polluted Soils by Arbuscular Mycorrhizal Fungi. Critical Reviews in Environmental Science and Technology, 2012, 42, 741-775.	12.8	190
535	Fungal community associated with genetically modified poplar during metal phytoremediation. Journal of Microbiology, 2012, 50, 910-915.	2.8	11
536	Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature. Mycologia, 2012, 104, 613-622.	1.9	13
537	Biosorption of Cr(VI) by free and immobilized Pediastrum boryanum biomass: equilibrium, kinetic, and thermodynamic studies. Environmental Science and Pollution Research, 2012, 19, 2983-2993.	5.3	31
538	Choice tests and neighbor effects during fungal brown rot of copper- and non-treated wood. International Biodeterioration and Biodegradation, 2012, 74, 7-10.	3.9	7
539	Biodegradation of organics in landfill leachate by immobilized white rot fungi, <i>Trametes versicolor</i> BCC 8725. Environmental Technology (United Kingdom), 2012, 33, 2575-2584.	2.2	10
540	A Model Sheet Mineral System to Study Fungal Bioweathering of Mica. Geomicrobiology Journal, 2012, 29, 323-331.	2.0	35

#	Article	IF	CITATIONS
541	Cd2+Impact on Metabolic Cells ofSaccharomyces cerevisiaeover an Extended Period and Implications for Bioremediation. Geomicrobiology Journal, 2012, 29, 199-205.	2.0	5
542	The mitochondrial genome of the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> reveals two unsuspected <i>trans</i> â€splicing events of group I introns. New Phytologist, 2012, 194, 836-845.	7.3	55
543	Growth responses to and accumulation of vanadium in agricultural soil fungi. Applied Soil Ecology, 2012, 58, 1-11.	4.3	24
544	Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices. International Journal of Food Microbiology, 2012, 158, 113-119.	4.7	74
545	Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicology and Environmental Safety, 2012, 78, 184-194.	6.0	75
546	The role of the litter compartment in a constructed floating wetland. Ecological Engineering, 2012, 39, 71-80.	3.6	23
547	Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 2012, 135, 2229-2234.	8.2	112
548	Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2012, 158, 2325-2335.	1.8	47
549	Edible Ectomycorrhizal Mushroom Molecular Response to Heavy Metals. Soil Biology, 2012, , 41-56.	0.8	2
550	Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in China. Fungal Ecology, 2012, 5, 309-315.	1.6	100
551	The effect of mercury on the establishment of Pinus rigida seedlings and the development of their ectomycorrhizal communities. Fungal Ecology, 2012, 5, 245-251.	1.6	11
552	14 Genetic Diversity and Functional Aspects of Ericoid Mycorrhizal Fungi. , 2012, , 255-285.		21
553	Edible Ectomycorrhizal Mushrooms. Soil Biology, 2012, , .	0.8	19
554	Effects of Long-Term Heavy Metal Contamination on Soil Fungi in the Mediterranean Area. Cryptogamie, Mycologie, 2012, 33, 43-57.	1.0	12
555	Bioavailability and form of copper in wood treated with copper-based preservative. Wood Science and Technology, 2012, 46, 1203-1213.	3.2	14
556	B-Cyclodextrin Polyurethanes Copolymerised with Beetroot Fibers (Bio-Polymer), for the Removal of Organic and Inorganic Contaminants from Water. Journal of Food Research, 2012, 2, 150.	0.3	10
557	Water hyacinth as a biosorbent: A review. African Journal of Environmental Science and Technology, 2012, 5, .	0.6	22
558	Tolerance and Bioaccumulation of Copper by the Entomopathogen Beauveria bassiana (BalsCriv.) Vuill. Exposed to Various Copper-Based Fungicides. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 53-60	2.7	9

#	Article	IF	CITATIONS
559	Tolerance to and Accumulation of Cadmium by the Mycelium of the Fungi Scleroderma citrinum and Pisolithus tinctorius. Biological Trace Element Research, 2012, 146, 388-395.	3.5	28
560	Field tests of the efficacy of zinc and fatty amine in preventing colonization by copper-tolerant fungi. International Biodeterioration and Biodegradation, 2012, 70, 74-78.	3.9	1
561	Geomycology: metals, actinides and biominerals. Environmental Microbiology Reports, 2012, 4, 270-296.	2.4	132
562	Sorption of lead and copper from an aqueous phase system by marine-derived Aspergillus species. Annals of Microbiology, 2013, 63, 503-511.	2.6	30
563	Bioconcentration of chromium in edible mushrooms: Influence of environmental and genetic factors. Food and Chemical Toxicology, 2013, 58, 249-254.	3.6	37
564	Chemical elements in the mineralization of plant residues under soil pollution with heavy metals. Contemporary Problems of Ecology, 2013, 6, 213-222.	0.7	1
565	Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate. Applied and Environmental Microbiology, 2013, 79, 4906-4913.	3.1	49
566	Intracellular proteins of ethanol-treated yeast cells involved in iron sorption. Food Chemistry, 2013, 141, 2314-2320.	8.2	2
567	A modeling study on the role of fungi in removing inorganic pollutants. Mathematical Biosciences, 2013, 244, 116-124.	1.9	3
568	Green Materials for Energy, Products and Depollution. Environmental Chemistry for A Sustainable World, 2013, , .	0.5	20
569	Molecular Environmental Soil Science. , 2013, , .		3
570	Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology, 2013, 15, 2173-2186.	3.8	49
571	Assessing arbuscular mycorrhizal plant metal uptake and soil metal bioavailability among â€`dwarf' sunflowers in a stratified compartmental growth environment. Archives of Agronomy and Soil Science, 2013, 59, 533-548.	2.6	5
572	Biological indicators, genetic polymorphism and expression in Aspergillus flavus under copper mediated stress. Journal of Radiation Research and Applied Sciences, 2013, 6, 49-55.	1.2	10
573	The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis is cadmium detoxification. Journal of Inorganic Biochemistry, 2013, 127, 253-260.	3.5	26
574	The resurrection flowering plant Ramonda nathaliae on serpentine soil – coping with extreme mineral element stress. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 618-625.	1.2	10
575	Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research, 2013, 125, 113-123.	7.5	60
576	Micro-structural and metal leachate analysis of concrete made with fungal treated waste foundry sand. Construction and Building Materials, 2013, 38, 94-100.	7.2	36

#	Article	IF	CITATIONS
577	Examining the ecological paradox of the â€~mycorrhizal-metal-hyperaccumulators'. Archives of Agronomy and Soil Science, 2013, 59, 549-558.	2.6	11
578	Current Status of Research on Fungal Bioluminescence: Biochemistry and Prospects for Ecotoxicological Application. Photochemistry and Photobiology, 2013, 89, 1318-1326.	2.5	29
579	Geomycology: Fungi as Agents of Biogeochemical Change. Biology and Environment, 2013, 113, 1-15.	0.3	10
580	Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats. BioMed Research International, 2013, 2013, 1-15.	1.9	21
581	Cd (II) and Zn (II) biosorption on <i>Lactarius piperatus</i> macrofungus: Equilibrium isotherm and kinetic studies. Environmental Progress and Sustainable Energy, 2014, 33, 1158-1170.	2.3	10
582	Combined effect of Zn ²⁺ and Mn ²⁺ on physiology of wood-rotting basidiomycetes. International Wood Products Journal, 2013, 4, 81-88.	1.1	0
583	Specific jarosite biomineralization by <i><scp>P</scp>urpureocillium lilacinum</i> , an acidophilic fungi isolated from <scp>R</scp> Ão <scp>T</scp> into. Environmental Microbiology, 2013, 15, 2228-2237.	3.8	71
584	Recent Advances in Microbial Metal Bioaccumulation. Critical Reviews in Environmental Science and Technology, 2013, 43, 1162-1222.	12.8	134
585	Remediation of soil contaminated with decabrominated diphenyl ether using white rot fungi. Journal of Environmental Engineering and Landscape Management, 2013, 21, 171-179.	1.0	11
586	The Potent Pharmacological Mushroom Fomes fomentarius: Cultivation Processes and Biotechnological Uses. , 2013, , 310-332.		0
587	Synthesis of Silver Nanoparticles by a Bryophilous <i>Rhizoctonia</i> Species. Nanomaterials and Nanotechnology, 2013, 3, 2.	3.0	20
588	Fungi and Their Role in the Biosphere. , 2013, , .		1
589	Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. , 0, , .		68
590	Role of magnesium ions on yeast performance during very high gravity fermentation. Journal of Brewing and Distilling, 2013, 4, 19-45.	0.7	43
591	Copper resistance of different ectomycorrhizal fungi such as Pisolithus microcarpus, Pisolithus sp., Scleroderma sp. and Suillus sp Brazilian Journal of Microbiology, 2013, 44, 613-622.	2.0	11
592	Tolerância de fungos ectomicorrÃzicos e plantas associadas a nÃveis tóxicos de metais. Revista Arvore, 2013, 37, 825-833.	0.5	7
593	Metals and Metalloids, Transformation by Microorganisms. , 2013, , .		7
594	Mechanisms of Metal Resistance and Homeostasis in Haloarchaea. Archaea, 2013, 2013, 1-16.	2.3	63

