Magnesium influence on hydroxyapatite crystallization

Journal of Inorganic Biochemistry 49, 69-78 DOI: 10.1016/0162-0134(93)80049-f

Citation Report

#	Article	IF	CITATIONS
1	Influence of monosaccharides and related molecules on the morphology of hydroxyapatite. Journal of Crystal Growth, 1993, 133, 1-12.	0.7	87
2	Magnesium in maturing synthetic apatite: a Fourier transform infrared analysis. Journal of Crystal Growth, 1994, 144, 304-310.	0.7	19
3	Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces. Environmental Science & Technology, 1994, 28, 1472-1480.	4.6	360
4	Inhibiting effect of zinc on hydroxylapatite crystallization. Journal of Inorganic Biochemistry, 1995, 58, 49-58.	1.5	167
5	Phosphates precipitating from artificial urine and fine structure of phosphate renal calculi. Clinica Chimica Acta, 1996, 244, 45-67.	0.5	54
6	Rietveld structure refinement of synthetic magnesium substituted <i>β</i> -tricalcium phosphate. Zeitschrift Fur Kristallographie - Crystalline Materials, 1996, 211, 13-16.	0.4	27
7	Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallographica Section B: Structural Science, 1996, 52, 87-92.	1.8	99
8	X-ray powder diffraction data for ammonium manganese phosphate monohydrate. Powder Diffraction, 1997, 12, 20-21.	0.4	0
9	Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium. Journal of Inorganic Biochemistry, 1997, 66, 259-265.	1.5	122
10	Chemical and structural characterization of the mineral phase from cortical and trabecular bone. Journal of Inorganic Biochemistry, 1997, 68, 45-51.	1.5	245
11	Biopathological crystallization: a general view about the mechanisms of renal stone formation. Advances in Colloid and Interface Science, 1998, 74, 169-194.	7.0	82
12	Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Journal of Inorganic Biochemistry, 1998, 72, 29-35.	1.5	170
13	Effects of Nickel on Calcium Phosphate Formation. Journal of Solid State Chemistry, 2000, 151, 163-169.	1.4	24
14	Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone, 2000, 27, 219-226.	1.4	74
15	Influence of nickel on hydroxyapatite crystallization. Journal of Raman Spectroscopy, 2001, 32, 255-261.	1.2	39
16	X-ray Powder Diffraction and Solid-State NMR Investigations in Cadmiumâ^'Lead Hydroxyapatites. European Journal of Inorganic Chemistry, 2001, 2001, 1261-1267.	1.0	25
17	Physicochemical Properties and Structural Refinement of Strontium-Lead Hydroxyapatites. European Journal of Inorganic Chemistry, 2002, 2002, 1864-1870.	1.0	23
18	Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials, 2002, 23, 371-379.	5.7	121

#	Article	IF	CITATIONS
19	Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. Journal of Materials Science: Materials in Medicine, 2002, 13, 685-693.	1.7	131
20	Thermal behaviour of magnesium-containing fluorapatite. Materials Chemistry and Physics, 2003, 80, 496-505.	2.0	44
21	Magnesium Doped Hydroxyapatite: Synthesis and Characterization. Key Engineering Materials, 2004, 264-268, 2051-2054.	0.4	54
22	Towards biologically inspired materials. Advances in Applied Ceramics, 2004, 103, 101-109.	0.4	12
23	Étude structurale des fluorapatites contenant du magnésium en substitution. Comptes Rendus Chimie, 2004, 7, 699-705.	0.2	8
24	Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomaterials, 2004, 25, 4647-4657.	5.7	308
25	Magnesia-doped HA/ \hat{l}^2 -TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004, 25, 393-401.	5.7	155
26	Promotion of Fluorapatite Crystallization by Soluble-Matrix Proteins fromLingula Anatina Shells. Angewandte Chemie - International Edition, 2004, 43, 885-888.	7.2	37
28	Synthesis, X-ray Structural Analysis and Spectroscopic Investigations (IR and31P MAS NMR) of Mixed Barium/Strontium Fluoroapatites. European Journal of Inorganic Chemistry, 2004, 2004, 3828-3836.	1.0	19
29	Surface behaviour of high MgO-containing glasses of the Si–Ca–P–Mg system in a synthetic physiological fluid. Journal of the European Ceramic Society, 2004, 24, 3693-3701.	2.8	33
30	Promoted Ru?hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen. Journal of Catalysis, 2005, 230, 406-419.	3.1	108
31	From biomimetic apatites to biologically inspired composites. Analytical and Bioanalytical Chemistry, 2005, 381, 568-576.	1.9	80
32	Determination of the content and localization of magnesium in bioapatite of bone. Journal of Applied Spectroscopy, 2005, 72, 899-905.	0.3	9
33	Raman and cathodoluminescence spectroscopies of magnesium-substituted hydroxyapatite powders. Journal of Materials Research, 2005, 20, 1009-1016.	1.2	23
34	Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 2006, 26, 2593-2601.	2.8	203
35	Thermally activated diffusion of magnesium from bioapatite crystals. Journal of Applied Spectroscopy, 2006, 73, 437-443.	0.3	8
36	Magnesium-substituted hydroxyapatite ceramics. Materialwissenschaft Und Werkstofftechnik, 2006, 37, 474-477.	0.5	41
38	The role of ammonium citrate washing on the characteristics of mechanochemical–hydrothermal derived magnesium-containing apatites. Journal of Materials Science: Materials in Medicine, 2007, 18,	1.7	3

