Low-Reynolds-number effects in a fully developed turb

Journal of Fluid Mechanics 236, 579-605 DOI: 10.1017/s002211209200154x

Citation Report

#	Article	IF	CITATIONS
1	Some characteristics of small-scale turbulence in a turbulent duct flow. Journal of Fluid Mechanics, 1991, 233, 369-388.	1.4	155
2	Direct simulation of turbulent particle transport in electrostatic precipitators. AICHE Journal, 1993, 39, 1910-1919.	1.8	19
3	Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations. International Journal of Heat and Mass Transfer, 1993, 36, 1701-1706.	2.5	39
4	Temperature dissipation measurements in a fully developed turbulent channel flow. Experiments in Fluids, 1993, 15, 191-199.	1.1	10
5	Spectral scaling in a high reynolds number laboratory boundary layer. Boundary-Layer Meteorology, 1993, 65, 289-306.	1.2	28
6	Riblet flow calculation with a low Reynolds number $\hat{I}^{\rm e}$ - $\hat{I}\mu$ model. Flow, Turbulence and Combustion, 1993, 50, 267-282.	0.2	5
7	Isotropy of the small scales of turbulence at low Reynolds number. Journal of Fluid Mechanics, 1993, 251, 219-238.	1.4	78
8	Experimental and numerical study of a turbulent boundary layer with pressure gradients. Journal of Fluid Mechanics, 1993, 249, 337.	1.4	345
9	Normalization based on the active motion in a turbulent boundary layer. Physics of Fluids A, Fluid Dynamics, 1993, 5, 3007-3009.	1.6	0
10	Structure of the velocity field associated with the spanwise vorticity in the wall region of a turbulent boundary layer. Physics of Fluids A, Fluid Dynamics, 1993, 5, 2502-2510.	1.6	26
11	Reynolds Number Effects in Wall-Bounded Turbulent Flows. Applied Mechanics Reviews, 1994, 47, 307-365.	4.5	218
12	Low-Reynolds-number turbulent channel flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 1994, 32, 911-934.	0.7	5
13	LDA measurements in a turbulent boundary layer over a d-type rough wall. Experiments in Fluids, 1994, 16, 323-329.	1.1	32
14	Low-Reynolds-number effects on near-wall turbulence. Journal of Fluid Mechanics, 1994, 276, 61-80.	1.4	102
15	Local isotropy in turbulent boundary layers at high Reynolds number. Journal of Fluid Mechanics, 1994, 268, 333-372.	1.4	704
16	Mean Velocity Profiles of CouettePoiseuille-Type Turburent Flow 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1995, 61, 3122-3129.	0.2	0
17	Low-Reynolds-number effects in a turbulent boundary layer. Experiments in Fluids, 1995, 19, 61-68.	1.1	49
18	Three-component, time-resolved velocity statistics in the wall region of a turbulent pipe flow. Experiments in Fluids, 1995, 18, 168-173.	1.1	14

