The influence of surface defects on the infrared spectra

Surface Science Reports 16, 51-94 DOI: 10.1016/0167-5729(92)90008-y

Citation Report

#	Article	IF	CITATIONS
1	Excitons and infrared spectroscopy of adlayers on ionic surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 101-107.	0.8	14
2	Morphological and chemical factors in the interpretation of infrared spectra from CO adsorbed on platinum. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 151-154.	0.8	13
3	Vibrational investigation of CO adsorbed on gold deposited on TiO2. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 241-250.	0.8	48
4	Interactions of CO molecules adsorbed on gold. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 251-258.	0.8	50
5	The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions. Surface Science, 1993, 286, 15-25.	0.8	121
6	Chemisorption on stepped metal surfaces: CO/vicinal Ni(100). Journal of Chemical Physics, 1993, 98, 9018-9029.	1.2	26
7	Non-synergistic Ï€î—,σ chemisorption bonding: CH2N2 on Pd(110) and Cu(110). Chemical Physics Letters, 1994, 223, 481-485.	1.2	5
8	An automated tensor LEED analysis of the Ni{111}-c(4×2)-2CO structure. Chemical Physics Letters, 1994, 228, 527-532.	1.2	80
9	Surface infrared spectroscopy. Vacuum, 1994, 45, 705-714.	1.6	14
10	Strong modification of Pt-CO interaction caused by alloying with chromium in Pt-Cr/HZSM-5 catalysts. Catalysis Letters, 1994, 23, 251-262.	1.4	20
11	The oxidation and scrambling of CO with oxygen at room temperature on Au/ZnO. Catalysis Letters, 1994, 29, 225-234.	1.4	81
12	Time-resolved measurements of energy transfer at surfaces. Surface Science, 1994, 299-300, 643-655.	0.8	34
13	Chemisorption on metals: a personal review. Surface Science, 1994, 299-300, 678-689.	0.8	20
14	A RAIRS investigation of desorption and dissociation of water on NiO thin films probed by NO and CO titration. Surface Science, 1994, 304, 159-167.	0.8	43
15	Islanding or random growth? The low coverage growth modes and structure of NO on Ni{111} studied by diffuse ATLEED. Surface Science, 1994, 312, 54-61.	0.8	25
16	Identification of isolated Pt atoms in H-mordenite. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 233.	1.7	85
17	Siteâ€specific properties and dynamical dipole coupling of CO molecules adsorbed on a vicinal Cu(100) surface. Journal of Chemical Physics, 1994, 101, 9080-9095.	1.2	76
18	Preparation and characterization of multiple ion-exchanged Pt/TiO2catalysts. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2277-2281.	1.7	21

#	Article	IF	CITATIONS
19	The origins of multiple bands in the infrared spectra of carbon monoxide adsorbed on metal surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 105, 19-26.	2.3	21
20	FTIRS and electrochemical characterization of the NO adlayer generated by immersion of a Rh(111) electrode in an acidic solution of nitrite. Journal of Electroanalytical Chemistry, 1995, 393, 123-129.	1.9	27
21	Adsorption and decomposition of formic acid on Ni{110}. Surface Science, 1995, 325, 230-242.	0.8	69
22	Adsorption of carbon monoxide on Ir(110) investigated by infrared reflection-absorption spectroscopy. Surface Science, 1995, 325, 85-92.	0.8	30
23	Terrace width effect on adsorbate vibrations: a comparison of Pt(335) and Pt(112) for chemisorption of CO. Surface Science, 1995, 327, 193-201.	0.8	129
24	Probing the nature of molecular chemisorption using RAIRS. Surface Science, 1995, 331-333, 1-10.	0.8	44
25	Electrochemical and in situ FTIRS studies of the CO adsorption at palladium and rhodium multilayers deposited on platinum single crystal surfaces II. Pt(100) substrate. Surface Science, 1995, 344, 85-97.	0.8	49
27	CoO–ZnO solid solution as a model to investigate the CO–cation interaction: an FTIR and HRTEM study. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4445-4450.	1.7	9
28	Metal–support interaction in Pd/CeO2catalysts. Part 2.—Ceria textural effects. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1603-1608.	1.7	76
29	Alloy Formation and Stability in Pdâ^'Cu Bimetallic Catalysts. The Journal of Physical Chemistry, 1996, 100, 16247-16254.	2.9	100
30	Estimation of CO Heats of Adsorption on Metal Surfaces from Vibrational Spectra. Industrial & Engineering Chemistry Research, 1996, 35, 3171-3178.	1.8	13
31	Highly sintered nickel oxide: surface morphology and FTIR investigation of CO adsorbed at low temperature. Surface Science, 1996, 350, 113-122.	0.8	24
32	The adsorption of CO on Ir(111) investigated with FT-IRAS. Surface Science, 1996, 350, 32-44.	0.8	89
33	IR spectroscopy of adsorbed dinitrogen: a sensitive probe of defect sites on Pt(111). Surface Science, 1996, 360, 121-127.	0.8	31
34	FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Copper Supported on ZnO and TiO2. 1. The Journal of Physical Chemistry, 1996, 100, 3617-3624.	2.9	126
35	Monte Carlo calculation of optical absorption bands of a disordered adsorbate layer. Surface Science, 1996, 368, 113-117.	0.8	Ο
36	Effects of structural defects and alloying on the FTIR spectra of CO adsorbed on. Surface Science, 1996, 368, 264-269.	0.8	29
37	Acetate on Cu(110): evidence for long-range intermolecular interactions and molecular-induced restructuring of a metal surface. Surface Science, 1996, 355, L345-L349.	0.8	32

#	Article	IF	CITATIONS
38	Adsorption of carbon monoxide on the gold(332) surface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4829.	1.7	106
39	Influence of Cu overlayers on the interaction of CO and CO2with ZnO(0001)-O. Faraday Discussions, 1996, 105, 355-368.	1.6	25
40	IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2catalysts: σ and π components of the Cu+—CO bond. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4595-4600.	1.7	203
41	Electrochemical tuning of the lifetime of the CO stretching vibration for CO/Pt(111). Journal of Chemical Physics, 1996, 104, 2438-2445.	1.2	42
42	Spectral manifestations of the dynamic interactions between adsorbed molecules. A computer modelling study. Vibrational Spectroscopy, 1996, 13, 11-22.	1.2	19
43	On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt(h,k,l) and Rh(h,k,l) electrodes. Electrochimica Acta, 1996, 41, 729-745.	2.6	87
44	IR studies of CO and NO adsorbed on well characterized oxide single microcrystals. Catalysis Today, 1996, 27, 403-435.	2.2	127
45	Infrared profile of single molecules adsorbed on ionic substrates: Relaxational mechanism for the homogeneous linewidth. Journal of Chemical Physics, 1996, 105, 2471-2486.	1.2	14
46	Acetylene adsorption studies on Pd(111) and stepped Pd(111). Journal of Physics Condensed Matter, 1996, 8, 3313-3322.	0.7	8
47	Mechanism of Acetone Oxidation on Ag{111}-p(4 × 4)â^'O. The Journal of Physical Chemistry, 1996, 100, 14794-14802.	2.9	25
48	Polarization Modulation Infrared Reflection Absorption Spectroscopy of CO Adsorption on Co(0001) under a High-Pressure Regime. The Journal of Physical Chemistry, 1996, 100, 12494-12502.	2.9	149
49	Use of methanol as an IR molecular probe to study the surface of polycrystalline ceria. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1159-1168.	1.7	137
50	Vibrational spectroscopy of the gas-solid interaction between anhydride molecules and oxide-covered polycrystalline zinc substrate. Journal of Adhesion Science and Technology, 1997, 11, 553-572.	1.4	12
51	Infrared Spectroscopy in Electrochemistry: New Methods and Connections to UhV Surface Science. Critical Reviews in Analytical Chemistry, 1997, 27, 81-102.	1.8	48
52	IR Characterization of Metal Catalysts using CO as Probe Molecule. , 1997, , 1-17.		4
53	Interaction of CO molecules with the Au(332) surface. Surface Science, 1997, 377-379, 583-586.	0.8	70
54	Thermal chemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1997, 377-379, 780-785.	0.8	6
55	Coverage dependent IR frequency shift of CO molecules adsorbed on Ni(111) surface. Surface Science, 1997, 384, L875-L879.	0.8	20

#	Article	IF	CITATIONS
56	Morphology and CO adsorptive properties of CuCl polycrystalline films: a SEM and FTIR study. Surface Science, 1997, 387, 236-242.	0.8	26
57	Structural reanalysis of the Rh(111) + (â^š3 × â^š3)R30°-CO and Rh(111) + (2 × 2)-3CO phases using automa tensor LEED. Surface Science, 1997, 391, 176-182.	ated 0.8	89
58	Surface Formates as Side Products in the Selective CO Oxidation on Pt/γ-Al2O3. Journal of Catalysis, 1997, 172, 256-258.	3.1	78
59	Evidence for Monatomic Platinum Species in H-ZSM-5 from FTIR Spectroscopy of Chemisorbed CO. Journal of Catalysis, 1997, 169, 382-388.	3.1	78
60	Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3. Journal of Catalysis, 1997, 171, 93-105.	3.1	449
61	Influence of Ceria on the Dispersion and Reduction/Oxidation Behaviour of Alumina-Supported Copper Catalysts. Journal of Catalysis, 1997, 172, 146-159.	3.1	96
62	The effect of water on the infrared spectra of CO adsorbed on Pt/K L-zeolite. Catalysis Letters, 1997, 44, 135-144.	1.4	12
63	Title is missing!. Catalysis Letters, 1997, 45, 129-133.	1.4	11
64	Nanoscale phenomena in surface electrochemistry: some insights from scanning tunneling microscopy and infrared spectroscopy. Electrochimica Acta, 1998, 43, 2811-2824.	2.6	36
65	Nitric oxide adsorption at Pt(100) electrode surfaces. Electrochimica Acta, 1998, 44, 1077-1090.	2.6	61
66	In-situ detection of chemisorbed CO on a polycrystalline platinum foil using infrared–visible sum-frequency generation. Chemical Physics Letters, 1998, 293, 26-32.	1.2	32
67	Infrared study of crotonaldehyde and CO adsorption on a Pt/TiO2 catalyst. Catalysis Letters, 1998, 51, 155-162.	1.4	43
68	Electronic effects and effects of particle morphology in n-hexane conversion over zeolite-supported platinum catalysts. Journal of Catalysis, 1998, 177, 175-188.	3.1	75
69	Determination of the Dispersion and Surface Oxidation States of Supported Cu Catalysts. Journal of Catalysis, 1998, 178, 621-639.	3.1	233
70	Theoretical approach of the infrared profile of molecular adsorbates on clean surfaces: inhomogeneous broadening. Chemical Physics, 1998, 230, 67-81.	0.9	5
71	Metal Aggregates on Oxide Surfaces: Structure and Adsorption. Crystal Research and Technology, 1998, 33, 977-1008.	0.6	17
72	Protein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach. Biomaterials, 1998, 19, 407-422.	5.7	172
73	Selected molecular surface structures determined by modern low-energy electron diffraction. Journal of Molecular Catalysis A, 1998, 131, 243-257.	4.8	22

