A comparison of root and shoot competition between sp

Weed Research

32, 45-55

DOI: 10.1111/j.1365-3180.1992.tb01861.x

Citation Report

#	Article	IF	CITATIONS
1	Effects of nitrogen fertilizer and emergence date on root and shoot competition between wheat and blackgrass. Weed Research, 1992, 32, 175-182.	1.7	20
2	A study of root and shoot interactions between cereals and peas in mixtures. Journal of Agricultural Science, 1993, 120, 13-24.	1.3	47
3	Comparison of Green Foxtail (<i>Setaria viridis</i>) and Wild Oat (<i>Avena fatua</i>) Growth, Development, and Competitiveness under Three Temperature Regimes. Weed Science, 1993, 41, 369-378.	1.5	23
4	Spring Wheat (Triticum aestivum) Growth and Yield as Influenced by Duration of Wild Oat (Avena) Tj ETQq1 1 0.	784314 rg 0.9	BT/Overlock

 $_{5}$ Inter- and intraspecific competition of fat-hen (Chenopodium album L.) and groundsel (Senecio) Tj ETQq0 0 0 rgBT (Overlock $_{10}^{10}$ Tf 50 5

6	The response of four spring-sown combinable arable crops to weed competition. Weed Research, 1994, 34, 137-146.	1.7	40
7	Simulation of competition between barley and wild oats under different managements and climates. Ecological Modelling, 1994, 71, 269-287.	2.5	27
8	Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Research, 1995, 35, 503-509.	1.7	123
9	A comparison of the dynamics of root growth and biomass partitioning in wild oat (Avena fatua L.) and spring wheat. Weed Research, 1995, 35, 57-66.	1.7	3
10	Comparative Analysis of Three Cruciferous Weeds: Growth, Development, and Competitiveness. Weed Science, 1995, 43, 75-80.	1.5	10
11	Approaches for Improving Crop Competitiveness Through the Manipulation of Fertilization Strategies. Weed Science, 1995, 43, 491-497.	1.5	233
13	Competition in a Global Change Environment: The Importance of Different Plant Traits for Competitive Success. Journal of Biogeography, 1995, 22, 297.	3.0	23
14	Dog mustard (Erucastrum gallicum) response to crop competition. Weed Science, 1997, 45, 397-403.	1.5	3
15	The effect of seed dormancy on percentage and rate of germination in Polygonum persicaria, and its relevance for crop-weed interaction. Annals of Applied Biology, 1998, 132, 289-299.	2.5	6
16	Competition between safflower and weeds as influenced by crop genotype and sowing time. Weed Research, 1998, 38, 247-255.	1.7	20
17	Competition between barley and Lolium rigidum for nitrate. Weed Research, 1998, 38, 453-460.	1.7	26
18	Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Science, 1999, 47, 498-504.	1.5	77
19	Competitive attributes ofA. sativa, T. aestivum, andH. vulgareare conserved in no-till cropping systems. Weed Science, 1999, 47, 712-719.	1.5	9

