Iontophoretically administered drugs acting at the N-m modulate burst firing in A9 dopamine neurons in the ra

Synapse 10, 131-140 DOI: 10.1002/syn.890100208

Citation Report

#	Article	IF	CITATIONS
1	GABAB-Receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra. Synapse, 1993, 15, 229-238.	0.6	94
2	Tonic Activation of NMDA Receptors Causes Spontaneous Burst Discharge of Rat Midbrain Dopamine NeuronsIn Vivo. European Journal of Neuroscience, 1993, 5, 137-144.	1.2	325
3	Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons. Brain Research, 1993, 630, 341-344.	1.1	103
4	Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Research Reviews, 1993, 18, 75-113.	9.1	679
5	Spontaneous firing of nigrostriatal dopaminergic neurons in split-brain rats. Neuroscience Letters, 1993, 162, 1-4.	1.0	19
6	MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. Journal of Neuroscience, 1994, 14, 1735-1745.	1.7	192
7	The subthalamo-nigral pathway regulates movement and concomitant acetylcholinesterase release from the substantia nigra. Journal of Neural Transmission, 1994, 98, 23-37.	1.4	9
8	The role of excitatory amino acids in experimental models of Parkinson's disease. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1994, 8, 39-71.	1.2	87
9	Excitatory amino acid-induced excitation of dopamine-containing neurons in the rat substantia nigra: Modulation by kynurenic acid. Synapse, 1994, 16, 219-230.	0.6	29
10	Pharmacologically induced cessation of burst activity in nigral dopamine neurons: Significance for the terminal dopamine efflux. Synapse, 1994, 17, 217-224.	0.6	58
11	Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. Journal of Comparative Neurology, 1994, 343, 1-16.	0.9	358
12	Dopamine receptors: Molecular biology, biochemistry and behavioural aspects. , 1994, 64, 291-370.		400
13	Postnatal development of mesoaccumbens dopamine neurons in the rat: electrophysiological studies. Developmental Brain Research, 1994, 79, 19-28.	2.1	16
14	Effect of dopamine and baclofen on N-methyl-d-aspartate-induced burst firing in rat ventral tegmental neurons. Neuroscience, 1994, 58, 201-206.	1.1	58
15	Dopaminergic and glutamatergic blocking drugs differentially regulate glutamic acid decarboxylase mRNA in mouse brain. Molecular Brain Research, 1994, 21, 293-302.	2.5	49
16	D1 receptors modulate glutamate transmission in the ventral tegmental area. Journal of Neuroscience, 1995, 15, 5379-5388.	1.7	219
17	Chronic administration of (+)-amphetamine alters the reactivity of midbrain dopaminergic neurons to prefrontal cortex stimulation in the rat. Brain Research, 1995, 674, 63-74.	1.1	58
18	Behavioral and neurochemical actions of the strychnine-insensitive glycine receptor antagonist, 7-chlorokynurenate, in rats. European Journal of Pharmacology, 1995, 280, 37-45.	1.7	13