#	Article	IF	CITATIONS
74	Metal clusters on ultrathin oxide films: model catalysts for surface science studies. Journal of Molecular Catalysis A, 1998, 131, 259-283.	4.8	129
75	Adsorption and thermal desorption on stepped surfaces. Surface Science, 1998, 399, 135-159.	0.8	16
76	Infrared spectroscopic investigation of CO adsorbed on Pd aggregates deposited on an alumina model support. Surface Science, 1998, 399, 190-198.	0.8	161
77	Infrared study of CO adsorption on alumina supported palladium particles. Surface Science, 1998, 402-404, 428-432.	0.8	62
78	FTIR study of the interaction of CO with pure and silica-supported copper(I) oxide. Surface Science, 1998, 411, 272-285.	0.8	110
79	Photochemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1998, 414, 261-270.	0.8	6
80	Reanalysis of the Rh(111)+(2×2)-3NO structure using automated tensor LEED. Surface Science, 1998, 418, L89-L93.	0.8	45
81	Influence of Ceria Dispersion on the Catalytic Performance of Cu/(CeO2)/Al2O3 Catalysts for the CO Oxidation Reaction Studies in Surface Science and Catalysis, 1998, , 591-600.	1.5	33
82	Interaction of CO and NO with PdCu(111) Surfaces. Journal of Physical Chemistry B, 1998, 102, 8017-8023.	1.2	74
83	Effect of Copperâ^'Ceria Interactions on Copper Reduction in a Cu/CeO2/Al2O3 Catalyst Subjected to Thermal Treatments in CO. Journal of Physical Chemistry B, 1998, 102, 809-817.	1.2	105
84	Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO2/Al2O3 Catalyst. Journal of Physical Chemistry B, 1998, 102, 4357-4365.	1.2	79
85	Adsorption and Electrooxidation of Carbon Monoxide on Silver. Langmuir, 1998, 14, 6297-6306.	1.6	32
86	FTIR, UVâ^'Vis, and HRTEM Study of Au/ZrO2 Catalyst:  Reduced Reactivity in the COâ^'O2 Reaction of Electron-Deficient Gold Sites Present on the Used Samples. Journal of Physical Chemistry B, 1998, 102, 5733-5736.	1.2	77
87	The Surface Characterization of Nanosized Powders: Relevance of the FTIR Surface Spectrometry. , 1998, , 303-317.		9
88	Nanostructured Materials. , 1998, , .		14
89	The Adsorption Sites of CO and NO Molecules on Metal Surfaces. Israel Journal of Chemistry, 1998, 38, 349-352.	1.0	6
90	Ultraviolet-laser induced desorption of NO from the Cr2O3(0001) surface: Involvement of a precursor state?. Journal of Chemical Physics, 1999, 111, 1158-1168.	1.2	31
91	Vibrons in a disordered monolayer: Application to the determination of the infrared and sum frequency generation spectra of12COand13COisotopic mixtures adsorbed on NaCl(001). Physical Review B, 1999, 60, 13800-13813.	1.1	8

	CITATION	n Report	
#	Article	IF	CITATIONS
92	Infrared and infrared-visible sum frequency generation spectroscopic response of harmonic monolayer vibrons: Homogeneous profile. Journal of Chemical Physics, 1999, 110, 6963-6976.	1.2	19
93	Metal deposits on well-ordered oxide films. Progress in Surface Science, 1999, 61, 127-198.	3.8	931
94	Spectroscopic Study of a Cu/CeO2Catalyst Subjected to Redox Treatments in Carbon Monoxide and Oxygen. Journal of Catalysis, 1999, 182, 367-377.	3.1	237
95	Cu/SiO2 and Cu/SiO2–TiO2 Catalysts. Journal of Catalysis, 1999, 184, 316-326.	3.1	102
96	Comparative Study of Au/TiO2 and Au/ZrO2 Catalysts for Low-Temperature CO Oxidation. Journal of Catalysis, 1999, 186, 458-469.	3.1	322
97	Influence of Ceria on Pd Activity for the CO+O2 Reaction. Journal of Catalysis, 1999, 187, 474-485.	3.1	151
98	Preparation and Characterization of Supported Bimetallic Pt–Au Particle Catalysts from Molecular Cluster and Chloride Salt Precursors. Journal of Catalysis, 1999, 187, 367-384.	3.1	58
99	FTIR study of CO adsorption on coked Pt–Sn/Al2O3 catalysts. Catalysis Letters, 1999, 58, 189-194.	1.4	31
100	Pressure dependence (10-8–1000 mbar) of the vibrational spectra of CO chemisorbed on polycrystalline platinum studied by infrared–visible sum-frequency generation. Physical Chemistry Chemical Physics, 1999, 1, 5059-5064.	1.3	22
101	Oxide-supported Rh particle structure probed with carbon monoxide. Surface Science, 1999, 427-428, 288-293.	0.8	45
102	CO and NO elimination over Pd-Cu catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1325-1330.	1.5	6
103	Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon, 2000, 38, 451-464.	5.4	103
104	Behavior of Palladium–Copper Catalysts for CO and NO Elimination. Journal of Catalysis, 2000, 190, 387-395.	3.1	62
105	Preparation and Characterization of Supported Bimetallic Pt–Au and Pt–Cu Catalysts from Bimetallic Molecular Precursors. Journal of Catalysis, 2000, 193, 186-198.	3.1	65
106	Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. Journal of Catalysis, 2000, 195, 207-216.	3.1	357
107	Fourier transform infrared surface spectrometry of nano-sized particles. , 2000, , 89-153.		5
108	Infrared Intensity Enhancement of the CN Stretch of HCN by Coadsorbed CO on the Cu(100) Surface. Physical Review Letters, 2000, 84, 4902-4905.	2.9	4
109	IR studies of the interaction of water with lanthanum oxide surfaces. Surface Science, 2000, 470, L104-L108.	0.8	12

#	Article	IF	Citations
" 110	Morphology of Cu overlayers on TiO2(110). Surface Science, 2000, 467, L841-L844.	0.8	9
111	Effects of carboxylic acid adsorbates on CO adsorption and crotonaldehyde hydrogenation over Cu/Al2O3 catalyst. Physical Chemistry Chemical Physics, 2000, 2, 3925-3932.	1.3	5
112	The Vibrational Spectroscopies. , 0, , 201-229.		0
113	Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts. Physical Chemistry Chemical Physics, 2000, 2, 5320-5327.	1.3	66
114	From atoms to crystallites: adsorption on oxide-supported metal particles. Physical Chemistry Chemical Physics, 2000, 2, 3723-3737.	1.3	165
115	Equilibrated Adsorption of CO on Silica-Supported Pt Catalysts. Journal of Physical Chemistry B, 2000, 104, 4169-4180.	1.2	55
116	High-Pressure Carbon Monoxide Adsorption on Pt(111) Revisited:  A Sum Frequency Generation Study. Journal of Physical Chemistry B, 2001, 105, 3797-3802.	1.2	132
117	Infrared study of competitive crotonaldehyde and CO adsorption on Cu/TiO2. Physical Chemistry Chemical Physics, 2001, 3, 4817-4825.	1.3	15
118	Identification of Defect Sites on MgO(100) Thin Films by Decoration with Pd Atoms and Studying CO Adsorption Properties. Journal of the American Chemical Society, 2001, 123, 6172-6178.	6.6	108
119	Ensemble Size Effects on Toluene Hydrogenation and Hydrogen Chemisorption by Supported Bimetallic Particle Catalysts. Journal of Physical Chemistry B, 2001, 105, 149-155.	1.2	34
120	Electrochemical Infrared Characterization of Carbon-Supported Platinum Nanoparticles:  A Benchmark Structural Comparison with Single-Crystal Electrodes and High-Nuclearity Carbonyl Clusters. Journal of Physical Chemistry B, 2001, 105, 9719-9725.	1.2	122
121	Vibrational Spectroscopy at Oxide Surfaces. Chemical Physics of Solid Surfaces, 2001, , 514-549.	0.3	6
122	DRIFTS studies of carbon monoxide coverage on highly dispersed bimetallic Pt-Cu and Pt-Au catalysts. Catalysis Today, 2001, 65, 39-50.	2.2	45
123	Island Formation during Kinetic Rate Oscillations in the Oxidation of CO over Pt/SiO2: A Transient Fourier Transform Infrared Spectrometry Study. Journal of Catalysis, 2001, 204, 35-52.	3.1	101
124	FTIR Spectroscopic Study of CO Adsorption on Cu/SiO2: Formation of New Types of Copper Carbonyls. Catalysis Letters, 2001, 75, 55-59.	1.4	44
125	Extrinsic Precursor-Assisted Synthesis of 1,5-Hexadiene on Cu(100). Journal of the American Chemical Society, 2001, 123, 2990-2996.	6.6	13
126	The reliability of vibrational spectroscopy as a means of identification of the structures of chemisorbed species on metal surfaces: the cases of CO, NO and C2 hydrocarbon surface species. Catalysis Today, 2001, 70, 3-13.	2.2	57
127	Infrared studies on SnO2 and Pd/SnO2. Catalysis Today, 2001, 70, 139-154.	2.2	232