#	Article	IF	CITATIONS
20	The relative importance of root and shoot competition between waterâ€seeded rice andEchinochloa phyllopogon. Weed Research, 1999, 39, 181-190.	1.7	46
21	Improving grasslands: the influence of soil moisture and nitrogen fertilization on the establishment of seedlings. Journal of Applied Ecology, 1999, 36, 263-270.	4.0	26
22	Interference between Avena sterilis, Phalaris minor and five barley cultivars. Weed Research, 2000, 40, 549-559.	1.7	40
23	Advances in weed management strategies. Field Crops Research, 2000, 67, 95-104.	5.1	49
24	Enhancing the competitive ability of crops. , 2001, , 269-321.		88
25	Competição por recursos do solo entre ervas daninhas e culturas. Ciencia Rural, 2001, 31, 707-714.	0.5	32
26	Wheat-Lolium multiflorum competence: effect of nitrogen application onto Argentinean varieties aggressivity. Cereal Research Communications, 2001, 29, 451-458.	1.6	3
27	Title is missing!. Plant Ecology, 2001, 152, 119-136.	1.6	83
28	Influence of nitrogen on competition between winter cereals and sterile oat. Weed Science, 2001, 49, 77-82.	1.5	52
29	Influence of nitrogen on competition between purple nutsedge, maize and soybean. International Journal of Pest Management, 2002, 48, 73-79.	1.8	11
30	Residual effects of crop rotation and weed management on a wheat test crop and weeds. Weed Science, 2002, 50, 101-111.	1.5	8
31	Estimating giant foxtail cohort productivity in soybean based on weed density, leaf area, or volume. Weed Science, 2002, 50, 72-78.	1.5	19
32	Effect of nitrogen fertilization timing on the demographic processes of wild oat (Avena fatua) in barley (Hordeum vulgare). Weed Science, 2002, 50, 616-621.	1.5	8
33	Recruitment and competitive interaction between ramets and seedlings in a perennial medicinal herb, Centella asiatica. Basic and Applied Ecology, 2002, 3, 65-76.	2.7	16
34	Variation Between Barley Cultivars in Early Response to Weed Competition. Journal of Agronomy and Crop Science, 2002, 188, 176-184.	3.5	54
35	Nitrogen effect on competition between winter cereals and littleseed canarygrass. Phytoparasitica, 2003, 31, 252-264.	1.2	7
36	Shoot and Root Competition in aLolium multiflorum-Wheat Association. Biological Agriculture and Horticulture, 2003, 21, 15-33.	1.0	5
37	Above- and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Science, 2003, 51, 181-185.	1.5	38

#	Article	IF	CITATIONS
38	Influência de cultivares de arroz e épocas da adubação nitrogenada nas relações de interferência da cultura com cultivar simulador de infestação de arroz-vermelho. Planta Daninha, 2004, 22, 185-193.	0.5	7
40	Application method of nitrogen fertilizer affects weed growth and competition with winter wheat. Weed Biology and Management, 2004, 4, 103-113.	1.4	26
41	Spring wheat seed size and seeding rate effects on yield loss due to wild oat (Avena fatua) interference. Weed Science, 2004, 52, 133-141.	1.5	53
42	Weed Biology and Management. , 2004, , .		4
43	Competitiveness of Rice Cultivars as a Tool for Crop-Based Weed Management. , 2004, , 517-537.		18
44	Variable crop plant establishment contributes to differences in competitiveness with wild oat among cereal varieties. Canadian Journal of Plant Science, 2005, 85, 771-776.	0.9	26
45	Nitrogen Fertilizer, Manure, and Compost Effects on Weed Growth and Competition with Spring Wheat. Agronomy Journal, 2005, 97, 1612-1621.	1.8	44
46	Wild Mustard (Sinapis arvensis L.) Competition with Three Winter Cereals as Affected by Nitrogen Supply. Journal of Agronomy and Crop Science, 2005, 191, 241-248.	3.5	21
47	Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Protection, 2005, 24, 971-980.	2.1	84
48	Barley (Hordeum vulgare) and Wild Oat (Avena fatua) Competition Is Affected by Crop and Weed Density1. Weed Technology, 2005, 19, 790-795.	0.9	35
49	Competitive interactions between chick-pea genotypes and weeds. Weed Research, 2006, 46, 335-344.	1.7	31
50	Competitive ability of wheat in conventional and organic management systems: A review of the literature. Canadian Journal of Plant Science, 2006, 86, 333-343.	0.9	105
51	The ability of 29 barley cultivars to compete and withstand competition. Weed Science, 2006, 54, 783-792.	1.5	69
52	Response of Corn (Zea mays) and Weeds to Planting Pattern and Herbicide Use. Biological Agriculture and Horticulture, 2006, 24, 117-134.	1.0	1
53	Spatial pattern effect on corn (Zea mays) weeds competition in the humid Pampas of Argentina. International Journal of Pest Management, 2007, 53, 195-206.	1.8	16
54	Cultivar and Seeding Rate Effects on the Competitive Ability of Spring Cereals Grown under Organic Production in Northern Canada. Agronomy Journal, 2007, 99, 1199-1207.	1.8	53
55	Integrated approaches to managing weeds in spring-sown crops in western Canada. Crop Protection, 2007, 26, 390-398.	2.1	57
56	The competitive interactions between winter barley and <i>Avena sterilis</i> are siteâ€specific. Weed Research, 2008, 48, 38-47.	1.7	6

