Pancreatic beta cells in insulinâ
€dependent diabetes

Diabetes/metabolism Reviews 8, 209-227 DOI: 10.1002/dmr.5610080303

Citation Report

#	Article	IF	CITATIONS
1	The remission concept in type 1 diabetes and its significance in immune intervention. Diabetes/metabolism Reviews, 1993, 9, 337-348.	0.2	6
2	Histological study of pancreatic beta-cell loss in relation to the insulitis process in the non-obese diabetic mouse. Histochemistry, 1994, 101, 263-269.	1.9	37
3	Immunocytochemical and ultrastructural heterogeneities of normal and glibenclamide stimulated pancreatic beta cells in the rat. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1994, 425, 305-13.	1.4	23
4	Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia, 1994, 37, S57-S64.	2.9	145
5	Heterogeneity of islet pathology in two infants with recent onset diabetes mellitus. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1995, 425, 631-40.	1.4	59
6	Insulitis and islet-cell antibody formation in rats with experimentally reduced beta-cell mass. Diabetologia, 1995, 38, 1397-1404.	2.9	9
7	Loss of GLUT2 glucose transporter expression in pancreatic beta cells from diabetic Chinese hamsters. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1996, 428, 177-85.	1.4	26
8	Cytokines Induce Deoxyribonucleic Acid Strand Breaks and Apoptosis in Human Pancreatic Islet Cells*. Endocrinology, 1997, 138, 2610-2614.	1.4	282
9	Mononuclear Cytotoxicity and Proliferation Towards Glucose Stimulated Rodent Pancreatic Islet Cells. Autoimmunity, 1997, 25, 97-108.	1.2	6
10	Temporal discontinuities in progression of NOD autoimmune diabetes. Immunologic Research, 1997, 16, 137-147.	1.3	2
11	Prognostic relevance of pancreatic uptake of technetium-99m labelled human polyclonal immunoglobulins in patients with type 1 diabetes. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 503-508.	3.3	20
12	Intercellular Differences in Interleukin 1β-Induced Suppression of Insulin Synthesis and Stimulation of Noninsulin Protein Synthesis by Rat Pancreatic β-Cells*. Endocrinology, 1998, 139, 1540-1545.	1.4	39
13	Heterogeneity in glutamic acid decarboxylase expression among single rat pancreatic beta cells. Diabetologia, 1999, 42, 1086-1092.	2.9	12
14	In vivo imaging of insulitis in autoimmune diabetes. Journal of Endocrinological Investigation, 1999, 22, 151-158.	1.8	23
15	Use of an islet cell antibody assay to identify type 1 diabetic patients with rapid decrease in C-peptide levels after clinical onset. Belgian Diabetes Registry. Diabetes Care, 2000, 23, 1072-1078.	4.3	52
16	High frequency of persisting or increasing islet-specific autoantibody levels after diagnosis of type 1 diabetes presenting before 40 years of age. The Belgian Diabetes Registry. Diabetes Care, 2000, 23, 838-844.	4.3	128
17	Mechanisms of Coxsackievirus-Induced Damage to Human PancreaticÎ ² -Cells1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 432-440.	1.8	130
18	Prospects for predicting and stopping the development of type 1 of diabetes. Best Practice and Research in Clinical Endocrinology and Metabolism, 2001, 15, 371-389.	2.2	27