		CITATION REPORT	
#	Article	IF	CITATIONS
39	In vitro effect of magnesium inclusion in sol–gel derived apatite. Thin Solid Films, 2008, 516, 5176-5180.	0.8	14
40	Biomimetic Mg-substituted hydroxyapatite: from synthesis to inÂvivo behaviour. Journal of Materials Science: Materials in Medicine, 2008, 19, 239-247.	1.7	337
41	Multi-element analysis of bone from the osteogenesis imperfecta model (OIM) mouse using thermal and fast neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276, 65-69.	0.7	4
42	Osteoblastic cell response on magnesium-incorporated apatite coatings. Applied Surface Science, 2008, 255, 304-307.	3.1	47
43	Calcium Orthophosphates: Crystallization and Dissolution. Chemical Reviews, 2008, 108, 4628-4669.	23.0	803
44	Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. Journal of Materials Chemistry, 2008, 18, 5900.	6.7	70
45	First-principles study of substitutional magnesium and zinc in hydroxyapatite and octacalcium phosphate. Journal of Chemical Physics, 2008, 128, 245101.	1.2	101
46	Some features of thermoâ€activated structural transformation of biogenic and synthetic Mgâ€containing apatite with βâ€ŧricalciumâ€magnesium phosphate formation. Crystal Research and Technology, 2009, 44, 553-560.	0.6	9
47	<i>In vitro</i> bioactivity of meltâ€derived glass 46S6 doped with magnesium. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1087-1096.	2.1	99
48	Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys. Thin Solid Films, 2009, 517, 5347-5351.	0.8	83
49	Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. Journal of the European Ceramic Society, 2009, 29, 2969-2978.	2.8	220
50	Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions. Journal of Crystal Growth, 2009, 311, 4219-4225.	0.7	23
51	High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochimica Acta, 2009, 54, 7085-7093.	2.6	176
52	Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomedical Materials (Bristol), 2009, 4, 045010.	1.7	47
53	First-principles calculations of the elastic properties of hydroxyapatite doped with divalent ions. Journal of the Ceramic Society of Japan, 2010, 118, 548-549.	0.5	9
54	Hydroxyapatite ceramics coating on magnesium alloy via a double layered capsule hydrothermal hot-pressing. Journal of the Ceramic Society of Japan, 2010, 118, 749-752.	0.5	14
55	Corrosion Behavior of Magnesium with Hydroxyapatite Coatings Formed by Hydrothermal Treatment. Materials Transactions, 2010, 51, 2080-2087.	0.4	47
57	Influence of dicalcium phosphate dihydrate coating on the in vitro degradation of Mg-Zn alloy. Frontiers of Materials Science in China, 2010, 4, 116-119.	0.5	8