#	Article	IF	CITATIONS
19	Effects of the enantiomers of (±)-HA-966 on dopamine neurons: an electrophysiological study of a chiral molecule. European Journal of Pharmacology, 1995, 285, 79-88.	1.7	9
20	Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug and Alcohol Dependence, 1995, 37, 95-100.	1.6	227
21	Evidence for N-methyl-d-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: Possible preferential role for N-methyl-d-aspartate receptors. Neuroscience, 1995, 67, 373-381.	1.1	105
22	Burst stimulation of the medial forebrain bundle selectively increases Fos-like immunoreactivity in the limbic forebrain of the rat. Neuroscience, 1996, 72, 141-156.	1.1	72
23	The messenger RNAs for the N-methyl- d-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain. Neuroscience, 1996, 73, 429-447.	1.1	95
24	N-Methyl-d-aspartate receptors mediate a slow excitatory postsynaptic potential in the rat midbrain dopaminergic neurons. Neuroscience, 1996, 74, 785-792.	1.1	20
25	The burst-like firing of spinal neurons in rats with peripheral inflammation is reduced by an antagonist of N-methyl-d-aspartate. Neuroscience, 1996, 74, 1077-1086.	1.1	8
26	The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. Journal of Neuroscience, 1996, 16, 2605-2611.	1.7	332
27	Behavioral and Neurochemical Recovery from Partial 6-Hydroxydopamine Lesions of the Substantia Nigra Is Blocked by Daily Treatment with Glutamate Receptor Antagonists MK-801 and CPP. Journal of Neuroscience, 1996, 16, 5216-5224.	1.7	23
28	Preferential occupation of mineralocorticoid receptors by corticosterone enhances glutamate-induced burst firing in rat midbrain dopaminergic neurons. Brain Research, 1996, 737, 146-154.	1.1	53
29	A pharmacological analysis of the burst events induced in midbrain dopaminergic neurons by electrical stimulation of the prefrontal cortex in the rat. Journal of Neural Transmission, 1996, 103, 523-540.	1.4	41
30	Antagonism of NMDA receptors but not AMPA/kainate receptors blocks bursting in dopaminergic neurons induced by electrical stimulation of the prefrontal cortex. Journal of Neural Transmission, 1996, 103, 889-904.	1.4	87
31	Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology, 1996, 124, 2-34.	1.5	379
32	Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. , 1996, 364, 231-253.		110
33	Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates:Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. , 1996, 364, 254-266.		234
34	The depletion of brain serotonin levels by para-chlorophenylalanine administration significantly alters the activity of midbrain dopamine cells in rats: An extracellular single cell recording study. , 1996, 22, 46-53.		19
35	Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. , 1996, 22, 195-208.		158
36	Presymptomatic revelation of experimental Parkinsonism. NeuroReport, 1997, 8, 435-438.	0.6	28

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
37	Burst firing in midbrain dopaminergic neurons. Brain Research Reviews, 1997, 25, 312-334.	9.1	430
38	Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: role of N-methyl-d-aspartate receptors. Neuroscience, 1997, 77, 1029-1036.	1.1	38
39	Compensatory effects of glutamatergic inputs to the substantia nigra pars compacta in experimental Parkinsonism. Neuroscience, 1997, 81, 399-404.	1.1	60
40	AMPA and NMDA Glutamate Receptor Subunits in Midbrain Dopaminergic Neurons in the Squirrel Monkey: An Immunohistochemical and <i>In Situ</i> Hybridization Study. Journal of Neuroscience, 1997, 17, 1377-1396.	1.7	97
41	Effects of acute and repeated administration of N-methyl-d-aspartate (NMDA) into the ventral tegmental area: locomotor activating effects of NMDA and cocaine. Brain Research, 1997, 769, 225-232.	1.1	15
42	Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neuroscience and Biobehavioral Reviews, 1997, 21, 511-518.	2.9	83
43	Behavioural pharmacology of glutamate receptors in the basal ganglia. Neuroscience and Biobehavioral Reviews, 1997, 21, 381-392.	2.9	104
44	Inhibition of dopamine re-uptake: Significance for nigral dopamine neuron activity. , 1997, 25, 215-226.		20
45	Competitive NMDA receptor antagonists differentially affect dopamine cell firing pattern. , 1997, 25, 234-242.		11
46	Metabotropic glutamate receptor-mediated inhibition and excitation of substantia nigra dopamine neurons. , 1997, 26, 184-193.		31
47	Alterations in excitatory amino acid-mediated regulation of midbrain dopaminergic neurones induced by chronic psychostimulant administration and stress: relevance to behavioural sensitization and drug addiction. Addiction Biology, 1998, 3, 109-135.	1.4	36
48	Expression of N-Methyl-D-Aspartate receptor subunit mRNA in the human brain: Mesencephalic dopaminergic neurons. , 1998, 390, 91-101.		38
49	N-methyl-D-aspartate receptor blockade attenuates D1 dopamine receptor modulation of neuronal activity in rat substantia nigra. , 1998, 30, 18-29.		13
50	Dissociated dopaminergic neurons from substantia nigra zona compacta in young rats lack functional NMDA receptors. Pflugers Archiv European Journal of Physiology, 1998, 435, 699-704.	1.3	12
51	Rewarding effects elicited by the microinjection of either AMPA or NMDA glutamatergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. European Journal of Neuroscience, 1998, 10, 1394-1402.	1.2	29
52	The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progress in Neurobiology, 1998, 54, 679-720.	2.8	889
53	Compensatory mechanisms in experimental and human Parkinsonism: towards a dynamic approach. Progress in Neurobiology, 1998, 55, 93-116.	2.8	193
54	Nitric oxide facilitates N-methyl-d-aspartate-induced burst firing in dopamine neurons from rat midbrain slices. Neuroscience Letters, 1998, 255, 131-134.	1.0	23