#	Article	IF	CITATIONS
128	Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis, 2002, , 307-511.	0.1	450
129	Role of Crystalline Defects in Electrocatalysis:Â CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 9863-9872.	1.2	221
130	Surface photochemistry on confined systems: UV-laser-induced photodesorption of NO from Pd-nanostructures on Al2O3Dedicated to Professor Jürgen Troe on the occasion of his 60th birthday Physical Chemistry Chemical Physics, 2002, 4, 2629-2637.	1.3	22
131	Study of CO adsorption on crystalline-silica-supported palladium particles. Surface Science, 2002, 498, L71-L77.	0.8	94
132	Catalytic Activity and Poisoning of Specific Sites on Supported Metal Nanoparticles. Angewandte Chemie - International Edition, 2002, 41, 2532-2535.	7.2	170
133	Alumina vapour condensation on Mo() surface and adsorption of copper and gold atoms on the formed oxide layer. Surface Science, 2002, 515, 538-552.	0.8	18
134	Infrared study of CO adsorption on Pd particles supported on NaCl(100). Surface Science, 2002, 517, 115-122.	0.8	2
135	Assignment of the vibrational features in the Rh(111)–(2×2)-3CO adsorption structure using density functional theory calculations. Chemical Physics Letters, 2002, 354, 503-507.	1.2	17
136	Title is missing!. Topics in Catalysis, 2002, 19, 303-311.	1.3	32
137	The Molecular Origins of Selectivity in Methanol Decomposition on Pd Nanoparticles. Catalysis Letters, 2002, 84, 209-217.	1.4	41
138	Ni and CO Used as Probes of the Amorphous Silica Surface: IR and Theoretical Studies of Dicarbonyl NillComplexesâ€. Journal of Physical Chemistry B, 2003, 107, 6096-6104.	1.2	16
139	Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension. Journal of Catalysis, 2003, 216, 223-235.	3.1	155
140	Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214, 261-272.	3.1	83
141	In-situ-Schwingungsspektroskopie zur Untersuchung der Aktivitäund Adsorbatplatzbesetzung von Katalysator-Nanopartikeln. Angewandte Chemie, 2003, 115, 3143-3147.	1.6	6
142	Site Occupation and Activity of Catalyst Nanoparticles Monitored by In Situ Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2003, 42, 3035-3038.	7.2	32
143	Low temperature decomposition of NO on ordered alumina films. Chemical Physics Letters, 2003, 381, 298-305.	1.2	27
144			
144	Inhomogeneous broadenings of the infrared profile of dipolar adsorbates on real surfaces. Computational and Theoretical Chemistry, 2003, 663, 187-199.	1.5	1

ARTICLE IF CITATIONS Characterization of Cu/MCM-41 and Cu/MCM-48 mesoporous catalysts by FTIR spectroscopy of 146 2.2 58 adsorbed CO. Applied Catalysis A: General, 2003, 241, 331-340. Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chemical Record, 147 2003, 3, 181-201. Electrochemical Infrared Characterization of CO Domains on Ruthenium-Decorated Platinum 148 106 6.6 Nanoparticles. Journal of the American Chemical Society, 2003, 125, 2282-2290. In Situ Investigation of Solidâ^{*/}Liquid Catalytic Interfaces by Attenuated Total Reflection Infrared 149 Spectroscopy. Langmuir, 2003, 19, 2956-2962. Interaction of NO with alumina supported palladium model catalysts. Physical Chemistry Chemical 150 1.3 11 Physics, 2003, 5, 5139-5148. Infrared study of CO and 2-butenal co-adsorption on Zn modified Pt/CeO2–SiO2catalysts. Physical Chemistry Chemical Physics, 2003, 5, 208-216. 1.3 Surface structure of Co–Pd bimetallic particles supported on Al2O3 thin films studied using infrared 152 1.2 40 reflection absorption spectroscopy of CO. Journal of Chemical Physics, 2003, 119, 10885-10894. Light-off behaviour of PdO/γ-Al2O3 catalysts for stoichiometric CO–O2 and CO–O2–NO reactions: a 3.1 60 combined catalytic activitya€"in situ DRIFTSÂstudy. Journal of Catalysis, 2004, 221, 85-92. Copper-modified mesoporous MCM-41 silica: FTIR and catalytic study. Journal of Molecular Catalysis A, 154 4.8 48 2004, 209, 125-134. An SFG investigation of Au(111) and Au(210) electrodes in aqueous solutions containing KCN and cetylpyridinium chloride. Journal of Electroanalytical Chemistry, 2004, 574, 85-94. Dehalogenative oligomerization of dichlorodifluoromethane catalyzed by activated 156 2.2 23 carbon-supported Ptâ€"Cu catalysts: effect of Cu to Pt atomic ratio. Catalysis Today, 2004, 88, 169-181. Surface Electrochemistry of CO on Reconstructed Gold Single Crystal Surfaces Studied by Infrared Reflection Absorption Spectroscopy and Rotating Disk Electrode. Journal of the American Chemical Society, 2004, 126, 10130-10141. 6.6 On the Role of Different Adsorption and Reaction Sites on Supported Nanoparticles during a Catalytic Reaction: NO Decomposition on a Pd/Alumina Model Catalystâ€. Journal of Physical Chemistry B, 2004, 158 1.2 29 108, 14244-14254. Fourier Transform Infrared Study of Low-Temperature CO Adsorption on CuMgAl-Hydrotalcite. 159 1.6 Langmuir, 2004, 20, 730-736. Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalýsts: Â Infrare'd Study of CO Adsorption. Journal of Physical Chemistry B, 2004, 108, 160 1.2 110 3603-3613. Synthesis and Characterization of Dendrimer Templated Supported Bimetallic Ptâ^{-,}Au Nanoparticles. 288 Journal of the American Chemical Society, 2004, 126, 12949-12956. Modification of kaolinite by controlled hydrothermal deuteration $\hat{a} \in \hat{a}$ a DRIFT spectroscopic study. Clay 162 0.2 33 Minerals, 2004, 39, 349-362. Metal Particle Size Effects and Metal-Support Interaction in Electrochemically Treated Pt/C Catalysts 1.3 Investigated by [sup 13]C NMR. Journal of the Electrochemical Society, 2005, 152, J131.

#	Article	IF	CITATIONS
164	Parallel IR spectroscopic characterization of CO chemisorption on Pt loaded zeolites. Microporous and Mesoporous Materials, 2005, 77, 89-96.	2.2	43
165	Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes. Electrochimica Acta, 2005, 50, 2475-2485.	2.6	25
166	Molecular beam experiments on model catalysts. Surface Science Reports, 2005, 57, 157-298.	3.8	327
167	Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces. Surface Science, 2005, 586, 146-156.	0.8	37
168	Low temperature infrared spectra of CO adsorbed on the surface of MgO(001) thin films. Surface Science, 2005, 596, 222-228.	0.8	34
169	Impact of the support on the heat of adsorption of the linear CO species on Pt-containing catalysts. Applied Catalysis A: General, 2005, 278, 223-231.	2.2	33
170	The effect of Ni in Pd–Ni/(Ce,Zr)O/AlO catalysts used for stoichiometric CO and NO elimination. Part 2: Catalytic activity and in situ spectroscopic studies. Journal of Catalysis, 2005, 235, 262-271.	3.1	51
171	CO oxidation over CuOx-CeO2-ZrO2 catalysts: Transient behaviour and role of copper clusters in contact with ceria. Applied Catalysis B: Environmental, 2005, 61, 192-205.	10.8	139
172	CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surface Science, 2005, 586, 174-182.	0.8	25
173	Finite size effects on supported Pd nanoparticles: Interaction of hydrogen with CO and C2H4. Surface Science, 2005, 588, L209-L219.	0.8	80
174	Combined theoretical and experimental study of the site-specificity of vibrational dynamics of CO adsorbed on monovalent metal cations in zeolites. Studies in Surface Science and Catalysis, 2005, , 625-632.	1.5	9
175	A model high surface area alumina-supported palladium catalyst. Physical Chemistry Chemical Physics, 2005, 7, 565-567.	1.3	30
176	Promotion Effects in the Oxidation of CO over Zeolite-Supported Pt Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 3822-3831.	1.2	74
177	FTIR Spectroscopy Study of CO Adsorption on Ptâ^'Naâ^'Mordenite. Langmuir, 2005, 21, 11821-11828.	1.6	24
178	Low-Temperature Activation Conditions for PAMAM Dendrimer Templated Pt Nanoparticles. Langmuir, 2005, 21, 10776-10782.	1.6	59
179	Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid–gas interactions. Chemical Society Reviews, 2005, 34, 846.	18.7	159
180	The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. Journal of Chemical Physics, 2005, 123, 174706.	1.2	276
181	Probing Adsorption Sites of Silica-Supported Platinum with13C16O +12C16O and13C18O +12C16O Mixtures:Â A Comparative Fourier Transform Infrared Investigation. Journal of Physical Chemistry B, 2005, 109, 19772-19778.	1.2	10