#	Article	IF	CITATIONS
595	Fluoride-Tolerant Mutants of Aspergillus niger Show Enhanced Phosphate Solubilization Capacity. PLoS ONE, 2014, 9, e110246.	2.5	14
596	Influence of Fungi on the Environmental Mobility of Metals and Metalloids. , 0, , 237-256.		51
597	Biosorption of Uranium and Thorium by Biopolymers. , 2014, , 363-395.		11
598	Arbuscular Mycorrhizal Fungi and Metal Phytoremediation. , 2014, , 133-160.		16
599	Development of a groundwater fungal strain as a tool for toxicity assessment. Environmental Toxicology and Chemistry, 2014, 33, 2826-2834.	4.3	9
600	Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. Environmental Pollution, 2014, 193, 197-204.	7.5	42
601	Bioaccumulation and biovolatilization of various elements using filamentous fungus <i>Scopulariopsis brevicaulis</i> . Letters in Applied Microbiology, 2014, 59, 217-223.	2.2	35
602	Biomineralization of Metal Carbonates by <i>Neurospora crassa</i> . Environmental Science & Technology, 2014, 48, 14409-14416.	10.0	124
603	Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology (United Kingdom), 2014, 160, 2235-2242.	1.8	55
604	Evidence of nickel (<scp><scp>Ni</scp></scp>) efflux in <scp><scp>Ni</scp></scp> â€tolerant ectomycorhizal <scp><i>P</i></scp> <i>isolithus albus</i> isolated from ultramafic soil. Environmental Microbiology Reports, 2014, 6, 510-518.	2.4	22
605	Effect of carbon source on the degradation of 2-naphthalenesulfonic acid polymers mixture by Pleurotus ostreatus in petrochemical wastewater. Process Biochemistry, 2014, 49, 2272-2278.	3.7	15
606	A Multiscale, Hierarchical Model of Pulse Dynamics in Arid-Land Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 397-419.	8.3	153
607	Biosorption of cadmium (II) and lead (II) from aqueous solution using exopolysaccharide and biomass produced by <i>Colletotrichum</i> sp Desalination and Water Treatment, 2014, 52, 7878-7886.	1.0	13
608	Biotechnological Tools for Enhancing Microbial Solubilization of Insoluble Inorganic Phosphates. Geomicrobiology Journal, 2014, 31, 751-763.	2.0	35
609	Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environmental Microbiology, 2014, 16, 1729-1740.	3.8	88
610	Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: A review. Physics and Chemistry of the Earth, 2014, 67-69, 242-252.	2.9	34
611	Trichoderma virens PDR-28: A heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. Journal of Environmental Management, 2014, 132, 129-134.	7.8	101
612	Expression of a dye-decolorizing peroxidase results in hypersensitive response to cadmium stress through reducing the ROS signal in Arabidopsis. Environmental and Experimental Botany, 2014, 101, 47-55.	4.2	10

#	Article	IF	CITATIONS
613	Removal of toxic Co-EDTA complex by a halophilic solar-salt-pan isolate Pseudomonas aeruginosa SPB-1. Chemosphere, 2014, 95, 503-510.	8.2	21
614	Heavy Metal Biosorption by Rhizopus Sp. Biomass Immobilized on Textiles. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	12
615	Biosorption studies on bioremediation and biorecovery. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1863-1864.	5.3	5
616	Potential Use of Aspergillus Flavus Strain KRP1 in Utilization of Mercury Contaminant. Procedia Environmental Sciences, 2014, 20, 254-260.	1.4	7
617	Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters. Bioresource Technology, 2014, 160, 24-31.	9.6	99
618	Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 2014, 160, 3-14.	9.6	827
619	Fungal jarosite biomineralization in RÃo Tinto. Research in Microbiology, 2014, 165, 719-725.	2.1	27
620	Unveiling the potential of metal-tolerant fungi for efficient enzyme production. Process Biochemistry, 2014, 49, 1858-1866.	3.7	3
621	Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 2014, 28, 36-55.	4.7	291
622	Sporothrix schenckii complex biology: environment and fungal pathogenicity. Microbiology (United) Tj ETQq1 1	0.784314 1.8	∙rg₿Ţ /Overlo
622 623	Sporothrix schenckii complex biology: environment and fungal pathogenicity. Microbiology (United) Tj ETQq1 1 Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476.	0.784314 1.8 8.2	• rgBT /Overloo 44
	Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth	1.0	
623	Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?. Plant and	8.2	44
623 624	 Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?. Plant and Soil, 2014, 382, 219-236. Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia 	8.2 3.7	44 27
623 624 625	 Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?. Plant and Soil, 2014, 382, 219-236. Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World Journal of Microbiology and Biotechnology, 2014, 30, 2251-2262. Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to 	8.2 3.7 3.6	44 27 9
623 624 625 626	 Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?. Plant and Soil, 2014, 382, 219-236. Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World Journal of Microbiology and Biotechnology, 2014, 30, 2251-2262. Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to Their Determination by FAAS. Biological Trace Element Research, 2014, 159, 254-262. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology, 2014, 64, 	 8.2 3.7 3.6 3.5 	44 27 9 13
623 624 625 626 627	Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: Growth responses, tolerance and bioaccumulation. Chemosphere, 2014, 117, 471-476. As, Pb, Sb, and Zn transfer from soil to root of wild rosemary: do native symbionts matter?. Plant and Soil, 2014, 382, 219-236. Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World Journal of Microbiology and Biotechnology, 2014, 30, 2251-2262. Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to Their Determination by FAAS. Biological Trace Element Research, 2014, 159, 254-262. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology, 2014, 64, 707-720. Fungal associations in <i><scp>H</scp>orneophyton ligneri</i> from the <scp>R</scp> hynie <scp>C</scp> hynie	 8.2 3.7 3.6 3.5 2.6 	44 27 9 13 27

#	Article	IF	CITATIONS
631	Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents. Bioresource Technology, 2014, 160, 142-149.	9.6	181
632	Mycorrhizas: Novel Dimensions in the Changing World. , 2014, , .		6
633	Wood Deterioration: Ground Contact Hazards. ACS Symposium Series, 2014, , 131-146.	0.5	5
634	High Copper Tolerant <i>P. lilacinum</i> Strain Isolated from a Rich Environment in Copper, Rilo Tinto (Sw, Spain). Advanced Materials Research, 0, 1130, 157-160.	0.3	0
638	Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	185
639	Bioestimulação micorrÃzica com óleo essencial em mudas de Enterolobium contorsiliquum e Bauhinia forficata em solo contaminado com cobre. Semina:Ciencias Agrarias, 2015, 36, 1253.	0.3	1
640	Potential Application of Modified Saccharomyces Cerevisiae for Removing Lead and Cadmium. Journal of Bioremediation & Biodegradation, 2015, 06, .	0.5	7
641	Role of Penicillium chrysogenum XJ-1 in the Detoxification and Bioremediation of Cadmium. Frontiers in Microbiology, 2015, 6, 1422.	3.5	41
642	Amino Acids in Brewer's Yeast Involved in Heavy Metal Biosorption from Waste Water. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Agriculture, 2015, 72, .	0.0	0
643	Biodiversity in Metal-Contaminated Sites $\hat{a} \in$ Problem and Perspective $\hat{a} \in$ A Case Study. , 0, , .		8
644	Intracellular distribution of cadmium during the growth of Abortiporus biennis on cadmium-amended media. Canadian Journal of Microbiology, 2015, 61, 545-554.	1.7	2
645	A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper. Bioprocess and Biosystems Engineering, 2015, 38, 1749-1760.	3.4	13
646	Influence of mycorrhizal inoculation on growth of micropropagated PopulusÂ×Âcanescens lines in metal-contaminated soils. New Forests, 2015, 46, 195-215.	1.7	15
647	Effect of copperâ ^{~,} induced oxidative stress on sclerotial differentiation, endogenous antioxidant contents, and antioxidative enzyme activities of Penicillium thomii PT95. Annals of Microbiology, 2015, 65, 1505-1514.	2.6	5
649	Bioremediation of Toxic Metals Using Algae. , 2015, , 439-462.		4
650	Identification of early-response genes involved in cadmium resistance in shiitake mushrooms (Lentinula edodes). Mycological Progress, 2015, 14, 1.	1.4	8
651	Effect of Gamma Radiation on Zinc Tolerance Efficiency of Aspergillus terreus Thorn. Current Microbiology, 2015, 72, 248-58.	2.2	3
652	Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Current Microbiology, 2015, 70, 520-527.	2.2	54