#	Article	IF	CITATIONS
55	Subthalamic nucleusâ€mediated excitotoxicity in parkinson's disease: A target for neuroprotection. Annals of Neurology, 1998, 44, S175-88.	2.8	344
56	L-Type Calcium Channels Mediate a Slow Excitatory Synaptic Transmission in Rat Midbrain Dopaminergic Neurons. Journal of Neuroscience, 1998, 18, 6693-6703.	1.7	75
57	Regulation of Action Potential Size and Excitability in Substantia Nigra Compacta Neurons: Sensitivity to 4-Aminopyridine. Journal of Neurophysiology, 1999, 82, 2903-2913.	0.9	22
58	Calcium Dynamics Underlying Pacemaker-Like and Burst Firing Oscillations in Midbrain Dopaminergic Neurons: A Computational Study. Journal of Neurophysiology, 1999, 82, 2249-2261.	0.9	102
59	Subthalamic Stimulation-Induced Synaptic Responses in Substantia Nigra Pars Compacta Dopaminergic Neurons In Vitro. Journal of Neurophysiology, 1999, 82, 925-933.	0.9	106
60	Presynaptic inhibition preferentially reduces the NMDA receptor-mediated component of transmission in rat midbrain dopamine neurons. British Journal of Pharmacology, 1999, 127, 1422-1430.	2.7	23
61	Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. , 1999, 6, 49-69.		63
62	Mesolimbic NMDA receptors are implicated in the expression of conditioned morphine reward. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 288-294.	1.4	59
63	Regulation of substantia nigra pars reticulata neuronal activity by excitatory amino acids. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 402-412.	1.4	9
64	GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Research, 1999, 832, 145-151.	1.1	62
65	Involvement of I_f receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems. European Journal of Pharmacology, 1999, 368, 183-196.	1.7	45
66	Interaction between dopamine and glutamate receptors following treatment with NMDA receptor antagonists. European Journal of Pharmacology, 1999, 386, 155-163.	1.7	4
67	The Rewarding Properties of NMDA and MK-801 (Dizocilpine) as Indexed by the Conditioned Place Preference Paradigm. Pharmacology Biochemistry and Behavior, 1999, 64, 591-595.	1.3	26
68	Afferent modulation of dopamine neuron firing patterns. Current Opinion in Neurobiology, 1999, 9, 690-697.	2.0	210
69	GABAA and GABAB antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. , 1999, 32, 165-176.		132
70	MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. , 1999, 32, 212-224.		20
71	Acute and chronic administration of the selective sigma1 receptor agonist SA4503 significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study. Synapse, 1999, 33, 129-140.	0.6	31
72	Glutamatergic inputs to midbrain dopaminergic neurons in primates. Parkinsonism and Related Disorders, 1999, 5, 193-201.	1.1	19