CITATION REPORT

#	Article	IF	CITATIONS
19	Genetic Protection from the Inflammatory Disease Type 1 Diabetes in Humans and Animal Models. Immunity, 2001, 15, 387-395.	6.6	186
20	Heme Oxygenase-1 Protects Pancreatic β Cells from Apoptosis Caused by Various Stimuli. Journal of Investigative Medicine, 2001, 49, 566-571.	0.7	86
21	A Common Stromal Cell-Derived Factor-1 Chemokine Gene Variant is Associated With the Early Onset of Type 1 Diabetes. Diabetes, 2001, 50, 1211-1213.	0.3	56
22	Low-Dose Streptozotocin Induces Sustained Hyperglycemia in Macaca nemestrina. Autoimmunity, 2001, 33, 103-114.	1.2	13
23	Identification of Novel Cytokine-Induced Genes in Pancreatic Â-Cells by High-Density Oligonucleotide Arrays. Diabetes, 2001, 50, 909-920.	0.3	230
24	Relation between Disease Phenotype and HLA-DQ Genotype in Diabetic Patients Diagnosed in Early Adulthood. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2597-2605.	1.8	22
25	Relative and absolute HLA-DQA1-DQB1 linked risk for developing type I diabetes before 40 years of age in the Belgian population: implications for future prevention studies. Human Immunology, 2002, 63, 40-50.	1.2	39
26	Impact of genetic and non-genetic factors in type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 115, 8-17.	2.4	37
27	Testing the possible negative association of type 1 diabetes and atopic disease by analysis of the interleukin 4 receptor gene. Genes and Immunity, 2003, 4, 469-475.	2.2	8
29	Combining Mouse Congenic Strains and Microarray Gene Expression Analyses to Study a Complex Trait: The NOD Model of Type 1 Diabetes. Genome Research, 2003, 12, 232-243.	2.4	86
30	Normal Insulin Sensitivity During the Late Preclinical Stage of Type 1 Diabetes. Diabetes Care, 2004, 27, 1842-1843.	4.3	3
31	Age-Dependent Influences on the Origins of Autoimmune Diabetes: Evidence and Implications. Diabetes, 2004, 53, 3033-3040.	0.3	67
32	Seasonality in clinical onset of Type 1 diabetes in Belgian patients above the age of 10 is restricted to HLA-DQ2/DQ8-negative males, which explains the male to female excess in incidence. Diabetologia, 2004, 47, 614-621.	2.9	37
33	Human pancreatic duct cells can produce tumour necrosis factor-α that damages neighbouring beta cells and activates dendritic cells. Diabetologia, 2004, 47, 998-1008.	2.9	39
34	EPIDEMIOLOGY OF TYPE 1 AND TYPE 2 DIABETES. THE ADDED VALUE OF DIABETES REGISTRIES FOR CONDUCTING CLINICAL STUDIES: THE BELGIAN PARADIGM. Acta Clinica Belgica, 2004, 59, 1-13.	0.5	14
35	Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration?. Diabetologia, 2005, 48, 2221-2228.	2.9	441
36	Heterogeneity in distribution of amyloid-positive islets in type-2 diabetic patients. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 232-238.	1.4	6
37	Immunomodulation with human recombinant autoantigens. Trends in Immunology, 2005, 26, 608-612.	2.9	25

ARTICLE IF CITATIONS # No evidence for association of the TATA-box binding protein glutamine repeat sequence or the flanking chromosome 6q27 region with type 1 diabetes. Biochemical and Biophysical Research 1.0 6 38 Communications, 2005, 331, 435-441. Type 1 Diabetes and Latent Autoimmune Diabetes in Adults: One End of the Rainbow. Journal of Clinical 39 1.8 Endocrinology and Metabolism, 2006, 91, 1654-1659. Association of IL13 with total IgE: Evidence against an inverse association of atopy and diabetes. 40 1.5 61 Journal of Allergy and Clinical Immunology, 2006, 117, 1306-1313. Actual usage and clinical effectiveness of insulin preparations in patients with Type 1 diabetes mellitus in Japan: CoDiC®-based analysis of clinical data obtained at multiple institutions (JDDM 3). Diabetes Research and Clinical Practice, 2006, 72, 277-283. Investigation of the age-at-onset heterogeneity in type 1 diabetes through mathematical modeling. 42 0.9 13 Mathematical Biosciences, 2006, 203, 79-99. NEW THERAPIES AIMED AT THE PRESERVATION OR RESTORATION OF BETA CELL FUNCTION IN TYPE 1 DIABETES. Acta Clinica Belgica, 2006, 61, 275-285. Postprandial Suppression of Glucagon Secretion Depends on Intact Pulsatile Insulin Secretion: 44 0.3 128 Further Evidence for the Intraislet Insulin Hypothesis. Diabetes, 2006, 55, 1051-1056. Synthesis and evaluation of radioiodinated substituted -naphthylalanine as a potential probe for pancreatic -cells imaging. Applied Radiation and Isotopes, 2006, 64, 769-777. Progression of Autoimmune Diabetes: Slowly Progressive Insulin-Dependent Diabetes Mellitus or 46 1.8 11 Latent Autoimmune Diabetes of Adult. Annals of the New York Academy of Sciences, 2006, 1079, 81-89. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia, 2006, 49, 1838-1844. The Potential for Stem Cell Therapy in Diabetes. Pediatric Research, 2006, 59, 65R-73R. 48 1.1 50 Impaired Crkl Expression Contributes to the Defective DNA Binding of Stat5b in Nonobese Diabetic 49 Mice. Diabetes, 2006, 55, 734-741. Reovirus Delays Diabetes Onset but Does Not Prevent Insulitis in Nonobese Diabetic Mice. Journal of 50 1.5 17 Virology, 2006, 80, 3078-3082. Conditional and specific NF-ÂB blockade protects pancreatic beta cells from diabetogenic agents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5072-5077. 3.3 231 Screening for Insulitis in Adult Autoantibody-Positive Organ Donors. Diabetes, 2007, 56, 2400-2404. 52 181 0.3 GAD autoantibodies and epitope reactivities persist after diagnosis in latent autoimmune diabetes in 54 adults but do not predict disease progression: UKPDS 77. Diabetologia, 2007, 50, 2052-2060. Beta cell mass in diabetes: a realistic therapeutic target?. Diabetologia, 2008, 51, 703-713. 54 2.9 141 Pancreatic scintigraphy with 99mTc-interleukin-2 at diagnosis of type 1 diabetes and after 1 year of nicotinamide therapy. Diabetes/Metabolism Research and Reviews, 2008, 24, 115-122.