#	Article	IF	CITATIONS
19	Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer. Physica A: Statistical Mechanics and Its Applications, 1995, 218, 335-374.	1.2	4
20	Large-eddy simulation of a spatially growing boundary layer over an adiabatic flat plate at low Mach number. International Journal of Heat and Fluid Flow, 1995, 16, 341-348.	1.1	16
21	Field versus laboratory turbulent boundary layers. AIAA Journal, 1995, 33, 361-364.	1.5	2
22	LDA measurements in the near-wall region of a turbulent pipe flow. Journal of Fluid Mechanics, 1995, 295, 305.	1.4	200
23	Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. Journal of Fluid Mechanics, 1996, 315, 1-29.	1.4	67
24	Topology of fine-scale motions in turbulent channel flow. Journal of Fluid Mechanics, 1996, 310, 269-292.	1.4	238
25	Enhancement of finite Reynolds number effects: Inner-outer sublayer interaction in the turbulent boundary layer. Flow, Turbulence and Combustion, 1996, 57, 211-221.	0.2	0
26	Experimental study on the statistics of wall shear stress in turbulent channel flows. International Journal of Heat and Fluid Flow, 1996, 17, 187-192.	1.1	44
27	Wall shear stress determination from near-wall mean velocity data in turbulent pipe and channel flows. Experiments in Fluids, 1996, 20, 417-428.	1.1	98
28	Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Experiments in Fluids, 1996, 21, 218-226.	1.1	72
29	A Reynolds Stress Function for Wall Layers. Journal of Fluids Engineering, Transactions of the ASME, 1997, 119, 325-330.	0.8	23
30	Small-scale characteristics of a turbulent boundary layer over a rough wall. Journal of Fluid Mechanics, 1997, 342, 263-293.	1.4	39
31	Reynolds stress analysis of EMHD-controlled wall turbulence. Part I. Streamwise forcing. Physics of Fluids, 1997, 9, 788-806.	1.6	96
32	Large-Eddy Simulations of Shear Flows. Journal of Engineering Mathematics, 1997, 32, 195-215.	0.6	17
33	Near-wall Reynolds-stress modelling in noninertial frames of reference. Fluid Dynamics Research, 1997, 19, 251-276.	0.6	28
34	Turbulent flow in a channel at a low Reynolds number. Experiments in Fluids, 1998, 25, 503-511.	1.1	64
35	Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Channel Flow. Theoretical and Computational Fluid Dynamics, 1998, 12, 149-177.	0.9	85
36	Spectral-dynamic model for LES of free and wall shear flows. International Journal of Heat and Fluid Flow, 1998, 19, 492-504.	1.1	13

#	Article	IF	CITATIONS
37	DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. International Journal of Heat and Fluid Flow, 1998, 19, 482-491.	1.1	297
38	Spectral eddy-viscosity based LES of incompressible and compressible shear flows. , 1998, , .		3
39	Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow. Physical Review Letters, 1998, 81, 5338-5341.	2.9	272
40	Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows. Journal of Fluids Engineering, Transactions of the ASME, 1998, 120, 496-503.	0.8	78
41	Turbulence Statistics of CouettePoiseuille Turbulent Flow. 1st Report. Turbulence Intensities 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 3272-3278.	0.2	0
42	Low-Reynolds Number Effects on Plane Turbulent Couette Flow 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 3660-3668.	0.2	1
43	The Effect of Reynolds Number on the Turbulence Characteristics of Fully Developed Turbulent Channel Flow 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1998, 64, 986-991.	0.2	0
44	Turbulent Two-Dimensional Shear Flows. , 1999, , 305-469.		Ο
45	Wall-boundary conditions in probability density function methods and application to a turbulent channel flow. Physics of Fluids, 1999, 11, 2632-2644.	1.6	30
47	A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. International Journal of Heat and Mass Transfer, 1999, 42, 3673-3693.	2.5	88
48	Thermal patterns on the smooth and rough walls in turbulent flows. International Journal of Heat and Mass Transfer, 1999, 42, 3815-3829.	2.5	12
49	A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Physics of Fluids, 1999, 11, 2343-2353.	1.6	197
50	An Efficient Method for the Solution of the Incompressible Navier–Stokes Equations in Cylindrical Geometries. Journal of Computational Physics, 1999, 151, 563-584.	1.9	22
51	Comparison and Scaling of the Bursting Period in Rough and Smooth Walls Channel Flows. Journal of Fluids Engineering, Transactions of the ASME, 1999, 121, 735-746.	0.8	9
52	One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. Journal of Fluid Mechanics, 1999, 392, 277-334.	1.4	236
53	Large-eddy simulations of incompressible and subsonic shear flows. , 1999, , 109-126.		0
54	Spectral Large-Eddy Simulations and Vortex Dynamics in Turbulence JSME International Journal Series B, 1999, 42, 143-153.	0.3	0
55	Eulerian space–time correlations in turbulent shear flows. Physics of Fluids, 2000, 12, 2056-2064.	1.6	18