#	Article	IF	CITATIONS
653	Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza, 2015, 25, 97-108.	2.8	63
654	Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2015, 99, 435-443.	3.6	44
655	The stability of Pb species during the Pb removal process by growing cells of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2015, 99, 3685-3693.	3.6	18
656	Phytoremediation. , 2015, , .		16
657	Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens. Environmental Science & Technology, 2015, 49, 8948-8958.	10.0	82
658	Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnus nepalensis) in a metal mine tailing of southwest China. Applied Soil Ecology, 2015, 93, 11-18.	4.3	45
659	Copper (II) lead (II), and zinc (II) reduce growth and zoospore release in four zoosporic true fungi from soils of NSW, Australia. Fungal Biology, 2015, 119, 648-655.	2.5	6
660	Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters. Water, Air, and Soil Pollution, 2015, 226, 99.	2.4	39
661	A Short Review on Mitigation of Metals from Groundwater Using Dried Hyacinth Root. Water Quality, Exposure, and Health, 2015, 7, 423-433.	1.5	2
662	Biomolecular Characteristics of Aspergillus niger Under Cadmium Metal Stress. Environmental Processes, 2015, 2, 241-250.	3.5	7
663	Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Management, 2015, 42, 41-54.	7.4	98
664	Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environmental Pollution, 2015, 200, 126-132.	7.5	69
665	Evaluation of toxicity and biodegradability for cholinium-based deep eutectic solvents. RSC Advances, 2015, 5, 83636-83647.	3.6	180
666	Toward bioactive yet antibacterial surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 135, 158-165.	5.0	39
667	Effects of earthworms on the fungal community and microbial activity in root-adhering soil of Lantana camara during phytoextraction of lead. Applied Soil Ecology, 2015, 96, 151-158.	4.3	21
668	Algal Biorefinery: An Integrated Approach. , 2015, , .		32
669	Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate. International Biodeterioration and Biodegradation, 2015, 105, 90-96.	3.9	15
670	The association of gold with calcrete. Ore Geology Reviews, 2015, 66, 132-199.	2.7	14

#	Article	IF	CITATIONS
671	<i><scp>E</scp>ndogone</i> , one of the oldest plantâ€associated fungi, host unique Mollicutesâ€related endobacteria. New Phytologist, 2015, 205, 1464-1472.	7.3	69
673	Plant–soil interactions in metal contaminated soils. Soil Biology and Biochemistry, 2015, 80, 224-231.	8.8	73
674	Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata. Ecotoxicology and Environmental Safety, 2015, 111, 60-65.	6.0	35
675	Impact of metal pollution on fungal diversity and community structures. Environmental Microbiology, 2015, 17, 2035-2047.	3.8	50
676	Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead-zinc mine tailings. Annals of Microbiology, 2015, 65, 503-515.	2.6	28
677	BIODECOMPOSITION OF JORDAN PHOSPHORITE BY PHOSPHATE-SOLUBILIZING FUNGI. Brazilian Journal of Chemical Engineering, 2016, 33, 1-11.	1.3	6
678	Isolation of heavy metal-resistant fungi from contaminated soil and co-culturing with rice seedlings. African Journal of Microbiology Research, 2016, 10, 1080-1085.	0.4	7
679	Role of Bioadsorbents in Reducing Toxic Metals. Journal of Toxicology, 2016, 2016, 1-13.	3.0	68
680	Ex-situ Bioremediation of U(VI) from Contaminated Mine Water Using Acidithiobacillus ferrooxidans Strains. Frontiers in Environmental Science, 2016, 4, .	3.3	13
681	Role of Fungi in the Biomineralization of Calcite. Minerals (Basel, Switzerland), 2016, 6, 41.	2.0	110
682	Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid. PLoS ONE, 2016, 11, e0156230.	2.5	62
683	Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration. PLoS ONE, 2016, 11, e0169089.	2.5	114
684	Potassium and Its Role in Sustainable Agriculture. , 2016, , 235-253.		76
685	Atmospheric Deposition-Carried Zn and Cd from a Zinc Smelter and Their Effects on Soil Microflora as Revealed by 16S rDNA. Scientific Reports, 2016, 6, 39148.	3.3	19
686	Heavy metal tolerance potential of <i>Aspergillus</i> strains isolated from mining sites. Bioremediation Journal, 2016, 20, 287-297.	2.0	26
687	Growth responses and accumulation of heavy metals by fungus Agaricus bisporus. Acta Botanica Hungarica, 2016, 58, 401-409.	0.3	1
688	5 Fungi and Industrial Pollutants. , 2016, , 99-125.		6
689	Metal release/accumulation during the decomposition of Potamogeton crispus in a shallow macrophytic lake. Journal of Environmental Sciences, 2016, 42, 71-78.	6.1	27

#	Article	IF	CITATIONS
690	Phosphataseâ€mediated bioprecipitation of lead by soil fungi. Environmental Microbiology, 2016, 18, 219-231.	3.8	55
691	Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation. Science of the Total Environment, 2016, 565, 165-180.	8.0	10
692	Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Advances in Applied Microbiology, 2016, 94, 79-108.	2.4	143
693	Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environmental Science and Pollution Research, 2016, 23, 21141-21156.	5.3	39
694	Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil. Applied Soil Ecology, 2016, 108, 62-71.	4.3	22
695	Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology, 2016, , .	0.6	16
696	Geomycology. Fungal Biology, 2016, , 371-401.	0.6	5
697	Mycoremediation of Heavy Metal/Metalloid-Contaminated Soil: Current Understanding and Future Prospects. Fungal Biology, 2016, , 249-272.	0.6	6
698	Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration. American Naturalist, 2016, 187, 110-119.	2.1	22
699	Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens. Biologia (Poland), 2016, 71, 272-280.	1.5	7
701	Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits. Molecular Ecology, 2016, 25, 2258-2272.	3.9	26
702	Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma, 2016, 273, 25-31.	5.1	39
703	Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicology in Vitro, 2016, 35, 149-162.	2.4	24
704	Ionising Radiation in Modulating Zinc Tolerance Potential of Aspergillus niger. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 39-45.	1.0	2
705	Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis. Mycorrhiza, 2016, 26, 263-274.	2.8	51
706	Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Chemosphere, 2016, 147, 163-172.	8.2	29
707	A low-cost and environmentally-friendly potential procedure for inorganic-As remediation based on the use of fungi isolated from rice rhizosphere. Journal of Environmental Chemical Engineering, 2016, 4, 891-898.	6.7	13
708	Solubilisation and chemical fixation of copper(<scp>ii</scp>) in micronized copper treated wood. Dalton Transactions, 2016, 45, 3679-3686.	3.3	8

#	Article	IF	CITATIONS
709	Environmental pollution of electronic waste recycling in India: A critical review. Environmental Pollution, 2016, 211, 259-270.	7.5	266
710	Harmful effects of silver nanoparticles on a complex detrital model system. Nanotoxicology, 2016, 10, 728-735.	3.0	42
711	Interaction of Pb (II) and Cd (II) with <i>Arthrobacter protophormiae</i> biomass: mechanism and characterization. Desalination and Water Treatment, 2016, 57, 25773-25782.	1.0	0
712	Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes. , 2016, , 115-132.		1
713	Isolation and identification of nematode-antagonistic compounds from the fungus <i>Aspergillus candidus</i> . FEMS Microbiology Letters, 2016, 363, fnw026.	1.8	18
714	Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis. Mycorrhiza, 2016, 26, 475-487.	2.8	38
715	Heavy Metal Tolerance and Biotransformation of Toxic Metal Compounds by New Isolates of Wood-Rotting Fungi from Thailand. Geomicrobiology Journal, 2016, 33, 283-288.	2.0	39
716	Lead Bioprecipitation by Yeasts Utilizing Organic Phosphorus Substrates. Geomicrobiology Journal, 2016, 33, 294-307.	2.0	27
717	A New Lead Hydroxycarbonate Produced During Transformation of Lead Metal by the Soil Fungus <i>Paecilomyces javanicus</i> . Geomicrobiology Journal, 2016, 33, 250-260.	2.0	22
718	Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China. Environmental Science and Pollution Research, 2016, 23, 5189-5202.	5.3	14
719	Vertical concentration gradients of heavy metals in Cladonia lichens across different parts of thalli. Ecological Indicators, 2016, 61, 766-776.	6.3	20
720	Feasibility of cheese whey as an energy source for the growth of <i>Aspergillus</i> sp. and for the removal of heavy metals in batch reactor. Desalination and Water Treatment, 2016, 57, 15467-15474.	1.0	1
721	Characteristics of Metabolic Changes and Antioxidative Response in a Potential Zinc Tolerant Fungal Strain, Aspergillus terreus. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 571-578.	1.0	1
722	Biogeochemical spatioâ€ŧemporal transformation of copper in <scp><i>A</i></scp> <i>spergillus niger</i> colonies grown on malachite with different inorganic nitrogen sources. Environmental Microbiology, 2017, 19, 1310-1321.	3.8	12
723	The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiology Spectrum, 2017, 5, .	3.0	26
724	Potential of fungus Trichoderma harzianum for toxicity reduction in municipal solid waste leachate. International Journal of Environmental Science and Technology, 2017, 14, 2015-2022.	3.5	8
725	A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India. Environmental Science and Pollution Research, 2017, 24, 8880-8888.	5.3	8
726	Metallophilic fungi research: an alternative for its use in the bioremediation of hexavalent chromium. International Journal of Environmental Science and Technology, 2017, 14, 2023-2038.	3.5	43

