Variation in acid tolerance of certain freshwater crustae

Hydrobiologia 250, 119-125 DOI: 10.1007/bf00008233

Citation Report

#	Article	IF	CITATIONS
1	The biology and ecology of lotic microcrustaceans. Freshwater Biology, 2000, 44, 63-91.	2.4	202
2	Planktonic copepods from temporary marshes in Everglades National Park (Florida, U.S.A.). Hydrobiologia, 2002, 485, 1-18.	2.0	4
3	Tolerance of Ceriodaphnia quadrangula and Diaphanosoma brachyurum(Crustacea: Cladocera) to experimental soft water acidification. Hydrobiologia, 2005, 534, 109-115.	2.0	7
4	Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia (Poland), 2006, 61, S109-S119.	1.5	19
5	Spatial and Seasonal Variations in Nitrogen Leaching and Acidity across Four Acid-impacted Regions of the UK. Water, Air, and Soil Pollution, 2007, 185, 3-19.	2.4	15
6	Colonization of acidic mining lakes: Chydorus sphaericus and other Cladocera within a dynamic horizontal pH gradient (pH 3â~'7) in Lake Senftenberger See (Germany). Hydrobiologia, 2007, 594, 97-108.	2.0	26
7	Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). Journal of Paleolimnology, 2008, 40, 399-411.	1.6	43
9	pH, the CO ₂ System and Freshwater Science. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2010, 3, 133-146.	1.0	29
10	Contrasts between dystrophic and clearwater lakes in the longâ€ŧerm effects of acidification on cladoceran assemblages. Freshwater Biology, 2012, 57, 2449-2464.	2.4	13
11	Freshwater ostracods as environmental tracers. International Journal of Environmental Science and Technology, 2013, 10, 1115-1128.	3.5	121
12	Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA. Environmental Monitoring and Assessment, 2014, 186, 4391-4409.	2.7	27
13	Effects of permafrost degradation on water and sediment quality and heterotrophic bacterial production of <scp>A</scp> rctic tundra lakes: An experimental approach. Limnology and Oceanography, 2015, 60, 1484-1497.	3.1	9
14	The importance of biogeographical history and extant environmental conditions as drivers of freshwater decapod distribution in southern South America. Freshwater Biology, 2016, 61, 715-728.	2.4	8
16	A diversified Ostracoda (Crustacea) assemblage from the Upper Cretaceous intertrappean beds of Gujri, Dhar District, Madhya Pradesh, India. Cretaceous Research, 2021, 124, 104784.	1.4	9
18	Zooplankton. , 2022, , 221-271.		1
19	First Data on the Species Composition and Development of Cladocera (Crustacea: Branchiopoda) in Mire Ecosystems (Kaliningrad Oblast, Russia). Inland Water Biology, 2023, 16, 805-820.	0.8	0
20	Interactive effects of climate-atmospheric cycling on aquatic communities and ecosystem shifts in mountain lakes of southeastern Tibetan Plateau. Science of the Total Environment, 2024, 914, 169825.	8.0	0

TION RE