#	Article	IF	CITATIONS
56	Statistical simulation of particle deposition on the wall from turbulent dispersed pipe flow. International Journal of Heat and Fluid Flow, 2000, 21, 389-402.	1.1	121
57	Near-wall behaviour of statistical properties in turbulent flows. International Journal of Heat and Fluid Flow, 2000, 21, 471-479.	1.1	11
58	Approach to isotropy in a smooth wall turbulent boundary layer. Fluid Dynamics Research, 2000, 26, 1-11.	0.6	6
59	Reynolds Number Dependence of Velocity Structure Functions in a Turbulent Pipe Flow. Flow, Turbulence and Combustion, 2000, 64, 95-117.	1.4	9
60	From Two-Point Closures of Isotropic Turbulence to LES of Shear Flows. Flow, Turbulence and Combustion, 2000, 63, 247-267.	1.4	8
61	On near-wall hot-wire measurements. Experiments in Fluids, 2000, 29, 448-460.	1.1	15
62	Anisotropy of turbulence in stably stratified mixing layers. Physics of Fluids, 2000, 12, 1343-1362.	1.6	137
63	Experimental study of turbulent Poiseuille–Couette flow. Physics of Fluids, 2000, 12, 865-875.	1.6	35
64	Small scale intermittency and bursting in a turbulent channel flow. Physical Review E, 2000, 61, 1447-1454.	0.8	70
65	Direct experimental assessment of the nonlinear constitutive equation for a complex flow. , 2001, , .		0
66	Reynolds number effects in the near-wall region of turbulent channel flows. Physics of Fluids, 2001, 13, 1755-1767.	1.6	69
67	Near-wall hot-wire measurements. Experiments in Fluids, 2001, 31, 494-505.	1.1	26
68	Effect of particle motion on the wall's thermal structure and on heat transfer. International Journal of Multiphase Flow, 2001, 27, 393-413.	1.6	9
69	Scaling properties of turbulent pipe flow at low Reynolds number. Computers and Fluids, 2001, 30, 393-415.	1.3	13
70	Turbulent intensities in open-channel flows. Mechanics Research Communications, 2001, 28, 317-325.	1.0	5
71	Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Computers and Fluids, 2001, 30, 581-590.	1.3	56
72	Effect of Constant Heat Flux Boundary Condition on Wall Temperature Fluctuations. Journal of Heat Transfer, 2001, 123, 213-218.	1.2	28
73	Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 382-393.	0.8	224

#	Article	IF	CITATIONS
74	Recent Progress on MILES for High Reynolds Number Flows. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 848-861.	0.8	126
75	Recent progress on MILES for high Reynolds-number flows. , 2002, , .		4
76	MOMENTUM, MASS AND HEAT TRANSFER IN SINGLE-PHASE TURBULENT FLOW. Reviews in Chemical Engineering, 2002, 18, 83-293.	2.3	22
77	Scaling Law for Couette-Poiseuille Type Turbulent Flow and Study on 1/2 Power Law and Core Regions 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 1151-1158.	0.2	0
78	Numerical Analysis of Compressible Turbulent Channel Flow between Adiabatic and Isothermal Wall. 2nd Report. Profiles of Turbulence Statistics 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 409-416.	0.2	0
79	On Homogenization-Based Methods for Large-Eddy Simulation. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 892-903.	0.8	10
80	Difference of Statistics between Compressible and Incompressible Turbulent Channel Flows 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2002, 68, 3281-3287.	0.2	0
81	On the Kolmogorov constant in stochastic turbulence models. Physics of Fluids, 2002, 14, 4095-4098.	1.6	17
82	On homogenization-based methods for large eddy simulation. , 2002, , .		2
83	On the evolution of maximum turbulent kinetic energy production in a channel flow. Physics of Fluids, 2002, 14, L65-L68.	1.6	29
84	Viscous effects in control of near-wall turbulence. Physics of Fluids, 2002, 14, 4069-4080.	1.6	57
85	Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows. Journal of Computational Physics, 2002, 181, 68-97.	1.9	257
86	Analysis of the near-wall behaviour of some self-adaptive subgrid-scale models in finite-differenced simulations of channel flow. International Journal for Numerical Methods in Fluids, 2002, 40, 1275-1302.	0.9	6
87	Characteristics of single and multiple bursting events in the inner layer. Part 2. Level-crossing events. Experiments in Fluids, 2002, 33, 640-652.	1.1	20
88	Numerical investigation of fully developed channel flow using shock-capturing schemes. Computers and Fluids, 2003, 32, 249-274.	1.3	11
89	Implicit Large Eddy Simulation of High-Re Flows with Flux-Limiting Schemes (Invited). , 2003, ,		6
90	On Large Eddy Simulation of High-Reynolds Number Wall Bounded Flows. , 2003, , .		4
91	Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: Experimental and theoretical analysis. Physics of Fluids, 2003, 15, 3602-3612.	1.6	46

