Noradrenaline in the brain of the south african clawed f with antibodies against noradrenaline and dopamineâ€

Journal of Comparative Neurology 331, 363-374 DOI: 10.1002/cne.903310306

Citation Report

#	Article	IF	CITATIONS
1	Tyrosine hydroxylase-immunoreactive cell groups in the brain of the teleost fishGnathonemus petersii. Journal of Chemical Neuroanatomy, 1993, 6, 431-446.	2.1	43
2	Distribution of tyrosine hydroxylase immunoreactivity in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian catecholamine systems. Journal of Chemical Neuroanatomy, 1994, 8, 19-32.	2.1	38
3	Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus Laevis: A retrograde and anterograde tracing study. Neuroscience, 1994, 61, 411-420.	2.3	81
4	Multiple sources of the pituitary pars intermedia innervation in amphibians: A Dil retrograde tract-tracing study. Neuroscience Letters, 1994, 169, 163-166.	2.1	16
5	Development of catecholamine systems in the central nervous system of the newtPleurodeles waltliias revealed by tyrosine hydroxylase immunohistochemistry. Journal of Comparative Neurology, 1995, 360, 33-48.	1.6	28
6	Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell and Tissue Research, 1995, 279, 619-627.	2.9	29
7	Background adaptation and synapse plasticity in the pars intermedia of xenopus laevis. Neuroscience, 1996, 70, 833-841.	2.3	26
8	Localization of nitric oxide synthase in the brain of the frog,Xenopus laevis. Brain Research, 1996, 741, 331-343.	2.2	67
9	Molecular Cloning and Characterization of anl-Epinephrine Transporter from Sympathetic Ganglia of the Bullfrog,Rana catesbiana. Journal of Neuroscience, 1997, 17, 2691-2702.	3.6	28
10	Characterization of pars intermedia connections in amphibians by biocytin tract tracing and immunofluorescence aided by confocal microscopy. Cell and Tissue Research, 1997, 287, 297-304.	2.9	12
11	Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 16-49.	1.6	114
12	Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 50-69.	1.6	84
13	Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana) Tj ETQq0 0 0 rgBT /Overlo 1997, 382, 499-534.	ock 10 Tf 5 1.6	50 267 Td (p 140
14	Localization and Changes in Distribution of Brain α2- and β-Adrenoceptors in Response to Acclimation State in the American Bullfrog (Rana catesbeiana). General and Comparative Endocrinology, 1998, 110, 166-174.	1.8	6
15	Basal ganglia organization in amphibians: Chemoarchitecture. Journal of Comparative Neurology, 1998, 392, 285-312.	1.6	143
16	Identification of suprachiasmatic melanotrope-inhibiting neurons inXenopus laevis: A confocal laser-scanning microscopy study. , 1998, 397, 60-68.		45
17	Basal ganglia organization in amphibians: evidence for a common pattern in tetrapods. Progress in Neurobiology, 1998, 55, 363-397.	5.7	76
18	Anurans. , 1998, , 1151-1314.		48

CITATION REPORT

#	Article	IF	CITATIONS
19	Serotonergic Innervation of the Pituitary Pars Intermedia of <i>Xenopus laevis</i> . Journal of Neuroendocrinology, 1999, 11, 211-219.	2.6	19
20	Evolution of the basal ganglia: new perspectives through a comparative approach. Journal of Anatomy, 2000, 196, 501-517.	1.5	200
21	Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Research Reviews, 2000, 33, 308-379.	9.0	365
22	Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system ofXenopus laevis. Microscopy Research and Technique, 2001, 54, 188-199.	2.2	19
23	Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. Journal of Comparative Neurology, 2001, 434, 186-208.	1.6	67
24	Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. Journal of Comparative Neurology, 2001, 434, 209-232.	1.6	38
25	Multiple control and dynamic response of the Xenopus melanotrope cell. Comparative Biochemistry and Molecular Biology, 2002, 132, 257-268.	1.6	35
26	Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Research Bulletin, 2002, 57, 325-330.	3.0	12
27	Catecholaminergic innervation of the sympathetic preganglionic cell column of the filefish <i>Stephanolepis cirrhifer</i> . Journal of Comparative Neurology, 2002, 442, 204-216.	1.6	8
28	Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogsRana pipiens andXenopus laevis. Journal of Comparative Neurology, 2002, 454, 42-57.	1.6	10
29	Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. General and Comparative Endocrinology, 2003, 131, 209-219.	1.8	36
30	Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). Developmental Brain Research, 2003, 142, 141-150.	1.7	18
31	Catecholaminergic innervation of the septum in the frog: A combined immunohistochemical and tractâ€ŧracing study. Journal of Comparative Neurology, 2003, 455, 310-323.	1.6	31
32	Distribution of the mRNAs encoding the thyrotropinâ€releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of <i>Xenopus laevis</i> : Effect of background color adaptation on TRH and TRH receptor gene expression. Journal of Comparative Neurology, 2004, 477, 11-28.	1.6	26
33	<i>In Situ</i> Hybridization Localization of TRH Precursor and TRH Receptor mRNAs in the Brain and Pituitary of <i>Xenopus laevis</i> . Annals of the New York Academy of Sciences, 2005, 1040, 95-105.	3.8	6
34	Neuronal, Neurohormonal, and Autocrine Control ofXenopusMelanotrope Cell Activity. Annals of the New York Academy of Sciences, 2005, 1040, 172-183.	3.8	19
35	Central amygdala in anuran amphibians: Neurochemical organization and connectivity. Journal of Comparative Neurology, 2005, 489, 69-91.	1.6	54
36	Comparative anatomy of α2 and Î ² adrenoceptors in the adult and developing brain of the marine teleost the red porgy (Pagrus pagrus, Sparidae): [3H]clonidine and [3H]dihydroalprenolol quantitative autoradiography and receptor subtypes immunohistochemistry. Journal of Comparative Neurology, 2005, 489, 217-240.	1.6	19