#	Article	IF	CITATIONS
182	FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Physical Chemistry Chemical Physics, 2005, 7, 187.	1.3	218
183	Direct IR observation of vibrational properties of carbonyl species formed on Pd nano-particles supported on amorphous carbon: comparison with Pd/SiO2–Al2O3. Physical Chemistry Chemical Physics, 2006, 8, 3676-3681.	1.3	28
184	The influence of strongly reducing conditions on strong metal–support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8, 1525.	1.3	130
186	On the need to use steady-state or operando techniques to investigate reaction mechanisms: An in situ DRIFTS and SSITKA-based study example. Catalysis Today, 2006, 113, 94-101.	2.2	63
187	FTIR spectroscopic study of the nature and reactivity of NOx compounds formed on Cu/Al2O3 after coadsorption of NO and O2. Journal of Molecular Catalysis A, 2006, 243, 8-16.	4.8	29
188	Identification of CO Adsorption Sites in Supported Pt Catalysts Using High-Energy-Resolution Fluorescence Detection X-ray Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 16162-16164.	1.2	163
189	Oxygen-induced Restructuring of a Pd/Fe3O4 Model Catalyst. Catalysis Letters, 2006, 107, 189-196.	1.4	70
190	Strong metal support interaction on Co/niobia model catalysts. Catalysis Letters, 2006, 111, 35-41.	1.4	20
191	Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions. Journal of Catalysis, 2006, 237, 1-16.	3.1	356
192	Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. Journal of Catalysis, 2006, 237, 431-434.	3.1	88
193	The effects of Fe on the oxygen storage and release properties of model Pd–Rh/CeO2–Al2O3 three-way catalyst. Journal of Catalysis, 2006, 240, 182-193.	3.1	85
194	CO oxidation on partially oxidized Pd nanoparticles. Journal of Catalysis, 2006, 242, 58-70.	3.1	73
195	Preparation of Pd/C catalysts: from the Pd-precursor solution to the final systems. Studies in Surface Science and Catalysis, 2006, 162, 721-728.	1.5	7
197	Sum Frequency Generation and Polarization–Modulation Infrared Reflection Absorption Spectroscopy of Functioning Model Catalysts from Ultrahigh Vacuum to Ambient Pressure. Advances in Catalysis, 2007, 51, 133-263.	0.1	69
198	NO and dichloroethene reactivity on single crystal and supported Cu nanoparticles: just how big is the materials gap?. Physical Chemistry Chemical Physics, 2007, 9, 3641.	1.3	10
199	Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Physical Chemistry Chemical Physics, 2007, 9, 3541-3558.	1.3	100
200	Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Physical Chemistry Chemical Physics, 2007, 9, 3570-3576.	1.3	57
201	Characterization of Pt,Sn/Mg(Al)O Catalysts for Light Alkane Dehydrogenation by FT-IR Spectroscopy and Catalytic Measurements. Journal of Physical Chemistry C, 2007, 111, 14732-14742.	1.5	93

#	Article	IF	CITATIONS
202	Nucleation and Growth of Gold on MgO Thin Films:  A Combined STM and Luminescence Study. Journal of Physical Chemistry C, 2007, 111, 10528-10533.	1.5	39
203	Role of the Support in Determining the Vibrational Properties of Carbonyls Formed on Pd Supported on SiO2â''Al2O3, Al2O3, and MgO. Journal of Physical Chemistry C, 2007, 111, 7021-7028.	1.5	54
204	Surface Water-Assisted Preferential CO Oxidation on Pt/CeO2 Catalyst. Journal of Physical Chemistry C, 2007, 111, 5426-5431.	1.5	69
205	Probing the Interface in Vapor-Deposited Bimetallic Pdâ^'Au and Ptâ^'Au Films by CO Adsorption from the Liquid Phase. Langmuir, 2007, 23, 1203-1208.	1.6	11
206	In-situ Surface X-ray Scattering and Infrared Reflection Adsorption Spectroscopy of CO Chemisorption at the Electrochemical Interface. , 2007, , 339-381.		2
207	Selective CO Oxidation in Excess H ₂ over Copperâ^Ceria Catalysts:  Identification of Active Entities/Species. Journal of the American Chemical Society, 2007, 129, 12064-12065.	6.6	305
208	Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles. Physical Chemistry Chemical Physics, 2007, 9, 1347.	1.3	79
209	Origin of strange vibrational spectra of NO on Pt(111) surface. E-Journal of Surface Science and Nanotechnology, 2007, 5, 122-125.	0.1	6
211	Ligand-Capped Pt Nanocrystals as Oxide-Supported Catalysts: FTIR Spectroscopic Investigations of the Adsorption and Oxidation of CO. Angewandte Chemie - International Edition, 2007, 46, 2923-2926.	7.2	55
214	Characterization of a Pd–Fe bimetallic model catalyst. Surface Science, 2007, 601, 2105-2116.	0.8	49
215	A surface science approach to ambient pressure catalytic reactions. Catalysis Today, 2007, 126, 3-17.	2.2	69
216	Influence of the preparation method on the catalytic behaviour of PtSn/TiO2 catalysts. Catalysis Today, 2007, 123, 235-244.	2.2	33
217	Synthesis and characterization of Pt/Mg(Al)O catalysts obtained from layered double hydroxides by different routes. Microporous and Mesoporous Materials, 2007, 103, 48-56.	2.2	20
218	Effect of preparation technique on the properties of platinum in NaY zeolite: A study by FTIR spectroscopy of adsorbed CO. Journal of Molecular Catalysis A, 2007, 264, 270-279.	4.8	35
219	FTIR spectroscopy study of CO and NO adsorption and co-adsorption on Pt/TiO2. Journal of Molecular Catalysis A, 2007, 274, 179-184.	4.8	109
220	Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites—the interplay of infrared spectroscopy and theoretical calculations. Physical Chemistry Chemical Physics, 2007, 9, 1421-1437.	1.3	96
221	Mechanisms of Carbon Monoxide and Methanol Oxidation at Single-crystal Electrodes. Topics in Catalysis, 2007, 46, 320-333.	1.3	157
222	Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods. Electrochimica Acta, 2007, 53, 1265-1278.	2.6	47

#	Article	IF	CITATIONS
223	Effect of the structure of Pt–Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics. Electrochimica Acta, 2007, 53, 811-822.	2.6	84
224	Effect of CeO2 and La2O3 on the Activity of CeO2â°La2O3/Al2O3-Supported Pd Catalysts for Steam Reforming of Methane. Catalysis Letters, 2008, 120, 86-94.	1.4	42
225	Interaction of NO ₂ with Model NSR Catalysts: Metal–Oxide Interaction Controls Initial NO _{<i>x</i>} Storage Mechanism. ChemPhysChem, 2008, 9, 2191-2197.	1.0	18
226	Effect of tin content and reduction temperature on the catalytic behaviour of PtSn/TiO2 catalysts in the vapour-phase hydrogenation of crotonaldehyde. Catalysis Today, 2008, 133-135, 35-41.	2.2	30
227	Selective CO oxidation in excess of H2 over high-surface area CuO/CeO2 catalysts. Catalysis Today, 2008, 133-135, 743-749.	2.2	80
228	Ligand effects observed for the adsorption of CO on Co–Pt alloys. Surface Science, 2008, 602, 2101-2106.	0.8	6
229	Formation of one-dimensional molybdenum oxide on Mo(112). Surface Science, 2008, 602, 3338-3342.	0.8	23
230	Dendrimer templates for heterogeneous catalysts: Bimetallic Pt–Au nanoparticles on oxide supports. Applied Catalysis B: Environmental, 2008, 81, 225-235.	10.8	54
231	Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in situ ATR-FTIR method. Electrochimica Acta, 2008, 53, 6104-6110.	2.6	35
232	Hydrodechlorination of 1,2-dichloroethane catalyzed by dendrimer-derived Pt–Cu/SiO2 catalysts. Journal of Catalysis, 2008, 259, 111-122.	3.1	33
233	Adsorption and reaction of NO2 on ordered alumina films and mixed baria–alumina nanoparticles: Cooperative versus non-cooperative reaction mechanisms. Journal of Catalysis, 2008, 260, 315-328.	3.1	60
234	Isomerization and Hydrogenation of <i>cis</i> -2-Butene on Pd Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 11408-11420.	1.5	94
235	Effect of highly dispersed active sites of Cu/TiO2 catalyst on CO oxidation. Catalysis Communications, 2008, 9, 2381-2385.	1.6	52
236	Modeling NO <i>_x</i> Storage Materials:  On the Formation of Surface Nitrites and Nitrates and Their Identification by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 6477-6486.	1.5	34
237	Adsorption/Oxidation of CO on Highly Dispersed Pt Catalyst Studied by Combined Electrochemical and ATR-FTIRAS Methods:  Oxidation of CO Adsorbed on Carbon-Supported Pt Catalyst and Unsupported Pt Black. Langmuir, 2008, 24, 3590-3601.	1.6	54
238	A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles: Identifying New Adsorption Sites with Novel Properties. Journal of Physical Chemistry C, 2008, 112, 16539-16549.	1.5	41
239	Adsorption of Au and Pd Atoms on Thin SiO ₂ Films:  the Role of Atomic Structure. Journal of Physical Chemistry C, 2008, 112, 3405-3409.	1.5	29
241	Pd catalysed hexyne hydrogenation modified by Bi and by Pb. Journal of Catalysis, 2009, 261, 208-216.	3.1	100