			2
#	ARTICLE	IF	CITATIONS
58	Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. Journal of Materials Science: Materials in Medicine, 2010, 21, 2393-2401.	1.7	46
59	Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution. Surface and Coatings Technology, 2010, 204, 3243-3247.	2.2	62
60	Electrodeposition of Ca–P coatings on biodegradable Mg alloy: In vitro biomineralization behaviorâ~†. Acta Biomaterialia, 2010, 6, 1736-1742.	4.1	335
61	Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomaterialia, 2010, 6, 1882-1894.	4.1	705
62	Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomaterialia, 2010, 6, 2787-2796.	4.1	173
63	Phosphonate-hydroxyapatite hybrid compounds prepared by hydrothermal method. Applied Surface Science, 2010, 257, 1377-1382.	3.1	24
64	In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials, 2010, 31, 5782-5788.	5.7	174
65	Theoretical Defect Energetics in Calcium Phosphate Bioceramics. Journal of the American Ceramic Society, 2010, 93, 1-14.	1.9	49
66	Nanostructured Forsterite Coating Strengthens Porous Hydroxyapatite for Bone Tissue Engineering. Journal of the American Ceramic Society, 2010, 93, 2679-2683.	1.9	34
67	Effects of Mg Additives on Properties of Mg-Doped Hydroxyapatite Ceramics. Advances in Science and Technology, 2010, 76, 60-65.	0.2	3
68	Nanosize hydroxyapatite: doping with various ions. Advances in Applied Ceramics, 2011, 110, 311-321.	0.6	79
69	Influence of Magnesium Substitution on the Basic Properties of Hydroxyapatites. Journal of Physical Chemistry C, 2011, 115, 24317-24327.	1.5	52
70	Mimicking the Initial Development of Calcium Urolithiasis by Screening Calcium Oxalate and Calcium Phosphate Phases in Various Urinelike Solutions, Time Points, and pH Values at 37 ŰC. Crystal Growth and Design, 2011, 11, 2973-2992.	1.4	31
71	Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study. International Journal of Oral and Maxillofacial Surgery, 2011, 40, 526-532.	0.7	32
75	Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1756-1760.	1.7	55
76	ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1644-1652.	1.7	33
77	Biological effects of magnesium particles degradation on UMR-106 cell line: Influence of fluoride treatments. Colloids and Surfaces B: Biointerfaces, 2011, 88, 471-476.	2.5	21
78	Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values. Acta Materialia, 2011, 59, 355-363.	3.8	141

	CITATION	Report	
#	Article	IF	CITATIONS
79	Magnesium incorporation into hydroxyapatite. Biomaterials, 2011, 32, 1826-1837.	5.7	296
80	Nanostructured Si, Mg, CO3 2â^' Substituted Hydroxyapatite Coatings Deposited by Liquid Precursor Plasma Spraying: Synthesis and Characterization. Journal of Thermal Spray Technology, 2011, 20, 829-836.	1.6	35
81	High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceramics International, 2011, 37, 127-137.	2.3	66
82	Growth mechanism of hydroxyapatite-coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Applied Surface Science, 2011, 257, 8253-8257.	3.1	116
83	New technique for bonding hydroxyapatite ceramics and magnesium alloy by hydrothermal hot-pressing method. Materials Science and Engineering C, 2011, 31, 499-502.	3.8	27
84	Magnesium Incorporation in Sol-Gel Derived Apatite Coating on Ti6Al4V Substrate. Advanced Materials Research, 0, 299-300, 448-451.	0.3	1
85	Sintering Behavior of Magnesium-Substituted Fluorapatite Powders Prepared by Hydrothermal Method. Bioinorganic Chemistry and Applications, 2011, 2011, 1-10.	1.8	3
86	Improving <i>in vitro</i> corrosion resistance of biomimetic calcium phosphate coatings for Mg substrates using calcium hydroxide layer. Corrosion Engineering Science and Technology, 2012, 47, 340-345.	0.7	14
87	Spine fusion: cages, plates and bone substitutes. , 2012, , 265-294.		1
88	Synthesis of Mg ²⁺ Incorporated Hydroxyapatite by Ion Implantation. Key Engineering Materials, 0, 529-530, 114-118.	0.4	8
89	ELECTROCHEMICAL BEHAVIOURS OF Mg-4Zn-3Sn CAST ALLOY MODIFIED BY TI ION IMPLANTATION. International Journal of Modern Physics Conference Series, 2012, 06, 700-704.	0.7	0
90	Structural and dielectrical properties of Mg3–Ca3(PO4)2 bioceramics obtained from hydroxyapatite by sol–gel method. Ceramics International, 2012, 38, 5713-5722.	2.3	38
91	Controlling <i>in vitro</i> corrosion rate of pure Mg with rough surface texture via biomimetic coating systems. Corrosion Engineering Science and Technology, 2012, 47, 358-364.	0.7	5
92	Calcium–phosphate coatings obtained biomimetically on magnesium substrates under low magnetic field. Applied Surface Science, 2012, 258, 8577-8584.	3.1	45
93	Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride. Applied Surface Science, 2012, 261, 182-188.	3.1	7
94	Substituted hydroxyapatites for bone repair. Journal of Materials Science: Materials in Medicine, 2012, 23, 2335-2347.	1.7	273
95	The role of strontium and potassium on crystallization and bioactivity of Na2O–CaO–P2O5–SiO2 glasses. Ceramics International, 2012, 38, 55-63.	2.3	41
96	A prospective, randomised, controlled trial using a Mg-hydroxyapatite - demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials, 2012, 33, 72-79.	5.7	38

