Membrane-based gas separation

Journal of Membrane Science 83, 1-80

DOI: 10.1016/0376-7388(93)80013-n

Citation Report

#	Article	IF	CITATIONS
1	Soluble poly(imide)s based on the phenylindane structure element. High Performance Polymers, 1994, 6, 335-346.	0.8	11
2	Theoretical and experimental evaluation of an internally multi-staged permeator for oxygen enrichment. Chemical Engineering Science, 1994, 49, 2405-2412.	1.9	2
3	Gas separation using polymer membranes: an overview. Polymers for Advanced Technologies, 1994, 5, 673-697.	1.6	479
4	On the unusually high solubility of a trimethylsilyl derivative of poly(dimethylsilacyclobutane). Macromolecular Rapid Communications, 1994, 15, 917-922.	2.0	14
5	Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming. Applied Catalysis A: General, 1994, 110, 239-250.	2.2	65
6	Modelling the permeability of polymers: a neural network approach. Journal of Membrane Science, 1994, 86, 193-198.	4.1	13
7	Wet spinning of integrally skinned hollow fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. Journal of Membrane Science, 1994, 94, 329-340.	4.1	68
8	Polymers for gas separations: the next decade. Journal of Membrane Science, 1994, 94, 1-65.	4.1	877
9	Preparation and characterization of metal-dispersed alumina membranes for selective separation of hydrogen. Journal of Membrane Science, 1994, 97, 199-207.	4.1	26
10	Multiloop Control of a Pilot-Scale Membrane System for Gas Separations. Industrial & Engineering Chemistry Research, 1994, 33, 1901-1907.	1.8	2
11	Separation devices for gas mixing. AICHE Journal, 1995, 41, 2585-2602.	1.8	3
12	Preparation and characterization of polymides derived from bis(methoxycarbonyl)terephthaloyl chloride by interfacial condensation. Macromolecular Chemistry and Physics, 1995, 196, 3217-3227.	1.1	5
13	Facilitated oxygen transport in an ionomer membrane containing cobaltous ions. Macromolecular Rapid Communications, 1995, 16, 927-933.	2.0	6
14	Gas separation properties of isophorone-based polyarylates. Journal of Applied Polymer Science, 1995, 58, 1465-1472.	1.3	5
15	Design studies of membrane permeator processes for gas separation. Separation and Purification Technology, 1995, 9, 151-169.	0.3	20
16	Gas separation properties of aromatic polyamides with sulfone groups. Polymer, 1995, 36, 793-800.	1.8	53
17	The effect of aryl nitration on gas sorption and permeation in polysulfone. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 657-666.	2.4	40
18	Selective CO2 separation from CO2/C2H6 mixtures by immobilized diethanolamine/PEG membranes. Journal of Membrane Science, 1995, 98, 157-171.	4.1	35

#	Article	IF	CITATIONS
19	Novel highly permselective 6F-poly(amide-imide)s as membrane host for nano-sized catalysts. Journal of Membrane Science, 1995, 99, 29-38.	4.1	81
20	Gas separation properties of aromatic polyamides containing hexafluoroisopropylidene groups. Journal of Membrane Science, 1995, 104, 231-241.	4.1	66
21	Membrane catalysis: Where is it now, what needs to be done?. Catalysis Today, 1995, 25, 199-207.	2.2	116
22	Catalysis with homogeneous membranes loaded with nanoscale metallic clusters and their preparation. Catalysis Today, 1995, 25, 277-283.	2.2	42
23	Theoretical studies on the affinity of CO2 and N2 molecules to solid surfaces. Energy Conversion and Management, 1995, 36, 439-442.	4.4	12
24	Effect of Feed Composition on the Performance of Polymer-Zeolite Mixed Matrix Gas Separation Membranes. Separation Science and Technology, 1995, 30, 2365-2384.	1.3	27
25	Chapter 7 Gas-phase and non-traditional separation applications. Membrane Science and Technology, 1996, , 249-297.	0.5	1
26	Chapter 9 Inorganic membrane reactors—Material and catalysis considerations. Membrane Science and Technology, 1996, , 367-410.	0.5	0
27	Free-Volume Hole Properties of Gas-Exposed Polycarbonate Studied by Positron Annihilation Lifetime Spectroscopy. Macromolecules, 1996, 29, 7859-7864.	2,2	99
28	CF4 Plasma Treatment of Asymmetric Polysulfone Membranes. Langmuir, 1996, 12, 3666-3670.	1.6	54
29	Effect of Basic Substituents on Gas Sorption and Permeation in Polysulfone. Macromolecules, 1996, 29, 4360-4369.	2,2	158
30	Water-Casting Ultrathin-Film Composite Membranes for Air Separation. Separation Science and Technology, 1996, 31, 579-603.	1.3	21
31	High sensitivity of positron annihilation lifetime to time and pressure effects in gas-exposed polymers. Journal of Radioanalytical and Nuclear Chemistry, 1996, 210, 513-524.	0.7	19
32	Membrane separation process analysis and design strategies based on thermodynamic efficiency of permeation. Chemical Engineering Science, 1996, 51, 365-385.	1.9	28
33	Diffusion of anaesthetic gases through different polymers. Acta Anaesthesiologica Scandinavica, 1996, 40, 275-281.	0.7	10
34	Synthesis and properties of highly gas permeable poly(amide-imide)s. Macromolecular Chemistry and Physics, 1996, 197, 701-714.	1.1	19
35	Gas-separation membrane cascades utilizing limited numbers of compressors. AICHE Journal, 1996, 42, 2141-2154.	1.8	27
36	A continuous pervaporation membrane reactor for the study of esterification reactions using a composite polymeric/ceramic membrane. Chemical Engineering Science, 1996, 51, 4103-4113.	1.9	81

#	Article	IF	Citations
37	Asymmetric TPX membranes with high gas flux. Journal of Membrane Science, 1996, 110, 25-36.	4.1	42
38	Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing. Journal of Membrane Science, 1996, 112, 115-128.	4.1	36
39	Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. Journal of Membrane Science, 1996, 115, 85-108.	4.1	148
40	Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation. Journal of Membrane Science, 1996, 117, 143-150.	4.1	24
41	Approximate modeling of spiral-wound gas permeators. Journal of Membrane Science, 1996, 121, 11-24.	4.1	12
42	Ultra-thin polyimide film as a gas-separation layer for composite membranes. Polymer, 1996, 37, 2577-2579.	1.8	13
43	Gas permeability in polyimides from oxydianiline and isomeric thiaphthalic dianhydride or 1,4-bis(dicarboxyphenoxy) benzene dianhydride. Polymer, 1996, 37, 3451-3453.	1.8	16
44	The effect of gas molecule affinities on CO2 separation from the CO2/N2 gas mixture using inorganic membranes as investigated by molecular dynamics simulation. Journal of Membrane Science, 1996, 121, 251-259.	4.1	35
45	Polyphosphazene membrane separations?Review. Journal of Inorganic and Organometallic Polymers, 1996, 6, 341-365.	1.5	25
46	The behavior of interfacial polycondensation on synthesizing of poly(amic-ester)s: homogeneity of the interfacial films. Polymer Bulletin, 1996, 36, 609-616.	1.7	3
47	Study of Polyimides Prepared from 3,3′,4,4′-Benzophenonetetracarboxylic Dianhydride and 4,4′-(Alkane-1,n-Diyldioxy)Dianilines. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 477-489.	1.2	4
48	Unusual Gas-Transport Selectivity in a Partially Oxidized Form of the Conductive Polymer Polypyrrole. Chemistry of Materials, 1997, 9, 560-566.	3.2	40
49	MEMBRANE SEPARATION TECHNOLOGIES: CURRENT DEVELOPMENTS. Chemical Engineering Communications, 1997, 157, 145-184.	1.5	106
50	Membrane Permeation Processes. , 1997, , 1238-1295.		8
51	Gas transport properties of poly(phenylene thioether imide)s. Polymer, 1997, 38, 1573-1580.	1.8	32
52	The transport properties of CO2 and CH4 for trimethylsilylated polysulfone membrane. Korean Journal of Chemical Engineering, 1997, 14, 382-389.	1.2	8
53	Gas transport in ring substituted polyanilines. Polymer Engineering and Science, 1997, 37, 868-875.	1.5	9
54	Characterization of PPO [poly(phenylene oxide)] powder and membranes from it by ESR technique. Journal of Membrane Science, 1997, 123, 9-15.	4.1	8

#	Article	IF	Citations
55	Effect of gelation conditions on gas separation performance for asymmetric polysulfone membranes. Journal of Membrane Science, 1997, 123, 89-94.	4.1	21
56	Effect of surfactants on the structure of PMMA membranes. Journal of Membrane Science, 1997, 123, 281-291.	4.1	60
57	Polyelectrolyte membranes for acid gas separations. Journal of Membrane Science, 1997, 131, 49-60.	4.1	79
58	Gas transport properties of liquid crystalline polysiloxane with laterally attached side chain. Journal of Membrane Science, 1997, 133, 245-253.	4.1	15
59	Molecular dynamics simulation of iso- and n-butane permeations through a ZSM-5 type silicalite membrane. Journal of Membrane Science, 1997, 134, 127-139.	4.1	48
60	Permeation and separation properties of polyimide membranes to 1,3-butadiene and n-butane. Journal of Membrane Science, 1997, 134, 171-179.	4.1	77
61	Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. Journal of Membrane Science, 1997, 135, 99-106.	4.1	127
62	The morphology characterisation and performance of dense PPO membranes for gas separation. Journal of Membrane Science, 1997, 135, 211-223.	4.1	106
63	Transport properties of crosslinkable polyimide blends. Journal of Membrane Science, 1997, 136, 249-259.	4.1	62
64	Formation of surface skin layer of asymmetric polyimide membranes and their gas transport properties. Journal of Membrane Science, 1997, 137, 241-250.	4.1	78
65	Calorimetric probes of carbon dioxide sorption in bisphenol-A based polymers. Polymer, 1997, 38, 5807-5813.	1.8	3
66	Poly(ether ketone)s with cyclohexyl-substituted indan groups in the main chain. Macromolecular Chemistry and Physics, 1997, 198, 2421-2438.	1.1	4
67	Relationship between structure and gas permeation properties of polyimides prepared from oxydiphthalic dianhydride. Macromolecular Chemistry and Physics, 1997, 198, 2769-2778.	1.1	27
68	Gas permeation through cis-polybutadiene/liquid crystal composite membranes. European Polymer Journal, 1998, 34, 1663-1668.	2.6	2
69	Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations. Separation and Purification Technology, 1998, 14, 27-39.	3.9	271
70	Permeation dynamics of small molecules through silica membranes: Molecular dynamics study. AICHE Journal, 1998, 44, 1335-1343.	1.8	38
72	Gas Separation with Polymer Membranes. Angewandte Chemie - International Edition, 1998, 37, 2960-2974.	7.2	203
73	Gas permeation in polyarylates: effect of bisphenol and acid substitution symmetry. Polymer, 1998, 39, 2011-2022.	1.8	13

#	Article	IF	CITATIONS
74	Sorptive dilation and relaxational processes in glassy polymer/gas systems—I. Poly(sulfone) and poly(ether sulfone). Polymer, 1998, 39, 5183-5195.	1.8	39
75	Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 1998, 138, 99-107.	4.1	73
76	Effect of PEG additive on membrane formation by phase inversion. Journal of Membrane Science, 1998, 138, 153-163.	4.1	485
77	Characterization of the transport properties of microporous inorganic membranes. Journal of Membrane Science, 1998, 140, 81-95.	4.1	40
78	Control of the porosity of asymmetric TPX membranes. Journal of Membrane Science, 1998, 141, 1-12.	4.1	35
79	Mixed gas transport study through polymeric membranes. Journal of Membrane Science, 1998, 141, 45-63.	4.1	75
80	Gas permeabilities of polymers with indan groups in the main chain Journal of Membrane Science, 1998, 143, 105-113.	4.1	18
81	Gas permeabilities of polymers with indan groups in the main chain Journal of Membrane Science, 1998, 143, 115-123.	4.1	36
82	The influence of polyvinylpyrrolidone (PVP) in polyetherimid/PVP blend membranes upon vapor separation. Journal of Membrane Science, 1998, 144, 251-257.	4.1	11
83	Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO2/N2 separation properties. Journal of Membrane Science, 1998, 146, 31-37.	4.1	77
84	Gas separation by networks made from supramolecular complexes of metal phthalocyanines and a cellulose derivative. Journal of Membrane Science, 1998, 147, 49-57.	4.1	7
85	Impact of operating pressure on the permeance of hollow fiber gas separation membranes. Journal of Membrane Science, 1998, 146, 217-223.	4.1	11
86	Preparation of silica–alumina composite membranes for hydrogen separation by multi-step pore modifications. Journal of Membrane Science, 1998, 147, 147-158.	4.1	22
87	A variation in fiber properties affects the performance of defect-free hollow fiber membrane modules for air separation. Journal of Membrane Science, 1998, 150, 31-41.	4.1	18
88	Membranes in Chemical Processing a Review of Applications and Novel Developments. Separation and Purification Reviews, 1998, 27, 51-168.	0.8	38
89	Gas Transport Properties of Asymmetric Polyimide Membrane with an Ultrathin Surface Skin Layer. Macromolecules, 1998, 31, 6636-6638.	2.2	55
90	Transport of Gases in Porous Membranes. MRS Bulletin, 1999, 24, 41-45.	1.7	24
91	Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber and natural rubber/epoxidised natural rubber blends. Polymer, 1999, 40, 3223-3228.	1.8	67

#	Article	IF	CITATIONS
92	Separation of CO2 and CH4 through two types of polyimide membrane. Thin Solid Films, 1999, 340, 106-109.	0.8	20
93	Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous and Mesoporous Materials, 1999, 31, 97-110.	2.2	63
94	Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. Journal of Membrane Science, 1999, 155, 145-154.	4.1	349
95	Free volumes and holes near the polymer surface studied by positron annihilation. Applied Surface Science, 1999, 149, 116-124.	3.1	35
96	Supported nickel catalysts for carbon dioxide reforming of methane in plug flow and membrane reactors. Applied Catalysis A: General, 1999, 183, 241-252.	2.2	39
97	Novel Composite Membranes for Gas Separation: Preparation and Performance. Journal of Porous Materials, 1999, 6, 143-151.	1.3	16
98	The transport properties of CO2 and CH4 for brominated polysulfone membrane. Korean Journal of Chemical Engineering, 1999, 16, 343-350.	1.2	14
99	Possible air separations with superconducting membranes. AICHE Journal, 1999, 45, 2313-2325.	1.8	10
100	Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation. Journal of Applied Polymer Science, 1999, 71, 2385-2390.	1.3	66
101	Preparation of defect-free asymmetric membranes for gas separations. Journal of Applied Polymer Science, 1999, 73, 1471-1482.	1.3	33
102	Interrelation between phase state and gas permeation in polysulfone/polyimide blend membranes. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2788-2798.	2.4	37
103	Synthesis and properties of new adamantane-based poly(ether imide)s. Journal of Polymer Science Part A, 1999, 37, 1619-1628.	2.5	22
104	New Polyimides for Gas Separation. 1. Polyimides Derived from Substituted Terphenylenes and $4,4a \in \mathbb{C}$ -(Hexafluoroisopropylidene) diphthalic Anhydride. Macromolecules, 1999, 32, 7853-7858.	2.2	106
105	Selective CO2Separation from CO2â^'N2Mixtures by Immobilized Carbonateâ^'Glycerol Membranes. Industrial & Samp; Engineering Chemistry Research, 1999, 38, 3489-3498.	1.8	52
107	Development of Dual Ensemble Monte Carlo Program and its Application to the CO ₂ /N ₂ Separation. Molecular Simulation, 2000, 25, 187-196.	0.9	6
108	The transport properties of CO2 and CH4 for chemically modified polysulfones. Journal of Applied Polymer Science, 2000, 76, 391-400.	1.3	20
109	Incorporation effects of fluorinated side groups into polyimide membranes on their physical and gas permeation properties. Journal of Applied Polymer Science, 2000, 77, 2756-2767.	1.3	48
110	The synthesis and characterization of polyimide homopolymers based on 5(6)-amino-1-(4-aminophenyl)-1,3,3-trimethylindane. Journal of Polymer Science Part A, 2000, 38, 2840-2854.	2.5	34

#	Article	IF	Citations
111	Pressure swing permeation: Novel process for gas separation by membranes. AICHE Journal, 2000, 46, 724-733.	1.8	18
112	Permeation of carbon dioxide through multiple linear low-density polyethylene films. European Polymer Journal, 2000, 36, 1697-1702.	2.6	6
113	Permeation of small molecules through polymers confined in mesoporous media. Journal of Membrane Science, 2000, 171, 239-252.	4.1	26
114	Modeling of the methane reforming reaction in hydrogen selective membrane reactors. Journal of Membrane Science, 2000, 177, 83-95.	4.1	77
115	Limitations of a constant pressure-type testing system in determination of gas transport properties of hydrophilic films. Journal of Membrane Science, 2000, 177, 129-142.	4.1	11
116	Membrane purification of Cl2 gas. Journal of Membrane Science, 2000, 177, 109-128.	4.1	14
117	Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance. Journal of Membrane Science, 2000, 167, 203-216.	4.1	45
118	Olefin/paraffin gas separations with 6FDA-based polyimide membranes. Journal of Membrane Science, 2000, 170, 205-214.	4.1	229
119	Membrane purification of Cl2 gas. Journal of Membrane Science, 2000, 170, 173-190.	4.1	53
120	A Comparison of Membrane Separation and Distillation. Chemical Engineering Research and Design, 2000, 78, 255-268.	2.7	84
121	Air Separation by Polysulfone Hollow Fibre Membrane Permeators in Series. Chemical Engineering Research and Design, 2000, 78, 1066-1076.	2.7	14
122	Gas permeabilities of CO2 and CH4 for polysulfones substituted with bromo and trimethylsilyl groups. Korean Journal of Chemical Engineering, 2000, 17, 122-127.	1.2	5
123	Nanoporous Carbon Membranes for Gas Separation. Membrane Science and Technology, 2000, 6, 473-496.	0.5	13
124	MEMBRANE SEPARATIONS Gas Separations with Polymer Membranes. , 2000, , 1725-1738.		2
125	A Molecular Modeling Study of Entropic and Energetic Selectivities in Air Separation with Glassy Polymers. Macromolecules, 2000, 33, 3142-3152.	2.2	15
126	Dendrimer Membranes:  A CO2-Selective Molecular Gate. Journal of the American Chemical Society, 2000, 122, 7594-7595.	6.6	151
127	Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules, 2000, 33, 2516-2524.	2.2	114
128	Chemical cross-linking modification of polyimide membranes for gas separation. Journal of Membrane Science, 2001, 189, 231-239.	4.1	280