CITATION REPORT

#	Article	IF	CITATIONS
57	PHYTOTOXICITY OF 10 WINTER BARLEY VARIETIES AND THEIR COMPETITIVE ABILITY AGAINST COMMON POPPY AND IVY-LEAVED SPEEDWELL. Experimental Agriculture, 2008, 44, 385-397.	0.9	14
58	Nitrogen Fertilizer Rate Effects on Weed Competitiveness is Species Dependent. Weed Science, 2008, 56, 743-747.	1.5	110
59	Above―and belowâ€ground competition between barley, wheat, lupin and vetch in a cereal and legume intercropping system. Grass and Forage Science, 2009, 64, 401-412.	2.9	79
60	Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Research, 2009, 49, 526-533.	1.7	64
61	Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crops Research, 2009, 114, 361-373.	5.1	161
62	Barley and Rigid Ryegrass (<i>Lolium rigidum</i>) Competition is Influenced by Crop Cultivar and Density. Weed Technology, 2009, 23, 40-48.	0.9	44
63	Weed communities of transgenic glyphosateâ€ŧolerant soyabean crops in exâ€pasture land in the southern Mesopotamic Pampas of Argentina. Weed Research, 2010, 50, 320-330.	1.7	17
64	Nitrogen Use Efficiency and Nitrogen Fertilizer Recovery of Durum Wheat Genotypes as Affected by Interspecific Competition. Agronomy Journal, 2010, 102, 707-715.	1.8	58
65	Wide Row Spacing and Rigid Ryegrass (Lolium rigidum) Competition Can Decrease Barley Yield. Weed Technology, 2010, 24, 310-318.	0.9	1
66	Competitive interactions of fifty barley cultivars with Avena sterilis and Asperugo procumbens. Field Crops Research, 2010, 117, 90-100.	5.1	10
67	Effects of Changes in Flax (<i>Linum usitatissimum</i> L.) Density and Interseeding with Red Clover (<i>Trifolium pratense</i> L.) on the Competitive Ability of Flax Against Brassica Weeds. Agroecology and Sustainable Food Systems, 2011, 35, 914-926.	0.9	7
68	Factores biológicos que determinan la competencia de Commelina erecta con otras malezas en sistemas de cultivo. Planta Daninha, 2011, 29, 97-106.	0.5	6
69	Growth, gas exchange and competitive ability of <i>Sorghum halepense</i> populations under different soil water availability. Canadian Journal of Plant Science, 2011, 91, 1011-1025.	0.9	13
70	Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth. Field Crops Research, 2011, 121, 373-380.	5.1	122
71	Leaf gas exchange and competitive ability of Zea mays and Sorghum halepense as affected by water competition. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2012, 60, 231-246.	0.2	1
72	The Biology of Canadian Weeds. 27. <i>Avena fatua</i> L. (updated). Canadian Journal of Plant Science, 2012, 92, 1329-1357.	0.9	73
73	Italian ryegrass (Lolium multiflorum Lam.) density and N fertilization on wheat (Triticum aestivum L.) yield in Argentina. Crop Protection, 2012, 32, 36-40.	2.1	23
74	A mathematical model for the evaluation of cooperation and competition effects in intercrops. European Journal of Agronomy, 2013, 51, 9-17.	4.1	16