#	Article	IF	CITATIONS
97	Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technology, 2012, 218, 109-118.	2.1	76
98	<i>In vitro</i> degradation behavior and bioactivity of magnesiumâ€Bioglass [®] composites for orthopedic applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 437-446.	1.6	55
99	The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2012, 61, 296-309.	1.1	53
100	Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. Journal of Sol-Gel Science and Technology, 2013, 65, 105-111.	1.1	51
101	Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite. Journal of Materials Engineering and Performance, 2013, 22, 1798-1806.	1.2	36
102	Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2–CaO–P2O5–MgO–ZnO): In vitro study. Bulletin of Materials Science, 2013, 36, 1339-1346	5. ^{0.8}	24
103	Production of zinc substituted hydroxyapatite using various precipitation routes. Biomedical Materials (Bristol), 2013, 8, 025003.	1.7	37
104	Sintering and Mechanical Properties of Magnesium and Fluorine Co-Substituted Hydroxyapatites. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 1-11.	1.0	8
105	Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. Journal of Materials Chemistry B, 2013, 1, 6551.	2.9	34
106	Sol-gel derived bioactive glass ceramics for dental applications. , 2013, , 194-231.		7
107	Effect of magnesium ion incorporation on the thermal stability, dissolution behavior and bioactivity in Bioglass-derived glasses. Journal of Non-Crystalline Solids, 2013, 382, 57-65.	1.5	50
108	Chemical and crystallographic characterizations of hydroxyapatite- and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD. Surface and Coatings Technology, 2013, 218, 114-118.	2.2	75
109	Effects of anodizing biodegradable Mg–Zn–Zr alloy on the deposition of Ca–P coating. Surface and Coatings Technology, 2013, 228, S111-S115.	2.2	18
110	Surface modification of calcium–copper hydroxyapatites using polyaspartic acid. Applied Surface Science, 2013, 264, 886-891.	3.1	19
111	Métodos de reforço microestrutural da hidroxiapatita. Ceramica, 2014, 60, 402-410.	0.3	10
112	MgCHA particles dispersion in porous PCL scaffolds: <i>in vitro</i> mineralization and <i>in vivo</i> bone formation. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 291-303.	1.3	30
113	Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceramics International, 2014, 40, 10777-10785.	2.3	66
114	Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomaterialia, 2014, 10, 2919-2934.	4.1	267

#	Article	IF	CITATIONS
115	Formation mechanism of Ca-deficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Applied Surface Science, 2014, 307, 92-100.	3.1	84
116	Magnesium incorporated hydroxyapatite: Synthesis and structural properties characterization. Ceramics International, 2014, 40, 6021-6029.	2.3	194
117	Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 286-291.	2.0	100
118	Minimally Invasive Surgery of the Lumbar Spine. , 2014, , .		0
119	The role of grain boundaries and transient porosity in rocks as fluid pathways for reaction front propagation. Earth and Planetary Science Letters, 2014, 386, 64-74.	1.8	68
120	Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesium hydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance. Journal of Molecular Liquids, 2014, 198, 157-163.	2.3	37
121	Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 2014, 25, 2445-2461.	1.7	791
122	Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor. Frontiers of Chemical Science and Engineering, 2014, 8, 156-160.	2.3	4
123	Immobilization of Sr2+ on naturally derived hydroxyapatite by calcination of different species of fish bones and influence of calcination on ion-exchange efficiency. Ceramics International, 2014, 40, 11649-11656.	2.3	19
124	Characterization of Magnesiumâ€Doped Hydroxyapatite Prepared by Solâ€Gel Process. International Journal of Applied Ceramic Technology, 2014, 11, 83-91.	1.1	39
125	Corrosion evaluation of biodegradable magnesium alloys and improvement of corrosion resistance with calcium phosphate coatings. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 203-210.	0.1	6
126	Hydroxyapatite-Based Biomaterials Versus Autologous Bone Graft in Spinal Fusion. Spine, 2014, 39, E661-E668.	1.0	18
127	Dip Coated Magnesium-Substituted Hydroxyapatite Coatings on Magnesium Alloy for Biomedical Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2015, 25, 83-89.	0.5	2
128	Synergistic Approach to Elucidate the Incorporation of Magnesium Ions into Hydroxyapatite. Chemistry - A European Journal, 2015, 21, 2537-2546.	1.7	24
129	Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium–calcium phosphate. Materials Science and Engineering C, 2015, 53, 204-211.	3.8	20
130	Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. Journal of Materials Chemistry B, 2015, 3, 3738-3746.	2.9	63
131	Chemical solution deposition ofÂhydroxyapatite and octacalcium phosphate coatings for magnesium and its alloys toÂimprove biocompatibility. , 2015, , 59-80.		1
132	Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility. , 2015, , 151-191.		2