#	Article	IF	CITATIONS
73	Immunohistochemical localization of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in the substantia nigra pars compacta of the rat. Neuroscience, 1999, 89, 209-220.	1.1	50
74	Gabaergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata. Neuroscience, 1999, 89, 813-825.	1.1	119
75	Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience, 1999, 92, 245-254.	1.1	116
76	Pertussis toxin treatment differentially affects cholinergic and dopaminergic receptor stimulation of midbrain dopaminergic neurons. Neuropharmacology, 1999, 38, 1903-1912.	2.0	12
77	Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons. Journal of Neuroscience, 2000, 20, 3864-3873.	1.7	772
78	Synaptic localization of ionotropic glutamate receptors in the rat substantia nigra. Neuroscience, 2000, 101, 1037-1051.	1.1	64
79	Excitation of nigral dopamine neurons by the GABAA receptor agonist muscimol is mediated via release of glutamate. Life Sciences, 2000, 67, 1901-1911.	2.0	13
80	Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biological Psychiatry, 2000, 48, 627-640.	0.7	356
81	Pharmacology and behavioral pharmacology of the mesocortical dopamine system. Progress in Neurobiology, 2001, 63, 241-320.	2.8	406
82	Blockade of D1 Dopamine Receptors in the Ventral Tegmental Area Decreases Cocaine Reward: Possible Role for Dendritically Released Dopamine. Journal of Neuroscience, 2001, 21, 5841-5846.	1.7	85
83	Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids, 2001, 20, 353-362.	1.2	60
84	Intracerebroventricular administration of NMDA-R1 antisense oligodeoxynucleotide significantly alters the activity of ventral tegmental area dopamine neurons: An electrophysiological study. Synapse, 2001, 40, 275-281.	0.6	1
85	The significance of action potential bursting in the brain reward circuit. Neurochemistry International, 2002, 41, 333-340.	1.9	156
86	In vivo modulation of ventral tegmental area dopamine and glutamate efflux by local GABAB receptors is altered after repeated amphetamine treatment. Neuroscience, 2002, 109, 585-595.	1.1	67
87	Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behavioural Brain Research, 2002, 130, 149-169.	1.2	85
88	Activation of Ventral Tegmental Area Cells by the Bed Nucleus of the Stria Terminalis: A Novel Excitatory Amino Acid Input to Midbrain Dopamine Neurons. Journal of Neuroscience, 2002, 22, 5173-5187.	1.7	249
89	GABA B receptor-mediated modulation of the firing pattern of ventral tegmental area dopamine neurons in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 173-180.	1.4	101
90	Target-Specific Glutamatergic Regulation of Dopamine Neurons in the Ventral Tegmental Area. Journal of Neurochemistry, 2002, 75, 1775-1778.	2.1	81

#	Article	IF	Citations
91	Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area. Journal of Neurochemistry, 2002, 81, 158-169.	2.1	47
92	Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiologica Scandinavica, 2002, 175, 45-53.	2.3	73
93	Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine. Synapse, 2002, 43, 227-237.	0.6	71
94	Differential regulation of somatodendritic and nerve terminal dopamine release by serotonergic innervation of substantia nigra. Journal of Neurochemistry, 2003, 84, 576-584.	2.1	34
95	The anaesthetic agent propofol interacts with GABAB-receptors: an electrophysiological study in rat. Life Sciences, 2003, 72, 2793-2801.	2.0	31
96	Critical Role for Ventral Tegmental Glutamate in Preference for a Cocaine-Conditioned Environment. Neuropsychopharmacology, 2003, 28, 73-76.	2.8	140
97	Rationale for and use of NMDA receptor antagonists in Parkinson's disease. , 2004, 102, 155-174.		204
98	Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine. Neuroscience, 2004, 129, 841-847.	1.1	127
99	Both Kappa and Mu Opioid Agonists Inhibit Glutamatergic Input to Ventral Tegmental Area Neurons. Journal of Neurophysiology, 2005, 93, 3086-3093.	0.9	83
100	Orexin A in the VTA Is Critical for the Induction of Synaptic Plasticity and Behavioral Sensitization to Cocaine. Neuron, 2006, 49, 589-601.	3.8	651
101	Transient High-Frequency Firing in a Coupled-Oscillator Model of the Mesencephalic Dopaminergic Neuron. Journal of Neurophysiology, 2006, 95, 932-947.	0.9	84
102	An Increase in AMPA and a Decrease in SK Conductance Increase Burst Firing by Different Mechanisms in a Model of a Dopamine Neuron In Vivo. Journal of Neurophysiology, 2006, 96, 2549-2563.	0.9	68
103	Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons—Possible involvement of endogenous kynurenic acid. Synapse, 2006, 59, 290-298.	0.6	58
104	Comparison of VTA Dopamine Neuron Activity in Lines of Rats Selectively Bred to Prefer or Avoid Alcohol. Alcoholism: Clinical and Experimental Research, 2006, 30, 991-997.	1.4	20
105	Comparison of Cocaine―and Methamphetamineâ€Evoked Dopamine and Glutamate Overflow in Somatodendritic and Terminal Field Regions of the Rat Brain during Acute, Chronic, and Early Withdrawal Conditions. Annals of the New York Academy of Sciences, 2001, 937, 93-120.	1.8	124
106	The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5167-5172.	3.3	292
107	Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?. Current Neuropharmacology, 2007, 5, 268-277.	1.4	41
108	Synaptic Activation of Dendritic AMPA and NMDA Receptors Generates Transient High-Frequency Firing in Substantia Nigra Dopamine Neurons In Vitro. Journal of Neurophysiology, 2007, 97, 2837-2850.	0.9	59