CITATION REPORT

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
56	Relationship between $\hat{I}^2 \hat{a} \in eell$ mass and diabetes onset. Diabetes, Obesity and Metabolism, 2008, 10, 23-31.	2.2	208
57	Restoring a functional βâ€cell mass in diabetes. Diabetes, Obesity and Metabolism, 2008, 10, 54-62.	2.2	61
58	Role of NF-κB in β-cell death. Biochemical Society Transactions, 2008, 36, 334-339.	1.6	94
59	β-Cell Replication Is the Primary Mechanism Subserving the Postnatal Expansion of β-Cell Mass in Humans. Diabetes, 2008, 57, 1584-1594.	0.3	616
60	Radioiodinated Naphthylalanine Derivatives Targeting Pancreatic Beta Cells in Normal and Nonobese Diabetic Mice. Experimental Diabetes Research, 2008, 2008, 1-8.	3.8	5
61	Insulitis in Type 1 Diabetes: A Sticky Problem. Diabetes, 2009, 58, 1257-1258.	0.3	5
62	Insulin treatment in IA-2A-positive relatives of type 1 diabetic patients. Diabetes and Metabolism, 2009, 35, 319-327.	1.4	35
63	The Tol-β transgenic mouse: a model to study the specific role of NF-κB in β-cells. Diabetes Research and Clinical Practice, 2009, 86, S7-S14.	1.1	3
64	Histopathology of Type 1 Diabetes: Old Paradigms and New Insights. Review of Diabetic Studies, 2009, 6, 85-96.	0.5	46
65	Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia, 2010, 53, 614-623.	2.9	286
66	Microscopic Anatomy of the Human Islet of Langerhans. Advances in Experimental Medicine and Biology, 2010, 654, 1-19.	0.8	84
67	Vaccination against type 1 diabetes. Journal of Internal Medicine, 2011, 269, 626-635.	2.7	14
68	Insulitis in human type 1 diabetes. Islets, 2011, 3, 131-138.	0.9	178
69	Immune and cell therapy in type 1 diabetes: too little too late?. Expert Opinion on Biological Therapy, 2011, 11, 609-621.	1.4	2
70	Concise Review: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 2012, 1, 150-159.	1.6	64
71	An important minority of prediabetic first-degree relatives of type 1 diabetic patients derives from seroconversion to persistent autoantibody positivity after 10Âyears of age. Diabetologia, 2012, 55, 413-420.	2.9	22
72	The use of stem cells for pancreatic regeneration in diabetes mellitus. Nature Reviews Endocrinology, 2013, 9, 598-606.	4.3	76
73	The diagnosis of insulitis in human type 1 diabetes. Diabetologia, 2013, 56, 2541-2543.	2.9	159

CITATION REPORT

#	Article	IF	CITATIONS
74	Predictors of progression to Type 1 diabetes: preparing for immune interventions in the preclinical disease phase. Expert Review of Clinical Immunology, 2013, 9, 1173-1183.	1.3	17
75	TCF2 Attenuates FFA-Induced Damage in Islet β-Cells by Regulating Production of Insulin and ROS. International Journal of Molecular Sciences, 2014, 15, 13317-13332.	1.8	15
76	Insulitis in human type 1 diabetes: a comparison between patients and animal models. Seminars in Immunopathology, 2014, 36, 569-579.	2.8	113
77	M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1211-20.	3.3	267
78	Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews, 2014, 67-68, 15-34.	6.6	237
79	Ageâ€dependent decline of βâ€cell function in type 1 diabetes after diagnosis: a multiâ€centre longitudinal study. Diabetes, Obesity and Metabolism, 2014, 16, 262-267.	2.2	79
80	Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia, 2014, 57, 2009-2018.	2.9	46
81	Preexisting Insulin Autoantibodies Predict Efficacy of Otelixizumab in Preserving Residual β-Cell Function in Recent-Onset Type 1 Diabetes. Diabetes Care, 2015, 38, 644-651.	4.3	22
83	Rodent versus human insulitis. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 86-90.	1.2	6
84	Microscopic Anatomy of the Human Islet of Langerhans. , 2015, , 19-38.		4
85	Type 1 Diabetes Mellitus. , 2016, , 1451-1483.		5
86	Should There be Concern About Autoimmune Diabetes in Adults? Current Evidence and Controversies. Current Diabetes Reports, 2016, 16, 82.	1.7	18
87	Differential Insulitic Profiles Determine the Extent of β-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes, 2016, 65, 1362-1369.	0.3	235
88	Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia, 2016, 59, 492-501.	2.9	77
89	Type 1 (Insulin-Dependent) Diabetes Mellitus. , 2016, , 672-690.e5.		5
90	Insulin Secretion. , 2016, , 546-555.e5.		3
91	Stem cells to restore insulin production and cure diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 583-600.	1.1	26
92	β Cells Persist in T1D Pancreata Without Evidence of Ongoing β-Cell Turnover or Neogenesis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2647-2659.	1.8	49