#	Article	IF	CITATIONS
133	Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods. , 2015, , 1-20.		0
134	Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 135-146.	1.5	49
135	Incorporation of uranium into a biomimetic apatite: physicochemical and biological aspects. Journal of Biological Inorganic Chemistry, 2015, 20, 497-507.	1.1	12
136	Strontium modified calcium phosphate cements – approaches towards targeted stimulation of bone turnover. Journal of Materials Chemistry B, 2015, 3, 4626-4640.	2.9	99
137	Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics. Materials Science and Engineering C, 2015, 56, 286-293.	3.8	13
138	Substituted hydroxyapatites for biomedical applications: A review. Ceramics International, 2015, 41, 9203-9231.	2.3	591
139	Structural analysis of metal-doped calcium oxalate. RSC Advances, 2015, 5, 98626-98633.	1.7	18
140	Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Materials Letters, 2015, 141, 161-164.	1.3	67
141	Structural and dielectric properties of yttrium-substituted hydroxyapatites. Materials Science and Engineering C, 2015, 47, 333-338.	3.8	54
142	Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corrosion Science, 2016, 112, 495-506.	3.0	44
143	Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects. Journal of Materials Engineering and Performance, 2016, 25, 3398-3408.	1.2	7
144	Ion substitution in biological and synthetic apatites. , 2016, , 235-266.		34
145	Effect of Magnesium on the Solubility of Hydroxyapatite. European Journal of Inorganic Chemistry, 2016, 2016, 5623-5629.	1.0	10
146	Cationic and Anionic Substitutions in Hydroxyapatite. , 2016, , 145-211.		53
147	Protective layer formation on magnesium in cell culture medium. Materials Science and Engineering C, 2016, 63, 341-351.	3.8	54
148	Synthesis of morphologically controlled hydroxyapatite from fish bone by urea-assisted hydrothermal treatment and its Sr2+ sorption capacity. Powder Technology, 2016, 292, 314-322.	2.1	33
149	Growth, inÂvitro biodegradation and cytocompatibility properties of nano-hydroxyapatite coatings on biodegradable magnesium alloys. Journal of Alloys and Compounds, 2016, 672, 366-373.	2.8	67
150	Zr/Mg, Zr/Sr and Zr/Zn co-doped hydroxyapatites: Synthesis and characterization. Ceramics International, 2016, 42, 9270-9273.	2.3	33

#	Article	IF	CITATIONS
151	Synthesis, characterization and biological evaluation of strontium/magnesium-co-substituted hydroxyapatite. Journal of Biomaterials Applications, 2016, 31, 140-151.	1.2	27
152	Magnesium substitution in carbonated hydroxyapatite: Structural and microstructural characterization by Rietveld's refinement. Materials Chemistry and Physics, 2016, 170, 319-329.	2.0	51
153	Electrolytic calcium phosphate/zirconia composite coating on AZ91D magnesium alloy for enhancing corrosion resistance and bioactivity. Corrosion Science, 2016, 104, 47-60.	3.0	36
154	The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone. Materials and Design, 2017, 122, 268-279.	3.3	34
155	Hybrid organic-inorganic materials based on hydroxyapatite structure. Journal of Solid State Chemistry, 2017, 248, 171-177.	1.4	15
156	Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation. Surface and Coatings Technology, 2017, 319, 359-369.	2.2	87
157	Elemental vs. phase composition of breast calcifications. Scientific Reports, 2017, 7, 136.	1.6	41
158	Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity. Materials Science and Engineering C, 2017, 78, 1093-1100.	3.8	36
159	Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast. Science and Technology of Advanced Materials, 2017, 18, 96-109.	2.8	21
160	Calcium, Barium and Strontium apatites: A new generation of catalysts in the Biginelli reaction. Tetrahedron, 2017, 73, 6542-6548.	1.0	26
161	Biological Effect of Ions in Calcium Phosphates on Bone Regeneration. Frontiers in Nanobiomedical Research, 2017, , 125-146.	0.1	0
162	Resistance to simulated rain of hydroxyapatite- and calcium oxalate-based coatings for protection of marble against corrosion. Corrosion Science, 2017, 127, 168-174.	3.0	39
163	The effect of Mg and Sr on the crystallinity of bones evaluated through Raman spectroscopy and laser ablation-ICPMS analysis. Analyst, The, 2017, 142, 4265-4278.	1.7	13
164	Formation of Biphasic Hydroxylapatite-Beta Magnesium Tricalcium Phosphate in Heat Treated Salmonid Vertebrae. Scientific Reports, 2017, 7, 3610.	1.6	13
165	Biomimetic Crystalline Calcium Phosphate Coatings on Bioabsorbable Magnesium Alloy. Key Engineering Materials, 2017, 758, 81-85.	0.4	2
166	Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair. Journal of Applied Biomaterials and Functional Materials, 2017, 15, e313-e325.	0.7	35
167	Calcium Phosphate Coatings of Magnesium Alloys for Biomedical Application. Materia Japan, 2017, 56, 62-69.	0.1	5
168	Mg-Containing Hydroxyapatite Coatings Produced by Plasma Electrolytic Oxidation of Titanium. Materials Research, 2017, 20, 891-898.	0.6	3