#	Article	IF	CITATIONS
92	Statistical analysis of coherent vortices near a free surface in a fully developed turbulence. Physics of Fluids, 2003, 15, 375-394.	1.6	74
93	Numerical Analysis of Incompressible Turbulent Channel Flow with Different Thermal Wall Boundary Conditions. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2003, 69, 1313-1320.	0.2	4
94	On the Criterion for the Determination Transition Onset and Breakdown to Turbulence in Wall-Bounded Flows1. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 626-633.	0.8	11
95	From canonical to complex flows:recent progress on monotonically integrated LES. Computing in Science and Engineering, 2004, 6, 36-49.	1.2	53
96	Similarity laws of velocity profiles and turbulence characteristics of CouettePoiseuille turbulent flows. Journal of Fluid Mechanics, 2004, 507, 43-69.	1.4	23
97	Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. Journal of Fluid Mechanics, 2004, 502, 273-308.	1.4	137
98	CFD Simulation of Heat Transfer in Turbulent Pipe Flow. Industrial & Engineering Chemistry Research, 2004, 43, 2816-2829.	1.8	12
99	A Modified Turbulence Model for Low Reynolds Numbers: Applications to Hydrostatic Seals. , 2004, , 503.		1
100	Study on Differences in Turbulence Statistics between Compressible and Incompressible Low-Reynolds Number Turbulent Channel Flows Using Semi-Local Scaling. JSME International Journal Series B, 2005, 48, 743-749.	0.3	0
101	Large eddy simulation of turbulent flows via domain decomposition techniques. Part 2: applications. International Journal for Numerical Methods in Fluids, 2005, 48, 397-422.	0.9	9
103	Review of Wall Turbulence as Described by Composite Expansions. Applied Mechanics Reviews, 2005, 58, 1-36.	4.5	64
104	Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Physics of Fluids, 2005, 17, 065101.	1.6	93
105	Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure. Journal of Fluid Mechanics, 2005, 539, 199.	1.4	73
106	An experimental and numerical study of channel flow with rough walls. Journal of Fluid Mechanics, 2005, 530, 327-352.	1.4	171
107	Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. Journal of Fluid Mechanics, 2005, 524, 57-80.	1.4	214
108	A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals. Journal of Tribology, 2005, 127, 130-140.	1.0	30
109	Turbulence Structures Downstream of a Localized Injection in a Fully Developed Channel Flow. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 611-617.	0.8	5
110	Binormal cooling errors in crossed hot-wire measurements. Experiments in Fluids, 2006, 40, 212-217.	1.1	6

#	Article	IF	CITATIONS
111	On the Mechanism Responsible for Turbulent Drag Reduction by Dilute Addition of High Polymers: Theory, Experiments, Simulations, and Predictions. Journal of Fluids Engineering, Transactions of the ASME, 2006, 128, 118-130.	0.8	39
112	Low shear turbulence structures beneath stress-driven interface with neutral and stable stratification. Physics of Fluids, 2006, 18, 055106.	1.6	8
113	Composite asymptotic expansions and scaling wall turbulence. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 733-754.	1.6	45
114	On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. Journal of Fluid Mechanics, 2007, 573, 371-398.	1.4	19
115	Effect of stable-density stratification on counter gradient flux of a homogeneous shear flow. International Journal of Heat and Mass Transfer, 2007, 50, 335-347.	2.5	6
116	Effects of blowing through a porous strip in a turbulent channel flow. Experimental Thermal and Fluid Science, 2007, 31, 1021-1032.	1.5	5
117	Qualitative assessment of 3D flows using a flow visualisation technique. Measurement: Journal of the International Measurement Confederation, 2008, 41, 433-445.	2.5	3
118	A CFD model for particle dispersion in turbulent boundary layer flows. Nuclear Engineering and Design, 2008, 238, 707-715.	0.8	63
119	Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach. International Journal of Multiphase Flow, 2008, 34, 819-828.	1.6	94
120	Direct Numerical Simulation of Sensitivity Coefficients in Low-Reynolds Number Turbulent Channel Flow. , 2008, , .		0
121	The Role of Turbulent Dissipation for Flow Control of Near-Wall Turbulence. , 2007, , 268-275.		1
122	Logarithmic Expansions for Reynolds Shear Stress and Reynolds Heat Flux in a Turbulent Channel Flow. Journal of Heat Transfer, 2008, 130, .	1.2	5
123	Turbulence in Fluids. Fluid Mechanics and Its Applications, 2008, , .	0.1	302
124	Discussion of "Analyzing Turbulence Intensity in Gravel Bed Channels―by F. G. Carollo, V. Ferro, and D. Termini. Journal of Hydraulic Engineering, 2008, 134, 505-506.	0.7	0
125	Theoretical interpretation of coherent structures in near-wall turbulence. Fluid Dynamics Research, 2009, 41, 064001.	0.6	12
126	Large-eddy Simulations for Geophysical Fluid Dynamics. Handbook of Numerical Analysis, 2009, , 309-338.	0.9	1
127	Experimental study on the local similarity scaling of the turbulence spectrum in the turbulent boundary layer. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 900-908.	0.2	1
128	Near-wall behavior of turbulent wall-bounded flows. International Journal of Heat and Fluid Flow, 2009, 30, 993-1006.	1.1	42