#	Article	IF	CITATIONS
129	Gas Separation of Asymmetric 6FDA Polyimide Membrane with Oriented Surface Skin Layer. Macromolecules, 2001, 34, 9039-9044.	2.2	52
130	New inorganic proton-conductive membranes for hydrogen separation and electro-catalysis. Membrane Technology, 2001, 2001, 4-8.	0.5	5
131	EFFECTS OF CHEMICAL IMPURITIES ON GAS PERMEATION AND DIFFUSION IN POLYMERIC MEMBRANES. Separation Science and Technology, 2001, 36, 3121-3140.	1.3	5
132	Membrane Structure Controlled by Phase Inversion Process Membrane, 2001, 26, 110-115.	0.0	0
134	Gas Separation with Membranes. , 0, , 39-67.		5
135	Water vapor transport in a series of polyarylates. Journal of Membrane Science, 2001, 181, 199-212.	4.1	35
136	Preparation and characterisation of polyaniline based membranes for gas separation. Journal of Membrane Science, 2001, 184, 69-78.	4.1	74
137	The influence of casting solution structure on the microporosity of polyetherimide gas separation membranes prepared by the coagulation post-leaching method. Journal of Membrane Science, 2001, 184, 175-186.	4.1	21
138	Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments. Journal of Membrane Science, 2001, 184, 275-286.	4.1	165
139	Separation performance of polyimide composite membrane prepared by dip coating process. Journal of Membrane Science, 2001, 188, 165-172.	4.1	59
140	Solubility-based gas separation with oligomer-modified inorganic membranes. Journal of Membrane Science, 2001, 187, 141-150.	4.1	66
141	Sulfonated polyphenylene oxide–polyethersulfone thin-film composite membranes Effect of counterions on the gas transport properties. Journal of Membrane Science, 2001, 191, 71-83.	4.1	43
142	Membranes obtained by simultaneous casting of two polymer solutions. Journal of Membrane Science, 2001, 192, 11-26.	4.1	38
143	Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides. Polymer, 2001, 42, 2021-2029.	1.8	32
144	Membrane-Based Gas Separation of Ethylene/Ethylene Oxide Mixtures for Product Enrichment in Microreactor Technology. ChemPhysChem, 2001, 2, 211-218.	1.0	18
145	Study on the interaction of methane gas with poly(phenylene oxide) membrane using infrared spectroscopic method. Journal of Membrane Science, 2001, 186, 281-284.	4.1	3
146	EFFECTS OF CHEMICAL IMPURITIES ON GAS SORPTION IN POLYMERIC MEMBRANES. II. PC-1 AND PC-2. Separation Science and Technology, 2001, 36, 417-442.	1.3	6
147	EFFECTS OF CHEMICAL IMPURITIES ON GAS SORPTION IN POLYMERIC MEMBRANES. I. POLYCARBONATE AND POLYSULFONE. Separation Science and Technology, 2001, 36, 177-197.	1.3	9

#	Article	IF	Citations
149	NONBISPHENOL A POLYCARBONATES*. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2001, 41, 325-367.	2.2	2
151	Synthesis and Oxygen Permeability of Polynorbornene with Tosylate Side Chain Group. Polymer Journal, 2002, 34, 49-53.	1.3	8
152	Synthesis and Gas Transport Properties of New High Glass Transition Temperature Ring-Opened Polynorbornenes. Macromolecules, 2002, 35, 4677-4684.	2.2	57
153	Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers. 2. Composite Membrane Preparation. Macromolecules, 2002, 35, 912-916.	2.2	24
154	Comparison of Simulated and Experimental Transport of Gases in Commercial Poly(vinyl chloride). Macromolecules, 2002, 35, 4167-4174.	2.2	20
155	Polyimide Membranes Derived from Poly(amic acid) Salt Precursor Polymers. 1. Synthesis and Characterization. Macromolecules, 2002, 35, 905-911.	2.2	74
156	Carbon Dioxide Separation with Novel Solvents as Liquid Membranes. Industrial & Engineering Chemistry Research, 2002, 41, 2287-2295.	1.8	121
157	Permeation of H2, N2, CH4, C2H6, and C3H8 through asymmetric polyetherimide hollow-fiber membranes. Journal of Applied Polymer Science, 2002, 86, 698-702.	1.3	13
158	Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation. Journal of Membrane Science, 2002, 198, 211-223.	4.1	125
159	Investigation of surfactant addition effect on the vapor permeation of aqueous ethanol mixtures through polysulfone hollow fiber membranes. Journal of Membrane Science, 2002, 198, 245-258.	4.1	64
160	Hybrid silica-polyimide composite membranes: gas transport properties. Journal of Membrane Science, 2002, 202, 97-118.	4.1	172
161	Diffusion of gases in PEEKs membranes: molecular dynamics simulations. Journal of Membrane Science, 2002, 206, 389-398.	4.1	31
162	Gas transport and thermodynamic properties of PMMA/PVME blends containing PS-b-PMMA as a compatibilizer. Journal of Membrane Science, 2002, 204, 283-294.	4.1	19
163	Gas separation properties of new poly(aryl ether ketone)s with pendant groups. Journal of Membrane Science, 2002, 205, 73-81.	4.1	16
164	Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes. Journal of Membrane Science, 2002, 209, 177-206.	4.1	160
165	Formation of high-performance 6FDA-2,6-DAT asymmetric composite hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2002, 209, 309-319.	4.1	60
166	C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. Journal of Membrane Science, 2002, 210, 55-64.	4.1	43
167	Mechanism of the diffusion of sulfur mustard, a chemical warfare agent, in butyl and nitrile rubbers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1821-1827.	2.4	15

#	Article	IF	CITATIONS
168	Sorbate-induced structural rearrangements and permeation of gases in the polyphenylene oxide copolymer. Polymer, 2002, 43, 3209-3215.	1.8	7
169	Soluble aromatic polyamides containing the phenylindane group and their gas transport characteristics. Polymer, 2002, 43, 4709-4714.	1.8	31
170	Effect of metal cations on the gas separation performance of sulfonated poly (phenylene oxide) membranes. Desalination, 2002, 145, 365-370.	4.0	12
171	Characterization of hollow fiber membranes in a permeator using binary gas mixtures. Chemical Engineering Science, 2002, 57, 967-976.	1.9	111
172	Xenon washout during in-vitro extracorporeal circulation using different oxygenators. Journal of Clinical Monitoring and Computing, 2002, 17, 211-215.	0.7	3
173	Minimal Work for Separation Processes of Binary Mixtures. Open Systems and Information Dynamics, 2003, 10, 335-349.	0.5	12
174	Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance. Separation and Purification Technology, 2003, 33, 255-272.	3.9	35
175	Crosslinked Copolyimide Membranes for Phenol Recovery from Process Water by Pervaporation. ChemPhysChem, 2003, 4, 967-973.	1.0	18
176	Occupied and Accessible Volumes in Glassy Polymers and Their Relationship with Gas Permeation Parameters. Macromolecular Theory and Simulations, 2003, 12, 425-439.	0.6	35
177	Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors. Journal of Applied Polymer Science, 2003, 88, 442-451.	1.3	98
178	Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes. Journal of Applied Polymer Science, 2003, 90, 776-785.	1.3	36
179	Morphology of integral-skin layers in hollow-fiber gas-separation membranes. Journal of Applied Polymer Science, 2003, 90, 399-411.	1.3	42
180	Pervaporation separation of water/ethanol mixture by TGN/PSF blending membrane. European Polymer Journal, 2003, 39, 2367-2374.	2.6	17
181	Hollow fiber membranes obtained by simultaneous spinning of two polymer solutions: a morphological study. Journal of Membrane Science, 2003, 226, 35-50.	4.1	54
182	Effects of cross-linking modification on gas separation performance of Matrimid membranes. Journal of Membrane Science, 2003, 225, 77-90.	4.1	303
183	Diffusion of gases and vapors through methacrylates with oxyethylene units in the pendent chain. Polymer, 2003, 44, 2661-2668.	1.8	7
184	Gas separation characteristics of isomeric polyimide membrane prepared under shear stress. Journal of Membrane Science, 2003, 211, 291-298.	4.1	11
185	Mixed matrix membranes using carbon molecular sieves. Journal of Membrane Science, 2003, 211, 311-334.	4.1	661

#	Article	IF	Citations
186	Development of asymmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation Part 2. Suppression of plasticization. Journal of Membrane Science, 2003, 214, 57-69.	4.1	50
187	Effects of amidation on gas permeation properties of polyimide membranes. Journal of Membrane Science, 2003, 214, 83-92.	4.1	33
188	Solubility-based gas separation with oligomer-modified inorganic membranes Part II. Mixed gas permeation of 5 nm alumina membranes modified with octadecyltrichlorosilane. Journal of Membrane Science, 2003, 215, 157-168.	4.1	21
189	Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide. Journal of Membrane Science, 2003, 216, 195-205.	4.1	95
190	Chemical cross-linking modification of 6FDA-2,6-DAT hollow fiber membranes for natural gas separation. Journal of Membrane Science, 2003, 216, 257-268.	4.1	120
191	Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide. Journal of Membrane Science, 2003, 218, 11-18.	4.1	127
192	Gas sorption, permeation and separation of ABS copolymer membrane. Journal of Membrane Science, 2003, 221, 185-197.	4.1	36
193	The effects of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 separation. Journal of Membrane Science, 2003, 222, 133-147.	4.1	46
194	Effect of fluorene-bisphenol ring substitution and bridge rigidity on physical and gas permeation properties of resulting polyarylates. Polymer International, 2003, 52, 1474-1479.	1.6	10
195	Membrane air separation for intensification of coal gasification process. Fuel Processing Technology, 2003, 80, 119-141.	3.7	23
196	Separation of binary mixtures by dense membrane processes: influence of inert gas entrance under variable downstream pressure conditions. Chemical Engineering Science, 2003, 58, 2767-2775.	1.9	13
197	Chemical Cross-Linking Modification of Polyimide/Poly(ether sulfone) Dual-Layer Hollow-Fiber Membranes for Gas Separation. Industrial & Engineering Chemistry Research, 2003, 42, 1190-1195.	1.8	77
198	Effects of Cooling Rate and Physical Aging on the Gas Transport Properties in Polycarbonate. Macromolecules, 2003, 36, 8673-8684.	2.2	51
199	Ultrathin, Gas-Selective Polyimide Membranes Prepared from Multilayer Polyelectrolyte Films. Chemistry of Materials, 2003, 15, 281-287.	3.2	87
200	Simulations of diffusive and sorption processes of gases in polyimide membranes: Comparison with experiments. Physical Chemistry Chemical Physics, 2003, 5, 2862-2868.	1.3	20
201	Permeation Equipment for High-Pressure Gas Separation Membranes. Industrial & Engineering Chemistry Research, 2003, 42, 6389-6395.	1.8	31
202	Chemical and Biological Protection and Detection in Fabrics for Protective Clothing. MRS Bulletin, 2003, 28, 574-578.	1.7	117
203	Surfactant free fabrication of polymeric nanoparticles by combined liquid–liquid phase separation and solvent/nonsolvent mixing technology. Journal of Chemical Physics, 2004, 121, 12626.	1.2	17

#	Article	IF	CITATIONS
204	Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1275-1284.	0.9	17
205	Permeability of polymers in protective organic coatings. Progress in Organic Coatings, 2004, 50, 28-39.	1.9	216
206	Modern Environmental Improvement Pathways for the Coal Power Generation Industry in Australia. Chemical Engineering Research and Design, 2004, 82, 191-199.	2.7	14
207	Pressure and temperature dependence of the gas-transport properties of dense poly[2,6-toluene-2,2-bis(3,4-dicarboxylphenyl)hexafluoropropane diimide] membranes. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 354-364.	2.4	35
208	Modeling of displacement damage in an ion-beam-modified perfluorosulfonate ionomer. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1343-1350.	2.4	2
209	Gas-transport properties of indan-containing polyimides. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2769-2779.	2.4	14
210	Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4326-4336.	2.4	207
211	Methanol- and ethanol-induced convex deformation and macrovoid formation of poly(methyl) Tj ETQq1 1 0.7843	14.rgBT /(Overlock 10
212	Fabrication of polysulfone asymmetric hollow-fiber membranes by coextrusion through a triple-orifice spinneret. Journal of Applied Polymer Science, 2004, 94, 259-266.	1.3	9
213	Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AICHE Journal, 2004, 50, 311-321.	1.8	312
214	A Novel PECVD Procedure for the Room-Temperature Synthesis of SiO2 Thin Films with Controlled Porosity. Chemical Vapor Deposition, 2004, 10, 17-20.	1.4	7
215	Gas permeabilities of novel poly(arylene ether)s with terphenyl unit in the main chain. Journal of Membrane Science, 2004, 229, 63-71.	4.1	43
216	Intermediate polymer to carbon gas separation membranes based on Matrimid PI. Journal of Membrane Science, 2004, 238, 93-102.	4.1	118
217	Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA?TMMDA copolyimide membrane and its derived carbon membranes. Journal of Membrane Science, 2004, 244, 77-87.	4.1	112
218	The study of elongation and shear rates in spinning process and its effect on gas separation performance of Poly(ether sulfone) (PES) hollow fiber membranes. Chemical Engineering Science, 2004, 59, 1053-1062.	1.9	92
219	Transport properties of silmethylene homo-polymers and random copolymers: experimental measurements and molecular simulation. Polymer, 2004, 45, 6933-6944.	1.8	25
220	Modeling of asymmetric membrane formation by dry-casting method. Journal of Membrane Science, 2004, 230, 71-89.	4.1	63
221	Surface orientation effect of asymmetric polyimide hollow fibers on their gas transport properties. Journal of Membrane Science, 2004, 230, 141-148.	4.1	16

#	Article	IF	CITATIONS
222	Structure–gas separation property relationships of non-ionic and cationic amino-hydroxy functionalized poly (dimethylsiloxane) membranes. Journal of Membrane Science, 2004, 232, 73-83.	4.1	22
223	Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation. Journal of Membrane Science, 2004, 240, 91-103.	4.1	157
224	Gas separation properties and morphology of asymmetric hollow fiber membranes made from cardo polyamide. Journal of Membrane Science, 2004, 243, 59-68.	4.1	33
225	Sorption and transport of water vapor in thin polymer films at 35 °C. Physical Chemistry Chemical Physics, 2004, 6, 103-108.	1.3	50
226	Gas Transport Properties of Poly(2-ethoxyethyl methacrylate-co-2-hydroxyethyl methacrylamide). Macromolecules, 2004, 37, 4156-4163.	2.2	14
227	Gas and Vapor Sorption and Permeation in Poly(2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-co-tetrafluoroethylene). Macromolecules, 2004, 37, 7688-7697.	2.2	101
228	Synthesis and Gas Permeation Properties of Star-like Poly(ethylene oxide)s Using Hyperbranched Polyimide as Central Core. Polymer Journal, 2004, 36, 294-302.	1.3	21
229	Chemical and biological protection. , 2005, , 557-594.		5
230	Performance of silicone-coated polymeric membrane in separation of hydrocarbons and nitrogen mixtures. Journal of Membrane Science, 2005, 254, 179-188.	4.1	63
231	Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure, 2005, 739, 57-74.	1.8	697
232	Synthesis and characterization of polyimides and co-polyimides having pendant benzoic acid moiety. Polymer, 2005, 46, 3669-3676.	1.8	11
233	A comparative structure–property study of methylphenylated and fluoromethylphenylated poly(aryl) Tj ETQq1 I	0.78431 1.8	4.rgBT /Ove
234	Synthesis of crown ether-containing copolyimides and their pervaporation properties to benzene/cyclohexane mixtures. Journal of Membrane Science, 2005, 249, 33-39.	4.1	25
235	Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science, 2005, 251, 159-167.	4.1	119
236	Effect of the upstream pressure on gas transport in poly(ether-imide) films. Journal of Membrane Science, 2005, 253, 175-181.	4.1	15
237	Performance of gas separation membranes made from sulfonated brominated high molecular weight poly(2,4-dimethyl-1,6-phenylene oxide). Journal of Membrane Science, 2005, 253, 183-189.	4.1	51
238	Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes. Journal of Membrane Science, 2005, 252, 89-100.	4.1	131
239	Sorption phenomena of organic solvents in polymers: Part II. European Polymer Journal, 2005, 41, 2067-2087.	2.6	6

#	Article	IF	CITATIONS
240	Novel carbon molecular sieve honeycomb membrane module: configuration and membrane characterization. Carbon, 2005, 43, 809-819.	5.4	23
241	Sorption phenomena of organic solvents in polymers: Part I. European Polymer Journal, 2005, 41, 974-983.	2.6	4
242	Benzoylation of polyphenylene oxide: Characterization and gas permeability investigations. European Polymer Journal, 2005, 41, 2461-2471.	2.6	19
243	Preparation of a novel polysulfone/polyethylene oxide/silicone rubber multilayer composite membrane for hydrogen–nitrogen separation. Materials Chemistry and Physics, 2005, 94, 288-291.	2.0	8
244	Gas permeation studies of natural rubber and carboxylated styrene-butadiene rubber latex membranes. Journal of Applied Polymer Science, 2005, 98, 1125-1134.	1.3	7
245	Physical and Gas Transport Properties of Novel Hyperbranched Polyimide? Silica Hybrid Membranes. Polymer Bulletin, 2005, 53, 139-146.	1.7	78
246	Gas permeation and sorption properties of non-ionic and cationic amino-hydroxy functionalized poly(dimethylsiloxane) membranes. Journal of Membrane Science, 2005, 254, 169-177.	4.1	12
247	Membranes for solubility-based gas separation applications. Chemical Engineering Journal, 2005, 112, 219-226.	6.6	149
248	Gas permeation properties in a composite mesoporous alumina ceramic membrane. Korean Journal of Chemical Engineering, 2005, 22, 721-728.	1,2	14
249	Hydrogen Separation from Synthesis Gas. , 2005, , .		0
250	Preferential Solvation Stabilization for Hydrophobic Polymeric Nanoparticle Fabrication. Journal of Physical Chemistry B, 2005, 109, 13877-13882.	1.2	15
251	Gas and Vapor Sorption, Permeation, and Diffusion in Poly(tetrafluoroethylene-co-perfluoromethyl) Tj ETQq1 1	0.784314 ı	gBT/Overlo
252	Gas Permeation Through Poly(Etherâ€bâ€amide) (PEBAX 2533) Block Copolymer Membranes. Separation Science and Technology, 2005, 39, 149-164.	1.3	54
253	Transport of Gases and Vapors in Glassy and Rubbery Polymers. , 2006, , 1-47.		136
255	Role of Adsorption in the Permeation of CH4and CO2through a Silicalite-1 Membrane. Industrial & Engineering Chemistry Research, 2006, 45, 767-776.	1.8	117
256	Developments and Design of Novel (Non-Palladium-Based) Metal Membranes for Hydrogen Separation. Industrial & Design of Chemistry Research, 2006, 45, 5657-5674.	1.8	142
258	Molecular Simulation of Gas and Vapor Transport in Highly Permeable Polymers., 2006,, 95-136.		26
259	Polysulfone and Mesoporous Molecular Sieve MCM-48 Mixed Matrix Membranes for Gas Separation. Chemistry of Materials, 2006, 18, 1149-1155.	3 . 2	150