ARTICLE IF CITATIONS # Combined effect of magnesium and amino glutamic acid on the structure of hydroxyapatite prepared 2.0 15 169 by hydrothermal method. Materials Chemistry and Physics, 2018, 212, 21-29. Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B: 170 1.3 Condensed Matter, 2018, 537, 63-67. Fabrication and biological evaluation of hydroxyapatite ceramics including bone minerals. Journal of 171 0.58 the Ceramic Society of Japan, 2018, 126, 99-108. Some Structural Properties of the Mixed Lead–Magnesium Hydroxyapatites. Russian Journal of 0.1 Physical Chemistry A, 2018, 92, 321-328. Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of 173 their bioactivity, cell viability, and antibacterial activity. Journal of Sol-Gel Science and Technology, 1.1 8 2018, 86, 441-458. Scarce Occurrence of Calcification in Human Sinoatrial Nodal Arteries in Old Age. Biological Trace 174 Element Research, 2018, 184, 24-32. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on 175 3.1 82 AZ31 magnesium alloy. Applied Surface Science, 2018, 434, 787-795. Study of dynamic degradation behaviour of porous magnesium under physiological environment of humán cańcellous bone. Corrosion Science, 2018, 131, 45-56. Influencia de la temperatura en la compactaciÃ³n hidrotérmica en caliente de polvos de magnesio 177 0.9 1 hidroxiapatita. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2018, 57, 45-54. Effect of Crystalline Calcium Phosphate Coatings Prepared in an Aqueous Solution on Corrosion 0.4 Resistance of Bioabsorbable Magnesium Alloy. Key Engineering Materials, 2018, 782, 158-164. Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method. 179 2.333 Ceramics International, 2018, 44, 22976-22982. In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous 3.0 36 structures for bone tissue engineering. Corrosion Science, 2018, 144, 301-312. <i>In vivo</i> evaluation of porous hydroxyapatite ceramics including bone minerals using pig model. 181 1.5 7 Materials Technology, 2018, 33, 689-697. Solid Phases Precipitating in Artificial Urine in the Absence and Presence of Bacteria Proteus mirabilisâ€"A Contribution to the Understanding of Infectious Urinary Stone Formation. Crystals, 2018, 1.0 8, 164. Hydroxyapatite and Other Calcium Phosphates for the Conservation of Cultural Heritage: A Review. 183 1.3 94 Materials, 2018, 11, 557. Novel hybrid material based on Mg2+ and SiO44- co-substituted nano-hydroxyapatite, alginate and chondroitin sulphate for potential use in biomaterials engineering. Ceramics International, 2018, 44, 184 The influence of substituted hydroxyapatites heat treatment on citrate sorption behavior $\hat{a} \in \hat{a}$ infrared 185 spectroscopy experiments and adsorption studies. Colloids and Surfaces A: Physicochemical and 2.36 Engineering Aspects, 2018, 558, 23-32. Synthesis, characterization and evaluation of bioactivity of glasses in the CaO-SiO₂-P₂O₅-MgO system with different CaO/MgO ratios. Journal of Physics: Conference Series, 2019, 1292, 012013.