#	Article	IF	CITATIONS
129	Turbulent momentum transport and kinetic energy production in plane-channel flows. International Journal of Heat and Mass Transfer, 2009, 52, 4117-4124.	2.5	10
130	Direct numerical simulation of sensitivity coefficients in low Reynolds number turbulent channel flow. Journal of Turbulence, 2009, 10, N23.	0.5	2
131	Influence of the reynolds number on the plane-channel turbulent flow of a fluid. Technical Physics, 2010, 55, 1741-1747.	0.2	4
132	Correlating data: examples from turbulent wall layers. Experiments in Fluids, 2010, 49, 279-289.	1.1	1
133	Theoretical Considerations about Near-Wall Turbulence and Resulting Flow Control Schemes. Proceedings in Applied Mathematics and Mechanics, 2010, 10, 743-746.	0.2	0
134	Turbulent boundary layers and channels at moderate Reynolds numbers. Journal of Fluid Mechanics, 2010, 657, 335-360.	1.4	266
136	Low Reynolds number effects on rotating turbulent Poiseuille flow. Physics of Fluids, 2010, 22, .	1.6	11
137	The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Physics of Fluids, 2010, 22, .	1.6	101
138	Mean dynamics of transitional boundary-layer flow. Journal of Fluid Mechanics, 2011, 682, 617-651.	1.4	27
139	Deviations from the law of velocity defect observed for small reynolds numbers. Technical Physics, 2011, 56, 931-935.	0.2	3
140	Hairpin vortices in turbulent channel flow. Procedia Computer Science, 2011, 4, 801-810.	1.2	3
141	DNS study on viscoelastic effect in drag-reduced turbulent channel flow. Journal of Turbulence, 2011, 12, N13.	0.5	24
142	Experimental study of three-scalar mixing in a turbulent coaxial jet. Journal of Fluid Mechanics, 2011, 685, 495-531.	1.4	22
143	On Direct Numerical Simulation of Turbulent Flows. Applied Mechanics Reviews, 2011, 64, .	4.5	35
144	Prediction of Extrathoracic Aerosol Deposition using RANS-Random Walk and LES Approaches. Aerosol Science and Technology, 2011, 45, 555-569.	1.5	25
145	Break-Up of Aerosol Agglomerates in Highly Turbulent Gas Flow. Flow, Turbulence and Combustion, 2012, 89, 465-489.	1.4	15
146	Reynolds number effects on scale energy balance in wall turbulence. Physics of Fluids, 2012, 24, 015101.	1.6	25
147	Deviations from the temperature-defect law. Russian Journal of Applied Chemistry, 2013, 86, 220-224.	0.1	2