#	Article	IF	CITATIONS
727	Biosorption an innovative tool for bioremediation of metal-contaminated municipal solid waste leachate: optimization and mechanisms exploration. International Journal of Environmental Science and Technology, 2017, 14, 729-742.	3.5	8
728	Effects of heavy metals on soil microbial community structure and diversity in the rice (<i>Oryza) Tj ETQq1 1 0. rhizosphere. Soil Science and Plant Nutrition, 2017, 63, 75-83.</i>	784314 rg 1.9	BT /Overlock 44
729	Removal of Sr ²⁺ , Co ²⁺ , and Cs ⁺ from aqueous solution by immobilized <i>Saccharomyces cerevisiae</i> with magnetic chitosan beads. Environmental Progress and Sustainable Energy, 2017, 36, 989-996.	2.3	27
730	Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead. Folia Microbiologica, 2017, 62, 295-304.	2.3	12
731	Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of woodâ€decay basidiomycetes. New Phytologist, 2017, 215, 747-755.	7.3	66
732	Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells. Food Chemistry, 2017, 221, 1361-1370.	8.2	18
733	Influence of Chromium Contamination on Carbon Mineralization and Enzymatic Activities in Vertisol. Agricultural Research, 2017, 6, 91-96.	1.7	50
734	Copper nanoparticles in glycerol-polyvinyl alcohol matrix: In situ preparation, stabilisation and antimicrobial activity. Journal of Alloys and Compounds, 2017, 697, 147-155.	5.5	21
735	Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017, 8, e01951.	2.2	82
736	Solubilization and bioprecipitation of zinc oxide nanoparticles by fungi isolated from zinc sulfide mineral ores. Materials Today: Proceedings, 2017, 4, 6562-6566.	1.8	3
737	Growth and uptake of caesium, rubidium, and potassium by ectomycorrhizal and saprotrophic fungi grown on either ammonium or nitrate as the N source. Mycological Progress, 2017, 16, 801-809.	1.4	5
738	Comparison of multielemental composition of Polish and Chinese mushrooms (Ganoderma spp.). European Food Research and Technology, 2017, 243, 1555-1566.	3.3	13
739	Plant Growth-Promoting Microbes: Diverse Roles in Agriculture and Environmental Sustainability. , 2017, , 71-111.		28
740	Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere, 2017, 185, 290-296.	8.2	90
741	Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations. Molecular Biology and Evolution, 2017, 34, 2613-2626.	8.9	24
742	Distributions of fungal melanin across species and soils. Soil Biology and Biochemistry, 2017, 113, 285-293.	8.8	48
743	Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres. Nuclear Engineering and Technology, 2017, 49, 172-177.	2.3	41
744	Marine-Derived Fungi: Prospective Candidates for Bioremediation. Fungal Biology, 2017, , 17-37.	0.6	5

#	Article	IF	CITATIONS
745	Arbuscular Mycorrhizal Fungi Improve Tolerance of Agricultural Plants to Cope Abiotic Stress Conditions. , 2017, , 55-80.		7
746	Potential Microbiological Approaches for the Remediation of Heavy Metal-Contaminated Soils. , 2017, , 341-366.		1
747	The Geomycology of Elemental Cycling and Transformations in the Environment. , 2017, , 369-386.		1
748	Iron and Fungal Physiology. Advances in Applied Microbiology, 2017, 98, 31-60.	2.4	21
749	Mycorrhiza-Assisted Phytoremediation. Advances in Botanical Research, 2017, 83, 127-188.	1.1	44
750	The Structural and Functional State of Soil Microbiota in a Chemically Polluted Environment. Biology Bulletin, 2017, 44, 1228-1236.	0.5	2
751	Yeast Biomass: An Alternative for Bioremediation of Heavy Metals. , 0, , .		30
752	Biosorption of Heavy Metals onto Different Eco-Friendly Substrates. Journal of Bioremediation & Biodegradation, 2017, 08, .	0.5	4
753	HEAVY METAL TOLERANCE POTENTIAL OF FUNGUS ISOLATED FROM COPPER SMELTING INDUSTRY. International Research Journal of Pharmacy, 2017, 8, 120-125.	0.2	1
754	The fungicide effect of HKUST-1 on <i>Aspergillus niger</i> , <i>Fusarium solani</i> and <i>Penicillium chrysogenum</i> . New Journal of Chemistry, 2018, 42, 5570-5579.	2.8	17
755	Bioaccumulation of cadmium in soil organisms – With focus on wood ash application. Ecotoxicology and Environmental Safety, 2018, 156, 452-462.	6.0	41
756	Fungal strategies for dealing with environment- and agriculture-induced stresses. Fungal Biology, 2018, 122, 602-612.	2.5	52
757	A biosensor based on fungal soil biomass for electrochemical detection of lead (II) and cadmium (II) by differential pulse anodic stripping voltammetry. Journal of Electroanalytical Chemistry, 2018, 813, 9-19.	3.8	53
758	Mechanism and Action of Aureobasidium pullulans on Biosorption of Metals. Energy, Environment, and Sustainability, 2018, , 215-231.	1.0	6
759	Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Construction and Building Materials, 2018, 164, 275-285.	7.2	110
760	Assessment of emissions of trace elements and sulfur gases from sulfide tailings. Journal of Geochemical Exploration, 2018, 186, 256-269.	3.2	14
761	The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist, 2018, 220, 1012-1030.	7.3	206
762	Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp Water Resources and Industry, 2018, 20, 83-92.	3.9	93

#	Article	IF	CITATIONS
763	Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environmental Technology and Innovation, 2018, 9, 91-99.	6.1	40
764	Waste Bioremediation. Energy, Environment, and Sustainability, 2018, , .	1.0	12
765	Decoding the role of hypothetical protein All3255 of Anabaena PCC7120 in heavy metal stress management in Escherichia coli. Archives of Microbiology, 2018, 200, 463-471.	2.2	2
766	Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Applied Microbiology and Biotechnology, 2018, 102, 1019-1033.	3.6	19
767	Assessment and Evaluation of Heavy Metals Removal from Landfill Leachate by Pleurotus ostreatus. Waste and Biomass Valorization, 2018, 9, 503-511.	3.4	39
768	Fungi: A Neglected Candidate for the Application of Self-Healing Concrete. Frontiers in Built Environment, 2018, 4, .	2.3	24
769	Biosorption of Cadmium by Filamentous Fungi Isolated from Coastal Water and Sediments. Journal of Toxicology, 2018, 2018, 1-6.	3.0	23
770	Marine-Derived Fungi: Promising Candidates for Enhanced Bioremediation. Nanotechnology in the Life Sciences, 2018, , 281-300.	0.6	4
771	Do environmentally induced DNA variations mediate adaptation in Aspergillus flavus exposed to chromium stress in tannery sludge?. BMC Genomics, 2018, 19, 868.	2.8	9
772	Enzymatic Bioweathering and Metal Mobilization From Black Slate by the Basidiomycete Schizophyllum commune. Frontiers in Microbiology, 2018, 9, 2545.	3.5	9
773	Fungal Endophyte Alternaria tenuissima Can Affect Growth and Selenium Accumulation in Its Hyperaccumulator Host Astragalus bisulcatus. Frontiers in Plant Science, 2018, 9, 1213.	3.6	28
774	Arbuscular Mycorrhizal Fungi, Interactions With Heavy Metals and Rehabilitation of Abandoned Mine Lands. , 2018, , 261-279.		5
775	Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Metal Pollution. Forestry Sciences, 2018, , 119-137.	0.4	2
776	Towards the Mechanisms of Nutrient Solubilization and Fixation in Soil System. , 2018, , 229-257.		7
777	Role of Rhizospheric Microbes in Soil. , 2018, , .		17
778	Investigating the Role of Gold Nanoparticle Shape and Size in Their Toxicities to Fungi. International Journal of Environmental Research and Public Health, 2018, 15, 998.	2.6	23
779	Enhanced Tolerance to Cadmium in Bacterial-Fungal Co-Cultures as a Strategy for Metal Biorecovery from e-Waste. Minerals (Basel, Switzerland), 2018, 8, 121.	2.0	7
780	Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils. Environmental Reviews, 2018, 26, 316-332.	4.5	47