#	Article	IF	CITATIONS
260	Thermodynamic Factors in Partitioning and Rejection of Organic Compounds by Polyamide Composite Membranes. Environmental Science & Environmental Scien	4.6	47
261	Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 2006, 45, 875-881.	1.8	562
262	Gas Separation with Membranes. , 2006, , 53-90.		7
263	MD and MC simulation analyses on the effect of solvent types on accessible free volume and gas sorption in PMMA membranes. Desalination, 2006, 192, 391-400.	4.0	35
264	The dry phase inversion technique as a tool to produce highly efficient asymmetric gas separation membranes of modified PEEK. Influence of temperature and air circulation. Desalination, 2006, 192, 132-141.	4.0	26
265	Effect of nonsolvent type on the surface morphology and preparation of microporous membranes from blends of poly(phenylene oxide) and poly(p-phenylene oxide-sulfone) or polysulfone. Desalination, 2006, 200, 52-54.	4.0	5
266	Design of dense membrane separation units: Computational inconsistencies for variable permeability conditions. Chemical Engineering and Processing: Process Intensification, 2006, 45, 323-328.	1.8	2
267	Asymmetric membranes of modified poly(ether ether ketone) with an ultra-thin skin for gas and vapour separations. Journal of Membrane Science, 2006, 272, 188-197.	4.1	52
268	Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279, 1-49.	4.1	714
269	Characterization of crosslinked hollow fiber membranes. Polymer, 2006, 47, 1207-1216.	1.8	35
270	Effect of temperature on the solubility of aroma compounds in polyethylene film. Polymer Testing, 2006, 25, 690-696.	2.3	13
271	Influence of adsorption on the gas permeation performances in the mesoporous alumina ceramic membrane. Separation and Purification Technology, 2006, 49, 49-55.	3.9	26
272	Effects of a polyimide coating on the hydrogen selectivity of MIS sensors. Sensors and Actuators B: Chemical, 2006, 115, 86-92.	4.0	16
273	An analytical approach to the gas pressure drop in hollow fiber membranes. Journal of Membrane Science, 2006, 271, 69-76.	4.1	21
274	Efficient development of effective hollow fiber membranes for gas separations from novel polymers. Journal of Membrane Science, 2006, 278, 92-104.	4.1	67
275	Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. Journal of Membrane Science, 2006, 280, 202-209.	4.1	65
276	Microstructural investigation of dense membranes in relation to their gas transport properties. Journal of Membrane Science, 2006, 281, 548-559.	4.1	4
277	Gas transport properties of segmented poly(ether siloxane urethane urea) membranes. Journal of Membrane Science, 2006, 281, 747-753.	4.1	42

#	Article	IF	Citations
278	A preliminary study of polyureas and poly(parabanic acid)s incorporating furan rings. Polymer Bulletin, 2006, 57, 43-50.	1.7	15
279	Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer, 2006, 47, 858-870.	1.8	100
280	Effect of substituents on the permeation properties of polyamide membranes. Journal of Membrane Science, 2006, 280, 659-665.	4.1	76
281	Preparation of polyvinylamine/polysulfone composite hollow-fiber membranes and their CO2/CH4 separation performance. Journal of Applied Polymer Science, 2006, 101, 1885-1891.	1.3	34
282	Synthesis, Structure, and Ionic Conductivity of Self-Assembled Amphiphilic Poly(methacrylate) Comb Polymers. Macromolecules, 2006, 39, 4726-4734.	2.2	29
283	Molecular simulation of realistic membrane models of alkylated PEEK membranes. Molecular Simulation, 2006, 32, 145-154.	0.9	27
284	Polymer Membranes for Hydrogen Separations. MRS Bulletin, 2006, 31, 745-749.	1.7	91
285	Synthesis and Properties of Amidoimide Dendrons and Dendronized Cellulose Derivatives. Macromolecules, 2007, 40, 9293-9303.	2.2	17
286	Polymeric Membranes for Natural Gas Conditioning. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2007, 29, 1269-1278.	1.2	8
287	Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranesâ€"A Review. Separation and Purification Reviews, 2007, 36, 113-174.	2.8	251
288	Permeation of Carbon Dioxide and Methane Gases through Novel Silver-Incorporated Thin Film Composite Pebax Membranes. Industrial & Engineering Chemistry Research, 2007, 46, 8144-8151.	1.8	47
290	Insight into the Permeation Barrier of Glued Langmuirâ°Blodgett Bilayers. Journal of the American Chemical Society, 2007, 129, 8663-8667.	6.6	14
291	Gas Separation by a Novel Hybrid Membrane/Pressure Swing Adsorption Process. Industrial & Engineering Chemistry Research, 2007, 46, 5723-5733.	1.8	37
292	Phase Behavior and Rheological Properties of Polyamine-Rich Complexes for Direct-Write Assembly. Langmuir, 2007, 23, 12752-12759.	1.6	18
293	Membranes for Hydrogen Separation. Chemical Reviews, 2007, 107, 4078-4110.	23.0	947
295	Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. Journal of Applied Polymer Science, 2007, 105, 1749-1756.	1.3	41
296	Preparation of poly(phthalazinone ether sulfone ketone) hollow fiber membrane for gas separation. Journal of Applied Polymer Science, 2007, 105, 405-411.	1.3	7
297	Synthesis and characterization of dense and porous cellulose films. Journal of Applied Polymer Science, 2007, 105, 1228-1236.	1.3	36

#	Article	IF	CITATIONS
298	Development and characterization of homopolymers and copolymers from the family of polyphenylene oxides. Journal of Applied Polymer Science, 2007, 106, 2140-2148.	1.3	12
299	Hierarchical Nanomanufacturing: From Shaped Zeolite Nanoparticles to Highâ€Performance Separation Membranes. Angewandte Chemie - International Edition, 2007, 46, 7560-7573.	7.2	323
301	Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AICHE Journal, 2007, 53, 610-616.	1.8	143
302	Synthesis and Properties of 6FDAâ€MDA Copolyimide Membranes: Effects of Diamines and Dianhydrides on Gas Separation and Pervaporation Properties. Macromolecular Chemistry and Physics, 2007, 208, 2665-2676.	1.1	18
303	Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 267-274.	2.3	144
304	Nitration and amination of polyphenylene oxide: Synthesis, gas sorption and permeation analysis. European Polymer Journal, 2007, 43, 1450-1459.	2.6	23
305	Gas transport properties of polypropylene/clay composite membranes. European Polymer Journal, 2007, 43, 1132-1143.	2.6	118
306	Polysiloxanes with pendent bulky groups having amino-hydroxy functionality: Structure–permeability correlation. Journal of Membrane Science, 2007, 292, 72-79.	4.1	44
307	NELF model prediction of the infinite dilution gas solubility in glassy polymers. Journal of Membrane Science, 2007, 289, 106-122.	4.1	74
308	Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?. Journal of Membrane Science, 2007, 294, 50-59.	4.1	354
309	Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306, 36-46.	4.1	64
310	Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on MatrimidÂ $^{\odot}$ 5218 precursor. Journal of Materials Processing Technology, 2007, 186, 102-110.	3.1	83
311	Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32, 483-507.	11.8	1,570
312	lon beam irradiation of conjugated polymers for preparing new membrane materials—A theoretical study. Separation and Purification Technology, 2007, 57, 440-443.	3.9	6
313	Polymer–inorganic nanocomposite membranes for gas separation. Separation and Purification Technology, 2007, 55, 281-291.	3.9	400
314	On the crystallinity effect on the gas sorption in semicrystalline linear low density polyethylene (LLDPE). Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1798-1807.	2.4	19
315	Effect of temperature and membrane preparation parameters on gas permeation properties of polymethacrylates. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3025-3033.	2.4	13
316	Molecular dynamics simulations to compute diffusion coefficients of gases into polydimethylsiloxane and poly{(1,5- naphthalene)-co-[1,4-durene-2,2′-bis(3,4-dicarboxyl phenyl)hexafluoropropane diimide]}. Polymer International, 2007, 56, 928-934.	1.6	34

#	Article	IF	CITATIONS
317	Carbon ceramic composite membranes for catalytic membrane reactor applications. Kinetics and Catalysis, 2007, 48, 864-876.	0.3	5
318	Transport parameters of glassy polymers: Effect of occupied and accessible volumes. Polymer Science - Series A, 2007, 49, 517-531.	0.4	6
319	Gas permeation properties of polyamide membrane prepared by interfacial polymerization. Journal of Materials Science, 2007, 42, 9392-9401.	1.7	73
320	The effects of chemical structure on gas transport properties of poly(aryl ether ketone) random copolymers. Polymer, 2007, 48, 311-317.	1.8	12
321	Synthetic 6FDA–ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties. Polymer, 2007, 48, 5355-5368.	1.8	58
322	A new membrane module design with disc geometry for the separation of hydrogen using Pd alloy membranes. Journal of Membrane Science, 2007, 297, 217-225.	4.1	20
323	Synthesis, characterization, and gas permeation properties of the silyl derivatives of cellulose acetate. Journal of Membrane Science, 2007, 305, 136-145.	4.1	27
324	Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method. Separation and Purification Technology, 2008, 62, 642-647.	3.9	33
325	Hydrogen Production Using Pd-based Membrane Reactors for Fuel Cells. Topics in Catalysis, 2008, 51, 107-122.	1.3	60
326	Gas permeation properties of hydroxyl-group containing polyimide membranes. Macromolecular Research, 2008, 16, 555-560.	1.0	83
327	The gas permeation properties of 6FDA-2, 4, 6-trimethyl-1, 3-phenylenediamine (TMPDA)/1, 3-phenylenediamine (mPDA) copolyimides. Polymer Bulletin, 2008, 60, 137-147.	1.7	21
328	Synthetic 6FDAâ€ODA copolyimide membranes for gas separation and pervaporation: Correlation of separation properties with diamine monomers. Polymer Engineering and Science, 2008, 48, 795-805.	1.5	12
329	Synthesis, characterization, and gas permeability of aromatic polyimides containing pendant phenoxy group. Journal of Applied Polymer Science, 2008, 108, 3881-3889.	1.3	17
330	2,2â€Bis[4â€(3,4â€dicarboxyphenoxy) phenyl]propane dianhydride (BPADA)â€based polyimide membranes for pervaporation dehydration of isopropanol: Characterization and comparison with 4,4′â€(hexafluoroisopropylidene) diphthalic anhydride (6FDA)â€based polyimide membranes. Journal of Applied Polymer Science, 2008, 110, 283-296.	1.3	15
331	Membraneâ€Based Gas Separation: Potential Energy Recovery and Greenhouse Abatement Applications. Asia-Pacific Journal of Chemical Engineering, 1997, 5, 89-100.	0.0	2
332	PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. Journal of Membrane Science, 2008, 307, 88-95.	4.1	417
333	Gas transport property of polyallylamine–poly(vinyl alcohol)/polysulfone composite membranes. Journal of Membrane Science, 2008, 310, 184-196.	4.1	135
334	Boltorn-modified polyimide gas separation membranes. Journal of Membrane Science, 2008, 310, 512-521.	4.1	18

#	Article	IF	CITATIONS
335	Polyurethane/polyethersulphone composite hollow fibers produced by simultaneous spinning of two polymer solutions. Journal of Membrane Science, 2008, 311, 12-22.	4.1	23
336	Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS. Journal of Membrane Science, 2008, 313, 170-181.	4.1	337
337	Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. Journal of Membrane Science, 2008, 314, 123-133.	4.1	545
338	Mixed-matrix membranes composed of Matrimid \hat{A}^{\otimes} and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325, 28-39.	4.1	171
339	Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane. Journal of Power Sources, 2008, 177, 478-484.	4.0	94
340	Carbon dioxide vent for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 392-400.	4.0	11
341	Gas transport properties of 6FDA-TMPDA/MOCA copolyimides. European Polymer Journal, 2008, 44, 225-232.	2.6	30
342	Membrane-based biological waste gas treatment. Chemical Engineering Journal, 2008, 136, 82-91.	6.6	92
343	Molecular simulation of permeation through alkyl-functionalized mesoporous ceramic membranes. Journal of Membrane Science, 2008, 314, 173-182.	4.1	9
344	Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes. Journal of Membrane Science, 2008, 320, 108-122.	4.1	112
345	Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to improve the gas separation properties. Journal of Membrane Science, 2008, 323, 53-59.	4.1	54
346	A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. Journal of Membrane Science, 2008, 325, 284-294.	4.1	197
347	Permeation selectivity of gaseous isotopes through dense polymers: Peculiar behavior of the hydrogen isotopes. Journal of Membrane Science, 2008, 318, 373-378.	4.1	7
348	Membrane Separation Technology: Past, Present, and Future. ACS Symposium Series, 2008, , 281-333.	0.5	1
349	Natural Gas Processing with Membranes:  An Overview. Industrial & Engineering Chemistry Research, 2008, 47, 2109-2121.	1.8	1,148
350	Gas Permeability Properties of Mixed-Matrix Matrimid Membranes Containing a Carbon Aerogel:  A Material with Both Micropores and Mesopores. Industrial & Engineering Chemistry Research, 2008, 47, 2794-2802.	1.8	50
351	Solubility and Diffusivity of Gases in Mixed Matrix Membranes Containing Hydrophobic Fumed Silica: Correlations and Predictions Based on the NELF Model. Industrial & Engineering Chemistry Research, 2008, 47, 5214-5226.	1.8	50
352	Gas Transport Through Nano Poly(ethylene-co-vinyl acetate) Composite Membranes. Industrial & Engineering Chemistry Research, 2008, 47, 4898-4904.	1.8	39

#	Article	IF	CITATIONS
353	Carbon Dioxide Capture Using a CO ₂ -Selective Facilitated Transport Membrane. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 1261-1267.	1.8	195
354	Defects in a Polyelectrolyte Multilayer: The Inside Story. Journal of the American Chemical Society, 2008, 130, 16510-16511.	6.6	30
355	Molecular Dynamics Simulation of Diffusion Behavior of Benzene/Water in PDMS-Calix[4]arene Hybrid Pervaporation Membranes. Industrial & Engineering Chemistry Research, 2008, 47, 4440-4447.	1.8	41
356	Probing the Gas Permeability of an Ionically Cross-Linked Langmuir–Blodgett Bilayer with a "Touch― of Salt. Langmuir, 2008, 24, 6279-6284.	1.6	12
357	Chemical and biological protection. , 2008, , 242-280.		5
359	Membranes in Gas Separation. , 2008, , 65-106.		3
360	Polycarbonate/Polyamide 6/Nanoclay Ternary Nanocomposite Membranes: Preparation, Characterisation, and Gas Separation Properties. Polymers and Polymer Composites, 2009, 17, 181-187.	1.0	4
361	Membrane Gas-Separation: Applications. , 0, , 167-194.		11
362	Ceramic Membranes for the Separation of Carbon Dioxideâ€"A Review. Transactions of the Indian Ceramic Society, 2009, 68, 115-138.	0.4	15
363	Surface modification of zeolites using benzene-1,4-diboronic acid to form gated micropores with mild and photo responsive pore reopening. Chemical Engineering Journal, 2009, 146, 520-526.	6.6	10
364	The rheology of Torlon® solutions and its role in the formation of ultra-thin defect-free Torlon® hollow fiber membranes for gas separation. Journal of Membrane Science, 2009, 326, 608-617.	4.1	36
365	Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 2009, 327, 18-31.	4.1	313
366	Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328, 165-173.	4.1	524
367	Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. Journal of Membrane Science, 2009, 331, 21-30.	4.1	208
368	Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1). Journal of Membrane Science, 2009, 333, 125-131.	4.1	246
369	Gas transport properties of fluorinated poly(ether imide) membranes containing indan moiety in the main chain. Journal of Membrane Science, 2009, 345, 249-256.	4.1	39
370	Gas transport properties of asymmetric polyimide membranes prepared by plasmaâ€based ion implantation. Polymers for Advanced Technologies, 2009, 20, 987-992.	1.6	9
371	Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. Journal of Membrane Science, 2009, 338, 1-4.	4.1	74