#	Article	IF	CITATIONS
148	Heat transfer enhancement through control of added perturbation velocity in flow field. Energy Conversion and Management, 2013, 70, 194-201.	4.4	7
150	Effect of Large-Scale Structure Generated in Low-Reynolds-Number Poiseuille Flow on Longitudinal Vortices. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 2352-2362.	0.2	0
152	Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+ â‰^ 2000. Physics of Fluids, 2014, 26, .	1.6	190
153	CPGPU implementation of mixed spectral-finite difference computational code for the numerical integration of the three-dimensional time-dependent incompressible Navier–Stokes equations. Computers and Fluids, 2014, 102, 237-249.	1.3	10
154	The quiescent core of turbulent channel flow. Journal of Fluid Mechanics, 2014, 751, 228-254.	1.4	50
155	Numerical simulation of turbulent flow through Schiller's wavy pipe. Journal of Fluid Mechanics, 2014, 761, 241-260.	1.4	6
156	A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. Journal of Fluid Mechanics, 2015, 771, 743-777.	1.4	140
157	Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia,) Tj ETQq1 1	. 0,784314 1,2	4 rgBT /Overlo
158	Turbulent pipe flow at Reï,, â‰^ 1000 : A comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment. Computers and Fluids, 2015, 122, 26-33.	1.3	17
159	Numerical simulation of turbulent flow through a straight square duct. Applied Thermal Engineering, 2015, 91, 800-811.	3.0	29
160	Direct Numerical Simulation of Turbulent Channel Flow on High-Performance GPU Computing System. Computation, 2016, 4, 13.	1.0	7
161	RANS Based Computational Fluid Dynamics Simulation of Fully Developed Turbulent Newtonian Flow in Concentric Annuli. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	0.8	11
162	Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow. Journal of Fluid Mechanics, 2016, 798, 140-164.	1.4	32
163	Influence of Inertial Particles on Turbulence Characteristics in Outer and Near Wall Flow as Revealed With High Resolution Particle Image Velocimetry. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	0.8	12
164	Transition and turbulence in a wall-bounded channel flow at high Mach number. , 2016, , .		0
165	An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells. Cardiovascular Engineering and Technology, 2016, 7, 44-57.	0.7	14
166	Particle deposition modeling in the secondary side of a steam generator bundle model. Nuclear Engineering and Design, 2016, 299, 112-123.	0.8	5
167	Analysis of interphase forces and investigation of their effect on particle transverse motion in particle-laden channel turbulence. International Journal of Multiphase Flow, 2017, 88, 11-29.	1.6	9

#	Article	IF	Citations
168	Transition and turbulence in a wall-bounded channel flow at high Mach number. , 2017, , .		0
169	Transition and turbulence in a wall-bounded channel flow at high Mach number. , 2017, , .		0
170	Local wall shear stress measurements with a thin plate submerged in the sublayer in wall turbulent flows. Experiments in Fluids, 2017, 58, 1.	1.1	4
171	Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. Journal of Fluid Mechanics, 2017, 833, 563-598.	1.4	40
172	Wall Shear Stress Determination in a Small-Scale Parallel Plate Flow Chamber Using Laser Doppler Velocimetry Under Laminar, Pulsatile and Low-Reynolds Number Turbulent Flows. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	3
173	Direct numerical simulation of strongly heated air flows in a vertical pipe using a thermophysical property table. International Journal of Heat and Mass Transfer, 2018, 124, 1181-1197.	2.5	12
174	Shear Stress Vector Measurement Using a Circular Sublayer Plate with Multiple Pressure Taps. AIAA Journal, 2018, 56, 2138-2144.	1.5	1
175	Spatial–spectral characteristics of momentum transport in a turbulent boundary layer. Journal of Fluid Mechanics, 2018, 836, 599-634.	1.4	8
176	Toward design of the antiturbulence surface exhibiting maximum drag reduction effect. Journal of Fluid Mechanics, 2018, 850, 262-303.	1.4	12
177	Study of the large-eddy simulation subgrid terms of a low Mach number anisothermal channel flow. International Journal of Thermal Sciences, 2019, 135, 221-234.	2.6	10
178	Uniform-momentum zones in a turbulent pipeÂflow. Journal of Fluid Mechanics, 2020, 884, .	1.4	15
179	Mixed modeling for large-eddy simulation: The single-layer and two-layer minimum-dissipation-Bardina models. AIP Advances, 2021, 11, 015002.	0.6	4
180	A scaling improved inner–outer decomposition of near-wall turbulent motions. Physics of Fluids, 2021, 33, .	1.6	14
181	Turbulent and wave kinetic energy budgets in the airflow over wind-generated surface waves. Journal of Fluid Mechanics, 2021, 920, .	1.4	8
182	Large-Eddy Simulations of Turbulence. , 2001, , 113-186.		2
184	Direct Numerical Simulations and Hot Wire Experiments : A Possible Way Ahead?. , 1993, , 349-365.		10
185	Low Reynolds Number Effects on the Inner Region of a Turbulent Boundary Layer. , 1996, , 3-15.		3
186	Recent Approaches in Large-Eddy Simulations of Turbulence. , 1997, , 1-28.		2