#	Article	IF	CITATIONS
781	Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces. Corrosion Science, 2018, 143, 84-92.	6.6	52
782	Role of Penicillium Species in Bioremediation Processes. , 2018, , 247-260.		8
783	Heavy Metal Pollutants: Environmental and Biotechnological Aspects. , 2019, , .		5
784	Biological Effects of Uranium and Its Decay Products on Soil Microbes, Plants, and Humans. , 2019, , 369-391.		4
785	Role of Microorganisms in Soil Genesis and Functions. , 2019, , 25-52.		11
786	Origin of strontium and calcium in pedogenic needle fibre calcite (NFC). Chemical Geology, 2019, 524, 329-344.	3.3	10
787	Combining the 5.8S and ITS2 to improve classification of fungi. Methods in Ecology and Evolution, 2019, 10, 1702-1711.	5.2	27
788	The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review. Water (Switzerland), 2019, 11, 1555.	2.7	100
789	Screening and molecular identification of Cr(VI)-resistant Trichoderma isolated from ex-tin mining soil in Bangka Belitung Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 2019, 308, 012011.	0.3	0
790	Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biological Reviews, 2019, 94, 2101-2137.	10.4	191
791	Arsenic (As) Removal Using Talaromyces sp. KM-31 Isolated from As-Contaminated Mine Soil. Minerals (Basel, Switzerland), 2019, 9, 568.	2.0	24
792	Nitrogen sources and trace elements influence Laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos, 2019, 32, 316-323.	1.5	11
793	Method for characterizing extracellular proteins from the cell wall proteome of the copper tolerant fungus Phialophora malorum. International Biodeterioration and Biodegradation, 2019, 144, 104769.	3.9	4
794	Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta. Environmental Science: Nano, 2019, 6, 425-431.	4.3	2
795	Evaluation of Aspergillus tamarii NRC 3 biomass as a biosorbent for removal and recovery of heavy metals from contaminated aqueous solutions. Bulletin of the National Research Centre, 2019, 43, .	1.8	19
796	Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?. Science of the Total Environment, 2019, 653, 930-937.	8.0	16
797	Removal of cesium ions from aqueous solutions using various separation technologies. Reviews in Environmental Science and Biotechnology, 2019, 18, 231-269.	8.1	185
798	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	5.2	31

#	Article	IF	Citations
799	Interactions among microfungi and pyrite-chalcopyrite mineralizations: tolerance, mineral bioleaching, and metal bioaccumulation. Mycological Progress, 2019, 18, 415-423.	1.4	10
800	Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environmental Monitoring and Assessment, 2019, 191, 247.	2.7	19
801	Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia. Insects, 2019, 10, 51.	2.2	9
802	Significances of Fungi in Bioremediation of Contaminated Soil. , 2019, , 281-294.		4
803	Root-endophytic Chaetomium cupreum chemically enhances aluminium tolerance in Miscanthus sinensis via increasing the aluminium detoxicants, chlorogenic acid and oosporein. PLoS ONE, 2019, 14, e0212644.	2.5	23
804	Screening of Fungi for Potential Application of Self-Healing Concrete. Scientific Reports, 2019, 9, 2075.	3.3	81
805	Is concrete healing really efficient? A review. Construction and Building Materials, 2019, 205, 257-273.	7.2	98
806	Decomposition of Spartina alterniflora and concomitant metal release dynamics in a tidal environment. Science of the Total Environment, 2019, 663, 867-877.	8.0	10
807	Arsenic volatilization by Aspergillus sp. and Penicillium sp. isolated from rice rhizosphere as a promising eco-safe tool for arsenic mitigation. Journal of Environmental Management, 2019, 237, 170-179.	7.8	23
808	Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Frontiers in Microbiology, 2019, 10, 371.	3.5	47
809	Eco-restoration approach for mine spoil overburden dump through biotechnological route. Environmental Monitoring and Assessment, 2019, 191, 772.	2.7	19
810	Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger. Bioprocess and Biosystems Engineering, 2019, 42, 291-296.	3.4	12
811	A new insight into lead (II) tolerance of environmental fungi based on a study of <i>Aspergillus niger</i> and <i>Penicillium oxalicum</i> . Environmental Microbiology, 2019, 21, 471-479.	3.8	77
812	Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Applied Sciences, 2019, 1, 1.	2.9	71
813	Metals Extraction from Sulfide Ores with Microorganisms: The Bioleaching Technology and Recent Developments. Transactions of the Indian Institute of Metals, 2019, 72, 559-579.	1.5	66
814	Influence of metal ions on sulfonamide antibiotics biochemical behavior in fiber coexisting system. Journal of Environmental Sciences, 2019, 80, 267-276.	6.1	14
815	Towards a preventive and/or curative treatment of esca in grapevine trunk disease: General basis in the elaboration of treatments to control plant pathogen attacks. Crop Protection, 2019, 116, 156-169.	2.1	13
816	Fungi in acidic fire: A potential source of industrially important enzymes. Fungal Biology Reviews, 2019, 33, 58-71.	4.7	18

ARTICLE IF CITATIONS Single and joint effects of Zn and Cu to ATP pool and microbial recovery in continuous growth 817 3.2 1 systems. Journal of Chemical Technology and Biotechnology, 2019, 94, 892-899. Valorization of keratin biofibers for removing heavy metals from aqueous solutions. Textile Reseach 818 2.2 Journal, 2019, 89, 1153-1165. Metal-Tolerant Fungal Communities Are Delineated by High Zinc, Lead, and Copper Concentrations in 819 2.8 12 Metalliferous Gobi Desert Soils. Microbial Ecology, 2020, 79, 420-431. Lead soaps formation and biodiversity in a XVIII Century wax seal coloured with minium. 820 Environmental Microbiology, 2020, 22, 1517-1534. Arsenic Contamination in Environment, Ecotoxicological and Health Effects, and Bioremediation 821 7 Strategies for Its Detoxification., 2020, , 245-264. Self-repairing cement mortars with microcapsules: A microstructural evaluation approach. Construction and Building Materials, 2020, 232, 117239. Current advancement and future prospect of biosorbents for bioremediation. Science of the Total 823 8.0 165 Environment, 2020, 709, 135895. A review of copper speciation and transformation in plant and soil/wetland systems. Advances in 824 5.2 Agronomy, 2020, , 249-293. Fungal functional ecology: bringing a traitâ€based approach to plantâ€associated fungi. Biological 825 10.4 171 Reviews, 2020, 95, 409-433. Potential Effects of Episodic Deposition on Nutrients and Heavy Metals in Decomposing Litters of Suaeda glauca in Salt Marsh of the Yellow River Estuary, China. Chinese Geographical Science, 2020, 30, 466-482. Synergistic and Antagonistic Effects on Metal Bioremediation with Increasing Metal Complexity in a Hexa-metal Environment by Aspergillus fumigatus. International Journal of Environmental Research, 827 2.39 2020, 14, 761-770. Biocorrosion of copper metal by Aspergillus niger. International Biodeterioration and Biodegradation, 2020, 154, 105081. 3.9 Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. 829 2.0 66 Minerals (Basel, Switzerland), 2020, 10, 861. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Applied Microbiology and Biotechnology, 2020, 104, 8999-9008. 3.6 65 Gene Expression Analysis of Three Putative Copper-Transporting ATPases in Copper-Tolerant Fibroporia 831 3.51 radiculosa. Frontiers in Microbiology, 2020, 11, 586940. Effects of Ectomycorrhizal Fungi and Heavy Metals (Pb, Zn, and Cd) on Growth and Mineral Nutrition of Pinus halepensis Seedlings in North Africa. Microorganisms, 2020, 8, 2033. Recent Advances in Biosorption of Copper and Cobalt by Filamentous Fungi. Frontiers in Microbiology, 833 3.564 2020, 11, 582016. Adaptation of soil fungi to heavy metal contamination in paddy fields—a case study in eastern China. 834 5.3 Environmental Science and Pollution Research, 2020, 27, 27819-27830.