ARTICLE IF CITATIONS Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in 109 4.2 883 Neurosciences, 2007, 30, 220-227. Clutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from 1.1 subcortical sources. Neuroscience, 2007, 146, 1259-1274. The Dopamine System and the Pathophysiology of Schizophrenia: A Basic Science Perspective. 111 0.9 75 International Review of Neurobiology, 2007, 78, 41-68. GABAergic control of substantia nigra dopaminergic neurons. Progress in Brain Research, 2007, 160, 0.9 191 189-208. Dopaminergic Reward Pathways and Effects of Stress., 2007, , 41-83. 113 16 Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission., 2007, 113, 114 296-320. Physiology of the normal and dopamine-depleted basal ganglia: Insights into levodopa 115 2.2 51 pharmacotherapy. Movement Disorders, 2008, 23, S560-S569. Electroosmotic Flow and Its Contribution to Iontophoretic Delivery. Analytical Chemistry, 2008, 80, 3.2 8635-8641. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive 2.0 9 117 exposures to nitrogen narcosis. Experimental Neurology, 2008, 212, 63-70. An Intrinsic Neuronal Oscillator Underlies Dopaminergic Neuron Bursting. Journal of Neuroscience, 118 1.7 2009, 29, 15888-15897. \hat{a} € ∞ To learn, you must pay attention. \hat{a} ۥMolecular insights into teachers' wisdom. Proceedings of the 119 3.3 4 National Academy of Sciences of the United States of America, 2009, 106, 7267-7268. Synaptic Overflow of Dopamine in the Nucleus Accumbens Arises from Neuronal Activity in the 120 1.7 201 Ventral Tegmental Area. Journal of Neuroscience, 2009, 29, 1735-1742. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of 121 phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United 3.3 360 States of America, 2009, 106, 7281-7288. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist in 6-hydroxydopamine partially lesioned rats reverses abnormal firing of dopaminergic neurons. Brain 1.1 14 Research, 2009, 1286, 192-200. Comparison of Nitrogen Narcosis and Helium Pressure Effects on Striatal Amino Acids: A 123 1.6 16 Microdialysis Study in Rats. Neurochemical Research, 2009, 34, 835-844. Basal Ganglia Control of Substantia Nigra Dopaminergic Neurons., 2009,, 71-90. 124 30 3.4 Ion Channels and Regulation of Dopamine Neuron Activity., 2009, , 118-138. 125 2

CITATION REPORT

A two-compartment phenomenological model of a dopaminergic neuron. Biophysics (Russian) Tj ETQq1 1 0.784314 rgBT /Overlock 1

#	Article	IF	CITATIONS
127	Neurophysiology of Substantia Nigra Dopamine Neurons. Handbook of Behavioral Neuroscience, 2010, , 275-296.	0.7	1
128	Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons. Journal of Neuroscience, 2010, 30, 218-229.	1.7	202
129	IP ₃ Receptor Sensitization during <i>In Vivo</i> Amphetamine Experience Enhances NMDA Receptor Plasticity in Dopamine Neurons of the Ventral Tegmental Area. Journal of Neuroscience, 2010, 30, 6689-6699.	1.7	38
130	Ethanol Action on Dopaminergic Neurons in the Ventral Tegmental Area. International Review of Neurobiology, 2010, 91, 235-288.	0.9	113
131	A Dynamic Role for GABA Receptors on the Firing Pattern of Midbrain Dopaminergic Neurons. Journal of Neurophysiology, 2010, 104, 403-413.	0.9	118
132	Acute and chronic cocaine differentially alter the subcellular distribution of AMPA GluR1 subunits in region-specific neurons within the mouse ventral tegmental area. Neuroscience, 2010, 169, 559-573.	1.1	13
133	The endocannabinoid system and nondrug rewarding behaviours. Experimental Neurology, 2010, 224, 23-36.	2.0	78
134	Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nature Neuroscience, 2011, 14, 620-626.	7.1	210
135	NMDA Receptors in Dopaminergic Neurons Are Crucial for Habit Learning. Neuron, 2011, 72, 1055-1066.	3.8	99
136	Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience, 2011, 198, 95-111.	1.1	128
138	Disinhibition Bursting of Dopaminergic Neurons. Frontiers in Systems Neuroscience, 2011, 5, 25.	1.2	32
139	Rapid Dopamine Signaling Differentially Modulates Distinct Microcircuits within the Nucleus Accumbens during Sucrose-Directed Behavior. Journal of Neuroscience, 2011, 31, 13860-13869.	1.7	56
140	High-frequency, short-latency disinhibition bursting of midbrain dopaminergic neurons. Journal of Neurophysiology, 2011, 105, 2501-2511.	0.9	35
142	Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. Vitamins and Hormones, 2012, 89, 291-313.	0.7	8
143	Decreased Sensitivity of <scp>NMDA</scp> Receptors on Dopaminergic Neurons from the Posterior Ventral Tegmental Area Following Chronic Nondependent Alcohol Consumption. Alcoholism: Clinical and Experimental Research, 2012, 36, 1710-1719.	1.4	11
144	Behavioral and Neurotransmitter Specific Roles for the Ventral Tegmental Area in Reinforcerâ€Seeking and Intake. Alcoholism: Clinical and Experimental Research, 2012, 36, 1659-1668.	1.4	21
145	Activation of VTA GABA Neurons Disrupts Reward Consumption. Neuron, 2012, 73, 1184-1194.	3.8	505
146	Detection of bursts and pauses in spike trains. Journal of Neuroscience Methods, 2012, 211, 145-158.	1.3	43