CITATION REPORT

#	Article	IF	CITATIONS
75	Breeding Cereal Crops for Enhanced Weed Suppression: Optimizing Allelopathy and Competitive Ability. Journal of Chemical Ecology, 2013, 39, 213-231.	1.8	112
76	Root and shoot competition: a metaâ€analysis. Journal of Ecology, 2013, 101, 1298-1312.	4.0	119
77	Response of Corn and Redroot Pigweed to Nitrogen Fertilizer in Different Irrigation Regimes. Agronomy Journal, 2013, 105, 1107-1118.	1.8	4
78	The Morphological Features and Canopy Parameters as Factors Affecting the Competition Between Winter Wheat Varieties and Weeds. Journal of Plant Protection Research, 2013, 53, 203-209.	1.0	2
79	Weed suppression ability of six soybean [Glycine max (L.) Merr.] varieties under natural weed development conditions. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2013, 61, 43-53.	0.2	6
80	The Suitability of Different Winter and Spring Wheat Varieties for Cultivation in Organic Farming. , 2014, , .		1
81	Root discrimination of closely related crop and weed species using FT MIR-ATR spectroscopy. Frontiers in Plant Science, 2015, 6, 765.	3.6	24
82	A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Research, 2015, 55, 239-248.	1.7	161
83	Effects of nitrogen on the growth and competition between seedlings of two temperate forest tree species. Scandinavian Journal of Forest Research, 2015, , 1-7.	1.4	1
84	Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems. Environmental Science and Pollution Research, 2017, 24, 19465-19479.	5.3	27
85	Modelling of low input herbicide strategies for the control of wild oat in intensive winter wheat cropping systems. Field Crops Research, 2017, 201, 1-9.	5.1	4
86	Competitive ability of five common weed species in competition with soybean. International Journal of Pest Management, 2017, 63, 30-36.	1.8	26
87	Differences for traits associated with early N acquisition in a grain legume and early complementarity in grain legume–triticale mixtures. AoB PLANTS, 2018, 10, ply001.	2.3	10
88	Avena fatua L. escapes and delayed emergence in wheat (Triticum aestivum L.) crops of Argentina. Crop Protection, 2018, 103, 30-38.	2.1	7
89	Weed Control Through Crop Plant Manipulations. , 2018, , 73-96.		11
90	The combined effects of false seedbed technique, post-emergence chemical control and cultivar on weed management and yield of barley in Greece. Phytoparasitica, 2020, 48, 131-143.	1.2	23
91	Estimations and projections of Avena fatua dynamics under multiple management scenarios in crop fields using simplified longitudinal monitoring. PLoS ONE, 2021, 16, e0245217.	2.5	6
93	Interspecific interactions regulate plant reproductive allometry in cereal–legume intercropping systems. Journal of Applied Ecology, 2021, 58, 2579-2589.	4.0	6

#	Article	IF	CITATIONS
94	Crop Competitiveness. SpringerBriefs in Agriculture, 2014, , 9-20.	0.9	2
95	Weed Suppression and Tolerance in Winter Oats. Weed Technology, 2017, 31, 740-751.	0.9	10
96	Ecological risks of transgenic virus-resistant crops. , 2001, , 125-142.		3
97	CaracterÃsticas de plantas de arroz e a habilidade competitiva com plantas daninhas. Planta Daninha, 2003, 21, 165-174.	0.5	23
98	Alocação de matéria seca e capacidade competitiva de cultivares de milho com plantas daninhas. Planta Daninha, 2011, 29, 373-382.	0.5	15
99	Effects of different densities of wild oat (Avena fatua L.) and nitrogen rates on oilseed rape (Brassica) Tj ETQq1 1	0.784314 1.8	rgBT /Over
100	Competition between Avena sterilis ssp. sterilis and wheat in South Western Spain. Spanish Journal of Agricultural Research, 2011, 9, 862.	0.6	8
101	The Influence of interaction between spring wheat and spring barley on accumulation of nitrogen, phosphorus and potassium in plants. Annales Univesitatis Mariae Curie-Sklodowska Sectio E Agricultura, 2009, 64, .	0.1	0
102	The intensity of competitive interactions between spring wheat (Triticum aestivum L. emend. Fiori et.) Tj ETQq0 0 Agrobotanica, 2012, 61, 195-203.	0 rgBT /O 1.0	verlock 10 ⁻ 4
103	Changes in spring wheat (Triticum aestivum ssp. vulgare L.) and persian clover (Trifolium resupinatum) Tj ETQq1 1	0.78431 1.0	4 ggBT /Ove
104	Avena fatua L.: Wild oat. Acta Herbologica, 2017, 26, 75-86.	0.4	0
105	Intercropping organic field peas with barley, oats and mustard improves weed control but has variable effects on grain yield and net returns. Canadian Journal of Plant Science, 0, , .	0.9	1
106	WpÅ,yw oddziaÅ,ywaÅ,, pomiÄ™dzy pszenicÄ jarÄ a jÄ™czmieniem jarym na akumulacjÄ™ w roÅ›linach azoti potasu. Agronomy Science, 2009, 64, 93-106.	u, fosforu 0.3	i 0
108	Negative relationship between topsoil root production and grain yield in oat and barley. Agriculture, Ecosystems and Environment, 2023, 349, 108467.	5.3	0

CITATION REPORT