		CITATION RE	PORT	
#	Article		IF	Citations
835	Biosorption of Water Pollutants by Fungal Pellets. Water (Switzerland), 2020, 12, 115	5.	2.7	53
836	Size and Surface Charge Dependent Impregnation of Nanoparticles in Soft- and Hardw 2020, 2, 361-373.	ood. Chemistry,	2.2	4
837	Antagonism against soil nematodes and plant pathogens and test of oxide solubilization subtropical wood-decay mushroom. Tropical Ecology, 2020, 61, 173-179.	on in a	1.2	0
838	Biosorption of copper by immobilized biomass of Aspergillus australensis. Effect of mer viability, cellular components, polyhydroxyalkanoates production, and oxidative stress. Environmental Science and Pollution Research, 2020, 27, 28545-28560.	tal on the	5.3	11
839	Antifungal Activity of Lactic Acid Bacteria Isolates and Their Associations: The Effects o Divalent Cations. Current Microbiology, 2020, 77, 959-966.	f Ca and Mg	2.2	9
840	The role of extracts fromÂEugenia unifloraÂL. against metal stress in eukaryotic and pr models. South African Journal of Botany, 2020, 131, 360-368.	okaryotic	2.5	6
841	Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar. Pollution, 2020, 263, 114483.	. Environmental	7.5	46
842	Different phototoxicities of ZnO nanoparticle on stream functioning. Science of the To Environment, 2020, 725, 138340.	tal	8.0	6
843	Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phyto infestans in dual combination. Phytoparasitica, 2020, 48, 357-370.	phthora	1.2	6
844	Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of rechargeable Liâ€ion batteries. Journal of Applied Microbiology, 2021, 131, 743-755.	spent	3.1	5
845	Mycoremediation: Fungal-Based Technology for Biosorption of Heavy Metals $\hat{a} {\in} `` A \text{Rev} 355-373.$	iew., 2021,,		3
846	Fungi: a promising tool for bioremediation of toxic heavy metals. , 2021, , 123-144.			4
847	VAM: An Alternate Strategy for Bioremediation of Polluted Environment. Microorganis Sustainability, 2021, , 153-184.	ns for	0.7	0
848	Solubilization of Micronutrients Using Indigenous Microorganisms. , 2021, , 365-417.			3
849	Signatures of signaling pathways underlying plant-growth promotion by fungi. , 2021,	, 321-346.		3
850	Potential effect of microbial biostimulants in sustainable vegetable production. , 2021,	, 193-237.		3
851	Dark septate endophytes of forest trees. , 2021, , 207-220.			1
852	Interventions to Ameliorate Heavy Metal Contaminated Soils Employing Fungal Sidero Biology, 2021, , 79-98.	phores. Fungal	0.6	0

#	Article	IF	CITATIONS
853	Biosorption-driven green technology for the treatment of heavy metal(loids)-contaminated effluents. , 2021, , 71-91.		1
854	Fungi-Mediated Detoxification of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 205-219.	0.4	1
855	Heavy metal tolerance of filamentous fungi from the sediments of Visayas State University wastewater pond. Annals of Tropical Research, 2021, , 88-101.	0.2	3
856	Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Archives of Microbiology, 2021, 203, 2761-2770.	2.2	33
857	Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. Micromachines, 2021, 12, 639.	2.9	5
858	Phialocephala fortinii increases aluminum tolerance in Miscanthus sinensis growing in acidic mine soil. Letters in Applied Microbiology, 2021, 73, 300-307.	2.2	8
859	Potentially toxic elements in macromycetes and plants from areas affected by antimony mining. Biologia (Poland), 2021, 76, 2133-2159.	1.5	8
860	Toxicity of metal cations and phenolic compounds to the bioluminescent fungus Neonothopanus gardneri. Environmental Advances, 2021, 4, 100044.	4.8	7
861	Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger. Applied Microbiology and Biotechnology, 2021, 105, 6477-6488.	3.6	15
862	Electromagnetic Field as Agent Moving Bioactive Cations. A New Antimicrobial System in Architecture Technology. Applied Sciences (Switzerland), 2021, 11, 8320.	2.5	3
863	Microbiomeâ€mediated effects of habitat fragmentation on native plant performance. New Phytologist, 2021, 232, 1823-1838.	7.3	18
864	1,8-dihydroxy naphthalene (DHN) - melanin confers tolerance to cadmium in isolates of melanised dark septate endophytes. Ecotoxicology and Environmental Safety, 2021, 222, 112493.	6.0	16
865	Effect of the natural establishment of two plant species on microbial activity, on the composition of the fungal community, and on the mitigation of potentially toxic elements in an abandoned mine tailing. Science of the Total Environment, 2022, 802, 149788.	8.0	8
866	Phytobial remediation by bacteria and fungi. , 2022, , 285-344.		3
867	Iron Toxicity and Its Relation to Nitrogen and Phosphorus Availability in Ectomycorrhizal Fungi. Soil Biology, 2021, , 459-479.	0.8	0
868	The importance of the bacterial cell wall in uranium(<scp>vi</scp>) biosorption. Physical Chemistry Chemical Physics, 2021, 23, 1566-1576.	2.8	31
869	Removal of Dyes From Industrial Effluents Using Bioremediation Technique. , 2021, , 173-194.		1
870	Different mechanisms of signaling pathways for plant protection from diseases by fungi. , 2021, , 591-630.		1

#	Article	IF	CITATIONS
871	Dynamics and characteristics of biogenic silica and macro- and microelements in decomposing litter in the Min River estuary, southeast China. Elementa, 2021, 9, .	3.2	1
872	Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals. Fungal Biology, 2021, , 509-540.	0.6	2
877	ROLE OF MYCORRHIZAL FUNGI IN PHYTOREMEDIATION AND TOXICITY MONITORING OF HEAVY METAL RICH INDUSTRIAL WASTES IN SOUTHERN POLAND. , 2006, , 533-551.		29
878	Eukaryotic Community Structure from RÃo Tinto (SW, Spain), a Highly Acidic River. Cellular Origin and Life in Extreme Habitats, 2007, , 465-485.	0.3	5
879	The Use of Mycorrhizal Biotechnology in Restoration of Disturbed Ecosystem. , 2008, , 303-320.		23
880	Arbuscular Mycorrhizal Symbiosis and Other Plant–Soil Interactions in Relation to Environmental Stress. , 2012, , 233-264.		10
881	Eukaryotic Life in Extreme Environments: Acidophilic Fungi. , 2019, , 21-38.		7
882	Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. , 1994, , 179-189.		30
883	Lichens as an Alternative Biosorbent: A Review. , 2015, , 233-241.		6
884	Metal Elements and the Diversity and Function of Ectomycorrhizal Communities. Soil Biology, 2011, , 231-254.	0.8	6
885	Metal-Chelating Agents from Ectomycorrhizal Fungi and Their Biotechnological Potential. Soil Biology, 2011, , 347-369.	0.8	3
886	Upscaling the Biogeochemical Role of Arbuscular Mycorrhizal Fungi in Metal Mobility. Soil Biology, 2013, , 285-311.	0.8	3
887	Metal Pollution and Forest Decline. , 2004, , 295-312.		13
888	Mycorrhizas in Extreme Environments. , 2014, , 53-61.		1
889	Metal Tolerant Mycorrhizal Plants: A Review from the Perspective on Industrial Waste in Temperate Region. , 2010, , 257-276.		9
890	Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Pollution. Forestry Sciences, 2011, , 189-201.	0.4	12
891	Management of Heavy Metal Pollution by Using Yeast Biomass. , 2012, , 335-363.		9
892	Microbial Roles in Mineral Transformations and Metal Cycling in the Earth's Critical Zone. , 2013, , 115-165.		12

#	Article	IF	CITATIONS
893	Bioindicators of Toxic Metals. Environmental Chemistry for A Sustainable World, 2013, , 151-228.	0.5	28
894	Accumulation of Inorganic Contaminants. , 2002, , 65-84.		42
895	Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. , 2002, , 41-53.		6
896	Contribution of Zinc-Solubilizing and -Mobilizing Microorganisms (ZSMM) to Enhance Zinc BioavailabilityÂfor Better Soil, Plant, and Human Health. Microorganisms for Sustainability, 2020, , 357-386.	0.7	3
897	Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 205, 231-236.	1.8	2
898	Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 1997, 154, 29-35.	1.8	17
899	Metal insensitivity in ericoid mycorrhizal endophytes from Woollsia pungens (Epacridaceae). Australian Journal of Botany, 2001, 49, 571.	0.6	9
901	Copper and zinc affect the activity of plasma membrane H+-ATPase and thiol content in aquatic fungi. Microbiology (United Kingdom), 2016, 162, 740-747.	1.8	6
902	Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide silver staining. Applied and Environmental Microbiology, 1995, 61, 1968-1975.	3.1	67
903	Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Applied and Environmental Microbiology, 1996, 62, 3960-3966.	3.1	183
904	Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Applied and Environmental Microbiology, 1997, 63, 2971-2976.	3.1	221
905	Stimulation of Strontium Accumulation in Linoleate-Enriched <i>Saccharomyces cerevisiae</i> Is a Result of Reduced Sr ²⁺ Efflux. Applied and Environmental Microbiology, 1999, 65, 1191-1197.	3.1	14
906	Algal Biosorption of Heavy Metals. , 2016, , 131-146.		3
907	Toxic Metals and Fungal Communities. Mycology, 2005, , 733-758.	0.5	19
908	Fungal Activity as Determined by Microscale Methods with Special Emphasis on Interactions with Heavy Metals. Mycology, 2005, , 287-305.	0.5	13
909	Arbuscular Mycorrhizal Fungi and Heavy Metals. , 2005, , 211-234.		3
910	The Response of Dark Septate Endophytes (DSE) to Heavy Metals in Pure Culture. PLoS ONE, 2012, 7, e47968.	2.5	99
911	Biosynthesis and Uptake of Copper Nanoparticles by Dead Biomass of Hypocrea lixii Isolated from the Metal Mine in the Brazilian Amazon Region. PLoS ONE, 2013, 8, e80519.	2.5	78