#	Article	IF	CITATIONS
147	Hypocretin modulation of drug-induced synaptic plasticity. Progress in Brain Research, 2012, 198, 123-131.	0.9	34
148	Bursting as a source of nonâ€linear determinism in the firing patterns of nigral dopamine neurons. European Journal of Neuroscience, 2012, 36, 3214-3223.	1.2	6
149	Ventral tegmental area $\hat{l}\pm 6\hat{l}^22$ nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. Psychopharmacology, 2013, 229, 73-82.	1.5	34
150	Differential role of ventral tegmental area acetylcholine and N-methyl-d-aspartate receptors in cocaine-seeking. Neuropharmacology, 2013, 75, 9-18.	2.0	41
151	VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Frontiers in Behavioral Neuroscience, 2014, 8, 8.	1.0	113
152	Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats. Behavioural Brain Research, 2014, 272, 279-285.	1.2	22
153	Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism. Journal of Neuroscience, 2014, 34, 13151-13162.	1.7	60
154	Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. Journal of Neurophysiology, 2014, 112, 2779-2790.	0.9	24
155	Firing Modes of Dopamine Neurons Drive Bidirectional GIRK Channel Plasticity. Journal of Neuroscience, 2014, 34, 5107-5114.	1.7	33
156	Dopamine and reward seeking: the role of ventral tegmental area. Reviews in the Neurosciences, 2014, 25, 621-30.	1.4	55
157	Habit learning and memory in mammals: Behavioral and neural characteristics. Neurobiology of Learning and Memory, 2014, 114, 198-208.	1.0	51
158	Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology, 2014, 86, 116-124.	2.0	11
159	Characterization of Solute Distribution Following Iontophoresis from a Micropipet. Analytical Chemistry, 2014, 86, 9909-9916.	3.2	14
160	Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience, 2014, 282, 109-121.	1.1	135
161	Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. Journal of Neurophysiology, 2015, 113, 1533-1544.	0.9	43
162	A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. Journal of Mathematical Neuroscience, 2015, 5, 5.	2.4	9
163	Tonic Firing Rate Controls Dendritic Ca ²⁺ Signaling and Synaptic Gain in Substantia Nigra Dopamine Neurons. Journal of Neuroscience, 2015, 35, 5823-5836.	1.7	54
164	Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142516.	1.2	131