CITATION REPORT

#	Article	IF	CITATIONS
187	Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions. Nanomaterials, 2019, 9, 1295.	1.9	68
188	Processing-structure-property correlations of crystalline antibacterial magnesium phosphate (newberyite) coatings and their in vitro effect. Surface and Coatings Technology, 2019, 374, 276-290.	2.2	18
189	Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating. Materials and Design, 2019, 181, 107933.	3.3	40
190	Formation and Phase Transition of Crystalline Calcium Phosphate on Bioabsorbable Magnesium Alloy under Alkali Condition. Key Engineering Materials, 0, 829, 3-8.	0.4	0
191	Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomechanics and Modeling in Mechanobiology, 2019, 18, 797-811.	1.4	22
192	Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals. Journal of Materials Science and Technology, 2020, 36, 27-36.	5.6	11
193	Mechanical degradation model of porous magnesium scaffolds under dynamic immersion. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 175-185.	0.7	8
194	Analysis of the bone ultrastructure around biodegradable Mg–xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomaterialia, 2020, 101, 637-645.	4.1	29
195	Dextran-Thyme Magnesium-Doped Hydroxyapatite Composite Antimicrobial Coatings. Coatings, 2020, 10, 57.	1.2	17
196	Sintering of magnesiumâ€strontium doped hydroxyapatite nanocrystals: Towards the production of 3D biomimetic bone scaffolds. Journal of Biomedical Materials Research - Part A, 2020, 108, 633-644.	2.1	29
197	Sintering and mechanical properties of magnesium containing hydroxyfluorapatite. Journal of the Australian Ceramic Society, 2020, 56, 931-942.	1.1	7
198	Calcium phosphate coating on biomedical WE43 magnesium alloy pretreated with a magnesium phosphate layer for corrosion protection. Surface and Coatings Technology, 2020, 401, 126248.	2.2	26
199	Role of Magnesium and the Effect of Surface Roughness on the Hydroxyapatite-Forming Ability of Zirconia Induced by Biomimetic Aqueous Solution Treatment. Materials, 2020, 13, 3045.	1.3	9
200	The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Scientific Reports, 2020, 10, 19098.	1.6	37
201	Plasma surface modifications of orthopedic biomaterials by the adoption of bioinorganic cations: a review. Surface Innovations, 2020, 8, 203-215.	1.4	8
202	Properties of a Plasma-Nitrided Coating and a CrNx Coating on the Stainless Steel Bipolar Plate of PEMFC. Coatings, 2020, 10, 183.	1.2	23
203	Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cement and Concrete Research, 2020, 131, 106012.	4.6	53
204	Synthesis and formation mechanism of bone mineral, whitlockite nanocrystals in tri-solvent system. Journal of Colloid and Interface Science, 2020, 569, 1-11.	5.0	31

#	Article	IF	CITATIONS
205	Functional element coatings on Ti-alloys for biomaterials by plasma electrolytic oxidation. Thin Solid Films, 2020, 699, 137896.	0.8	11
206	Composition and bioactivity of calcium phosphate coatings on anodic oxide nanotubes formed on pure Ti and Ti-6Al-4V alloy substrates. Materials Science and Engineering C, 2020, 110, 110687.	3.8	12
207	Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. Journal of Materials Science, 2021, 56, 3947-3969.	1.7	20
208	Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104230.	1.5	34
209	Dry mechanosynthesis and characterization of carbonate apatite based on Indonesian natural sources. AIP Conference Proceedings, 2021, , .	0.3	0
210	Biological behavior of magnesium-substituted hydroxyapatite during bone repair. Brazilian Journal of Biology, 2021, 81, 53-61.	0.4	14
211	Production of calcium magnesium phosphate microspheres in a water-in-oil-in-water dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126089.	2.3	2
212	Magnesium whitlockite – omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomaterialia, 2021, 125, 72-82.	4.1	23
213	Modeling of the synthesis conditions impact on the structure of calcium magnesium phosphates. Materials Chemistry and Physics, 2021, 267, 124627.	2.0	1
214	Bone tissue engineering potentials of 3D printed magnesiumâ€hydroxyapatite in polylactic acid composite scaffolds. Artificial Organs, 2021, 45, 1501-1512.	1.0	12
215	Resorbable Mg2+-Containing Phosphates for Bone Tissue Repair. Materials, 2021, 14, 4857.	1.3	30
216	PCL-Coated Multi-Substituted Calcium Phosphate Bone Scaffolds with Enhanced Properties. Materials, 2021, 14, 4403.	1.3	4
217	Synthesis and Characterization of Yttrium-Doped Hydroxyapatite Nanoparticles and Their Potential Antimicrobial Activity. Journal of Biomaterials and Tissue Engineering, 2021, 11, 2087-2096.	0.0	1
218	Bone Substitution in Spine Fusion: The Past, the Present, and the Future. , 2014, , 311-331.		3
219	Cationic and Anionic Substitutions in Hydroxyapatite. , 2015, , 1-68.		7
220	Calcium Phosphate and Calcium Phosphosilicate Mediated Drug Delivery and Imaging. Fundamental Biomedical Technologies, 2011, , 713-744.	0.2	8
221	SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF MAGNESIUM AND ZINC DOPED HYDROXYAPATITE WHISKERS. Ceramics - Silikaty, 2017, , 244-249.	0.2	9
222	Effect of fluorine on the thermal stability of the magnesium–substituted hydroxyapatite. Annales De Chimie: Science Des Materiaux, 2011, 36, 159-176.	0.2	5