#	Article	IF	CITATIONS
37	Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. Journal of Comparative Neurology, 2005, 490, 145-162.	1.6	19
38	Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis. Peptides, 2006, 27, 1036-1053.	2.4	5
39	Locus coeruleus is a central chemoreceptive site in toads. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R997-R1006.	1.8	34
40	Central Auditory Pathways in Anuran Amphibians: The Anatomical Basis of Hearing and Sound Communication. , 2007, , 221-249.		16
41	Plasticity in the Melanotrope Neuroendocrine Interface of <i>Xenopus laevis</i> . Neuroendocrinology, 2007, 85, 177-185.	2.5	29
42	Brain monoaminergic neurons and ventilatory control in vertebrates. Respiratory Physiology and Neurobiology, 2008, 164, 112-122.	1.6	18
43	Using Transgenic Animal Models in Neuroendocrine Research. Annals of the New York Academy of Sciences, 2009, 1163, 296-307.	3.8	7
44	The locus coeruleus and central chemosensitivity. Respiratory Physiology and Neurobiology, 2010, 173, 264-273.	1.6	96
45	Stress and Reproduction in Amphibians. , 2011, , 99-116.		3
46	The Vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. Journal of Comparative Neurology, 2011, 519, 3599-3639.	1.6	820
47	Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. Journal of Comparative Neurology, 2012, 520, 330-363.	1.6	51
48	Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea) Tj ETQq1 Physiology, 2013, 199, 681-691.	1 0.78431 1.6	4 rgBT /Ove 7
49	Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus. Respiratory Physiology and Neurobiology, 2013, 185, 553-561.	1.6	22
50	Temperature influences neuronal activity and CO ₂ /pH sensitivity of locus coeruleus neurons in the bullfrog, <i>Lithobates catesbeianus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1451-R1464.	1.8	21
51	Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Frontiers in Neuroanatomy, 2014, 8, 26.	1.7	101
52	Neurochemical and electrical modulation of the locus coeruleus: contribution to CO2drive to breathe. Frontiers in Physiology, 2014, 5, 288.	2.8	13
53	Characterization of the hypothalamus of <i>Xenopus laevis</i> during development. II. The basal regions. Journal of Comparative Neurology, 2014, 522, 1102-1131.	1.6	35
54	Environmentally induced return to juvenileâ€like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus. Journal of Physiology, 2016, 594, 6349-6367.	2.9	12

CITATION REPORT

#	Article	IF	CITATIONS
55	Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. Journal of Comparative Neurology, 2017, 525, 3083-3109.	1.6	19
56	The Diencephalon and Hypothalamus of Nonmammalian Vertebrates: Evolutionary and Developmental Traits. , 2017, , 409-426.		16

CITATION REPORT

Distribution of NADPH-diaphorase reactivity in the central nervous system of the common toad (Bufo) Tj ETQq0 0 0 rgBT /Overlock 10 T 2.1

58	Tyrosine hydroxylase-immunoreactive neurons in the brain of tadpole of the narrow mouthed frog Microhyla ornata. Journal of Chemical Neuroanatomy, 2020, 103, 101704.	2.1	1
59	Differential encoding of signals and preferences by noradrenaline in the anuran brain. Journal of Experimental Biology, 2020, 223, .	1.7	4
60	Stress and Reproduction in Amphibians. , 2011, , 99-116.		4
61	AgustÃn González, an Inspirational Leader in Spanish Comparative Neuroanatomy. Brain, Behavior and Evolution, 2022, 96, 174-180.	1.7	0
62	Midbrain Structures and Control of Ventilation in Amphibians. , 2009, , 241-261.		Ο
62 63	Midbrain Structures and Control of Ventilation in Amphibians. , 2009, , 241-261. Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS. Journal of Anatomy, 1996, 189 (Pt 2), 273-83.	1.5	0
	Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.	1.5 2.3	