#	Article	IF	CITATIONS
242	New insight on the nature of catalytically active gold sites: Quantitative CO chemisorption data and analysis of FTIR spectra of adsorbed CO and of isotopic mixtures. Journal of Catalysis, 2009, 262, 169-176.	3.1	64
243	Active sites on Cu/SiO2 prepared using the atomic layer epitaxy technique for a low-temperature water–gas shift reaction. Journal of Catalysis, 2009, 263, 155-166.	3.1	55
244	Probing defect species on real surfaces from the analysis of the spectral profile of admolecules. Surface Science, 2009, 603, 887-894.	0.8	0
245	Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry. Journal of Electroanalytical Chemistry, 2009, 632, 109-119.	1.9	56
246	In situ ATR-FTIR study of bulk CO oxidation on a polycrystalline Pt electrode. Electrochimica Acta, 2009, 54, 6276-6285.	2.6	23
247	Catalytically active gold sites: nanoparticles, borderline sites, clusters, cations, anions? FTIR spectra analysis of12CO and of12CO-13CO isotopic mixtures. Gold Bulletin, 2009, 42, 106-112.	3.2	37
248	Heterogeneous against homogeneous spectral response of polar molecules adsorbed on a real surface. Chemical Physics, 2009, 362, 41-57.	0.9	0
249	Characterization of well faceted palladium nanoparticles supported on alumina by transmission electron microscopy and FT-IR spectroscopy of CO adsorption. Applied Catalysis A: General, 2009, 352, 50-60.	2.2	42
250	Influence of tin addition by redox reaction in different media on the catalytic properties of Pt-Re/Al2O3 naphtha reforming catalysts. Applied Catalysis A: General, 2009, 370, 34-41.	2.2	14
251	Model NO _{<i>x</i>} Storage Materials at Realistic NO ₂ Pressures. ChemCatChem, 2009, 1, 318-325.	1.8	6
252	Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silicaâ~'Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. Journal of Physical Chemistry C, 2009, 113, 10485-10492.	1.5	124
253	Particle-Size-Dependent Interaction of NO ₂ with Pd Nanoparticles Supported on Model NO _{<i>x</i>} Storage Materials. Journal of Physical Chemistry C, 2009, 113, 9755-9764.	1.5	9
254	The influence of water and pH on adsorption and oxidation of CO on Pd/Al ₂ O ₃ —an investigation by attenuated total reflection infrared spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 641-649.	1.3	48
255	Spectroscopic and microcalorimetric study of a TiO ₂ -supported platinum catalyst. Physical Chemistry Chemical Physics, 2009, 11, 917-920.	1.3	21
256	Mechanistic investigations of photo-driven processes over TiO2 by in-situ DRIFTS-MS: Part 1. Platinization and methanol reforming. Energy and Environmental Science, 2009, 2, 991.	15.6	61
257	Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition. Physical Chemistry Chemical Physics, 2009, 11, 2514.	1.3	10
258	Comparative in Situ DRIFTS-MS Study of ¹² CO- and ¹³ CO-TPR on CuO/CeO ₂ Catalyst. Journal of Physical Chemistry C, 2009, 113, 10689-10695.	1.5	102
259	Evolution of Platinum Particles Dispersed on Zeolite upon Oxidation Catalysis and Ageing. ChemCatChem, 2010, 2, 1599-1605.	1.8	19

#	Article	IF	CITATIONS
260	Multitechnique analysis of supported Pd particles upon dynamic, cycling CO/NO conditions: Size-dependence of the structure–activity relationship. Journal of Catalysis, 2010, 270, 275-284.	3.1	29
261	Effect of active sites for a water–gas shift reaction on Cu nanoparticles. Journal of Catalysis, 2010, 273, 18-28.	3.1	35
262	Reaction pathway of the reduction by CO under dry conditions of NOx species stored onto PtBa/Al2O3 Lean NOx Trap catalysts. Journal of Catalysis, 2010, 274, 163-175.	3.1	34
263	Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. Journal of Catalysis, 2010, 275, 11-24.	3.1	106
264	A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. Journal of Catalysis, 2010, 276, 268-279.	3.1	256
265	Designing Pt nanoparticles supported on CeO2–Al2O3: Synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane. Journal of Catalysis, 2010, 276, 351-359.	3.1	51
266	From Adlayer Islands to Surface Alloy: Structural and Chemical Changes on Bimetallic PtRu/Ru(0001) Surfaces. ChemPhysChem, 2010, 11, 3123-3132.	1.0	29
267	Platinum Nanoparticles: The Crucial Role of Crystal Face and Colloid Stabilizer in the Diastereoselective Hydrogenation of Cinchonidine. Chemistry - A European Journal, 2010, 16, 2181-2192.	1.7	53
268	Effect of the temperatures on structural and optical properties of tin oxide (SnOx) powder. Physica B: Condensed Matter, 2010, 405, 313-317.	1.3	15
269	In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black. Part II: Monitoring of catalyst aging by in situ Fourier transform infrared spectroscopy. Journal of Power Sources, 2010, 195, 7968-7973.	4.0	7
270	Infrared spectra of high coverage CO adsorption structures on Pt(111). Surface Science, 2010, 604, 1320-1325.	0.8	27
271	DRIFTS-MS studies of preferential oxidation of CO in H2 rich stream over (CuO)0.7(CeO2)0.3 and (Cu0.9M0.1O)0.7(CeO2)0.3 (M=Co, Zn and Sn) catalysts. Catalysis Today, 2010, 155, 184-191.	2.2	23
272	The observation of equilibria present in stepwise gas phase hydrogenation reactions. Catalysis Today, 2010, 155, 206-213.	2.2	7
273	Experimental investigation of the reduction of NOx species by CO and H2 over Pt–Ba/Al2O3 lean NOx trap systems. Catalysis Today, 2010, 151, 330-337.	2.2	33
274	CHARACTERIZATION OF SURFACE DEFECTS THROUGH THE MODIFICATION OF THE INFRARED PROFILE OF ADMOLECULES: APPLICATION TO CO MOLECULES ADSORBED ON (100) MgO AND NaCl SURFACES. Surface Review and Letters, 2010, 17, 431-436.	0.5	0
275	Photocatalytic Degradation of RhB over TiO ₂ Bilayer Films: Effect of Defects and Their Location. Langmuir, 2010, 26, 9686-9694.	1.6	380
276	Probing Terrace and Step Sites on Pt Nanoparticles Using CO and Ethylene. Journal of Physical Chemistry C, 2010, 114, 7904-7912.	1.5	105
277	Mechanism of CO + N ₂ O Reaction via Transient CO ₃ ^{2â^'} Species over Crystalline Fe-Substituted Lanthanum Titanates. Journal of Physical Chemistry B, 2010, 114, 6943-6953.	1.2	16

#	Article	IF	CITATIONS
278	CO Adsorption on Thin MgO Films and Single Au Adatoms: A Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2010, 114, 8997-9001.	1.5	22
279	Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chemical Society Reviews, 2010, 39, 4951.	18.7	407
280	Carbon Dioxide Hydrogenation on Cu Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 15021-15028.	1.5	59
281	Specific reactivity of step sites towards CO adsorption and oxidation on platinum single crystals vicinal to Pt(111). Physical Chemistry Chemical Physics, 2010, 12, 11407.	1.3	45
282	Role of hydrogen in olefin isomerization and hydrogenation: a molecular beam study on Pd model supported catalysts. Dalton Transactions, 2010, 39, 8484.	1.6	14
283	lonic liquid based model catalysis: interaction of [BMIM][Tf2N] with Pd nanoparticles supported on an ordered alumina film. Physical Chemistry Chemical Physics, 2010, 12, 10610.	1.3	77
284	Well-Defined Negatively Charged Gold Carbonyls on Au/SiO ₂ . Journal of Physical Chemistry C, 2011, 115, 21273-21282.	1.5	50
285	Quantum Cascade Laser Spectroscopy and Photoinduced Chemistry of Al–(CO) _{<i>n</i>} Clusters in Helium Nanodroplets. Journal of Physical Chemistry A, 2011, 115, 7437-7447.	1.1	26
286	Surface Properties of Supported, Colloid-Derived Gold/Palladium Mono- and Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 8195-8205.	1.5	30
287	Comparison of reactivity on step and terrace sites of Pd (332) surface for the dissociative adsorption of hydrogen: A quantum chemical molecular dynamics study. Applied Surface Science, 2011, , .	3.1	1
288	In Situ Mechanistic Investigation at the Liquid/Solid Interface by Attenuated Total Reflectance FTIR: Ethanol Photo-Oxidation over Pristine and Platinized TiO ₂ (P25). ACS Catalysis, 2011, 1, 864-871.	5.5	49
289	Applications of Fiber Optic Coupled-Grazing Angle Probe Reflection-Absorption FTIR Spectroscopy. , 0, ,		0
290	Correlation between deactivation and Pt-carbonyl formation during toluene hydrogenation using a H2/CO2 mixture. Journal of Catalysis, 2011, 278, 153-161.	3.1	15
291	Pt speciation on ZSM-5 by IR of probes co-adsorption and chemometric analysis. Microporous and Mesoporous Materials, 2011, 140, 103-107.	2.2	14
292	Ligand Effects in SCILL Model Systems: Siteâ€Specific Interactions with Pt and Pd Nanoparticles. Advanced Materials, 2011, 23, 2617-2621.	11.1	91
293	Surface Science and Model Catalysis with Ionic Liquidâ€Modified Materials. Advanced Materials, 2011, 23, 2571-2587.	11.1	181
294	The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: The bonding strength. International Journal of Hydrogen Energy, 2011, 36, 6817-6825.	3.8	59
295	In situ FTIR studies of CO oxidation over Fe-free and Fe-promoted PtY catalysts: Effect of water vapor addition. Journal of Molecular Catalysis A, 2011, 344, 111-121.	4.8	10

