Calcium-independent subtilisin by design

Proteins: Structure, Function and Bioinformatics 16, 205-213 DOI: 10.1002/prot.340160207

Citation Report

#	Article	IF	CITATIONS
1	An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold. Biochemistry, 1993, 32, 10371-10377.	2.5	28
2	Protein engineering. Current Opinion in Biotechnology, 1994, 5, 447-464.	6.6	0
3	Bibliography of atomic structures. Current Opinion in Structural Biology, 1994, 4, 161-167.	5.7	0
4	Characterization of interactions and metal ion binding sites in proteins. Current Opinion in Structural Biology, 1994, 4, 256-263.	5.7	86
6	A covalently trapped folding intermediate of subtilisin E: Spontaneous dimerization of a prosubtilisin E Ser49Cys mutant in vivo and its autoprocessing in vitro. Biochemistry, 1994, 33, 562-569.	2.5	16
7	The prosegment–subtilisin BPN′ complex: crystal structure of a specific â€~foldase'. Structure, 1995, 3, 907-914.	3.3	194
8	Directed Evolution of a Subtilisin with Calcium-Independent Stability. Nature Biotechnology, 1995, 13, 669-673.	17.5	76
9	Site-Directed Mutagenesis to Study Protein Folding and Stability. , 1995, 40, 271-290.		6
10	A Weak Calcium Binding Site in Subtilisin BPNâ€~ Has a Dramatic Effect on Protein Stability. Journal of the American Chemical Society, 1996, 118, 1645-1650.	13.7	38
11	Rapid fluorescence enzyme linked immunosorbent assay for subtilisin. Analytical Communications, 1996, 33, 21.	2.2	5
12	Subtilisin BPN' at 1.6 Ã Resolution: Analysis for Discrete Disorder and Comparison of Crystal Forms. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 1125-1135.	2.5	16
13	Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri. Protein Engineering, Design and Selection, 1997, 10, 905-914.	2.1	50
14	[28] Biological macromolecule crystallization database. Methods in Enzymology, 1997, 277, 546-556.	1.0	4
15	Subtilases: The superfamily of subtilisin-like serine proteases. Protein Science, 1997, 6, 501-523.	7.6	797
16	Crystal structure of calcium-independent subtilisin BPNâ€ ² with restored thermal stability folded without the prodomain. , 1998, 31, 21-32.		25
17	Regulatory Roles of the P Domain of the Subtilisin-like Prohormone Convertases. Journal of Biological Chemistry, 1998, 273, 11107-11114.	3.4	94
18	A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 286, 617-633.	4.2	107
19	Protein engineering of subtilisin. BBA - Proteins and Proteomics, 2000, 1543, 203-222.	2.1	182