#	Article	IF	CITATIONS
93	Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pancreas and in Implants. Current Diabetes Reports, 2017, 17, 86.	1.7	26
94	Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. Advances in Experimental Medicine and Biology, 2018, 1079, 151-162.	0.8	5
95	Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell, 2018, 22, 78-90.e4.	5.2	138
96	Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis, 2018, 21, 767-775.	3.7	10
97	Calpastatin Mediates Development of Alzheimer's Disease in Diabetes. Journal of Alzheimer's Disease, 2019, 68, 1051-1059.	1.2	3
98	Diabetes Promotes Development of Alzheimer's Disease Through Suppression of Autophagy. Journal of Alzheimer's Disease, 2019, 69, 289-296.	1.2	20
99	Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human \hat{I}^2 Cells. Cell Metabolism, 2020, 31, 327-338.e6.	7.2	17
100	Hyaluronan deposition in islets may precede and direct the location of islet immune-cell infiltrates. Diabetologia, 2020, 63, 549-560.	2.9	9
101	Markers for beta-cell loss. , 2020, , 695-709.		0
102	Strategies to promote beta-cell replication and regeneration. , 2020, , 201-213.		0
103	Spontaneous restoration of functional βâ€cell mass in obese SM/J mice. Physiological Reports, 2020, 8, e14573.	0.7	5
104	Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific Reports, 2020, 10, 7928.	1.6	29
105	Identification of Potential Risk Factors of Diabetes for the Qatari Population. , 2020, , .		4
106	Older age of childhood type 1 diabetes onset is associated with islet autoantibody positivity > 30 years later: the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetic Medicine, 2020, 37, 1386-1394.	1.2	8
107	Insulitis in the pancreas of non-diabetic organ donors under age 25 years with multiple circulating autoantibodies against islet cell antigens. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 295-304.	1.4	7
108	Mechanisms of Postnatal Î ² -Cell Mass Regulation. Growth Hormone, 2001, , 289-297.	0.2	2
109	Type 1 Diabetes Mellitus. , 2011, , 1436-1461.		16
110	Type 1 Diabetes Mellitus Associated with Clinical Acute Pancreatitis in an Adult. Pancreas, 2000, 20, 415-416.	0.5	9

#	Article	IF	CITATIONS
111	The Possible Role of Enteroviruses in Diabetes Mellitus. , 0, , 353-385.		26
112	Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program Journal of Clinical Investigation, 1996, 98, 1568-1574.	3.9	255
113	Chronic hyperglycemia regulates microglia polarization through ERK5. Aging, 2019, 11, 697-706.	1.4	24
114	Islet Neogenesis: A Possible Pathway for Beta-Cell Replenishment. Review of Diabetic Studies, 2012, 9, 407-416.	0.5	49
115	Immunolocalization of nestin in pancreatic tissue of mice at different ages. World Journal of Gastroenterology, 2008, 14, 7112.	1.4	8
117	Type 1 Diabetes Mellitus: Epidemiology, Genetics, Pathogenesis And Clinical Manifestations. , 2004, , 153-178.		1
118	Autoimmune Type 1 Diabetes. , 2004, , 417-438.		0
119	Type 1 (Insulin-Dependent) Diabetes Mellitus. , 2010, , 744-764.		0
120	Insulin Secretion. , 2010, , 624-635.		0
121	Microscopic Anatomy of the Human Islet of Langerhans. , 2014, , 1-18.		0
122	Entérovirus et diabète de type 1 Medecine/Sciences, 1998, 14, 398.	0.0	0
124	Type 1 Diabetes Mellitus. , 2007, , 277-302.		0
125	Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Translational Research, 2022, 250, 68-83.	2.2	10
126	Age of Diagnosis Does Not Alter the Presentation or Progression of Robustly Defined Adult-Onset Type 1 Diabetes. Diabetes Care, 0, , .	4.3	2