#	Article	IF	CITATIONS
296	Scale Dependence of the Orientation and Conformation Distribution Analysis of a Molecular Monolayer Using Sum Frequency Generation Imaging Microscopy. Journal of Physical Chemistry C, 2012, 116, 25874-25887.	1.5	11
297	An operando DRIFTS investigation into the resistance against CO ₂ poisoning of a Rh/alumina catalyst during toluenehydrogenation. Physical Chemistry Chemical Physics, 2012, 14, 2159-2163.	1.3	24
298	Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra. Physical Chemistry Chemical Physics, 2012, 14, 11344.	1.3	106
299	Synthesis Strategy for Protected Metal Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 7748-7756.	1.5	44
300	Interaction of CO and deuterium with bimetallic, monolayer Pt-island/film covered Ru(0001) surfaces. Physical Chemistry Chemical Physics, 2012, 14, 10919.	1.3	22
301	Dissociative adsorption of hydrogen on the ZrB2(0001) surface. Surface Science, 2012, 606, 1808-1814.	0.8	8
302	Microstructural Changes of Supported Intermetallic Nanoparticles under Reductive and Oxidative Conditions: An in Situ X-ray Absorption Study of Pd/Ga ₂ O ₃ . Journal of Physical Chemistry C, 2012, 116, 21816-21827.	1.5	18
304	CO Adsorption Behavior of Cu/SiO ₂ , Co/SiO ₂ , and CuCo/SiO ₂ Catalysts Studied by in Situ DRIFTS. Journal of Physical Chemistry C, 2012, 116, 7931-7939.	1.5	86
306	Catalytic Steam Reforming of Methanol to Produce Hydrogen on Supported Metal Catalysts. , 2012, , .		5
307	Infrared Absorption Spectroscopy of Adsorbed CO: New Applications in Nanocatalysis for an Old Approach. ChemCatChem, 2012, 4, 1525-1533.	1.8	43
308	Redox and catalytic properties of CuO/CeO2 under CO+O2+NO: Promoting effect of NO on CO oxidation. Catalysis Today, 2012, 180, 81-87.	2.2	32
309	Selective butadiene hydrogenation by Pd nanoparticles deposed onto nano-sized oxide supports by CVD of Pd-hexafluoroacetylacetonate. Inorganica Chimica Acta, 2012, 380, 216-222.	1.2	17
310	Pt–Re–Ge/Al2O3 catalysts for n-octane reforming: Influence of the order of addition of the metal precursors. Applied Catalysis A: General, 2012, 419-420, 156-163.	2.2	17
311	Intramolecular selective hydrogenation of cinnamaldehyde over CeO2–ZrO2-supported Pt catalysts. Journal of Catalysis, 2012, 285, 31-40.	3.1	106
312	On the promoting effect of Au on CO oxidation kinetics of Au–Pt bimetallic nanoparticles supported on SiO2: An electronic effect?. Journal of Catalysis, 2012, 287, 102-113.	3.1	91
313	Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. Journal of Catalysis, 2012, 289, 118-126.	3.1	88
314	Supported Ni catalysts prepared by intercalation of Layered Double Hydroxides: Investigation of acid–base properties and nature of Ni phases. Microporous and Mesoporous Materials, 2012, 147, 178-187.	2.2	15
316	Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, 2013, , .	0.4	36

#	Article	IF	CITATIONS
317	Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 2013, 451, 184-191.	2.2	50
318	Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Applied Catalysis B: Environmental, 2013, 142-143, 8-14.	10.8	82
319	Pt-Mg-Ir/Al2O3 and Pt-Ir/HY zeolite catalysts for SRO of decalin. Influence of Ir content and support acidity. Applied Catalysis A: General, 2013, 452, 48-56.	2.2	20
320	Surface structures of Au–Pt bimetallic nanoclusters on thin film Al2O3/NiAl(100) probed with CO. Surface Science, 2013, 618, 132-139.	0.8	5
321	AlCl3-promoted MCM-41-supported platinum catalysts with high activity and sulfur-tolerance for tetralin hydrogenation: Effect of Pt–Al interaction. Catalysis Communications, 2013, 35, 6-10.	1.6	7
322	AlCl3-Promoted MCM-41-Supported Platinum Catalysts with High Activity and Sulfur-Tolerance for Tetralin Hydrogenation: Effect of Al/Pt Ratio. Catalysis Letters, 2013, 143, 454-462.	1.4	10
323	Trends in the Binding Strength of Surface Species on Nanoparticles: How Does the Adsorption Energy Scale with the Particle Size?. Angewandte Chemie - International Edition, 2013, 52, 5175-5179.	7.2	66
324	Formation of Cu Nanoparticles in SBA-15 Functionalized with Carboxylic Acid Groups and Their Application in the Water–Gas Shift Reaction. ACS Catalysis, 2013, 3, 667-677.	5.5	60
325	Enhanced Activity and Selectivity in Catalytic Methanol Steam Reforming by Basic Alkali Metal Salt Coatings. Angewandte Chemie - International Edition, 2013, 52, 5028-5032.	7.2	43
326	Influence of the Ce–Zr promoter on Pd behaviour under dynamic CO/NO cycling conditions: a structural and chemical approach. Physical Chemistry Chemical Physics, 2013, 15, 8640.	1.3	15
330	Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach. Review of Scientific Instruments, 2014, 85, 074102.	0.6	71
331	Interfaces in Microfluidic and Nanofluidic Systems. , 2014, , 39-86.		2
332	Cu/Niâ€Loaded CeO ₂ â€ZrO ₂ Catalyst for the Waterâ€Gas Shift Reaction: Effects of Loaded Metals and CeO ₂ Addition. Chemical Engineering and Technology, 2014, 37, 2129-2134.	0.9	13
333	Chapter 2. Isotopes in the FTIR investigations of solid surfaces. Spectroscopic Properties of Inorganic and Organometallic Compounds, 2014, , 43-78.	0.4	9
334	Methanol Steam Reforming Promoted by Molten Saltâ€Modified Platinum on Alumina Catalysts. ChemSusChem, 2014, 7, 2516-2526.	3.6	19
335	Selectivity in the catalytic hydrogenation of cinnamaldehyde promoted by Pt/SiO2 as a function of metal nanoparticle size. Catalysis Science and Technology, 2014, 4, 955-962.	2.1	72
336	A transient <i>in situ</i> infrared spectroscopy study on methane oxidation over supported Pt catalysts. Catalysis Science and Technology, 2014, 4, 3463-3473.	2.1	28
337	An in situ self-assembled core–shell precursor route to prepare ultrasmall copper nanoparticles on silica catalysts. Journal of Materials Chemistry A, 2014, 2, 7837.	5.2	46

#	Article	IF	CITATIONS
338	Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction. Chemical Engineering Journal, 2014, 255, 40-48.	6.6	46
339	Enhancing tetralin hydrogenation activity and sulphur-tolerance of Pt/MCM-41 catalyst with Al(NO ₃) ₃ , AlCl ₃ and Al(CH ₃) ₃ . Catalysis Science and Technology, 2014, 4, 2081-2090.	2.1	14
340	Cu/Al 2 O 3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319, 127-135.	3.1	163
341	Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method. Nanoscale Research Letters, 2014, 9, 401.	3.1	26
342	Spectral evidence for hydrogen-induced reversible segregation of CO adsorbed on titania-supported rhodium. Physical Chemistry Chemical Physics, 2014, 16, 13136-13144.	1.3	14
343	Influence of Organic Amino and Thiol Ligands on the Geometric and Electronic Surface Properties of Colloidally Prepared Platinum Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 8925-8932.	1.5	45
344	Structure of Platinum Catalysts under CO, Hydrogen, and Oxygen; Anomalous Behavior of Pt on Ceria after Cyanide Leaching. Journal of Physical Chemistry C, 2014, 118, 13432-13443.	1.5	2
345	Role of the Interface in Baseâ€Metal Ceriaâ€Based Catalysts for Hydrogen Purification and Production Processes. ChemCatChem, 2015, 7, 3614-3624.	1.8	35
346	Ag on Pt(111): Changes in Electronic and CO Adsorption Properties upon PtAg/Pt(111) Monolayer Surface Alloy Formation. ChemPhysChem, 2015, 16, 2943-2952.	1.0	12
347	Mechanically exfoliated ultra-thin WO3 nanostructures: study of their enhanced electrical properties. Ionics, 2015, 21, 775-784.	1.2	7
348	Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111). Journal of Physical Chemistry C, 2015, 119, 18340-18351.	1.5	23
349	Nanoshaped CuO/CeO ₂ Materials: Effect of the Exposed Ceria Surfaces on Catalytic Activity in N ₂ O Decomposition Reaction. ACS Catalysis, 2015, 5, 5357-5365.	5.5	181
350	CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. Journal of Catalysis, 2015, 329, 538-546.	3.1	74
351	Sensitivity of the glycerol oxidation reaction to the size and shape of the platinum nanoparticles in Pt/SiO2 catalysts. Journal of Catalysis, 2015, 326, 116-126.	3.1	51
352	Al(CH ₃) ₃ -promoted Pt/MCM-41 catalysts for tetralin hydrogenation in the presence of benzothiophene and promotion mechanism of Al-promoted Pt/MCM-41 catalysts. RSC Advances, 2015, 5, 42468-42476.	1.7	4
353	Optimisation of preparation method for Pd doped Cu/Al ₂ O ₃ catalysts for selective acetylene hydrogenation. Catalysis Science and Technology, 2015, 5, 2880-2890.	2.1	80
354	Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 2015, 6, 8675.	5.8	79
355	Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in situ Vibrational Spectroscopy. Langmuir, 2015, 31, 12126-12139.	1.6	17