	CITATION REPORT		
Article		IF	CITATIONS
Enhancement of Finite Reynolds Number Effects in the Turbulent Boundary Layer Due Sublayer Interaction. Fluid Mechanics and Its Applications, 1996, , 63-64.	to Inner-Outer	0.1	1
Turbulent Poiseuille Channel Flow Interpreted by Composite Expansions. Fluid Mechan Applications, 1996, , 17-32.	ics and Its	0.1	1
Riblet flow calculation with a low Reynolds number k - ${\rm l}\mu$ model. Fluid Mechanics and 1 1993, , 267-282.	ts Applications,	0.1	4
Large-Eddy Simulations of Incompressible and Compressible Turbulence. ERCOFTAC So 349-419.	eries, 1999, ,	0.1	5
Influence of a Spanwise Rotation Upon the Coherent-Structure Dynamics in a Turbuler Flow. ERCOFTAC Series, 1997, , 225-236.	nt Channel	0.1	5
Energy contributions by inner and outer motions in turbulent channel flows. Physical R 2018, 3, .	Review Fluids,	1.0	17
RESULTS OF NUMERICAL INTEGRATION OF THE NAVIER-STOKES EQUATIONS IN THE F SIMULATION OF TURBULENCE. Journal of Flow Visualization and Image Processing, 20	IELD OF DIRECT 11, 18, 91-135.	0.3	2
TURBULENT EVENTS IN A WALL-BOUNDED TURBULENT FLOW. Journal of Flow Visualiz Processing, 2012, 19, 139-160.	zation and Image	0.3	4
Numerical investigation of turbulent heat transfer and fluid flow in a nuclear fuel plate Nuclear Energy, 2004, 43, 221-228.	assembly.	0.2	2
On peculiar property of the velocity fluctuations in wall-bounded flows. Thermal Science 3-12.	ce, 2005, 9,	0.5	25
The effect of polymers on the dynamics of turbulence in a drag reduced flow. Thermal 9, 13-41.	Science, 2005,	0.5	2
Numerical experiments on wall turbulence at low Reynolds number. Thermal Science, 2	2006, 10, 33-62.	0.5	8
Persistence of the laminar regime in a flat plate boundary layer at very high Reynolds n Science, 2006, 10, 63-96.	umber. Thermal	0.5	8
Relaminarization of wall turbulence by high-pressure ramps at low Reynolds numbers. Science, 2016, 20, 93-102.	Thermal	0.5	1
Spectral Eddy-Viscosity Based Les of Shear and Rotating Flows. Fluid Mechanics and It 2000, , 235-252.	s Applications,	0.1	1

204	On the evolution of laminar to turbulent transition and breakdown to turbulence. Thermal Science, 2003, 7, 59-76.	0.5	0

Two-Point Homogeneous Turbulence., 1999,, 143-227.

Reynolds Number Dependence of Near Wall Turbulent Statistics in Channel Flows. , 2000, , 209-221.

#

187

189

191

194

196

198

200

202

#	Article	IF	CITATIONS
209	Numerical and experimental investigations on drag-reducing effects of riblets. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1726-1745.	1.5	2
210	Turbulence and Large-Eddy Simulations. , 2005, , 203-215.		0
211	Statistical interpretation of LDA measurements in naturally developing turbulent drag-reducing flow using invariant theory. International Journal of Heat and Fluid Flow, 2022, 93, 108856.	1.1	0
212	Assessment of stochastic models for predicting particle transport and deposition in turbulent pipe flows. Journal of Aerosol Science, 2022, 162, 105954.	1.8	7
213	A systematic study of the grid requirements for a spectral element method solver. Computers and Fluids, 2023, 251, 105745.	1.3	6