ARTICLE IF CITATIONS Investigation of the `switch-epitope' concept with random peptide libraries displayed as thioredoxin 20 2.119 loop fusions. Protein Engineering, Design and Selection, 2001, 14, 367-377. Structural Basis of Thermostability. Journal of Biological Chemistry, 2002, 277, 27553-27558. 3.4 Specific Modulation of Kex2/Furin Family Proteases by Potassium. Journal of Biological Chemistry, 22 3.4 33 2002, 277, 17531-17537. Prodomains and Protein Folding Catalysisâ€. Chemical Reviews, 2002, 102, 4805-4816. 106 The 0.93Ã... Crystal Structure of Sphericase: A Calcium-loaded Serine Protease from Bacillus sphaericus. 24 4.2 39 Journal of Molecular Biology, 2003, 332, 1071-1082. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Engineering, Design and Selection, 2004, 17, 787-793. 2.1 128 Directed Evolution and Identification of Control Regions of ColE1 Plasmid Replication Origins Using 27 4.2 17 Only Nucleotide Deletions. Journal of Molecular Biology, 2005, 351, 763-775. Crystallization and preliminary X-ray diffraction study of an active-site mutant of pro-Tk-subtilisin fróm a hyperthermophilic archaeon. Acta Crystallographica Section F: Structural Biology 20 9 Communications, 2006, 62, 902-905. Ca2+-Dependent Maturation of Subtilisin from a Hyperthermophilic Archaeon, Thermococcus 30 kodakaraensis: the Propeptide Is a Potent Inhibitor of the Mature Domain but Is Not Required for Its 3.1 45 Folding. Applied and Environmental Microbiology, 2006, 72, 4154-4162. Crystal Structure of Unautoprocessed Precursor of Subtilisin from a Hyperthermophilic Archaeon. 3.4 Journal of Biological Chemistry, 2007, 282, 8246-8255. Directed evolution of Tk-subtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution responsible for low-temperature adaptation. Protein Engineering, Design and 32 2.1 25 Selection, 2007, 20, 143-153. Requirement of Left-Handed Glycine Residue for High Stability of the Tk-Subtilisin Propertide as Revealed by Mutational and Crystallographic Analyses. Journal of Molecular Biology, 2007, 374, 4.2 30 1359-1373 Structural basis for Ca ²⁺ -independence and activation by homodimerization of tomato subtilase 3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 34 7.1 78 106, 17223-17228. Engineering and Directed Evolution of a Ca²⁺Binding Site A-Deficient AprE Mutant Reveal an Essential Contribution of the Loop Leu₇₅ $\hat{a}\in$ Leu₈₂to Enzyme Activity. Journal of Biomedicine and Biotechnology, 2009, 1-7. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the 36 29 2.6 same calciumâ€loaded state. Proteins: Structure, Function and Bioinformatics, 2009, 74, 489-496. Structure of a Switchable Subtilisin Complexed with a Substrate and with the Activator Azide. Biochemistry, 2009, 48, 10389-10394. Identification of the Interactions Critical for Propeptide-Catalyzed Folding of Tk-Subtilisin. Journal of 38 4.2 24 Molecular Biology, 2009, 394, 306-319. A Critical Tryptophan and Ca2+ in Activation and Catalysis of TPPI, the Enzyme Deficient in Classic 39 Late-Infantile Neuronal Ceroid Lipofuscinosis. PLoS ONÉ, 2010, 5, e11929.

CITATION REPORT

#	Article	IF	CITATION
41	"Fluctuograms―Reveal the Intermittent Intra-Protein Communication in Subtilisin Carlsberg and Correlate Mechanical Coupling with Co-Evolution. PLoS Computational Biology, 2011, 7, e1002023.	3.2	19
42	Requirement of Ca2+lons for the Hyperthermostability of Tk-Subtilisin fromThermococcus kodakarensis. Biochemistry, 2012, 51, 5369-5378.	2.5	19
43	Cold Adapted Subtilases. , 2013, , 3161-3166.		0
44	Subtilisins. , 2013, , 3148-3155.		15
45	Role of Packing, Hydration, and Fluctuations on Thermostability. , 2016, , 33-58.		0
46	Folding Dynamics and Structural Basis of the Enzyme Mechanism of Ubiquitin C-Terminal Hydroylases. , 2016, , 191-226.		0
47	Hyperthermophilic Subtilisin-Like Proteases From Thermococcus kodakarensis. , 2017, , 81-117.		2
48	Local structural motifs in proteins: Detection and characterization of fragments inserted in helices. International Journal of Biological Macromolecules, 2018, 118, 1924-1930.	7.5	7
49	Subtiligase-Catalyzed Peptide Ligation. Chemical Reviews, 2020, 120, 3127-3160.	47.7	81
50	Crystal Structure Analysis of Subtilisin BPN' Mutants Engineered for Studying Thermal Stability. Advances in Experimental Medicine and Biology, 1996, 379, 159-169.	1.6	9
51	Lysosomal protein thermal stability does not correlate with cellular half-life: global observations and a case study of tripeptidyl-peptidase 1. Biochemical Journal, 2020, 477, 727-745.	3.7	3
52	The biological macromolecule crystallization database and NASA protein crystal growth archive. Journal of Research of the National Institute of Standards and Technology, 1996, 101, 309.	1.2	20
53	Macromolecular crystallography and structural biology databases a NIST. Journal of Research of the National Institute of Standards and Technology, 2001, 106, 1155.	1.2	0
54	The Biological Macromolecule Crystallization Database. , 0, , 669-674.		0
55	Delineation of the Conformational Thermostability of Hyperthermophilic Proteins Based on Structural and Biophysical Analyses. , 2011, , 1-20.		0
57	Hyperthermophilic subtilisin-like proteases from Thermococcus kodakarensis. , 2023, , 89-127.		0

TION RE