#	ARTICLE	IF	CITATIONS
372	Hydrogen quality from decarbonized fossil fuels to fuel cells. International Journal of Hydrogen Energy, 2009, 34, 2350-2360.	3.8	97
373	Effect of introduction of heterocyclic moieties into polymer backbone on gas transport properties of fluorinated poly(ether imide) membranes. Journal of Membrane Science, 2009, 343, 97-103.	4.1	40
374	Effects of dope compositions on the structure and performance of PPES hollow fiber ultrafiltration membranes. Journal of Membrane Science, 2009, 345, 257-266.	4.1	20
375	The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Progress in Polymer Science, 2009, 34, 561-580.	11.8	516
376	Preparation and characterization of carbon molecular sieve membranes for gas separationâ€"the effect of incorporated multi-wall carbon nanotubes. Desalination, 2009, 240, 40-45.	4.0	58
377	Influence of interfacial layers upon the barrier properties of polymer nanocomposites. Journal of Chemical Physics, 2009, 130, 104901.	1.2	22
378	Priority Assessment of Investment in Development of Nanotechnology in Upstream Petroleum Industry., 2009,,.		44
380	Membranes., 2009, , 467-490.		1
381	Modeling of the kinetics of pervaporative recovery of ethanol from fermented broth with the use of the solution-diffusion theory. Desalination and Water Treatment, 2010, 14, 185-191.	1.0	3
383	Syndiotactic polypropylene copolymer membranes and their performance for oxygen separation. Journal of Membrane Science, 2010, 348, 34-40.	4.1	7
384	Gas transport properties of fluorinated poly(ether imide) films containing phthalimidine moiety in the main chain. Journal of Membrane Science, 2010, 350, 53-61.	4.1	44
385	Antiplasticization and plasticization of Matrimid \hat{A}^{\otimes} asymmetric hollow fiber membranes. Part B. Modeling. Journal of Membrane Science, 2010, 350, 242-251.	4.1	28
386	Spiro-biindane containing fluorinated poly(ether imide)s: Synthesis, characterization and gas separation properties. Journal of Membrane Science, 2010, 365, 329-340.	4.1	46
387	Aminoethylaminopropylisobutyl POSSâ€"Polyimide nanocomposite membranes and their gas transport properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 168, 30-35.	1.7	42
388	Development of a hydrogen purifier with Pd-based composite membrane. Korean Journal of Chemical Engineering, 2010, 27, 235-240.	1.2	7
389	Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2010, 4, 127-132.	0.6	11
390	Effect of PEG additives on properties and morphologies of polyetherimide membranes prepared by phase inversion. Frontiers of Chemical Engineering in China, 2010, 4, 300-306.	0.6	29
391	Effects of membrane thickness and heat treatment on the gas transport properties of membranes based on P84 polyimide. Journal of Applied Polymer Science, 2010, 116, 2906-2912.	1.3	11

#	Article	IF	CITATIONS
392	Sorption mechanism in organic solutions of uncharged polymers. Journal of Applied Polymer Science, 2010, 117, 1867-1875.	1.3	2
393	Effect of the particle size and particle agglomeration on composite membrane performance. Journal of Applied Polymer Science, 2010, 118, 2417-2424.	1.3	30
394	Antiplasticization and plasticization of Matrimid® asymmetric hollow fiber membranes—Part A. Experimental. Journal of Membrane Science, 2010, 350, 232-241.	4.1	43
395	Factors affect defect-free Matrimid \hat{A}^{\otimes} hollow fiber gas separation performance in natural gas purification. Journal of Membrane Science, 2010, 353, 17-27.	4.1	78
396	A study of gas transport properties of semifluorinated poly (ether imide) membranes containing cardo diphenylfluorene moieties. Journal of Membrane Science, 2010, 362, 58-67.	4.1	30
397	Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361, 28-37.	4.1	776
398	A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption. Journal of Membrane Science, 2010, 365, 319-328.	4.1	76
399	Effects of compatibility difference in the mixed solvent system on the performance of PPES hollow fiber UF membrane. Journal of Membrane Science, 2010, 365, 311-318.	4.1	6
400	Performance of 6FDA–6FpDA polyimide for propylene/propane separations. Journal of Membrane Science, 2010, 365, 399-408.	4.1	90
401	Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimides. Polymer, 2010, 51, 46-52.	1.8	14
402	Aliphatic–aromatic polyimide blends for H2 separation. International Journal of Hydrogen Energy, 2010, 35, 8983-8992.	3.8	27
403	Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties. Journal of Membrane Science, 2010, 349, 385-392.	4.1	34
404	Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results. Journal of Membrane Science, 2010, 360, 58-69.	4.1	184
405	Synthesis, characterization and gas transport properties of new poly(imide siloxane) copolymers from $4,4\hat{a}\in^2$ -($4,4\hat{a}\in^2$ -isopropylidenediphenoxy)bis(phthalic anhydride). Journal of Membrane Science, 2010, 364, 211-218.	4.1	22
406	Effect of processing on carbon molecular sieve structure and performance. Carbon, 2010, 48, 3737-3749.	5.4	17
407	The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy, 2010, 35, 841-850.	4.5	55
408	Amino acidâ€functionalized ethyl cellulose: Synthesis, characterization, and gas permeation properties. Journal of Polymer Science Part A, 2010, 48, 3986-3993.	2.5	8
409	Crystallinity effect on the gas transport in semicrystalline coextruded films based on linear low density polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 634-642.	2.4	28

#	ARTICLE	IF	CITATIONS
410	Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry, 2010, 2, 633-637.	6.6	306
411	Syntheses and Characterizations of Soluble PDMS-Grafted Polyimides. Transactions of the Materials Research Society of Japan, 2010, 35, 237-240.	0.2	4
412	Advanced hydrogen (H 2) gas separation membrane development for power plants., 2010,, 111-142.		3
413	Pore Modification in Porous Ceramic Membranes With Solâ€Gel Process and Determination of Gas Permeability and Selectivity. Macromolecular Symposia, 2010, 287, 135-142.	0.4	5
414	Density functional approach to the description of fluids in contact with bilayers. Journal of Chemical Physics, 2010, 132, 244704.	1.2	11
416	Polymeric Membranes for Gas Separation. , 2010, , 155-212.		17
417	Changes in Gas-Transport Properties with the Phase Structure of Blends Containing Styreneâ^Butadieneâ^Styrene Triblock Copolymer and Poly(2,6-dimethyl-1,4-phenylene oxide). Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 6587-6592.	1.8	11
418	Membrane-based technologies for biogas separations. Chemical Society Reviews, 2010, 39, 750-768.	18.7	472
419	Effects of CO ₂ on a High Performance Hollow-Fiber Membrane for Natural Gas Purification. Industrial & Description (Section 2010) (19, 4887-4896).	1.8	68
420	Glued Langmuirâ'Blodgett Bilayers from Calix[n]arenes: Influence of Calix[n]arene Size on Ionic Cross-Linking, Film Thickness, and Permeation Selectivity. Langmuir, 2010, 26, 12988-12993.	1.6	17
421	Carbon Dioxide Solubility in Three Fluorinated Polyimides Studied by Molecular Dynamics Simulations. Macromolecules, 2010, 43, 2605-2621.	2.2	56
422	Modification of ABS Membrane by PEG for Capturing Carbon Dioxide from CO ₂ /N ₂ Streams. Separation Science and Technology, 2010, 45, 1385-1394.	1.3	72
423	Hydrogen production from ethanol via inorganic membrane reactors technology: a review. Catalysis Science and Technology, 2011, 1, 366.	2.1	68
424	Effects of Si–O–Si Agglomerations on CO2Transport and Separation Properties of Sol-Derived Nanohybrid Membranes. Macromolecules, 2011, 44, 6057-6066.	2.2	21
425	Coarse-Grained Simulations of Penetrant Transport in Polymer Nanocomposites. Macromolecules, 2011, 44, 9839-9851.	2.2	19
426	Synthesis and Gas Separation Performance of Triblock Copolymer Ion Gels with a Polymerized Ionic Liquid Mid-Block. Macromolecules, 2011, 44, 1732-1736.	2.2	203
428	Membrane Reactors for Hydrogen Production Processes. , 2011, , .		34
429	Semifluorinated, organo-soluble new aromatic poly(ether amide)s: Synthesis, characterization and gas transport properties. Journal of Membrane Science, 2011, 382, 20-29.	4.1	18

#	Article	IF	CITATIONS
430	Molecular dynamics simulations of polymeric structure and alcohol-membrane surface affinity of aromatic polyamide membranes. Journal of Membrane Science, 2011, 382, 30-40.	4.1	26
431	A critical review of cyclic transient membrane gas separation processes: State of the art, opportunities and limitations. Journal of Membrane Science, 2011, 383, 170-188.	4.1	20
432	Direct determination of concentration-dependent diffusion coefficient in polymeric membranes based on the Frisch method. Separation and Purification Technology, 2011, 82, 102-113.	3.9	40
433	Responses of 6FDA-based polyimide thin membranes to CO2 exposure andÂphysical aging as monitored by gas permeability. Polymer, 2011, 52, 5528-5537.	1.8	45
434	Analysis of the Development of Membrane Technology for Gas Separation and CO ₂ Capture. ACS Symposium Series, 2011, , 7-26.	0.5	6
435	Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO2 separation. Journal of Membrane Science, 2011, 369, 429-436.	4.1	44
436	Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas. Journal of Membrane Science, 2011, 369, 490-498.	4.1	33
437	Effect of SBA-15 texture on the gas separation characteristics of SBA-15/polymer multilayer mixed matrix membrane. Journal of Membrane Science, 2011, 369, 550-559.	4.1	42
438	Structural investigations and swelling behavior of 6FDA copolyimide thin films. Polymer International, 2011, 60, 1670-1678.	1.6	8
439	Azideâ€based Crossâ€Linking of Polymers of Intrinsic Microporosity (PIMs) for Condensable Gas Separation. Macromolecular Rapid Communications, 2011, 32, 631-636.	2.0	136
440	Relationship between Channel and Sorption Properties in Coordination Polymers with Interdigitated Structures. Chemistry - A European Journal, 2011, 17, 5138-5144.	1.7	76
441	Methane steam reforming in a Pd–Ag membrane reformer: An experimental study on reaction pressure influence at middle temperature. International Journal of Hydrogen Energy, 2011, 36, 1531-1539.	3.8	74
442	CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes. Journal of Membrane Science, 2011, 367, 197-203.	4.1	157
443	Novel silica membranes for high temperature gas separations. Journal of Membrane Science, 2011, 371, 254-262.	4.1	18
444	Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation. Microporous and Mesoporous Materials, 2011, 143, 46-53.	2,2	136
445	Matrimid \hat{A}^{\odot} derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of Membrane Science, 2011, 380, 138-147.	4.1	140
446	Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation. Separation and Purification Technology, 2011, 77, 179-184.	3.9	34
447	High Temperature Gas Separations Using High Performance Polymers. Membrane Science and Technology, 2011, 14, 295-307.	0.5	4

#	Article	IF	CITATIONS
448	Biological treatment of mixtures of toluene and nâ€hexane vapours in a hollow fibre membrane bioreactor. Environmental Technology (United Kingdom), 2011, 32, 617-623.	1.2	17
449	Oxygen transport membranes: dense ceramic membranes for power plant applications., 2011,, 255-292.		5
450	Synthesis and Properties of a High-Molecular-Weight Polyimide Based on 4, 4'-(hexafluoroisopropylidene) Diphthalic Anhydride. Advanced Materials Research, 0, 550-553, 742-746.	0.3	1
451	Membranes, adsorbent materials and solvent-based materials for syngas and hydrogen separation., 2012,, 179-216.		9
452	The Values of Membrane Science and Technology: Introduction and Overview., 2012,, 1-40.		2
454	Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. Journal of Natural Gas Chemistry, 2012, 21, 282-298.	1.8	150
455	Gases Separation by ZSM-5 based Membranes. Procedia Engineering, 2012, 42, 795-801.	1.2	2
456	Composite catalytic-permselective membranes: Modeling analysis for H 2 purification assisted by water–gas-shift reaction. Chemical Engineering Journal, 2012, 207-208, 552-563.	6.6	13
457	Evaluation of a newly developed diffusion denuder for atmospheric aerosol separation from co-pollutant gases. Science of the Total Environment, 2012, 439, 150-157.	3.9	3
458	High Tg, processable fluorinated polyimides containing benzoisoindoledione unit and evaluation of their gas transport properties. RSC Advances, 2012, 2, 6274.	1.7	29
459	Comparison of the Energy Intensity of the Selected CO ₂ -Capture Methods Applied in the Ultra-supercritical Coal Power Plants. Energy & Energy & 2012, 26, 6509-6517.	2.5	39
460	Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation. Polymer, 2012, 53, 3269-3280.	1.8	86
461	Accelerating Applications of Metal–Organic Frameworks for Gas Adsorption and Separation by Computational Screening of Materials. Langmuir, 2012, 28, 14114-14128.	1.6	202
462	Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas. Journal of Membrane Science, 2012, 413-414, 17-28.	4.1	44
463	Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. Journal of Membrane Science, 2012, 415-416, 793-800.	4.1	39
464	Modeling and analysis of selected carbon dioxide capture methods in IGCC systems. Energy, 2012, 45, 92-100.	4.5	49
465	Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation. Membranes, 2012, 2, 727-763.	1.4	78
466	Polymer Membranes. , 2012, , 325-347.		16

#	Article	IF	Citations
467	Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chemistry of Materials, 2012, 24, 2829-2844.	3.2	332
468	Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012, 8, 111-120.	2.3	90
469	ABA-triblock copolymer ion gels for CO2 separation applications. Journal of Membrane Science, 2012, 423-424, 20-26.	4.1	79
470	Separation of ethylene/ethane and propylene/propane by cellulose acetate–silica nanocomposite membranes. Journal of Membrane Science, 2012, 423-424, 97-106.	4.1	74
471	Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Advances, 2012, 2, 10745.	1.7	155
473	Computational fluid dynamics applied to high temperature hydrogen separation membranes. Frontiers of Chemical Science and Engineering, 2012, 6, 3-12.	2.3	24
474	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation., 2012,, 265-275.		1
475	Energy Efficiency: Comparison of Different Systems and Technologies. , 2012, , 841-907.		0
476	Morphology and Gas Permeability of Polymeric Membrane by PC/PA6/Nanoclay Ternary Nanocomposite. Polymers and Polymer Composites, 2012, 20, 271-278.	1.0	4
477	Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules, 2012, 45, 3841-3849.	2.2	193
478	Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. AICHE Journal, 2012, 58, 1550-1561.	1.8	33
479	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	30
480	Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. International Journal of Hydrogen Energy, 2012, 37, 3914-3921.	3.8	25
481	Reconciliation of membrane properties from the data influenced by resistance to accumulation of gasses in constant volume systems. Desalination, 2012, 287, 178-189.	4.0	5
482	Influence of membrane morphology on characteristics of porous hydrophobic PVDF hollow fiber contactors for CO2 stripping from water. Desalination, 2012, 287, 220-227.	4.0	39
483	Polymeric membranes for light olefin/paraffin separation. Desalination, 2012, 287, 82-97.	4.0	105
484	Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant. Energy, 2012, 38, 118-127.	4.5	46
485	A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads. Bioresource Technology, 2012, 111, 76-83.	4.8	11

#	Article	IF	CITATIONS
486	Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Separation and Purification Technology, 2012, 86, 221-233.	3.9	44
487	Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties. Journal of Membrane Science, 2012, 397-398, 51-65.	4.1	92
488	Gas transport properties of new aromatic poly(ether amide)s containing cyclohexylidene moiety. Journal of Membrane Science, 2012, 407-408, 116-127.	4.1	14
489	Exfoliated zeolite Nu-6(2) as filler for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2012, 411-412, 146-152.	4.1	22
490	High activated carbon loading mixed matrix membranes for gas separations. Journal of Materials Science, 2012, 47, 3064-3075.	1.7	20
491	Influence of inorganic fillers on the structural and transport properties of mixed matrix membranes. Journal of Applied Polymer Science, 2013, 128, 4058-4066.	1.3	21
493	Characteristics of Sonar Encapsulant Materials Fabricated from Electron-Beam-Irradiated Polyurethane Elastomers Coated with UV-Curable Polyurethane Acrylates. Industrial & Engineering Chemistry Research, 2013, 52, 1908-1915.	1.8	7
494	Preparation and Characterization of Polycarbonate-Blend-Raw/Functionalized Multi-Walled Carbon Nano Tubes Mixed Matrix Membrane for CO ₂ Separation. Separation Science and Technology, 2013, 48, 1261-1271.	1.3	35
495	Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer. Journal of Colloid and Interface Science, 2013, 393, 278-285.	5.0	26
496	Mixed matrix membranes comprising of Matrimid and –SO3H functionalized mesoporous MCM-41 for gas separation. Journal of Membrane Science, 2013, 447, 73-79.	4.1	92
497	Complex Effluent Streams as a Potential Source of Volatile Fatty Acids. Waste and Biomass Valorization, 2013, 4, 557-581.	1.8	125
498	Theoretical investigation of a waterâ€gasâ€shift catalytic membrane for diesel reformate purification. AICHE Journal, 2013, 59, 4334-4345.	1.8	1
499	Modelling and analysis of pre-combustion CO2 capture with membranes. Korean Journal of Chemical Engineering, 2013, 30, 1187-1194.	1.2	22
500	Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. Journal of Membrane Science, 2013, 429, 155-167.	4.1	28
503	Energy-efficient polymeric gas separation membranes for a sustainable future: AÂreview. Polymer, 2013, 54, 4729-4761.	1.8	1,144
504	Toluene Sorption in Poly(styrene) and Poly(vinyl acetate) near the Glass Transition. Industrial & Engineering Chemistry Research, 2013, 52, 8917-8927.	1.8	12
505	Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications. Macromolecules, 2013, 46, 9618-9624.	2.2	120
506	Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation. Journal of Membrane Science, 2013, 441, 63-72.	4.1	35

#	ARTICLE	IF	Citations
507	Dual layer hollow fiber sorbents: Concept, fabrication and characterization. Separation and Purification Technology, 2013, 104, 68-80.	3.9	24
508	Interfacial morphology between the two layers of the dual-layer asymmetric hollow fiber membranes fabricated by co-extrusion and dry-jet wet-spinning phase-inversion techniques. Journal of Membrane Science, 2013, 444, 482-492.	4.1	19
509	High performance polymer membranes for CO2 separation. Current Opinion in Chemical Engineering, 2013, 2, 238-244.	3.8	84
510	Modification of PSf/PIAM membrane for improved desalination applications using Chitosan coagulation media. Desalination, 2013, 317, 108-115.	4.0	23
511	Thermally rearranged (TR) poly(benzoxazole-co-amide) membranes for hydrogen separation derived from 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB), 4,4′-oxydianiline (ODA) and isophthaloyl chloride (IPCI). Journal of Membrane Science, 2013, 446, 294-302.	4.1	64
512	Synthesis of Two-Membrane Permeation Processes Using Residue Curve Maps and Node Classification. Industrial & Engineering Chemistry Research, 2013, 52, 14637-14646.	1.8	0
513	Preparation of novel metal-carboxylate system MOF membrane for gas separation. Separation and Purification Technology, 2013, 119, 94-101.	3.9	43
514	Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation. Chinese Journal of Chemical Engineering, 2013, 21, 348-356.	1.7	33
515	Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Advances, 2013, 3, 24266.	1.7	127
516	Unexpected barrier properties of structurally matched and unmatched polyelectrolyte multilayers. Chemical Communications, 2013, 49, 3576.	2.2	18
517	Modeling Gas Permeation by Linking Nonideal Effects. Industrial & Engineering Chemistry Research, 2013, 52, 1079-1088.	1.8	59
518	Separation technologies for current and future biorefineriesâ€"status and potential of membraneâ€based separation. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 673-690.	1.9	9
519	High-performance ester-crosslinked hollow fiber membranes for natural gas separations. Journal of Membrane Science, 2013, 428, 251-259.	4.1	57
520	Synthesis, characterization and gas transport properties of semifluorinated new aromatic polyamides. Separation and Purification Technology, 2013, 104, 138-149.	3.9	17
521	Permeance of H2 through porous graphene from molecular dynamics. Solid State Communications, 2013, 175-176, 101-105.	0.9	58
522	Improved CO2 separation performance with additives of PEG and PEG–PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide)membranes. Journal of Membrane Science, 2013, 432, 13-24.	4.1	44
523	Air Separation by Polymer-based Membrane Technology. Separation and Purification Reviews, 2013, 42, 130-186.	2.8	123
524	Predictive Models for Mixed-Matrix Membrane Performance: A Review. Chemical Reviews, 2013, 113, 4980-5028.	23.0	455