#	Article	IF	CITATIONS
912	Mycoremediation of copper: Exploring the metal tolerance of brown rot fungi. BioResources, 2018, 13, 7155-7171.	1.0	17
913	Tolerância de fungos ectomicorrÃzicos a metais pesados em meio de cultura adicionado de solo contaminado. Revista Brasileira De Ciencia Do Solo, 2001, 25, 839-848.	1.3	5
914	Efeito da toxicidade de Cr (VI) e Zn (II) no crescimento do fungo filamentoso Aspergillus niger isolado de efluente industrial. Engenharia Sanitaria E Ambiental, 2011, 16, 237-244.	0.5	8
915	Prognostication of Bioremediation Requisite Around Industrially Contaminated Environment: A Review. Current Biotechnology, 2020, 9, 3-14.	0.4	3
916	Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electronic Journal of Biotechnology, 1999, 2, .	2.2	17
917	GENE EXPRESSION ANALYSIS OF WOOD DECAY FUNGUS FIBROPORIA RADICULOSA GROWN IN ACQ-TREATED WOOD. Wood and Fiber Science, 2018, 50, 193-204.	0.6	5
919	Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory 3. Species diversity and community structure of soil fungi. Ekologija (Vilnius, Lithuania), 2010, 56, 132-143.	0.2	6
920	Copper tolerance, protein and catalytic activity in phytopathogenic fungus Alternaria alternata. Global Nest Journal, 2015, 17, 664-672.	0.1	10
921	Contents of cadmium and mercury in edible mushrooms. Journal of Applied Biomedicine, 2004, 2, 15-20.	1.7	43
922	Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vent. Marine Ecology - Progress Series, 2002, 226, 63-75.	1.9	19
923	Toxic Metal Effect on Filamentous Fungi Isolated from the Contaminated Soil of Multan and Gujranwala. Journal of Bioresource Management, 2014, 1, .	0.4	12
924	Isolation and Characterization of Strontium Resistant Mutant of Neurospora crassa. Asian Journal of Biochemistry, 2015, 10, 156-164.	0.5	1
925	Bioremediation of Engine Oil Polluted Soil by the Tropical White Rot Fungus,Lentinus squarrosulus Mont. (Singer). Pakistan Journal of Biological Sciences, 2008, 11, 1634-1637.	0.5	32
926	Biodiversity of Fungi from Lead Contaminated Industrial Waste Water and Tolerance of Lead Metal Ion by Dominant Fungi. Research Journal of Environmental Sciences, 2015, 9, 159-168.	0.5	8
927	Impact of Cadmium, Chromium, Cobalt, Lithium and Manganese to the Growth of Fungi and Production of Enzymes. Expert Opinion on Environmental Biology, 2013, 02, .	0.2	6
928	Effect of Copper on Growth Characteristics and Disease Control of the Recently Introduced <i>Guignardia citricarpa</i> on Citrus in Florida. American Journal of Plant Sciences, 2013, 04, 282-290.	0.8	6
929	Zinc Accumulation Characteristics of Two Exophiala Strains and Their Antioxidant Response to Zn ²⁺ Stress. Journal of Environmental Protection, 2013, 04, 12-19.	0.7	8
930	Adaptive Neuro-Fuzzy Logic System for Heavy Metal Sorption in Aquatic Environments. Journal of Water Resource and Protection, 2012, 04, 277-284.	0.8	11

#	Article	IF	CITATIONS
931	Zoosporic Fungi Isolated From Four Egyptian Lakes and the Uptake of Radioactive Waste. Mycobiology, 2002, 30, 76.	1.7	6
932	Effects of Copper Ion (Cu ²⁺) on the Physiological and Biochemical Activities of the Cyanobacterium <i>Nostoc</i> ANTH. Environmental Engineering Research, 0, , 63-67.	2.5	9
933	Polyamine and Laccase Production under Cadmium Stress in Trametes (Coriolus) versicolor and Funalia trogii. Ekoloji, 2014, , 29-35.	0.4	4
935	Tolerância de mudas de canafÃstula (<i>Peltophorum dubium</i> (Spreng.) Taub.) inoculada com <i>Pisolithus microcarpus</i> a solo com excesso de cobre Ciencia Florestal, 2010, 20, 147-156.	0.3	5
936	Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere, 2015, 6, 228-240.	6.1	15
937	Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. PeerJ, 2018, 6, e4478.	2.0	18
938	Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2011, 44, 600-614.	0.9	1
939	Heavy Metal Tolerance of Fungi Isolated from Contaminated Soil. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 565-571.	0.9	24
940	Impact of Treated Wastewater on Some Physicochemical Parameters Soil and Its Fungal Content. International Journal of Environmental Science and Development, 2015, 6, 369-374.	0.6	4
941	Do Green and Golden Bell Frogs <i>Litoria aurea</i> occupy habitats with fungicidal properties?. Australian Zoologist, 2008, 34, 350-360.	1.1	15
942	Effect of Sublethal Concentration of Heavy Metal Contamination on Soil Physicochemical Properties, Catalase and Dehydrogenase Activities. International Journal of Biochemistry Research & Review, 2014, 4, 141-149.	0.1	9
943	Gamma irradiation in modulating cadmium bioremediation potential of Aspergillus sp IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 3, 51-55.	0.1	5
944	Isolation and characterization of Arsenic tolerant fungal strains from contaminated sites around urban environment of Kolkata. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 7, 33-37.	0.1	8
945	Microbial Stress Response to Heavy Metals. Microorganisms for Sustainability, 2021, , 249-272.	0.7	0
946	Biosorption of Metals. , 2002, , 355-364.		0
947	Toxic Metal Contamination Treatment with Microbes. , 2003, , 75-94.		1
950	Roles of Microâ€organisms in the Environmental Fate of Radionuclides. Novartis Foundation Symposium, 1997, 203, 94-108.	1.1	3
951	Ca-, Mg- és K-sók hatása egyes nehézfémek Saccharomyces cerevisiae törzsekre gyakorolt toxicitásá Agrokemia Es Talajtan, 2008, 57, 161-175.	^{ra} 0.2	0

#	Article	IF	CITATIONS
952	Cadmium toxicity on <i>Cunninghamella elegans</i> : Ultrastructural damage and actin cytoskeleton alterations. , 2009, , .		0
953	EFFECTS OF CU, MN, PB AND CD ON THE TECHNOLOGICAL PROPERTIES OF BAKER'S YEAST (IN VITRO STUDY) Journal of Food and Dairy Sciences, 2009, 34, 8891-8901.	0.3	0
954	Kinetics of zinc toxicity to environmental bacterial isolates. Revista Ambiente & Ãgua, 2009, 4, 23-34.	0.3	1
955	Trace element residues in water, sediments, and organs of Savacu (Nycticorax nycticorax) from Sepetiba Bay, Rio de Janeiro, Brazil. Revista Ambiente & Ãgua, 2010, 5, 17-28.	0.3	4
956	Biosorption of Metals. , 2011, , 379-392.		15
957	Post-harvest fruit decay-inducing pathogen in medicinally important Cucumis species indigenous to South Africa. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.5	1
958	Ecophysiological Responses of the Desiccation Tolerant Moss, Tortula Ruralis to Elevated CO2 Level and Heavy Metal Stress. , 1998, , 4089-4092.		1
960	Optimization Studies on Biosorption of Ni(ii) and Cd(ii) from Wastewater in a Packed Bed Bioreactor. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 367-398.	0.4	0
962	REMOÇÃO DE COBRE POR BIOMASSA DE ENTEROCOCCUS FAECALIS E SALMONELLA ENTERICA SOROVAR ENTERITIDIS EM SOLUÇÃO AQUOSA. Evidência, 2016, 15, 129.	0.1	0
963	The Role of the Arbuscular Mycorrhizal Maize (Zea mays L.) and Phosphorus levels in the phytoremediation of zinc contaminated soil Zanco Journal of Pure and Applied Sciences, 2016, 28, .	0.1	0
964	Comparative Analysis of Metal Uptake Potential of Hyphal Fusion Progenies of AMF and Their Parents. , 2017, , 251-269.		0
965	Chapter 30 Effects of Toxic Metals on Chytrids, Fungal-Like Organisms, and Higher Fungi. Mycology, 2017, , 433-458.	0.5	0
967	Combining Mycorrhizal Inoculation and Basil Plants (Ocimum basilicum) for Remediating A Ni-Polluted Soil. Journal of Soil Sciences and Agricultural Engineering, 2018, 9, 549-555.	0.1	0
968	Soil Mycobiota Influenced by Different Concentration of Basic Fuschin Dye. International Journal of Current Research and Review (discontinued), 2019, 11, 12-17.	0.1	0
969	Unveiling the Surface and the Ultrastructure of Palladized Fungal Biotemplates. Langmuir, 2021, 37, 12961-12971.	3.5	2
970	Optimizing Bioremediation: Elucidating Copper Accumulation Mechanisms of Acinetobacter sp. IrC2 Isolated From an Industrial Waste Treatment Center. Frontiers in Microbiology, 2021, 12, 713812.	3.5	6
971	Fungal-induced CaCO3 and SrCO3 precipitation: a potential strategy for bioprotection of concrete. Science of the Total Environment, 2022, 816, 151501.	8.0	18
972	Biosorption: Principles, and Applications. Lecture Notes in Civil Engineering, 2021, , 501-510.	0.4	2