#	Article	IF	CITATIONS
356	Directed Assembly of Cuprous Oxide Nanocatalyst for CO ₂ Reduction Coupled to Heterobinuclear ZrOCo ^{II} Light Absorber in Mesoporous Silica. ACS Catalysis, 2015, 5, 5627-5635.	5.5	32
357	Effect of steam addition on the structure and activity of Pt–Sn catalysts in propane dehydrogenation. Chemical Engineering Journal, 2015, 278, 240-248.	6.6	54
358	A study of the hydrodenitrogenation of propylamine over supported nickel phosphide catalysts using amorphous and nanostructured silica supports. Applied Catalysis B: Environmental, 2015, 164, 48-60.	10.8	22
359	The effect of an Fe promoter on Cu/SiO ₂ catalysts for improving their catalytic activity and stability in the water-gas shift reaction. Catalysis Science and Technology, 2016, 6, 6087-6096.	2.1	17
360	Kinetic Studies of the Pt Carbonate-Mediated, Room-Temperature Oxidation of Carbon Monoxide by Oxygen over Pt/Al ₂ O ₃ Using Combined, Time-Resolved XAFS, DRIFTS, and Mass Spectrometry. Journal of the American Chemical Society, 2016, 138, 13930-13940.	6.6	38
361	Stabilization of Small Platinum Nanoparticles on Pt–CeO ₂ Thin Film Electrocatalysts During Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 19723-19736.	1.5	50
362	Structures and Catalytic Properties of Cr–Cu Embedded CeO ₂ Surfaces with Different Cr/Cu Ratios. Journal of Physical Chemistry C, 2016, 120, 26852-26863.	1.5	20
363	FTIR Techniques for the Characterization of Au(-Ceria)-Based Catalysts. , 2016, , 223-270.		0
364	Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surface Science Reports, 2016, 71, 77-271.	3.8	106
365	Characterisation of gold catalysts. Chemical Society Reviews, 2016, 45, 4953-4994.	18.7	140
366	How to stabilize highly active Cu+ cations in a mixed-oxide catalyst. Catalysis Today, 2016, 263, 4-10.	2.2	11
367	Interaction of CO with PtxAg1-x/Pt(111) surface alloys: More than dilution by Ag atoms. Surface Science, 2016, 650, 237-254.	0.8	11
368	Adsorption of CO ₂ on MIL-53(Al): FTIR evidence of the formation of dimeric CO ₂ species. Chemical Communications, 2016, 52, 1494-1497.	2.2	23
369	Role of NH ₃ in the Electron-Induced Reactions of Adsorbed and Solid Cisplatin. Journal of Physical Chemistry C, 2016, 120, 4112-4120.	1.5	18
370	Characterization and catalytic properties of CuO/CeO 2 /MgAl 2 O 4 for preferential oxidation of CO in H 2 -rich streams. Applied Catalysis B: Environmental, 2016, 188, 292-304.	10.8	46
371	Defects and Deformation of Boron Nitride Nanotubes Studied by Joint Nanoscale Mechanical and Infrared Near-Field Microscopy. Journal of Physical Chemistry C, 2016, 120, 1945-1951.	1.5	22
372	Quantitative determination of surface species and adsorption sites using Infrared spectroscopy. Catalysis Today, 2016, 259, 19-26.	2.2	32
373	Partial oxidation of methanol over copper supported on nanoshaped ceria for hydrogen production. Catalysis Today, 2017, 282, 185-194.	2.2	50

#	Article	IF	CITATIONS
374	On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts. Catalysis Science and Technology, 2017, 7, 988-999.	2.1	31
375	Measuring and interpreting quantum efficiency for hydrogen photo-production using Pt-titania catalysts. Journal of Catalysis, 2017, 347, 157-169.	3.1	68
376	Structure/redox/activity relationships in CeO2/CuMn2O4 CO-PROX catalysts. Applied Catalysis B: Environmental, 2017, 217, 1-11.	10.8	56
377	Step-type and step-density influences on CO adsorption probed by reflection absorption infrared spectroscopy using a curved Pt(1 1 1) surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	16
378	Effect of surface modification with silica on the structure and activity of Pt/ZSM-22@SiO2 catalysts in hydrodeoxygenation of methyl palmitate. Journal of Catalysis, 2017, 345, 124-134.	3.1	68
379	In Situ Spectroscopy and Mechanistic Insights into CO Oxidation on Transition-Metal-Substituted Ceria Nanoparticles. ACS Catalysis, 2017, 7, 6843-6857.	5.5	78
380	Electrochemical CO Oxidation at Platinum on Carbon Studied through Analysis of Anomalous in Situ IR Spectra. Journal of Physical Chemistry C, 2017, 121, 17176-17187.	1.5	54
381	Isotopic Labelling in Vibrational Spectroscopy: A Technique to Decipher the Structure of Surface Species. Topics in Catalysis, 2017, 60, 1486-1495.	1.3	6
382	Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochimica Acta, 2017, 251, 427-441.	2.6	15
383	DRIFTS study of CO adsorption on Pt nanoparticles supported by DFT calculations. Journal of Molecular Catalysis A, 2017, 426, 1-9.	4.8	64
384	KOH-promoted Pt/Al2O3 catalysts for water gas shift and methanol steam reforming: An operando DRIFTS-MS study. Applied Catalysis B: Environmental, 2017, 201, 169-181.	10.8	77
385	Origin of the Normal and Inverse Hysteresis Behavior during CO Oxidation over Pt/Al ₂ O ₃ . ACS Catalysis, 2017, 7, 343-355.	5.5	65
386	Time Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts. Catalysts, 2017, 7, 58.	1.6	38
387	Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts. Review of Scientific Instruments, 2018, 89, 045104.	0.6	17
388	Electrified Interfaces of Pt(332) and Pt(997) in Acid Containing CO and KI: As Probed by in Situ Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2018, 122, 26111-26119.	1.5	5
389	Vapor-Phase Cleaning and Corrosion Inhibition of Copper Films by Ethanol and Heterocyclic Amines. ACS Applied Materials & Interfaces, 2018, 10, 38610-38620.	4.0	19
390	Acidic effect of porous alumina as supports for Pt nanoparticle catalysts in n-hexane reforming. Catalysis Science and Technology, 2018, 8, 3295-3303.	2.1	16
391	In Situ Monitoring Using ATR-SEIRAS of the Electrocatalytic Reduction of CO ₂ on Au in an Ionic Liquid/Water Mixture. ACS Catalysis, 2018, 8, 6345-6352.	5.5	65

#	Article	IF	Citations
392	Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination. Applied Catalysis B: Environmental, 2018, 238, 533-545.	10.8	70
393	Identification of Active Sites in Oxidation Reaction from Real-Time Probing of Adsorbate Motion over Pd Nanoparticles. Journal of Physical Chemistry Letters, 2018, 9, 5202-5206.	2.1	5
394	Incisive study on stability and vibrational properties of NOx (x = 1 to 3) over Pt surfaces: A comparative analysis. Surface Science, 2019, 690, 121467.	0.8	8
395	Multicomponent Spinel Oxide Solid Solutions: A Possible Alternative to Platinum Group Metal Three-Way Catalysts. ACS Catalysis, 2019, 9, 11763-11773.	5.5	28
396	Atomic-Scale Surface Structure and CO Tolerance of NiCu Single-Atom Alloys. Journal of Physical Chemistry C, 2019, 123, 28142-28147.	1.5	30
397	Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H2-rich stream. International Journal of Hydrogen Energy, 2019, 44, 12649-12660.	3.8	21
398	Unravelling the Nature of the Active Species as well as the Doping Effect over Cu/Ce-Based Catalyst for Carbon Monoxide Preferential Oxidation. ACS Catalysis, 2019, 9, 2177-2195.	5.5	149
399	Unravelling Platinum–Zirconia Interfacial Sites Using CO Adsorption. Inorganic Chemistry, 2019, 58, 8021-8029.	1.9	25
400	Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al ₂ O ₃ . ChemCatChem, 2019, 11, 3064-3074.	1.8	18
401	Pt–Ga Model SCALMS on Modified HOPG: Growth and Adsorption Properties. Topics in Catalysis, 2019, 62, 849-858.	1.3	9
402	Dynamic CO Adsorption and Desorption through the Ionic Liquid Layer of a Pt Model Solid Catalyst with Ionic Liquid Layers. Journal of Physical Chemistry C, 2019, 123, 31057-31072.	1.5	12
403	Pd model catalysts on clean and modified HOPG: Growth, adsorption properties, and stability. Surface Science, 2019, 679, 64-73.	0.8	20
404	Pd-Ga model SCALMS: Characterization and stability of Pd single atom sites. Journal of Catalysis, 2019, 369, 33-46.	3.1	33
405	Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation. Journal of Hazardous Materials, 2019, 367, 568-576.	6.5	94
406	Strong Substrate Mediation of Attractive Lateral Interactions of CO on Cu(110). Langmuir, 2019, 35, 608-614.	1.6	4
407	Boosting the Characterization of Heterogeneous Catalysts for H2O2 Direct Synthesis by Infrared Spectroscopy. Catalysts, 2019, 9, 30.	1.6	13
408	Operando Spectroscopic Investigations of Copper and Oxide-Derived Copper Catalysts for Electrochemical CO Reduction. ACS Catalysis, 2019, 9, 474-478.	5.5	80
409	CO Adsorption on Au(332): Combined Infrared Spectroscopy and Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 8187-8197.	1.5	7