#	Article	IF	CITATIONS
525	Analysis of hollow fibre membrane systems for multicomponent gas separation. Chemical Engineering Research and Design, 2013, 91, 332-347.	2.7	45
526	Gas Separation by Polymer Membranes: Beyond the Border. Angewandte Chemie - International Edition, 2013, 52, 4982-4984.	7.2	41
527	Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. Journal of Membrane Science, 2013, 440, 1-8.	4.1	27
528	Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12, 84-107.	2.3	529
529	Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 2013, 1, 4610.	5.2	577
530	Influence of membrane skin morphology on CO2/N2 separation at sub-ambient temperatures. Journal of Membrane Science, 2013, 446, 433-439.	4.1	28
531	Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Industrial & Samp; Engineering Chemistry Research, 2013, 52, 6991-7001.	1.8	178
532	Ester-Cross-linkable Composite Hollow Fiber Membranes for CO ₂ Removal from Natural Gas. Industrial & Composite Hollow Fiber Membranes for CO ₂ Removal from Natural Gas. Industrial & Composite Hollow Fiber Membranes for CO ₂ Removal from Natural Gas. Industrial & Composite Hollow Fiber Membranes for CO ₂	1.8	27
533	Structurally developed microporous polyvinylidene fluoride hollow-fiber membranes for CO2 absorption with diethanolamine solution. Journal of Polymer Research, 2013, 20, 1.	1.2	23
534	Gas sorption and permeation in PIM-1. Journal of Membrane Science, 2013, 432, 50-57.	4.1	200
535	Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436, 221-231.	4.1	174
537	Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes. International Journal of Hydrogen Energy, 2013, 38, 9673-9687.	3.8	136
538	Advances in Hydrogen Separation and Purification with Membrane Technology., 2013,, 245-268.		28
539	Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chemical Engineering Journal, 2013, 220, 441-451.	6.6	71
540	Inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials., 2013,, 42-148.		13
541	Porous ceramic membranes for membrane reactors. , 2013, , 298-336.		17
542	Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation. Journal of Membrane Science, 2013, 427, 73-84.	4.1	78
543	Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427, 451-459.	4.1	57

#	Article	IF	CITATIONS
544	Gas transport properties of poly(arylene ether)s containing phthalimidine moiety in the main chain. Separation and Purification Technology, 2013, 103, 222-229.	3.9	10
545	Effect of Feed Composition on the Gas Separation Performance of Binary and Ternary Mixed Matrix Membranes. Separation Science and Technology, 2013, 48, 859-866.	1.3	7
546	Biohydrogen purification using a commercial polyimide membrane module: Studying the effects of some process variables. International Journal of Hydrogen Energy, 2013, 38, 15092-15099.	3.8	55
549	Synthesis and Characterization of Polybenzoxazinone and its Prepolymer Using Gas Separation. Macromolecular Chemistry and Physics, 2013, 214, 2867-2874.	1.1	14
550	Palladium-based membranes for hydrogen separation: preparation, economic analysis and coupling with a water gas shift reactor., 2013,, 456-486.		9
551	Advances in chemical and biological protective clothing. , 2013, , 364-377.		10
552	Formation and characterization of perfluorocyclobutyl polymer thin films. Journal of Applied Polymer Science, 2013, 129, 3226-3236.	1.3	11
554	Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane. Brazilian Journal of Chemical Engineering, 2013, 30, 589-597.	0.7	61
555	Isotherms of Fluids in Native and Defective Zeolite and Alumino-Phosphate Crystals: Monte-Carlo Simulations with "On-the-Flyâ€∢i>ab initioElectrostatic Potential. Oil and Gas Science and Technology, 2013, 68, 299-307.	1.4	2
556	Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing. Processes, 2013, 1, 49-66.	1.3	6
557	The Solubility of Hydrocarbon Gases in Glassy Polymers: Fractal Modeling. International Journal of Polymer Science, 2013, 2013, 1-4.	1.2	2
558	Application of Polymeric Membranes in Biohydrogen Purification and Storage. Current Biochemical Engineering, 2014, 1, 99-105.	1.3	6
559	Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview. Oil and Gas Science and Technology, 2014, 69, 1005-1020.	1.4	28
560	Effect of relative humidity and temperature on gas transport in Matrimid \hat{A}^{o} : Experimental study and modeling. Journal of Membrane Science, 2014, 471, 392-401.	4.1	41
561	Separation of Gases Using Membranes Containing Ionic Liquids. , 2014, , 261-273.		7
563	Effect of air-gap length on carbon dioxide stripping performance of a surface modified polysulfone hollow fiber membrane contactor. RSC Advances, 2014, 4, 59519-59527.	1.7	4
564	Diffusion Barrier Layers for Edible Food Packaging. , 2014, , 499-518.		2
565	Thermal method of gas separation with micro-pores. , 2014, , .		4

#	Article	IF	CITATIONS
566	Composite membranes with a highly selective polymer skin for hydrogen separation. Separation and Purification Technology, 2014, 135, 190-198.	3.9	25
567	Insights into the Chain and Local Mobility of Some Aromatic Polyamides and Their Influence on the Physicochemical Properties. Macromolecular Chemistry and Physics, 2014, 215, 1573-1587.	1.1	19
568	Facilitated Transport in Hydroxideâ€Exchange Membranes for Postâ€Combustion CO ₂ Separation. ChemSusChem, 2014, 7, 114-116.	3.6	15
569	Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structureâ€Performance Relationships in CO ₂ /CH ₄ Separation Over NH ₂ â€MILâ€53(Al)@PI. Advanced Functional Materials, 2014, 24, 249-256.	7.8	262
570	Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 2014, 39, 1-42.	11.8	597
571	Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. Journal of Membrane Science, 2014, 463, 82-93.	4.1	79
572	Preparation, characterization and gas permeation properties of PDMS/PEI composite asymmetric membrane for effective separation of hydrogen from H2/CH4 mixed gas. International Journal of Hydrogen Energy, 2014, 39, 1410-1419.	3.8	37
573	Physical aging and carbon dioxide plasticization of thin polyimide films in mixed gas permeation. Journal of Membrane Science, 2014, 450, 457-468.	4.1	66
574	Soft polymeric nanoparticle additives for next generation gas separation membranes. Journal of Materials Chemistry A, 2014, 2, 4999.	5.2	71
575	Gas transport properties of aromatic polyamides containing adamantyl moiety. Journal of Membrane Science, 2014, 453, 175-191.	4.1	46
576	Highly scalable ZIFâ€based mixedâ€matrix hollow fiber membranes for advanced hydrocarbon separations. AICHE Journal, 2014, 60, 2625-2635.	1.8	132
577	Zeolitic Imidazolate Frameworks: Nextâ€Generation Materials for Energyâ€Efficient Gas Separations. ChemSusChem, 2014, 7, 3202-3240.	3.6	235
578	Facilitated CO2 transport and barrier effect through ionic liquid modified with cyanuric chloride. RSC Advances, 2014, 4, 16917.	1.7	12
579	Synthesis and characterization of a novel type of mixed matrix membrane: surface sieving membrane. RSC Advances, 2014, 4, 10140.	1.7	13
580	The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: pure and mixed gas transport study. Chemical Communications, 2014, 50, 2089.	2.2	167
581	Effect of macrovoids in nano-silica/polyimide mixed matrix membranes for high flux CO2/CH4 gas separation. RSC Advances, 2014, 4, 12235.	1.7	41
582	Configurational entropy calculation of poly (\hat{l} ±-alkyl \hat{l}^2 ,L-aspartate)s amorphous and crystalline films using gas permeation. European Polymer Journal, 2014, 59, 254-261.	2.6	0
583	Fabrication of hollow silica spheres and their application in polyacrylate film forming agent. Journal of Materials Science, 2014, 49, 8215-8225.	1.7	28

#	Article	IF	CITATIONS
584	Preparation of composite membranes on a ceramic base with supported metal-organic framework structure of MOF-199 and study of their adsorption properties. Nanotechnologies in Russia, 2014, 9, 416-422.	0.7	3
585	Fluorinated poly(arylene ether)s with aliphatic chain appended cardo moiety: Synthesis and gas transport properties. Journal of Membrane Science, 2014, 470, 535-546.	4.1	14
586	Synthesis, oxidation and crosslinking of tetramethyl bisphenol F (TMBPF)-based polymers for oxygen/nitrogen gas separations. Polymer, 2014, 55, 5623-5634.	1.8	12
587	Energyâ€Efficient Hydrogen Separation by ABâ€Type Ladderâ€Polymer Molecular Sieves. Advanced Materials, 2014, 26, 6696-6700.	11.1	177
589	Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO2 stripping: Effect of PEG-400 in spinning dope. Chemical Engineering Research and Design, 2014, 92, 181-190.	2.7	30
590	Effect of introduction of cardo cyclohexylidene moiety on gas transport properties of fluorinated poly(arylene ether)s. European Polymer Journal, 2014, 52, 207-217.	2.6	16
591	Influence of Diffusivity and Sorption on Helium and Hydrogen Separations in Hydrocarbon, Silicon, and Fluorocarbon-Based Polymers. Macromolecules, 2014, 47, 3170-3184.	2.2	59
592	Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes. Arabian Journal for Science and Engineering, 2014, 39, 6805-6814.	1.1	79
593	Carbon molecular sieve membranes derived from Matrimid $\hat{A}^{\text{@}}$ polyimide for nitrogen/methane separation. Carbon, 2014, 66, 511-522.	5.4	180
594	Sub-ambient temperature flue gas carbon dioxide capture via Matrimid \hat{A}^{\otimes} hollow fiber membranes. Journal of Membrane Science, 2014, 465, 49-55.	4.1	39
595	Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control, 2014, 26, 147-157.	2.3	79
596	Pressure–vacuum swing permeation: A novel process mode for membrane separation of gases. Separation and Purification Technology, 2014, 125, 301-310.	3.9	8
597	Effects of hydrocarbon and water impurities on CO2/CH4 separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451, 1-9.	4.1	25
598	Change of microstructure of polyimide thin films under the action of supercritical carbon dioxide and its influence on the transport properties. Structural Chemistry, 2014, 25, 301-310.	1.0	15
599	- UNDERSTANDING NONWOVENS: CONCEPTS AND APPLICATIONS. , 2015, , 20-77.		0
601	Structure and Gas Transport Properties of Polybenzoxazinoneimides with Biquinoline Units in the Backbone. Macromolecular Symposia, 2015, 348, 44-53.	0.4	7
602	A highly selective polybenzimidazoleâ€4,4′â€(hexafluoroisopropylidene)bis(benzoic acid) membrane for highâ€temperature hydrogen separation. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
603	Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®. Oil and Gas Science and Technology, 2015, 70, 367-379.	1.4	24

#	Article	IF	CITATIONS
604	Functionalized Mesoporous Silica Membranes for CO ₂ Separation Applications. Journal of Chemistry, 2015, 2015, 1-9.	0.9	25
605	Fluorinated Polyimides. , 2015, , 97-185.		13
606	Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with superior CO2/N2 separation performance. Journal of Membrane Science, 2015, 490, 129-138.	4.1	56
607	Fluorosilicones and Other Fluoropolymers. , 2015, , 271-317.		6
608	A generic transport model for separation of gas mixtures by glassy polymer membranes based on Maxwell–Stefan formulation. RSC Advances, 2015, 5, 48207-48216.	1.7	14
609	Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 2015, 137, 15760-15771.	6.6	164
610	Gas separation membranes made through thermal rearrangement of ortho-methoxypolyimides. RSC Advances, 2015, 5, 102261-102276.	1.7	21
611	Enhanced Performance of Mixedâ€Matrix Membranes through a Graft Copolymerâ€Directed Interface and Interaction Tuning Approach. ChemSusChem, 2015, 8, 650-658.	3.6	70
612	Matrimid-Based Mixed Matrix Membranes: Interpretation and Correlation of Experimental Findings for Zeolitic Imidazolate Frameworks as Fillers in H ₂ /CO ₂ Separation. Industrial & Amp; Engineering Chemistry Research, 2015, 54, 1103-1112.	1.8	54
613	Quest for Anionic MOF Membranes: Continuous sod -ZMOF Membrane with CO ₂ Adsorption-Driven Selectivity. Journal of the American Chemical Society, 2015, 137, 1754-1757.	6.6	138
614	Polyhedral oligomeric silsesquioxane/polyamide bio-nanocomposite membranes: structure-gas transport properties. RSC Advances, 2015, 5, 11272-11283.	1.7	22
615	Copper aided exchange in high performance oxygen production by CuCo binary oxides for clean energy delivery. Journal of Materials Chemistry A, 2015, 3, 17344-17350.	5.2	10
616	H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chemical Engineering Research and Design, 2015, 102, 297-306.	2.7	32
617	High purification of gases by diffusion through polymer membranes. Petroleum Chemistry, 2015, 55, 259-275.	0.4	17
618	Thin-skinned intrinsically defect-free asymmetric mono-esterified hollow fiber precursors for crosslinkable polyimide gas separation membranes. Journal of Membrane Science, 2015, 493, 252-262.	4.1	36
619	Gas permeation properties of poly(sulfone-co-ethylene glycol) membranes containing bis(phenyl)fluorene moieties. Journal of Membrane Science, 2015, 485, 10-16.	4.1	10
620	Influence of water vapor on the gas permeability of polymerized ionic liquids membranes. Journal of Membrane Science, 2015, 487, 199-208.	4.1	36
621	Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation. Journal of Membrane Science, 2015, 487, 90-98.	4.1	24

#	Article	IF	Citations
622	MOF-mixed matrix membranes: Precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. Journal of Membrane Science, 2015, 492, 21-31.	4.1	161
623	Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen. , 2015, , 249-266.		4
624	Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews, 2015, 47, 540-551.	8.2	326
625	Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering, 2015, 9, 15-32.	2.3	100
626	Mesoporous KIT-6 silica–polydimethylsiloxane (PDMS) mixed matrix membranes for gas separation. Journal of Materials Chemistry A, 2015, 3, 8650-8658.	5.2	56
627	Fabrication and Evaluation of a Blend Facilitated Transport Membrane for CO ₂ /CH ₄ Separation. Industrial & Engineering Chemistry Research, 2015, 54, 11139-11150.	1.8	40
628	Dielectric and gas transport properties of highly fluorinated polyimides blends. High Performance Polymers, 2015, 27, 526-538.	0.8	11
629	Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18618-18627.	4.0	35
630	Relationship between polymer–filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes. Journal of Membrane Science, 2015, 495, 252-268.	4.1	76
631	A high performance PVAm–HT membrane containing high-speed facilitated transport channels for CO ₂ separation. Journal of Materials Chemistry A, 2015, 3, 16746-16761.	5. 2	62
632	Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO ₂ capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry A, 2015, 3, 20801-20810.	5.2	121
633	Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications. Journal of Membrane Science, 2015, 496, 229-241.	4.1	19
634	Cellulose acetate/nanoâ€porous zeolite mixed matrix membrane for CO ₂ separation. , 2015, 5, 291-304.		38
635	Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 2015, 103, 286-300.	4.6	288
636	Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous and Mesoporous Materials, 2015, 204, 99-105.	2.2	38
637	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43, 1-32.	11.8	377
638	Thermally enhanced membrane gas separation. European Journal of Mechanics, B/Fluids, 2015, 49, 36-49.	1.2	30
639	Gas sorption and transport in thermally rearranged polybenzoxazole membranes derived from polyhydroxylamides. Journal of Membrane Science, 2015, 474, 122-131.	4.1	38

#	Article	IF	CITATIONS
640	A journey into the process and engineering aspects of carbon capture technologies. Renewable and Sustainable Energy Reviews, 2015, 41, 1324-1350.	8.2	163
641	Asymmetric membranes prepared with trifluoromethylphenylated poly(ether ether ketone) for gas separation. High Performance Polymers, 2015, 27, 10-18.	0.8	14
642	Hydrogen production from pyrolysis-derived bio-oil using membrane reactors., 2016,, 411-434.		1
643	Asymmetric polysilazane-derived ceramic structures with multiscalar porosity for membrane applications. Microporous and Mesoporous Materials, 2016, 232, 196-204.	2.2	22
644	Gas Separation Properties of the Dense Polymer & Dense Polymer	0.4	4
645	Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review. ChemBioEng Reviews, 2016, 3, 276-298.	2.6	46
646	Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Conversion and Management, 2016, 118, 204-222.	4.4	228
647	Kinetic and equilibrium sorption of organic liquids and vapors in Matrimid. Journal of Membrane Science, 2016, 512, 29-37.	4.1	10
648	Post-combustion carbon dioxide capture via 6FDA/BPDA-DAM hollow fiber membranes at sub-ambient temperatures. Journal of Membrane Science, 2016, 510, 447-454.	4.1	42
649	Progress in Applications of Polymer-Based Membranes in Gas Separation Technology. Polymer-Plastics Technology and Engineering, 2016, 55, 1282-1298.	1.9	45
650	UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513, 155-165.	4.1	284
651	Facile Preparation of Graphene Oxide Membranes for Gas Separation. Chemistry of Materials, 2016, 28, 2921-2927.	3.2	203
652	Harnessing the power of latex solutions based on titania particles â ⁻ using si-ATRP towards larger surface modification for applications in gas separation membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 245-253.	2.3	3
653	Synthesis, characterization, and electroanalytical studies of Pb2+-selective polypyrrole-Zr(IV) phosphate ion exchange membrane. Journal of Solid State Electrochemistry, 2016, 20, 2079-2091.	1.2	9
654	Nanoporous polystyrene prepared via the selective removal of the low Mw component in polystyrene blends. Polymer Journal, 2016, 48, 983-990.	1.3	1
655	Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. Chemical Communications, 2016, 52, 11768-11771.	2.2	53
656	Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angewandte Chemie - International Edition, 2016, 55, 13754-13758.	7.2	29
657	Polymer Brushes for Membrane Separations: A Review. ACS Applied Materials & Diterfaces, 2016, 8, 28383-28399.	4.0	144