#	Article	IF	CITATIONS
223	Synthesis of magnesium and carbonate co-substituted fluoroapatites by hydrothermal method. Annales De Chimie: Science Des Materiaux, 2011, 36, 205-216.	0.2	1
224	Physico-chemical characterization of nickel substituted calcium hydroxyapatites. Annales De Chimie: Science Des Materiaux, 2013, 38, 95-104.	0.2	1
225	Calcium Phosphate Coatings for Bioabsorbable Mg Alloys. Journal of the Japan Society of Colour Material, 2013, 86, 295-300.	0.0	1
226	Molecular Modeling of Chemicals Products Inhibitors of Growth Struvite Crystal. Advances in Molecular Imaging, 2011, 01, 33-42.	0.3	2
227	Synthesis of Biphasic Calcium Phosphate by Hydrothermal Route and Conversion to Porous Sintered Scaffold. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 273-278.	1.0	9
228	Micro-arc oxidation-assisted sol-gel preparation of calcium metaphosphate coatings on magnesium alloys for bone repair. Materials Science and Engineering C, 2021, 131, 112491.	3.8	12
231	Synthesis, characterization and structural refinement of mixed hydroxyapatites Ca _(10-x) M _x (PO ₄) ₆ (OH) ₂ (M = Co, Ni or) Tj ETQ) q@ @0 rgl	3T‡Overlock
232	Influence of Ionic Substitution on the Mechanical Properties of Nanosized Biphasic Calcium Phosphates. , 2015, , 811-819.		0
233	Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods. , 2016, , 167-190.		1
234	Systematic Relationship between Sr Content and the Lattice Constants in Sr Substituted Hydroxyapatite Thin Films. Journal of Crystallization Process and Technology, 2017, 07, 1-10.	0.6	1
235	Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks. Materials Chemistry and Physics, 2022, 276, 125421.	2.0	15
236	Novel Mesoporous Cationic Substituted Hydroxyapatite Particles for Multipurpose Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 803.	1.9	2
237	Evaluation of calcium phosphate coating on biodegradable Mg–Al–Zn–Ca alloy formed under ordinary conditions on temperature and pressure. Journal of the Ceramic Society of Japan, 2022, 130, 81-87.	0.5	0
238	Synthesis and characterization of carbon nanotube reinforced hydroxyapatite ceramics proposed for biomedical applications. Materials Today: Proceedings, 2022, 60, 1150-1155.	0.9	1
239	Current and future perspectives on biomaterials for segmental mandibular defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 725-737.	1.8	5
240	Reinforcement of hydroxyapatite ceramics by soaking green samples of tetracalcium phosphate / monetite mixture in aqueous solutions. Ceramics International, 2022, 48, 17776-17788.	2.3	2
241	Surface Characteristics of Dental Implant Doped with Si, Mg, Ca, and P Ions via Plasma Electrolytic Oxidation. Journal of Korean Institute of Metals and Materials, 2022, 60, 263-271.	0.4	2
242	Chemical stability, morphological behavior of Mg/Sr-hydroxyapatite@chitosan biocomposites for medical applications. Journal of Materials Research and Technology, 2022, 18, 681-692.	2.6	12

#	Article	IF	CITATIONS
243	Bone without borders – Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioactive Materials, 2023, 19, 103-114.	8.6	11
244	Performance of innovative nanomaterials for bone remains consolidation and effect on 14C dating and on palaeogenetic analysis. Scientific Reports, 2022, 12, 6975.	1.6	3
245	Enhancement in the osteogenesis and angiogenesis of calcium phosphate cement by incorporating magnesium-containing silicates. Ceramics International, 2022, 48, 21502-21514.	2.3	4
247	Structural and electric properties of strontium fluorbritholites containing gadolinium and neodymium. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
248	FTIR study on the phase transition of experimental and archaeological burnt ivory. Heritage Science, 2022, 10, .	1.0	2
249	Poly(acrylic acid)-grafted metal-organic framework carrying Mg ions for bone repair. Materials Chemistry and Physics, 2022, 292, 126840.	2.0	6
250	In-Vitro Cell Response to Strontium/Magnesium-Doped Calcium Phosphate Nanoparticles. Micro, 2023, 3, 156-171.	0.9	2
251	Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes. Materials, 2023, 16, 1303.	1.3	8
252	PREPARATION AND FERROELECTRIC PROPERTIES OF STRONTIUM-DOPED HYDROXYAPATITE CERAMICS. Ceramics - Silikaty, 2023, , 182-188.	0.2	1