#	Article	IF	CITATIONS
410	Methanol decomposition over bimetallic Cu-M catalysts supported on nanoceria: Effect of the second metal on the catalytic properties. Catalysis Today, 2020, 356, 440-455.	2.2	18
411	Combining STM, RAIRS and TPD to Decipher the Dispersion and Interactions Between Active Sites in RhCu Singleâ€Atom Alloys. ChemCatChem, 2020, 12, 488-493.	1.8	30
412	Unraveling the effect of ZrO ₂ modifiers on the nature of active sites on AuRu/ZrO ₂ catalysts for furfural hydrogenation. Sustainable Energy and Fuels, 2020, 4, 1469-1480.	2.5	10
413	Impact of Forced Convection on Spectroscopic Observations of the Electrochemical CO Reduction Reaction. ACS Catalysis, 2020, 10, 941-946.	5.5	26
414	Upgrading the PtCu intermetallic compounds: The role of Pt and Cu in the alloy. Catalysis Today, 2020, 356, 390-398.	2.2	10
415	Relationship between Al-loading and CO oxidation activity of mesostructured silica-supported Pt-based catalysts. Microporous and Mesoporous Materials, 2020, 305, 110295.	2.2	6
416	<i>Operando</i> Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano, 2020, 14, 16392-16413.	7.3	24
417	Quantum state and surface-site-resolved studies of methane chemisorption by vibrational spectroscopies. Physical Chemistry Chemical Physics, 2020, 22, 17448-17459.	1.3	9
418	Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Science Advances, 2020, 6, .	4.7	95
419	A gradient reduction strategy to produce defects-rich nano-twin Cu particles for targeting activation of carbon-carbon or carbon-oxygen in furfural conversion. Journal of Catalysis, 2020, 389, 78-86.	3.1	12
420	Reorganization of Interfacial Water by an Amphiphilic Cationic Surfactant Promotes CO ₂ Reduction. Journal of Physical Chemistry Letters, 2020, 11, 5457-5463.	2.1	54
421	The influence of ceria on Cu/TiO ₂ catalysts to produce abundant oxygen vacancies and induce highly efficient CO oxidation. Catalysis Science and Technology, 2020, 10, 4271-4281.	2.1	19
422	Pt–Ga Model SCALMS on Modified HOPG: Thermal Behavior and Stability in UHV and under Near-Ambient Conditions. Journal of Physical Chemistry C, 2020, 124, 2562-2573.	1.5	15
423	Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. Journal of Catalysis, 2020, 385, 146-159.	3.1	45
424	Dry reforming of methane over Pt-Ni/CeO2 catalysts: Effect of the metal composition on the stability. Catalysis Today, 2021, 360, 46-54.	2.2	81
425	Role of surface coverage of alumina with Pt nanoparticles deposited by laser electrodispersion in catalytic CO oxidation. Applied Surface Science, 2021, 536, 147656.	3.1	13
426	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angewandte Chemie, 2021, 133, 4929-4935.	1.6	98
427	Atomically Dispersed Dopants for Stabilizing Ceria Surface Area. Applied Catalysis B: Environmental, 2021, 284, 119722.	10.8	37

#	Article	IF	CITATIONS
428	Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angewandte Chemie - International Edition, 2021, 60, 4879-4885.	7.2	171
429	Katalyse der Oxidation von CO an Pt/CeO ₂ bei Raumtemperatur: Synergie zwischen metallischen und oxidierten Ptâ€Zentren. Angewandte Chemie, 2021, 133, 3843-3849.	1.6	4
430	Synergy between Metallic and Oxidized Pt Sites Unravelled during Room Temperature COâ€Oxidation on Pt/Ceria. Angewandte Chemie - International Edition, 2021, 60, 3799-3805.	7.2	74
431	Characterization of the Evolution of Noble Metal Particles in a Commercial Three-Way Catalyst: Correlation between Real and Simulated Ageing. Catalysts, 2021, 11, 247.	1.6	10
433	Effect of water treatment and Ce doping of Pt/Al2O3 catalysts on Pt sintering and propane oxidation. Research on Chemical Intermediates, 2021, 47, 2935-2950.	1.3	5
434	Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts. Applied Petrochemical Research, 2021, 11, 235-248.	1.3	2
435	A Molecular View of the Ionic Liquid Catalyst Interface of SCILLs: Coverage-Dependent Adsorption Motifs of [C ₄ C ₁ Pyr][NTf ₂] on Pd Single Crystals and Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 13264-13272.	1.5	9
436	Subâ€Second Timeâ€Resolved Surfaceâ€Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO ₂ Reduction on Copper. Angewandte Chemie, 2021, 133, 16712-16720.	1.6	17
437	Subâ€Second Timeâ€Resolved Surfaceâ€Enhanced Raman Spectroscopy Reveals Dynamic CO Intermediates during Electrochemical CO ₂ Reduction on Copper. Angewandte Chemie - International Edition, 2021, 60, 16576-16584.	7.2	141
438	Bimetallic Cu-Pt catalysts over nanoshaped ceria for hydrogen production via methanol decomposition. Catalysis Today, 2022, 394-396, 486-498.	2.2	13
439	Effects of bromide adsorption on the direct synthesis of H2O2 on Pd nanoparticles: Formation rates, selectivities, and apparent barriers at steady-state. Journal of Catalysis, 2021, 399, 24-40.	3.1	20
440	Contributions and limitations of IR spectroscopy of CO adsorption to the characterization of bimetallic and nanoalloy catalysts. Catalysis Today, 2021, 373, 59-68.	2.2	14
441	Multifunctional Catalyst Combination for the Direct Conversion of CO ₂ to Propane. Jacs Au, 2021, 1, 1719-1732.	3.6	25
442	Engineering Pt-Bi2O3 Interface to Boost Cyclohexanone Selectivity in Oxidative Dehydrogenation of KA-Oil. Catalysts, 2021, 11, 1187.	1.6	2
443	Active sites and effects of co-adsorbed H2O on isolated methanol dehydrogenation over Pt/γ-Al2O3. Journal of Catalysis, 2021, 402, 218-228.	3.1	10
444	Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2021, 425, 130641.	6.6	13
446	Dendrimer Templates for Supported Nanoparticle Catalysts. , 2007, , 91-113.		1
447	Excitons and High Resolution Infrared Spectroscopy of Adlayers on Ionic Surfaces. Springer Series in Surface Sciences, 1993, , 57-67.	0.3	4

#	Article	IF	CITATIONS
448	Tuning the Strength of Molecular Bonds in Oxygenates via Surface-Assisted Intermolecular Interactions: Atomistic Insights. Journal of Physical Chemistry C, 2020, 124, 28159-28168.	1.5	9
449	An IRS Study on the Adsorption of Carbonmonoxide on Silica Supported Ni-Cu Alloys. Journal of the Korean Chemical Society, 2009, 53, 233-243.	0.2	1
450	Tuning the Cu ⁺ species of Cu-based catalysts for direct synthesis of ethanol from syngas. New Journal of Chemistry, 2021, 45, 20832-20839.	1.4	9
451	Catalysts of ceria supported on copper-chromium oxide: Ceria promotion of the CO-PROX activity. International Journal of Hydrogen Energy, 2021, 46, 38712-38723.	3.8	10
452	Methanol Dehydrogenation on Pt Electrodes: Active Sites and Role of Adsorbed Spectators Revealed through Time-Resolved ATR-SEIRAS. ACS Catalysis, 2021, 11, 13483-13495.	5.5	12
453	Molecules on Clean and Modified Oxide Surfaces. , 2000, , 91-128.		0
454	References for 2. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2002, , 35-42.	0.0	2
455	2 Characterization of adsorbate overlayers: measuring techniques. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2002, , 1-34.	0.0	0
456	From Real World Catalysis to Surface Science and Back: Can Nanoscience Help to Bridge the Gap?. , 2003, , 65-92.		3
457	Adsorption Microcalorimetry as a Tool to Study the CO–Pt Interaction for PEMFC Applications: A Case Study. Springer Series in Materials Science, 2013, , 429-453.	0.4	0
460	Preferential Oxidation of CO over CoFe2O4 and M/CoFe2O4 (M = Ce, Co, Cu or Zr) Catalysts. Catalysts, 2021, 11, 15.	1.6	8
461	Adsorption Sites, Bonding Configurations, Reactions and Mass Transport Surface. Springer Handbooks, 2020, , 853-902.	0.3	0
462	3.7.1 CO and N2 adsorption on metal surfaces - Tables. , 0, , 136-201.		0
463	Atmosphere-Induced Transient Structural Transformations of Pd–Cu and Pt–Cu Alloy Nanocrystals. Chemistry of Materials, 2021, 33, 8635-8648.	3.2	3
464	Gas phase <i>vs.</i> liquid phase: monitoring H ₂ and CO adsorption phenomena on Pt/Al ₂ O ₃ by IR spectroscopy. Catalysis Science and Technology, 2022, 12, 1359-1367.	2.1	5
465	Enhancement of room-temperature magnetoresistance in polyvinyl acetate encapsulated Fe3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2022, 557, 169468.	1.0	2
466	Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Research, 2023, 16, 4554-4561.	5.8	4
467	Infrared spectroscopic monitoring of solid-state processes. Physical Chemistry Chemical Physics, 2022, 24, 19073-19120.	1.3	3

#	Article	IF	CITATIONS
468	In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	27
469	Pdzn/Zro2 + Sapo-34 Bifunctional Catalyst for Co2 Conversion: Further Insights by Spectroscopic Characterization. SSRN Electronic Journal, 0, , .	0.4	0
470	Elucidation of the atomic-scale processes of dissociative adsorption and spillover of hydrogen on the single atom alloy catalyst Pd/Cu(111). Physical Chemistry Chemical Physics, 2022, 24, 21705-21713.	1.3	6
471	Catalytic Oxidation of CO to CO ₂ over CeO ₂ -Supported Pd–Cu Catalysts under Dilute O ₂ Conditions. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
472	<i>In situ</i> formation of Ni(CO) ₄ contaminant during IR analyses using a metal-containing reaction cell. Catalysis Science and Technology, 2022, 12, 7433-7438.	2.1	3
473	Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces. Angewandte Chemie, 0, , .	1.6	0
474	Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
475	Shifting reaction path for levulinic acid aqueous-phase hydrogenation by Pt-TiO2 metal-support interaction. Applied Catalysis B: Environmental, 2023, 324, 122236.	10.8	12
476	Kinetics of formic acid dehydration on Pt electrodes by time-resolved ATR-SEIRAS. Journal of Chemical Physics, 2023, 158, .	1.2	1
477	PdZn/ZrO2+SAPO-34 bifunctional catalyst for CO2 conversion: Further insights by spectroscopic characterization. Applied Catalysis A: General, 2023, 655, 119100.	2.2	1
478	Thermal Stability and CO Permeability of [C4C1Pyr][NTf2]/Pd(111) Model SCILLs: from UHV to Ambient Pressure. Topics in Catalysis, 2023, 66, 1202-1216.	1.3	2