#	Article	IF	CITATIONS
658	Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angewandte Chemie, 2016, 128, 13958-13962.	1.6	9
659	Separation of carbon dioxide and nitrogen gases through modified boron nitride nanosheets as a membrane: insights from molecular dynamics simulations. RSC Advances, 2016, 6, 94911-94920.	1.7	43
661	Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chemical Reviews, 2016, 116, 11436-11499.	23.0	176
662	Effects of pyrolysis conditions on gas separation properties of 6FDA/DETDA:DABA(3:2) derived carbon molecular sieve membranes. Journal of Membrane Science, 2016, 520, 699-711.	4.1	94
663	Facilitated Separation of CO ₂ by Liquid Membranes and Composite Membranes with Task-Specific Ionic Liquids. Industrial & Engineering Chemistry Research, 2016, 55, 12616-12631.	1.8	22
664	Computational fluid dynamics (CFD) modeling of heat transfer in a polymeric membrane using finite volume method. Journal of Thermal Science, 2016, 25, 564-570.	0.9	8
665	Sorption of propylene and propane in polyurethane membranes containing silver nanoparticles. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
666	Aromatic block co-polyimide membranes for sour gas feed separations. Chemical Engineering Journal, 2016, 304, 1020-1030.	6.6	46
667	Side-chain engineering of ladder-structured polysilsesquioxane membranes for gas separations. Journal of Membrane Science, 2016, 516, 202-214.	4.1	40
668	Size effects of graphene oxide on mixed matrix membranes for CO ₂ separation. AICHE Journal, 2016, 62, 2843-2852.	1.8	117
669	Demonstration of a gas separator composed of Knudsen pumps. Vacuum, 2016, 125, 154-164.	1.6	37
670	Copoly(alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161, 53-60.	3.9	10
671	A comparative study on the structure of developed porous PVDF and PEI hollow fiber membrane contactors for CO2 absorption. Journal of Polymer Research, 2016, 23, 1.	1.2	12
672	A novel intrinsically microporous ladder polymer and copolymers derived from $1,13\in^2$, $2,23\in^2$ -tetrahydroxy-tetraphenylethylene for membrane-based gas separation. Polymer Chemistry, 2016, 7, 1244-1248.	1.9	53
673	PEG–imidazolium-functionalized 6FDA–durene polyimide as a novel polymeric membrane for enhanced CO ₂ separation. RSC Advances, 2016, 6, 31083-31091.	1.7	30
674	Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016, 3, 896-909.	3.0	278
675	Block Copolymer Membranes for Aqueous Solution Applications. Macromolecules, 2016, 49, 2905-2916.	2.2	212
676	High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation. Polymer, 2016, 91, 128-135.	1.8	65

#	Article	IF	CITATIONS
677	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
678	Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations. Journal of Membrane Science, 2016, 506, 95-108.	4.1	132
679	Performance enhancement of vertically aligned carbon nanotube membranes for separation of binary mixtures of H2S/CH4 using different amine groups. Materials Research Bulletin, 2016, 77, 155-165.	2.7	3
680	Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150357.	1.6	12
681	Using Molecular Simulations To Develop Reliable Design Tools and Correlations for Engineering Applications of Aqueous Electrolyte Solutions. Journal of Chemical & Engineering Data, 2016, 61, 1578-1584.	1.0	7
682	Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology, 2016, 158, 333-356.	3.9	195
683	9-Alkylated fluorene-based poly(ether imide)s and their gas transport properties. Journal of Membrane Science, 2016, 497, 172-182.	4.1	28
684	Preparation, structural characterization, and gas separation properties of functionalized zinc oxide particle filled poly(ether-amide) nanocomposite films. Journal of Plastic Film and Sheeting, 2017, 33, 92-113.	1.3	6
685	Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16, 289-297.	13.3	831
686	Ceramic membranes for processing plasma enhancement gases. Fusion Engineering and Design, 2017, 124, 928-933.	1.0	12
687	Defect-dependent stability of highly propylene-selective zeolitic-imidazolate framework ZIF-8 membranes. Journal of Membrane Science, 2017, 529, 105-113.	4.1	51
688	Carbon Capture and Utilization Update. Energy Technology, 2017, 5, 834-849.	1.8	424
689	PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: The effects of PEG-imidazolium content. Separation and Purification Technology, 2017, 179, 283-290.	3.9	24
690	Construction of a liquid droplet flowmeter for low-permeable gas separation membranes. Journal of Membrane Science, 2017, 537, 202-208.	4.1	2
691	Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. Journal of Membrane Science, 2017, 535, 103-112.	4.1	19
692	Theoretical study of H 2 separation performance of two-dimensional graphitic carbon oxide membrane. International Journal of Hydrogen Energy, 2017, 42, 13120-13126.	3.8	17
693	Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polymer Journal, 2017, 49, 671-676.	1.3	28
694	Aminoâ€Functionalized ZIFâ€7 Nanocrystals: Improved Intrinsic Separation Ability and Interfacial Compatibility in Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Advanced Materials, 2017, 29, 1606999.	11.1	229

#	Article	IF	CITATIONS
695	Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539, 213-223.	4.1	163
696	Fabrication, Pressure Testing, and Nanopore Formation of Single-Layer Graphene Membranes. Journal of Physical Chemistry C, 2017, 121, 14312-14321.	1.5	39
697	Enhanced gas transport properties of mixed matrix membranes consisting of Matrimid and RHO type ZIF-12 particles. Chemical Engineering Research and Design, 2017, 123, 201-213.	2.7	25
698	Nanostructured Materials for Next-Generation Energy Storage and Conversion. , 2017, , .		7
699	Porous Structure Design of Polymeric Membranes for Gas Separation. Small Methods, 2017, 1, 1600051.	4.6	21
700	Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous and Mesoporous Materials, 2017, 247, 124-135.	2.2	83
701	An automated lab-scale flue gas permeation membrane testing system at the National Carbon Capture Center. Journal of Membrane Science, 2017, 533, 28-37.	4.1	6
702	Effect of vapor phase ethylenediamine crosslinking of matrimid on alcohol vapor sorption and diffusion. Journal of Applied Polymer Science, 2017, 134, 44771.	1.3	2
703	Influence of temperature on gas solubility in thermally rearranged (TR) polymers. Journal of Membrane Science, 2017, 533, 75-83.	4.1	29
704	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	5.2	314
705	Gas sensors based on membrane diffusion for environmental monitoring. Sensors and Actuators B: Chemical, 2017, 243, 566-578.	4.0	50
706	Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chemical Engineering Communications, 2017, 204, 295-309.	1.5	59
707	A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes. Journal of Membrane Science, 2017, 526, 367-376.	4.1	94
708	Metamaterial membranes. Journal Physics D: Applied Physics, 2017, 50, 025104.	1.3	17
709	Porous germanene as a highly efficient gas separation membrane. Nanoscale, 2017, 9, 17505-17512.	2.8	12
710	A review of the latest development of polyimide based membranes for CO 2 separations. Reactive and Functional Polymers, 2017, 120, 104-130.	2.0	116
711	Highly Carboxylate-Functionalized Polymers of Intrinsic Microporosity for CO ₂ -Selective Polymer Membranes. Macromolecules, 2017, 50, 8019-8027.	2.2	76
712	Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO ₂ Capture. ACS Applied Materials & amp; Interfaces, 2017, 9, 38575-38583.	4.0	63

#	Article	IF	CITATIONS
713	Molecular Design of Tröger's Base-Based Polymers Containing Spirobichroman Structure for Gas Separation. Industrial & Design Separation. Industrial & Desi	1.8	18
714	Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films. Journal of Physical Chemistry C, 2017, 121, 22434-22441.	1.5	33
715	PEO-rich semi-interpenetrating polymer network (s-IPN) membranes for CO2 separation. Journal of Membrane Science, 2017, 544, 143-150.	4.1	32
716	Development of ethanolamineâ€based ionic liquid membranes for efficient CO ₂ /CH ₄ separation. Journal of Applied Polymer Science, 2017, 134, 45395.	1.3	28
717	Poly(meth)acrylate nanocomposite membranes containing in situ exfoliated graphene platelets: Synthesis, characterization and gas barrier properties. European Polymer Journal, 2017, 94, 431-445.	2.6	7
718	Effect of pore penetration on transport through supported membranes studied by electron microscopy and pervaporation. Journal of Membrane Science, 2017, 542, 18-23.	4.1	5
719	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77
720	Effects of coating solvent and thermal treatment on transport and morphological characteristics of <scp>PDMS</scp> / <scp>orlon composite hollow fiber membrane. Journal of Applied Polymer Science, 2017, 134, 45418.</scp>	1.3	16
721	Physical and mechanical properties of a novel hydrogen transport membrane. Journal of Materials Science, 2017, 52, 4435-4444.	1.7	0
722	The effect of dopamine modified titanium dioxide nanoparticles on the performance of Poly (vinyl) Tj ETQq $1\ 1\ 0.7$	784314 rg	BT /Overlock
723	Membraneâ€Based Gas Separation Accelerated by Hollow Nanosphere Architectures. Advanced Materials, 2017, 29, 1603797.	11.1	48
724	Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized Silicon nanoparticles for improved water vapor permeation performance. Chemical Engineering Journal, 2017, 308, 27-39.	6.6	58
725	A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017, 67, 597-611.	8.2	1,842
726	Energy Efficiency: Comparison of Different Systems and Technologies. , 2017, , 1309-1384.		1
727	Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. Journal of Membrane Science, 2017, 523, 77-91.	4.1	50
728	Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach. AICHE Journal, 2017, 63, 751-760.	1.8	42
729	Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 2017, 522, 216-225.	4.1	90
730	A computational fluid dynamics (CFD) approach for the modeling of flux in a polymeric membrane using finite volume method. Mechanics and Industry, 2017, 18, 406.	0.5	3

#	Article	IF	Citations
731	Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes. Membranes, 2017, 7, 21.	1.4	63
732	2.6 Polymeric Membranes for Gas Separation. , 2017, , 124-175.		5
733	Economic Estimation of Various Membranes and Distillation for Propylene and Propane Separation. Industrial & Engineering Chemistry Research, 2018, 57, 4366-4376.	1.8	35
734	Trifunctional Monomolecular Medium for Silver Nanoparticle Preparation Preserving Olefin Carrier Activity for Facilitated Olefin Transport Membrane. Macromolecular Research, 2018, 26, 399-402.	1.0	2
735	Steady vs unsteady membrane gas separation processes. Chemical Engineering Science, 2018, 183, 136-147.	1.9	17
736	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81.	2.3	20
737	Post-crosslinking of triptycene-based Tröger's base polymers with enhanced natural gas separation performance. Journal of Membrane Science, 2018, 556, 277-284.	4.1	69
738	Performance evaluation of graphene oxide (GO) nanocomposite membrane for hydrogen separation: Effect of dip coating sol concentration. Separation and Purification Technology, 2018, 200, 169-176.	3.9	37
739	Single Solventâ€Based Film Casting Method for the Production of Porous Polymer Films. Macromolecular Materials and Engineering, 2018, 303, 1700628.	1.7	17
740	Synthesis and properties of ultralow dielectric porous polyimide films containing adamantane. Journal of Polymer Science Part A, 2018, 56, 549-559.	2.5	45
741	Shape engineering of metal–organic frameworks. Polyhedron, 2018, 145, 1-15.	1.0	172
742	Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: the effect of PDMS content on CO ₂ separation. RSC Advances, 2018, 8, 1328-1336.	1.7	16
743	Management of Implementation of Nanotechnology in Upstream Oil Industry: An Analytic Hierarchy Process Analysis. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	16
744	Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation. Journal of Membrane Science, 2018, 559, 28-34.	4.1	94
745	CO 2 /N 2 gas separation using Fe(BTC)-based mixed matrix membranes: A view on the adsorptive and filler properties of metal-organic frameworks. Separation and Purification Technology, 2018, 202, 174-184.	3.9	39
746	CO2 Sequestration: Processes and Methodologies. , 2018, , 1-50.		1
747	Physical aging of ester-cross-linked hollow fiber membranes for natural gas separations and mitigation thereof. Journal of Membrane Science, 2018, 551, 214-221.	4.1	28
748	A review of filled and pristine polycarbonate blends and their applications. Journal of Plastic Film and Sheeting, 2018, 34, 60-97.	1.3	74

#	Article	IF	CITATIONS
749	Optical, mechanical, and transport studies of nanodiamonds/poly(phenylene oxide) composites. Polymer Composites, 2018, 39, 3952-3961.	2.3	8
750	Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 918-931.	5.2	151
751	lonic cross-linked polyether and silica gel mixed matrix membranes for CO2 separation from flue gas. Separation and Purification Technology, 2018, 191, 301-306.	3.9	20
752	Matrimid \hat{A}^{\odot} 5218 in preparation of membranes for gas separation: Current state-of-the-art. Chemical Engineering Communications, 2018, 205, 161-196.	1.5	93
753	Molecular sieve membranes for N ₂ /CH ₄ separation. Journal of Materials Research, 2018, 33, 32-43.	1.2	53
7 54	Synthesis and characterization of fluorinated polyimide/TiO2 nanocomposites: enhancement of separation of four gases, thermal, optical and mechanical properties. Polymer Bulletin, 2018, 75, 2729-2750.	1.7	13
755	Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations. Journal of Membrane Science, 2018, 548, 609-620.	4.1	61
756	Influence of swelling in supercritical carbon dioxide of Ultem and polyhexafluoropropylene thin films on their gas separation properties: comparative analysis. Structural Chemistry, 2018, 29, 457-466.	1.0	8
757	Effects of chemical structure on gas transport properties of polyethersulfone polymers. Polymer, 2018, 135, 76-84.	1.8	36
758	Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Materials Today Nano, 2018, 3, 69-95.	2.3	214
759	Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO ₂ separation performance. Journal of Materials Chemistry A, 2018, 6, 22472-22477.	5 . 2	30
760	Hydrogen Production from Light Hydrocarbons. , 2018, , .		6
761	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
762	Design Considerations for Postcombustion CO2 Capture With Membranes. , 2018, , 385-413.		5
763	Already Used and Candidate Polymeric Membranes for CO2 Separation Plants., 2018,, 51-73.		2
764	Polyimides Containing Phosphaphenanthrene Skeleton: Gas-Transport Properties and Molecular Dynamics Simulations. ACS Omega, 2018, 3, 13510-13523.	1.6	20
765	Atomic Layer Deposition for Membranes: Basics, Challenges, and Opportunities. Chemistry of Materials, 2018, 30, 7368-7390.	3.2	133
766	Desalination. Polymers and Polymeric Composites, 2018, , 1-34.	0.6	1

#	Article	IF	CITATIONS
767	Polymeric Membrane Materials for CO2 Separations. , 2018, , 3-50.		6
768	Mixing Effect of Ligand on Carbon Dioxide Capture Behavior of Zeolitic Imidazolate Framework/Poly(amide-b-ethylene oxide) Mixed Matrix Membranes. ACS Sustainable Chemistry and Engineering, 2018, 6, 15341-15348.	3.2	22
769	A Review on Recent Developments and Progress in Natural Gas Processing and Separating Using Nanoparticles Incorporated Membranes. , 2018 , , .		2
770	Modeling Permeation through Mixed-Matrix Membranes: A Review. Processes, 2018, 6, 172.	1.3	50
771	Cardo-type random co-polyimide membranes for high pressure pure and mixed sour gas feed separations. Journal of Membrane Science, 2018, 550, 526-535.	4.1	39
772	Modeling of Fast-Permeant Component Removal from Gas Mixture in a Membrane Module with Pulsed Retentate. Petroleum Chemistry, 2018, 58, 806-814.	0.4	3
773	Role of Filler Porosity and Filler/Polymer Interface Volume in Metal–Organic Framework/Polymer Mixed-Matrix Membranes for Gas Separation. ACS Applied Materials & Interfaces, 2018, 10, 33589-33600.	4.0	67
774	Efficient biogas upgrading by a novel membrane-cryogenic hybrid process: Experiment and simulation study. Journal of Membrane Science, 2018, 565, 194-202.	4.1	28
775	Breaking separation limits in membrane technology. Journal of Membrane Science, 2018, 566, 301-306.	4.1	28
776	Polyimide Gas Separation Membranes. , 2018, , 257-322.		8
777	Water/salt transport properties of organic/inorganic hybrid films based on cellulose triacetate. Journal of Membrane Science, 2018, 563, 571-583.	4.1	17
778	Recent progress in ionic liquid membranes for gas separation. Journal of Molecular Liquids, 2018, 266, 330-341.	2.3	146
779	Alignment of Carbon Nanotubes in Polymer Matrix. , 2018, , 199-214.		3
780	Hollow-Fiber Membranes for Salinity Gradient Processes. , 2018, , 175-200.		1
781	Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. Journal of Membrane Science, 2018, 564, 404-414.	4.1	45
782	Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance. Polymers, 2018, 10, 221.	2.0	33
783	Permeability and thermal properties of PDMS/LDPE multilayer composite membranes. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1045-1052.	2.4	4
784	A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. Environmental Science & Environment	4.6	36