#	Article	IF	CITATIONS
973	Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Reviews in Aquaculture, 2022, 14, 1028-1045.	9.0	42
974	Differential Expression of a Putative Copper Homeostasis CutC Gene in <i>Fibroporia radiculosa</i> During Initial Decay of Copper-Treated Wood. Forest Products Journal, 2020, 70, 469-475.	0.4	Ο
975	Bioaccumulation of toxic metals by fungi of the genus Aspergillus isolated from the contaminated area of Ostramo Lagoons. IOP Conference Series: Earth and Environmental Science, 2021, 900, 012048.	0.3	1
976	What kind of new antimicrobial technology can we use at the present time in architecture?. , 2022, , 311-327.		Ο
977	New Optimization Understanding of the Removal of Harmful Elements from Gold Tailings: A Review. Jom, 2022, 74, 1641.	1.9	1
978	Role of Potassium in Plant Photosynthesis, Transport, Growth and Yield. , 2022, , 1-14.		3
979	Traits and phylogenies modulate the environmental responses of woodâ€inhabiting fungal communities across spatial scales. Journal of Ecology, 2022, 110, 784-798.	4.0	5
980	Role of Selenium-Tolerant Fungi on Plant Growth Promotion and Selenium Accumulation of Maize Plants Grown in Seleniferous Soils. Water, Air, and Soil Pollution, 2022, 233, 1.	2.4	9
981	Toxic elements and trace elements in Macrolepiota procera mushrooms from southern Spain and northern Morocco. Journal of Food Composition and Analysis, 2022, 108, 104419.	3.9	17
982	MnP enzyme: Structure, mechanisms, distributions and its ample opportunities in biotechnological application. , 2022, , 185-202.		1
983	Autonomous Processes in Concrete Matrix on Bio Products. , 2021, 67, 113-122.		0
984	New Findings on the Biology and Ecology of the Ecuadorian Amazon Fungus Polyporus leprieurii var. yasuniensis. Journal of Fungi (Basel, Switzerland), 2022, 8, 203.	3.5	3
985	Method and mechanism of chromium removal from soil: a systematic review. Environmental Science and Pollution Research, 2022, 29, 35501-35517.	5.3	33
986	Remediation of Lead-Contaminated Water by Red Yeast and Different Types of Phosphate. Frontiers in Bioengineering and Biotechnology, 2022, 10, 775058.	4.1	12
987	Occurrence, distribution, and associations of essential and non-essential elements in the medicinal and edible fungus "Fuling―from southern China. Science of the Total Environment, 2022, 831, 155011.	8.0	7
989	Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus, 2022, 13, 6.	3.8	24
992	Identification and pathogenicity of Alternaria alternata causing leaf blight of Bacopa monnieri (L.) Wettst. and its biocontrol by Trichoderma species in agrifields–an ecofriendly approach. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, , 100406.	1.5	0
993	Evaluating the survival of Aspergillus niger in a highly polluted red soil with addition of Phosphogypsum and bioorganic fertilizer. Environmental Science and Pollution Research, 2022, 29, 76446-76455.	5.3	6

#	Article	IF	Citations
994	Growth and tolerance of Ilex paraguariensis A. StHil. inoculated with ectomycorrhizal fungi in copper-contaminated soil. Brazilian Journal of Environmental Sciences (Online), 2022, 57, 343-351.	0.4	0
995	MRG Chip: A High-Throughput qPCR-Based Tool for Assessment of the Heavy Metal(loid) Resistome. Environmental Science & Technology, 2022, 56, 10656-10667.	10.0	10
996	Integrated physiologic and proteomic analysis of Stropharia rugosoannulata mycelia in response to Cd stress. Journal of Hazardous Materials, 2023, 441, 129877.	12.4	10
997	Türkiye'deki Bazı Cladonia Türlerindeki Eser Elementlerin ICP-MS ile Belirlenmesi. Journal of Forestry Faculty of Kastamonu University, 2022, 22, 135-146.	0.4	0
998	Fungal assisted bioâ€treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnology and Bioengineering, 2023, 120, 57-81.	3.3	11
999	A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere, 2023, 312, 137099.	8.2	19
1001	Potential of bioaugmentation of heavy metal contaminated soils in the Zambian Copperbelt using autochthonous filamentous fungi. Frontiers in Microbiology, 0, 13, .	3.5	3
1002	Toxicity and bioremediation of the lead: a critical review. International Journal of Environmental Health Research, 2024, 34, 1879-1909.	2.7	7
1003	A contrast of Pb(II), Cd(II), and Cu(II) toxicities to Aspergillus niger through biochemical, morphological, and genetic investigations. Journal of Hazardous Materials, 2023, 446, 130691.	12.4	3
1004	Uptake of Ultrashort Chain, Emerging, and Legacy Per- and Polyfluoroalkyl Substances (PFAS) in Edible Mushrooms (<i>Agaricus spp</i> .) Grown in a Polluted Substrate. Journal of Agricultural and Food Chemistry, 2023, 71, 4458-4465.	5.2	2
1005	Fragmentation disrupts microbial effects on native plant community productivity. Journal of Ecology, 2023, 111, 1292-1307.	4.0	1
1006	The Production of Oxalate by Aspergillus niger under Different Lead Concentrations. Agronomy, 2023, 13, 1182.	3.0	2
1007	Assessing Strategic Management of E-Waste in Developing Countries. Sustainability, 2023, 15, 7263.	3.2	3
1008	Fungal-Based Land Remediation. Environmental Contamination Remediation and Management, 2023, , 165-188.	1.0	3
1009	Mycoremediation of Arsenic: An Overview. Environmental Science and Engineering, 2023, , 301-315.	0.2	0
1010	Characterization of an antimony-resistant fungus Sarocladium kiliense ZJ-1 and its potential as an antimony bio-remediator. Journal of Hazardous Materials, 2024, 462, 132676.	12.4	0
1011	Zinc's impact on the growth and laccase activity of <i>Trametes pubescens</i> and an equilibrium study of zinc adsorption. Chemistry and Ecology, 2023, 39, 991-1006.	1.6	0
1013	Mycoremediation of Heavy Metals and/or Metalloids in Soil. , 2023, , 161-190.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1014	Cadmium accumulation in organisms from a spruce plantation amended with wood as environmental risk?. Trees, Forests and People, 2024, 15, 100499.	h - an	1.9	0
1015	Using Manganese Oxidizing Fungi to Recover Metals from Electronic Waste. Minerals (Basel,) Tj ETQq1 1 0.7843	14.rgBT /(2.0	Overlock 10
1016	A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenge Journal of Fungi (Basel, Switzerland), 2024, 10, 94.	es and Gaps.	3.5	0
1017	The living light from fungi. Journal of Photochemistry and Photobiology C: Photochemi 2024, 58, 100654.	stry Reviews,	11.6	0
1018	Combined Proteomic and Metabolomic Analyses Reveal the Comprehensive Regulatior rugosoannulata Mycelia Exposed to Cadmium Stress. Journal of Fungi (Basel, Switzerla 134.		3.5	0
1019	Recovery of Metals from Leach Liquors: BiosorptionÂversusÂMetal Sulfide Precipitation Science, Technology and Innovation, 2024, , 151-160.	n. Advances in	0.4	0
1020	Lead remediation by geological fluorapatite combined with Penicillium Oxalicum and R Microbial Cell Factories, 2024, 23, .	ed yeast.	4.0	0
1021	Sustainable release of phosphorus under heavy metal stresses: From microbiology to p 2024, , 427-443.	roductivity. ,		Ο