#	Article	IF	CITATIONS
165	Neuronal activity of the prefrontal cortex is reduced in rats selectively bred for deficient sensorimotor gating. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 56, 174-184.	2.5	19
167	Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. Handbook of Behavioral Neuroscience, 2016, , 335-360.	0.7	15
168	Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study. Frontiers in Computational Neuroscience, 2016, 10, 48.	1.2	13
169	Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Current Topics in Behavioral Neurosciences, 2016, 33, 283-304.	0.8	12
170	Implications of cellular models of dopamine neurons for disease. Journal of Neurophysiology, 2016, 116, 2815-2830.	0.9	14
171	Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 159-170.	1.3	89
172	Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice. Scientific Reports, 2016, 6, 37171.	1.6	20
173	Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. Journal of Neurophysiology, 2016, 116, 1900-1923.	0.9	14
174	N-methyl-d-aspartate receptors in the ventral tegmental area mediate the excitatory influence of Pavlovian stimuli on instrumental performance. Brain Structure and Function, 2016, 221, 4399-4409.	1.2	0
176	Somatic and neuritic spines on tyrosine hydroxylase–immunopositive cells of rat retina. Journal of Comparative Neurology, 2017, 525, 1707-1730.	0.9	7
177	Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nature Communications, 2017, 8, 740.	5.8	73
178	Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. ELife, 2017, 6, .	2.8	30
179	Deltaâ€9â€ŧetrahydrocannabinol potentiates fear memory salience through functional modulation of mesolimbic dopaminergic activity states. European Journal of Neuroscience, 2018, 47, 1385-1400.	1.2	10
180	Ablation of NMDA receptors in dopamine neurons disrupts attribution of incentive salience to reward-paired stimuli. Behavioural Brain Research, 2019, 363, 77-82.	1.2	4
181	Dynamical ventral tegmental area circuit mechanisms of alcoholâ€dependent dopamine release. European Journal of Neuroscience, 2019, 50, 2282-2296.	1.2	15
182	Deep brain stimulation of the thalamic centromedian-parafascicular nucleus improves behavioural and neuronal traits in a rat model of Tourette. Behavioural Brain Research, 2020, 378, 112251.	1.2	12
183	Effects of dopamine and serotonin synthesis inhibitors on the ketamine-, d-amphetamine-, and cocaine-induced locomotor activity of preweanling and adolescent rats: sex differences. Behavioural Brain Research, 2020, 379, 112302.	1.2	15
184	NMDA receptor membrane dynamics tunes the firing pattern of midbrain dopaminergic neurons. Journal of Physiology, 2021, 599, 2933-2951.	1.3	6

#	Article	IF	CITATIONS
186	Burst Firing Induced by N-Methyl-D-Aspartate Requires Activation of an Electrogenic Sodium Pump in Rat Dopamine Neurons. Advances in Behavioral Biology, 1994, , 255-261.	0.2	1
187	Glutamate-Dopamine Balance in the Striatum: Pre- and Post-Synaptic Interactions. Advances in Behavioral Biology, 1994, , 475-489.	0.2	10
188	Basic Neurophysiology of Antipsychotic Drug Action. Handbook of Experimental Pharmacology, 1996, , 163-202.	0.9	6
189	Electrophysiological Pharmacology of Mesencephalic Dopaminergic Neurons. Handbook of Experimental Pharmacology, 2002, , 1-61.	0.9	13
190	MK801-induced locomotor activity in preweanling and adolescent male and female rats: role of the dopamine and serotonin systems. Psychopharmacology, 2020, 237, 2469-2483.	1.5	6
191	Astrocytic Kynurenines as Modulators of Dopaminergic Function in the Rat Basal Ganglia. , 1994, , 365-379.		2
192	Ionotropic Glutamate Receptors in the Basal Ganglia. Frontiers in Neuroscience, 2011, , 31-54.	0.0	2
193	Selective Effects of the Loss of NMDA or mGluR5 Receptors in the Reward System on Adaptive Decision-Making. ENeuro, 2018, 5, ENEURO.0331-18.2018.	0.9	11
194	GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. Journal of Neuroscience, 1995, 15, 3092-3103.	1.7	324
195	10.6 Dopamine Modulation of Forebrain Pathways and the Pathophysiology of Psychiatric Disorders. , 2009, , 590-598.		0
196	4.3 Postnatal Maturation of Dopamine Actions in the Prefrontal Cortex. , 2009, , 177-186.		2
197	Effects of Orexin/Hypocretin on Ventral Tegmental Area Dopamine Neurons: An Emerging Role in Addiction. , 2011, , 241-251.		0
198	Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren. , 1999, , 3-34.		0
201	Distinct Temporal Structure of Nicotinic ACh Receptor Activation Determines Responses of VTA Neurons to Endogenous ACh and Nicotine. ENeuro, 2020, 7, ENEURO.0418-19.2020.	0.9	3
204	Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. Journal of Physiology, 2023, 601, 171-193.	1.3	3