#	Article	IF	Citations
785	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
786	Studies on removal of arsenic using cellulose acetate–zinc oxide nanoparticle mixed matrix membrane. International Nano Letters, 2018, 8, 201-211.	2.3	24
787	Stateâ€ofâ€theâ€Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials, 2018, 30, e1801179.	11.1	79
788	Micromachined nanocrystalline graphite membranes for gas separation. Carbon, 2018, 138, 125-133.	5.4	19
789	Improving particle dispersity and CO2 separation performance of amine-functionalized CAU-1 based mixed matrix membranes with polyethyleneimine-grafting modification. Chemical Engineering Science, 2018, 189, 277-285.	1.9	39
790	Experimental study on graphene-based nanocomposite membrane for hydrogen purification: Effect of temperature and pressure. Catalysis Today, 2019, 330, 16-23.	2.2	21
791	Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Reviews in Chemical Engineering, 2019, 35, 565-590.	2.3	63
792	Recent progress and challenges in membrane-based O ₂ /N ₂ separation. Reviews in Chemical Engineering, 2019, 35, 591-625.	2.3	65
793	Metal substituted sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) hybrid membranes with magnetic fillers for gas separation. Separation and Purification Technology, 2019, 210, 479-490.	3.9	13
794	The role of ortho-, meta- and para-substitutions in the main-chain structure of poly(etherimide)s and the effects on CO2/CH4 gas separation performance. Separation and Purification Technology, 2019, 210, 242-250.	3.9	18
795	Olefin/paraffin separation through membranes: from mechanisms to critical materials. Journal of Materials Chemistry A, 2019, 7, 23489-23511.	5.2	63
796	Polybenzimidazole-based nanocomposite: current status and emerging developments. Polymer-Plastics Technology and Materials, 2019, 58, 1979-1992.	0.6	4
797	Modeling Sulfur Poisoning of Palladium Membranes Used for Hydrogen Separation. International Journal of Chemical Engineering, 2019, 2019, 1-12.	1.4	7
798	Polymer hollow fiber membranes for gas separation: A comparison between three commercial resins. AIP Conference Proceedings, 2019, , .	0.3	11
799	Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies. Frontiers in Chemistry, 2019, 7, 693.	1.8	17
800	Recent Developments and Applications of Ionic Liquids in Gas Separation Membranes. Chemical Engineering and Technology, 2019, 42, 2580-2593.	0.9	47
801	Various Techniques for Preparation of Thinâ€Film Composite Mixedâ€Matrix Membranes for CO ₂ Separation. Chemical Engineering and Technology, 2019, 42, 2608-2620.	0.9	13
802	Enhanced CO ₂ Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes. ChemSusChem, 2019, 12, 4405-4411.	3.6	28

#	Article	IF	CITATIONS
803	Temperature-Dependent Gas Transport Behavior in Cross-Linked Liquid Crystalline Polyacrylate Membranes. Membranes, 2019, 9, 104.	1.4	2
804	InÂvivo investigation of pesticide residues in garlic using solid phase microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta, 2019, 1090, 72-81.	2.6	27
805	A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. European Polymer Journal, 2019, 120, 109262.	2.6	40
806	Gas transport property of the binaphthyl-based polyimide membranes. Polymer, 2019, 183, 121854.	1.8	23
807	Carbon dioxide separation using α â€alumina ceramic tube supported cellulose triacetateâ€tributyl phosphate composite membrane. , 2019, 9, 287-305.		9
808	Modeling gas transport in polymer-grafted nanoparticle membranes. Soft Matter, 2019, 15, 424-432.	1.2	22
809	A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 2019, 97, 101141.	11.8	219
810	Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefinâ€Paraffin Separation. Chemical Engineering and Technology, 2019, 42, 2292-2301.	0.9	6
811	Temperature―and Lightâ€Regulated Gas Transport in a Liquid Crystal Polymer Network. Advanced Functional Materials, 2019, 29, 1900857.	7.8	12
812	A new permeation model in porous filler–based mixed matrix membranes for CO 2 separation. , 2019, 9, 719-742.		8
813	Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation. Separation and Purification Technology, 2019, 224, 180-188.	3.9	41
814	Lightâ€Responsive Polymer Membranes. Advanced Optical Materials, 2019, 7, 1900252.	3.6	45
815	Novel Polymeric Thin-Film Composite Membranes for High-Temperature Gas Separations. Membranes, 2019, 9, 51.	1.4	15
816	Synthesis and characterization of bis(phenyl)fluorene-based cardo polyimide membranes for H2/CH4 separation. Journal of Materials Science, 2019, 54, 10560-10569.	1.7	18
817	Anisotropic membrane materials for gas separations. AICHE Journal, 2019, 65, e16599.	1.8	4
818	Process Design Characteristics of Syngas (CO/H2) Separation Using Composite Membrane. Sustainability, 2019, 11, 703.	1.6	23
819	A Coupled Thermodynamic Model for Transport Properties of Thin Films during Physical Aging. Polymers, 2019, 11, 387.	2.0	6
820	Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes. International Journal of Hydrogen Energy, 2019, 44, 29092-29099.	3.8	45

#	Article	IF	CITATIONS
821	Selfâ€healing imidazoliumâ€based ioneneâ€polyamide membranes: an experimental study on physical and gas transport properties. Polymer International, 2019, 68, 1123-1129.	1.6	30
822	Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. Journal of Natural Gas Science and Engineering, 2019, 67, 172-195.	2.1	138
823	Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA. Journal of Membrane Science, 2019, 581, 430-438.	4.1	36
824	Simulation of multicomponent gas transport through mixed-matrix membranes. Journal of Membrane Science, 2019, 577, 219-234.	4.1	12
825	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie, 2019, 131, 17674-17689.	1.6	68
826	2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation. Angewandte Chemie - International Edition, 2019, 58, 17512-17527.	7.2	186
827	Design and Synthesis of Imidazolium-Mediated Tröger's Base-Containing Ionene Polymers for Advanced CO ₂ Separation Membranes. ACS Omega, 2019, 4, 3439-3448.	1.6	33
828	A simple self-regulating permeability and selectivity of poly (arylene ether ketone) with amino groups for gas separation membrane. Journal of Polymer Research, 2019, 26, 1.	1.2	4
829	CO2 Sequestration: Processes and Methodologies. , 2019, , 1-50.		0
830	Simultaneously tuning dense skin and porous substrate of asymmetric hollow fiber membranes for efficient purification of aggressive natural gas. AICHE Journal, 2019, 65, 1269-1280.	1.8	20
831	H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure. Journal of Membrane Science, 2019, 572, 343-349.	4.1	43
832	Membrane Gas Separation. , 2019, , 457-481.		2
833	Mathematical modeling of oxygen release from hyperbarically loaded polymers. Biotechnology Progress, 2019, 35, e2751.	1.3	2
834	Tröger 's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. Journal of Membrane Science, 2019, 573, 359-369.	4.1	51
835	A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	6.6	75
836	Fabrication of a super hydrophobic polyvinylidene fluorideâ€"hexadecyltrimethoxysilane hybrid membrane for carbon dioxide absorption in a membrane contactor. Journal of Membrane Science, 2020, 595, 117536.	4.1	33
837	Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture. Separation and Purification Technology, 2020, 234, 116101.	3.9	64
838	Synergistic solution of CO ₂ capture by novel lanthanide-based MOF-76 yttrium nanocrystals in mixed-matrix membranes. Energy and Environment, 2020, 31, 692-712.	2.7	14

#	Article	IF	CITATIONS
839	Manufacturing Nanoporous Materials for Energy-Efficient Separations. , 2020, , 33-81.		8
840	Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. Journal of Membrane Science, 2020, 595, 117542.	4.1	42
841	Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition. Computer Methods and Programs in Biomedicine, 2020, 184, 105120.	2.6	31
842	Polymer Membranes for Sustainable Gas Separation. , 2020, , 265-296.		4
843	Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. Journal of Membrane Science, 2020, 595, 117568.	4.1	54
844	Cross-Linkable Semi-Rigid 6FDA-Based Polyimide Hollow Fiber Membranes for Sour Natural Gas Purification. Industrial & Description of the Purification of the Purificat	1.8	19
845	Molecularly Mixed Composite Membranes: Challenges and Opportunities. Chemistry - A European Journal, 2020, 26, 3464-3473.	1.7	35
846	Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. Journal of Membrane Science, 2020, 598, 117794.	4.1	35
847	Optimal Membrane-Process Design (OMPD): A software product for optimal design of membrane gas separation processes. Computers and Chemical Engineering, 2020, 135, 106724.	2.0	8
848	The enhancement of mechanical properties of P84 hollow fiber membranes by thermally annealing below and above Tg. Journal of Membrane Science, 2020, 595, 117580.	4.1	17
849	Synthesis, in-situ membrane preparation, and good gas permselectivity of insoluble poly(substituted) Tj ETQq0 0 122081.	0 rgBT /0 [,] 1.8	verlock 10 Ti 4
850	Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2020, 238, 116411.	3.9	52
851	Interfacial Engineering of MOF-Based Mixed Matrix Membrane through Atomistic Simulations. Journal of Physical Chemistry C, 2020, 124, 594-604.	1.5	39
852	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	7.2	109
853	Mesoporous copper zinc bimetallic imidazolate MOF as nanofiller to improve gas separation performance of PEBA-based membranes. Journal of Industrial and Engineering Chemistry, 2020, 83, 100-110.	2.9	25
854	A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering, 2020, 6, 1364-1380.	3.2	63
855	Application of tubular silicone (PDMS) membranes for gas monitoring in CO2–CH4 hydrate exchange experiments. Marine and Petroleum Geology, 2020, 122, 104677.	1.5	6
856	Structure and gas transport of nanocomposite membranes. , 2020, , 101-123.		O

#	Article	IF	Citations
857	Microporous Materials in Scalable Shapes: Fiber Sorbents. Chemistry of Materials, 2020, 32, 7081-7104.	3.2	15
858	Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes. Journal of Membrane Science, 2020, 615, 118533.	4.1	31
859	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	5.6	105
860	Membranes for air and volatile organic compounds treatment., 2020,, 47-69.		2
861	The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal–organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO2 capture applications. Environmental Science and Pollution Research, 2020, 27, 40618-40632.	2.7	23
862	Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes?. Macromolecules, 2020, 53, 5649-5654.	2.2	39
863	Energy and time efficient infrared (IR) irradiation treatment for preparing thermally rearranged (TR) and carbon molecular sieve (CMS) membranes for gas separation. Journal of Membrane Science, 2020, 613, 118477.	4.1	17
864	Can the time-lag method be used for the characterization of liquid permeation membranes?. Chemical Engineering Research and Design, 2020, 162, 228-237.	2.7	6
865	Ultrafast Semiâ€Solid Processing of Highly Durable ZIFâ€8 Membranes for Propylene/Propane Separation. Angewandte Chemie, 2020, 132, 22093-22098.	1.6	10
866	Ultrafast Semiâ€Solid Processing of Highly Durable ZIFâ€8 Membranes for Propylene/Propane Separation. Angewandte Chemie - International Edition, 2020, 59, 21909-21914.	7.2	7 5
867	Surface modification of <scp>ZIF</scp> â€90 with triptycene for enhanced interfacial interaction in <scp>mixedâ€matrix</scp> membranes for gas separation. Journal of Polymer Science, 2020, 58, 2675-2687.	2.0	13
869	Challenges for CO2 capture by membranes. , 2020, , 357-377.		3
870	Crosslinked microporous polyarylate membranes with high Kr/Xe separation performance and high stability under irradiation. Journal of Membrane Science, 2020, 611, 118280.	4.1	9
871	Constructing Gas Molecule Transport Channels in Thermally Rearranged Multiblock Poly(benzoxazole- <i>co</i> -imide) Membranes for Effective CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9669-9679.	3.2	17
872	Efficiency Separation Process of H2/CO2/CH4 Mixtures by a Hollow Fiber Dual Membrane Separator. Processes, 2020, 8, 560.	1.3	10
873	Synthesis and Characterization of Novel Nanoporous Gl-POSS-Branched Polymeric Gas Separation Membranes. Membranes, 2020, 10, 110.	1.4	9
874	Synthetic polymeric membranes for gas and vapor separations. , 2020, , 217-272.		3
875	A Deep Learning Solvent-Selection Paradigm Powered by a Massive Solvent/Nonsolvent Database for Polymers. Macromolecules, 2020, 53, 4764-4769.	2.2	42

#	Article	IF	CITATIONS
876	Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: Pushing performance limits and revisiting tradeâ€off lines. Journal of Polymer Science, 2020, 58, 2450-2466.	2.0	68
877	Controlling the formation of porous polyketone membranes via a cross-linkable alginate additive for oil-in-water emulsion separations. Journal of Membrane Science, 2020, 611, 118362.	4.1	34
878	Development of Thinâ€Film Composite Membranes from Aromatic Cardoâ€Type Coâ€Polyimide for Mixed and Sour Gas Separations from Natural Gas. Global Challenges, 2020, 4, 1900107.	1.8	13
879	Design assessment of polymeric membranes modules to separate carbon dioxide from a binary mixture with methane. Chemical Engineering and Processing: Process Intensification, 2020, 150, 107883.	1.8	7
880	Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes. Membranes, 2020, 10, 51.	1.4	16
881	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755
882	Enhancing the separation properties of plasma polymerized membranes on polydimethylsiloxane substrates by adjusting the auxiliary gas in the PECVD processes. Journal Physics D: Applied Physics, 2020, 53, 445301.	1.3	10
883	Enhancement of \hat{l}^3 -radiation stability of polysulfone membrane matrix by reinforcement of hybrid nanomaterials of nanodiamond and ceria. Materials Advances, 2020, 1, 1220-1231.	2.6	5
885	Hydrocarbon separations by glassy polymer membranes. Journal of Polymer Science, 2020, 58, 2482-2517.	2.0	29
886	Twoâ€Dimensional Microporous Materialâ€based Mixed Matrix Membranes for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2303-2315.	1.7	24
887	Hollow Fiber-Type Facilitated Transport Membrane Composed of a Polymerized Ionic Liquid-Based Gel Layer with Amino Acidate as the CO2 Carrier. Industrial & Engineering Chemistry Research, 2020, 59, 2083-2092.	1.8	12
888	Effect of Hydrogen Separation on Coal Char Gasification with Subcritical Steam Using a Calcium-Based CO ₂ Sorbent. ACS Omega, 2020, 5, 236-242.	1.6	7
889	A rotating fluidized bed reactor for rapid temperature ramping in two-step thermochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 8126-8138.	3.8	4
890	Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. Journal of Chemical Physics, 2020, 152, 060901.	1.2	50
891	Energy analysis of innovative systems with metallic membranes., 2020,, 293-311.		0
892	Induced Charge Anisotropy: A Hidden Variable Affecting Ion Transport through Membranes. Matter, 2020, 2, 735-750.	5.0	19
893	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie, 2020, 132, 3868-3873.	1.6	20
894	Scaling up of defect-free flat membrane with ultra-high gas permeance used for intermediate layer of multi-layer composite membrane and oxygen enrichment. Separation and Purification Technology, 2020, 239, 116580.	3.9	22

#	Article	IF	CITATIONS
895	Fabrication of Crystalline Microporous Membrane from 2D MOF Nanosheets for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2371-2378.	1.7	24
896	Enhancement in the selectivity of O2/N2 via ZIF-8/CA mixed-matrix membranes and the development of a thermodynamic model to predict the permeability of gases. Environmental Science and Pollution Research, 2020, 27, 24413-24429.	2.7	12
897	Membranes for hydrogen separation. , 2020, , 91-134.		0
898	Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. International Journal of Hydrogen Energy, 2021, 46, 17507-17521.	3.8	40
899	Prestructured <scp>MXene</scp> fillers with uniform channels to enhance <scp>CO₂</scp> selective permeation in mixed matrix membranes. Journal of Applied Polymer Science, 2021, 138, 49895.	1.3	31
900	The evolution of the structure, mechanical, and gas separation properties of P84 hollow fiber membranes from the polymer to the carbon stage. Separation and Purification Technology, 2021, 256, 117741.	3.9	4
901	Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous and Mesoporous Materials, 2021, 312, 110761.	2.2	37
902	Experimental methods in chemical engineering: Barrier properties. Canadian Journal of Chemical Engineering, 2021, 99, 1068-1081.	0.9	1
903	Metal organic frameworks for hydrogen purification. International Journal of Hydrogen Energy, 2021, 46, 23380-23405.	3.8	17
904	UV cross-linked smart microgel membranes as free-standing diffusion barriers and nanoparticle bearing catalytic films. RSC Advances, 2021, 11, 22014-22024.	1.7	9
905	Membrane-based technology for methane separation from biogas. , 2021, , 117-157.		1
906	Adsorption properties of acetylene, ethylene and ethane in UiO-66 with linker defects and NO2 functionalization. Materials Advances, 2021, 2, 426-433.	2.6	3
907	Promising Clean Energy Development: Practice, Challenges, and Policy Implications., 2021,, 1-26.		1
908	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
909	A binary all-nanoporous composite membrane constructed <i>via</i> vapor phase transformation for high-permeance gas separation. Inorganic Chemistry Frontiers, 2021, 8, 5016-5023.	3.0	7
911	Is Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes?., 2021, 3, 344-350.		24
912	Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation. Membranes, 2021, 11, 245.	1.4	11
913	Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Polymers, 2021, 13, 1388.	2.0	11

#	Article	IF	CITATIONS
914	The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Separation and Purification Technology, 2021, 261, 118279.	3.9	17
915	Polyimide-Based Membrane Materials for CO2 Separation: A Comparison of Segmented and Aromatic (Co)polyimides. Membranes, 2021, 11, 274.	1.4	22
916	Mixed Matrix Membrane Incorporating of MgAl-CO3 Layered-Double-Hydroxide for Enhanced Carbon Dioxide Separation. IOP Conference Series: Materials Science and Engineering, 2021, 1142, 012006.	0.3	0
917	A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261, 118283.	3.9	20
918	Advanced multiple-layer composite CTA/CDA hollow fiber membranes for CO2 separations. Journal of Membrane Science, 2021, 625, 119124.	4.1	14
919	Development of a Portable Membrane Oxygen Concentrator. Membranes and Membrane Technologies, 2021, 3, 186-191.	0.6	1
920	Ionic liquid incorporation in zeolitic imidazolate framework-3 for improved CO2 separation: A computational approach. Applied Surface Science, 2021, 562, 150173.	3.1	15
921	Potential applications based on the formation and dissociation of gas hydrates. Renewable and Sustainable Energy Reviews, 2021, 143, 110928.	8.2	53
922	Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO ₂ Permeability and Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27411-27418.	4.0	14
923	Tuning the micro-phase separation of the PES-g-PEG comb-like copolymer membrane for efficient CO2 separation. Separation and Purification Technology, 2021, 265, 118465.	3.9	27
924	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	1.6	11
925	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.	7.2	51
926	Graphene - based membranes for carbon dioxide separation. Journal of CO2 Utilization, 2021, 49, 101544.	3.3	16
927	Study of a stainless steel porous membrane for recovering tritium from Pb-Li alloys: Assessment of mass transfer coefficient. Fusion Engineering and Design, 2021, 168, 112423.	1.0	2
928	Evaluation of the effect of silica nanoparticles, temperature and pressure on the performance of PSF/PEG/SiO2 mixed matrix membranes: A molecular dynamics simulation (MD) and design of experiments (DOE) study. Journal of Molecular Liquids, 2021, 333, 115957.	2.3	40
929	Shapeâ€Selective Ultramicroporous Carbon Membranes for Subâ€0.1Ânm Organic Liquid Separation. Advanced Science, 2021, 8, e2004999.	5.6	9
930	Reduced Aging in Carbon Molecular Sieve Membranes Derived from PIM-1 and MOP-18. Industrial & Engineering Chemistry Research, 2021, 60, 9962-9970.	1.8	12
931	Oligomeric membranes for simultaneous chemical reaction and separation. Materials Today: Proceedings, 2021, 50, 139-139.	0.9	0

#	Article	IF	CITATIONS
932	Regulating the Orientation of Hydrogen-Bonded Organic Framework Membranes Based on Substrate Modification. Crystal Growth and Design, 2021, 21, 5292-5299.	1.4	10
933	MILâ€101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification. Chemistry - an Asian Journal, 2021, 16, 3162-3169.	1.7	11
934	Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation. Polymers, 2021, 13, 2745.	2.0	17
935	Technoeconomic analysis of oxygen-nitrogen separation for oxygen enrichment using membranes. Separation and Purification Technology, 2021, 268, 118703.	3.9	32
936	Gas separation performance of carbon dioxide-selective poly(vinyl alcohol) – ionic liquid blend membranes: The effect of temperature, feed pressure and humidity. Separation and Purification Technology, 2021, 270, 118812.	3.9	19
937	Enhanced molecular selectivity and plasticization resistance in ring-opened Tröger's base polymer membranes. Journal of Membrane Science, 2021, 634, 119399.	4.1	19
938	Experimental Study on Carbon Capture Performance of Polyimide Hollow Fiber Membrane in Post-combustion Process. Environmental Science and Engineering, 2022, , 621-632.	0.1	0
939	Solubility selectivity-enhanced SIFSIX-3-Ni-containing mixed matrix membranes for improved CO2/CH4 separation efficiency. Journal of Membrane Science, 2021, 633, 119390.	4.1	13
940	Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers. Journal of Membrane Science, 2021, 635, 119519.	4.1	27
941	Copolyimide membranes with improved H2S/CH4 selectivity for high-pressure sour mixed-gas separation. Separation and Purification Technology, 2021, 272, 118897.	3.9	21
942	MOF-based MMMs breaking the upper bounds of polymers for a large variety of gas separations. Separation and Purification Technology, 2022, 281, 119811.	3.9	30
943	Review on the preparation of carbon membranes derived from phenolic resins for gas separation: From petrochemical precursors to bioresources. Carbon, 2021, 183, 12-33.	5.4	38
944	Unprecedented gas separation performance of ITTB/CNT nanocomposite membranes at low temperature by strong interfacial interaction enhanced rigidity. Journal of Membrane Science, 2021, 636, 119590.	4.1	14
945	Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations. Journal of Membrane Science, 2021, 636, 119534.	4.1	36
946	Impact of adsorbent carbons and carbon surface conductivity on adsorption capacity of CO2, CH4, N2 and gas separation. Computational Materials Science, 2021, 199, 110572.	1.4	9
947	Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application. Separation and Purification Technology, 2021, 279, 119681.	3.9	7
948	Homogenization of the Dense Composite Membranes for Carbon Dioxide Separation. Minerals, Metals and Materials Series, 2021, , 51-60.	0.3	3
949	Development of highly gas-permeable polymers by metathesis copolymerization of 1-(<i>p</i> -trimethylsilyl)phenyl-1-propyne with <i>tert</i> -butyl and silyl group-containing diphenylacetylenes. RSC Advances, 2021, 11, 32419-32424.	1.7	1

#	Article	IF	CITATIONS
950	Making wastewater obsolete: Selective separations to enable circular water treatment. Environmental Science and Ecotechnology, 2021, 5, 100078.	6.7	35
952	Incorporation of carbon nanofibers into a Matrimid polymer matrix: Effects on the gas permeability and selectivity properties. Journal of Applied Polymer Science, 2018, 135, 46019.	1.3	3
954	Membrane-Assisted Catalytic Cracking of Hydrogen Sulphide (H2S)., 2011,, 161-182.		1
955	Hydrogels Contact Lenses., 2010,, 303-315.		7
956	Characterization of Polyphenylene Oxide and Modified Polyphenylene Oxide Membranes. , 2001, , 231-303.		5
957	Structural Relaxation of Confined Glassy Polymers. Soft and Biological Matter, 2015, , 47-88.	0.3	1
958	Desalination. Polymers and Polymeric Composites, 2019, , 1011-1044.	0.6	1
959	Hydrogen Separation Membranes of Polymeric Materials. , 2017, , 85-116.		8
960	Polymer Formation, Modifications and Processing in or with Supercritical Fluids., 1994,, 541-588.		20
961	The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review. Frontiers of Chemical Science and Engineering, 2021, 15, 464-482.	2.3	43
962	Membrane separations and energy efficiency. Journal of Membrane Science, 2018, 548, 345-357.	4.1	80
963	Excellent permselective membranes of diphenylacetylene copolymers with hydroxy groups. Polymer, 2020, 207, 122926.	1.8	6
964	Preparation of a novel dual-layer polyvinylidene fluoride hollow fiber composite membrane with hydrophobic inner layer for carbon dioxide absorption in a membrane contactor. Separation and Purification Technology, 2020, 248, 117045.	3.9	22
965	Sorption and Diffusion of Small Molecules Using Transition-State Theory. , 2004, , .		2
966	Application of Packaging and Modified Atmosphere to Fresh-cut Fruits and Vegetables., 2002,,.		1
967	Synthesis of solid enantioselective macromer of trimesic acid for the enantiomeric separation of chiral alcohols. Advances in Materials Research (South Korea), 2013, 2, 51-64.	0.6	2
968	Sweetening of Natural Gas through Hollow Silica Nanoparticles Embedded Hydroxyethyl Cellulose Membrane. Material Science Research India, 2018, 15, 256-262.	0.9	5
969	Worldwide Statistical Data on Proven Reserves, Production, and Refining Capacities of Crude Oil and Natural Gas., 2013,, 33-78.		2

#	Article	IF	CITATIONS
971	Comparison Study of Emim [Tf2N] and Emim [CF3SO3] Effects on Polyethersulfone Membrane for CO2/CH4 Separation. Journal of Applied Sciences, 2014, 14, 1083-1087.	0.1	1
972	Energy Efficiency: Comparison of Different Systems and Technologies. , 2021, , 1-78.		0
973	Preparation and Gas Separation Performance of Polysulfone Mixed Matrix Membrane. Journal of Nanomaterials, 2021, 2021, 1-10.	1.5	2
974	Fixing Atmospheric Nitrogen with Less Energy. Eco-efficiency in Industry and Science, 2000, , 167-224.	0.1	0
975	Gas Permeation Through Sulfonated Polyphenylene Oxide. , 2001, , 61-104.		1
976	Gas Permeation Through the Films of Polyphenylene Oxides. , 2001, , 27-60.		3
977	Improvement of Gas Separation Membranes Membrane, 2001, 26, 79-85.	0.0	0
978	Application of Packaging and Modified Atmosphere to Fresh-cut Fruits and Vegetables., 2002,, 317-350.		5
979	Modelling and Simulation of Retentate-Permeate Recycle Premeator for the Enrichment of Methane. Jurnal Teknologi (Sciences and Engineering), 2002, 36, .	0.3	0
980	Gaspermeation. , 2004, , 437-493.		0
981	Sorption and Diffusion of Small Molecules Using Transition-State Theory., 2004,, 409-466.		1
982	Membrane Separation. The Electrical Engineering Handbook, 2004, , .	0.2	0
984	10.2478/s11814-009-0310-8., 2011, 27, 235.		0
985	Gas Permeation Properties of Carbon Dioxide and Methane for PEBAX TM /TEOS Hybrid Membranes. Korean Chemical Engineering Research, 2011, 49, 460-464.	0.2	3
987	Spiral Wound Membrane Module. , 2013, , 1-3.		2
988	Prozeßsynthese in der Hauptstudie., 1997,, 191-447.		1
989	Preparation of Silica-Based Membrane for H2 Separation by Multi-Step Pore Modification. , 1998, , 797-804.		0
990	Polymeric Membranes for Separation. Springer Series in Materials Science, 1999, , 95-124.	0.4	0

#	ARTICLE	IF	CITATIONS
992	Diffusive Flow., 2015, , 1-3.		0
995	Diffusion in Membranes. , 2015, , 1-5.		1
996	Nanoporous Polymer/Carbon Nanotube Membrane Filtration: The "How-to" Guide to Computational Methods., 2015,, 99-150.		0
997	Characterization of Nanocomposite Membranes. , 2015, , 104-133.		1
998	Highly Permeable Polyimides. , 2016, , 931-933.		0
999	Diffusion in Membranes., 2016,, 549-553.		0
1000	Diffusive Flow., 2016,, 553-555.		0
1001	Spiral Wound Membrane Module. , 2016, , 1812-1814.		0
1002	Trends in Polymeric Gas Separation Membranes. , 2016, , 31-98.		1
1003	Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler. Transactions of the Korean Society of Mechanical Engineers, B, 2016, 40, 761-768.	0.0	0
1004	CO2 Sequestration: Processes and Methodologies. , 2019, , 619-668.		2
1005	Separation Techniques Using Conjugated Polymers. , 2019, , 629-677.		1
1006	High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. Journal of Membrane Science, 2022, 642, 119978.	4.1	13
1007	Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. Journal of Membrane Science, 2022, 643, 120021.	4.1	24
1008	Hydrogen separation using palladiumâ€based membranes: Assessment of <scp> H ₂ </scp> separation in a catalytic plasma membrane reactor. International Journal of Energy Research, 2022, 46, 3572-3587.	2.2	5
1010	Physical Properties and Associated Applications of Conducting Polymers. , 2008, , 47-87.		0
1011	Energy Efficiency: Comparison of Different Systems and Technologies. , 2021, , 1-65.		2
1012	Highly permeable ZIF-8 membranes for propylene permselective pervaporation under high pressure up to 20Âbar. Journal of Membrane Science, 2022, 643, 120055.	4.1	16

#	Article	IF	CITATIONS
1013	Effect of Activation Process on the Performance of ZIFâ€8 Membrane for Propylene/Propane Separation. Chemie-Ingenieur-Technik, 2022, 94, 166-176.	0.4	4
1014	Effect of CO2 on Mechanical Properties of Glassy Polymeric Materials. , 2021, , .		O
1015	Introduction to Functional Membranes. Chemistry in the Environment, 2021, , 1-27.	0.2	1
1016	A Rigid and Planar Aza-Based Ternary Anhydride for the Preparation of Cross-Linked Polyimide Membrane Displaying High CO2/CH4 Separation Performance. Polymers, 2022, 14, 389.	2.0	6
1017	Preparation of defect-free hollow fiber membranes derived from PMDA-ODA polyimide for gas separation. Chemical Engineering Research and Design, 2022, 179, 154-161.	2.7	6
1018	Plasticization-enhanced trimethylbenzene functionalized polyethersulfone hollow fiber membranes for propylene and propane separation. Journal of Membrane Science, 2022, 647, 120293.	4.1	7
1019	Vinyl-Addition Fluoroalkoxysilyl-Substituted Polynorbornene Membranes for CO ₂ /CH ₄ Separation. ACS Applied Polymer Materials, 2022, 4, 7976-7988.	2.0	8
1020	Carbon Dioxide Enrichment of PDMS/PSF Composite Membranes for Solving the Greenhouse Effect and Food Crisis. SSRN Electronic Journal, 0, , .	0.4	O
1021	Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review. Journal of Materials Chemistry A, 2022, 10, 8687-8718.	5.2	33
1022	Matching Analysis of Mixed Matrix Membranes for Organic Solvent Reverse Osmosis. Industrial & Engineering Chemistry Research, 2022, 61, 3395-3411.	1.8	5
1023	Microporous Pentiptycene-Based Polymers with Heterocyclic Rings for High-Performance Gas Separation Membranes. Chemistry of Materials, 2022, 34, 2730-2742.	3.2	14
1024	Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. Journal of Membrane Science, 2022, 648, 120366.	4.1	26
1025	Assessment of Membrane Performance for Post-Combustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2022, 61, 777-785.	1.8	1
1026	Creation of Tortuosity in Unfilled Rubber via Heterogeneous Cross-Linking toward Improved Barrier Property. Macromolecules, 2021, 54, 11522-11532.	2.2	8
1028	Challenges in commercialization of sustainable membranes with FNMs., 2022,, 329-353.		0
1029	Recent Advances in Polybenzimidazole Membranes for Hydrogen Purification. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 6125-6134.	1.8	20
1030	Carbon dioxide enrichment of PDMS/PSf composite membranes for solving the greenhouse effect and food crisis. Journal of CO2 Utilization, 2022, 61, 102011.	3.3	4
1033	Biphenyl(isatin <i>-co-</i> trifluoroacetophenone)-Based Copolymers Synthesized Using the Friedel–Crafts Reaction as Mechanically Robust Membranes for Efficient CO ₂ Separation. ACS Applied Polymer Materials, 2022, 4, 3779-3790.	2.0	6

#	Article	IF	CITATIONS
1034	Use of Conductive Polymers in Separation/Identification Stage of Analysis. ACS Symposium Series, 0, , $141-163$.	0.5	0
1035	Energy Efficiency: Comparison of Different Systems and Technologies. , 2022, , 381-456.		0
1037	Highly Durable Zif-8 Tubular Membranes Via Precursor-Assisted Processing for Propylene/Propane Separation. SSRN Electronic Journal, 0, , .	0.4	0
1039	Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes, 2022, 12, 646.	1.4	12
1040	Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture. Journal of Membrane Science, 2022, 658, 120741.	4.1	14
1041	Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation. Journal of Membrane Science, 2022, 660, 120813.	4.1	10
1042	Regeneration of zeolite membranes deactivated by condensable molecules. International Journal of Greenhouse Gas Control, 2022, 119, 103731.	2.3	0
1043	N2-selective adsorbents and membranes for natural gas purification. Separation and Purification Technology, 2022, 300, 121808.	3.9	9
1044	Synthesis, characterization, and gas separation properties of novel fluorinated co-polyimides with bulky side groups. Polymer, 2022, 257, 125273.	1.8	4
1046	Recent Advances in Membrane-Based Biogas and Biohydrogen Upgrading. Processes, 2022, 10, 1918.	1.3	7
1047	Networkâ€Nanostructured ZIFâ€8 to Enable Percolation for Enhanced Gas Transport. Advanced Functional Materials, 2022, 32, .	7.8	16
1048	Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chemical Engineering, 2023, 4, 1-16.	3.3	6
1049	Molecular Order Determines Gas Transport through Smectic Liquid Crystalline Polymer Membranes with Different Chemical Compositions. ACS Applied Polymer Materials, 2022, 4, 7426-7436.	2.0	3
1050	Manipulation strategies for improving gas separation performance on metal-organic frameworks membranes. Results in Engineering, 2022, 15, 100609.	2.2	9
1051	Self-Organization of Graft Copolymers and Retortable iPP-Based Nanoporous Films Thereof. ACS Applied Polymer Materials, 2022, 4, 6897-6907.	2.0	1
1052	Fabrication of mixed matrix membranes with regulated MOF fillers <i>via</i> incorporating guest molecules for optimizing light hydrocarbon separation performance. CrystEngComm, 2022, 24, 7658-7668.	1.3	5
1053	Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Physical Chemistry Chemical Physics, 2022, 24, 29298-29327.	1.3	4
1054	Application of Poly(ether sulfone)â€Based Membranes in Clean Energy Technology. Chemistry - an Asian Journal, 0, , .	1.7	3

#	Article	IF	Citations
1055	Effect of poly(ether block amide)â€graphene/ <scp>ZnO</scp> membranes in mixed gas separation performance. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
1056	About Gas Barrier Performance and Recyclability of Waterborne Coatings on Paperboard. Coatings, 2022, 12, 1841.	1.2	2
1057	Synthesis of dualâ€functionalized mixed matrix membrane with <scp>aminoâ€GOâ€Bent</scp> / <scp>PVDF</scp> for efficient separation of <scp>CO₂</scp> / <scp>CH₄</scp> and <scp>CO₂</scp> / <scp>N₂</scp> . Journal of Applied Polymer Science, 2023, 140,	1.3	1
1058	Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation. Journal of Membrane Science, 2023, 669, 121340.	4.1	13
1059	Carbon Capture with Polymeric Membranes., 2023,,.		0
1060	Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chemical Engineering Journal, 2023, 465, 142873.	6.6	4
1062	New facile process evaluation for membrane-based CO2 capture: Apparent selectivity model. Chemical Engineering Journal, 2023, 460, 141624.	6.6	7
1064	Pyrolysis temperature-regulated gas transport and aging properties in 6FDA-DAM polyimide-derived carbon molecular sieve membranes. Separation and Purification Technology, 2023, 313, 123459.	3.9	9
1065	Hybrid Fluoro-Based Polymers/Graphite Foil for H2/Natural Gas Separation. Materials, 2023, 16, 2105.	1.3	3
1066	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
1067	Study of dual Filler Mixed Matrix Membranes with acid-functionalized MWCNTs and Metal-Organic Framework (UiO-66-NH2) in Cellulose Acetate for CO2 Separation. Journal of Polymers and the Environment, 2023, 31, 3404-3417.	2.4	5
1068	A review on polybenzimidazoles blends and nanocomposites for engineering applications. Polymer-Plastics Technology and Materials, 2022, 61, 1411-1438.	0.6	1
1069	Research progress and prospects on hydrogen separation membranes. Clean Energy, 2023, 7, 217-241.	1.5	2
1070	Thermally Sprayed Functional Coatings and Multilayers: A Selection of Historical Applications and Potential Pathways for Future Innovation. Journal of Thermal Spray Technology, 2023, 32, 778-817.	1.6	8
1081	Use of Metal–Organic Frameworks in the Separation/Identification Stage of Analysis. , 2023, , 201-227.		0
1083	A Comprehensive Review on Contaminant Transfer in Membrane Energy Recovery Ventilators. Environmental Science and Engineering, 2023, , 2193-2200.	0.1	0
1100	New nonporous fillers-based hybrid membranes for gas separations and water treatment process., 2024, , 53-105.		0
1102	Polymeric membranes for natural gas sweetening. , 2024, , 419-452.		0

Article IF Citations