Overview of coupled map lattices

Chaos 2, 279-282 DOI: 10.1063/1.165869

Citation Report

#	Article	IF	CITATIONS
1	Chaotic Turing structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 179, 325-331.	2.1	20
2	An Interplay Between Local and Global Dynamics in Biological Networks: The Case of Genetic Sequences. , 1993, , 85-100.		0
3	Statistical properties of spatiotemporal dynamical systems. Physical Review E, 1993, 48, R1605-R1608.	2.1	14
4	A Simple Model of Neurogenesis and Cell Differentiation Based on Evolutionary Large-Scale Chaos. Artificial Life, 1994, 2, 79-99.	1.3	18
5	Statistical cycling in coupled map lattices. Physical Review E, 1994, 50, 843-856.	2.1	26
6	Fractal basin boundaries in coupled map lattices. Physical Review E, 1994, 50, 3470-3473.	2.1	9
7	Mutually destructive fluctuations in globally coupled arrays. Physical Review E, 1994, 49, 1865-1868.	2.1	5
8	Coupling induced statistical cycling in two diffusively coupled maps. Physica D: Nonlinear Phenomena, 1994, 72, 324-342.	2.8	15
9	Extreme sensitive dependence on parameters and initial conditions in spatio-temporal chaotic dynamical systems. Physica D: Nonlinear Phenomena, 1994, 74, 353-371.	2.8	36
10	Persistence of Transients in Spatially Structured Ecological Models. Science, 1994, 263, 1133-1136.	12.6	308
11	Spatially Induced Bifurcations in Single-Species Population Dynamics. Journal of Animal Ecology, 1994, 63, 256.	2.8	75
12	Kink dynamics in oneâ€dimensional coupled map lattices. Chaos, 1995, 5, 602-608.	2.5	8
13	Coupled map lattices: one step forward and two steps back. Physica D: Nonlinear Phenomena, 1995, 86, 248-255.	2.8	38
14	Iteration of the coupled map lattice construction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 205, 179-183.	2.1	2
15	Unpredictability of the asymptotic attractors in phase-coupled oscillators. Physical Review E, 1995, 51, 2902-2908.	2.1	7
16	Spatiotemporal chaos in a coupled map lattice with unstable couplings. Journal of Physics A, 1995, 28, 5257-5266.	1.6	6
17	Synchronizing Hyperchaos with a Scalar Transmitted Signal. Physical Review Letters, 1996, 76, 904-907.	7.8	344
18	Detecting nonlinear dynamics in spatio-temporal systems, examples from ecological models. Physica D: Nonlinear Phenomena, 1996, 96, 321-333.	2.8	21

#	Article	IF	CITATIONS
19	High temperature expansions and dynamical systems. Communications in Mathematical Physics, 1996, 178, 703-732.	2.2	77
20	Complex spatiotemporal patterns in two lattice models with instability. Physica A: Statistical Mechanics and Its Applications, 1996, 233, 754-766.	2.6	2
21	Universal Scaling Law for the Largest Lyapunov Exponent in Coupled Map Lattices. Physical Review Letters, 1996, 76, 1808-1811.	7.8	25
22	Synchronizing hyperchaos for communication. , 0, , .		5
23	Onset of chaos in coupled map lattices via the peak-crossing bifurcation. Nonlinearity, 1996, 9, 1281-1298.	1.4	12
24	Complex evolution in genetic networks. Europhysics Letters, 1997, 40, 497-502.	2.0	2
25	Maximum hyperchaos in chaotic nonmonotonic neuronal networks. Physical Review E, 1997, 56, 890-893.	2.1	10
26	Stability of synchronous chaos and on-off intermittency in coupled map lattices. Physical Review E, 1997, 56, 4009-4016.	2.1	90
27	Control and Applications of Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 2175-2197.	1.7	14
29	An experimental spatio-temporal state transition of coupled magneto-elastic system. Chaos, 1997, 7, 810-816.	2.5	12
30	Control of chaotic systems using an on-line trained linear neural controller. Physica D: Nonlinear Phenomena, 1997, 100, 423-438.	2.8	27
31	Dynamically changing interface as a model of measurement in complex systems. Physica D: Nonlinear Phenomena, 1997, 101, 27-54.	2.8	22
32	Dynamical stability and finite amplitude perturbations in coupled genetic networks. Physica D: Nonlinear Phenomena, 1997, 108, 379-396.	2.8	4
33	Spatio-temporal chaos: A solvable model. Physica D: Nonlinear Phenomena, 1997, 104, 269-285.	2.8	21
34	The Role of Weak Interactions in Biological Systems: the Dual Dynamics Model. Journal of Theoretical Biology, 1998, 193, 287-306.	1.7	36
35	Long transients dynamics in biochemical networks. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 91-102.	0.4	0
36	Nontrivial collective behavior in coupled maps on fractal lattices. Physica A: Statistical Mechanics and Its Applications, 1998, 257, 357-364.	2.6	5
37	Inter-site: a new tool for the simulation of spatially realistic population dynamics. Ecological Modelling, 1998, 113, 125-139.	2.5	10

#	Article	IF	CITATIONS
38	Localized solutions in lattice systems and their bifurcations caused by spatial interactions. Nonlinearity, 1998, 11, 1539-1545.	1.4	5
39	Fronts and interfaces in bistable extended mappings. Nonlinearity, 1998, 11, 1407-1433.	1.4	12
40	Spatiotemporal Bifurcation Phenomena with Temporal Period Doubling: Patterns in Vibrated Sand. Physical Review Letters, 1998, 80, 3495-3498.	7.8	66
41	Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings. Physical Review E, 1998, 57, 1139-1144.	2.1	18
42	Solvable model for spatiotemporal chaos. Physical Review E, 1998, 57, 388-396.	2.1	4
43	Decentralized delayed-feedback control of a coupled map model for open flow. Physical Review E, 1998, 58, 3055-3059.	2.1	29
44	Global synchronization in coupled map lattices. , 0, , .		7
45	Pattern formation in spatially extended nonlinear systems: Toward a foundation for meaning in symbolic forms. , 1998, , .		0
46	Decentralized delayed-feedback control of a coupled ring map lattice. , 0, , .		2
47	CONTROL AND APPLICATIONS OF CHAOS. World Scientific Series on Nonlinear Science, Series A, 1999, , 457-493.	0.0	0
47 48		0.0 2.5	0 82
	457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos,		
48	457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 1999, 9, 795-804. Metamorphosis of chaotic saddle. Physics Letters, Section A: General, Atomic and Solid State Physics,	2.5	82
48 49	 457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 1999, 9, 795-804. Metamorphosis of chaotic saddle. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259, 445-450. Stability of steady states in one-way open coupled map lattices. Physics Letters, Section A: General, 	2.5 2.1	82 12
48 49 50	 457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 1999, 9, 795-804. Metamorphosis of chaotic saddle. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259, 445-450. Stability of steady states in one-way open coupled map lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 307-314. Characterization of the spatial complex behavior and transition to chaos in flow systems. Physica D: 	2.5 2.1 2.1	82 12 19
48 49 50 51	 457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 1999, 9, 795-804. Metamorphosis of chaotic saddle. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259, 445-450. Stability of steady states in one-way open coupled map lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 307-314. Characterization of the spatial complex behavior and transition to chaos in flow systems. Physica D: Nonlinear Phenomena, 1999, 125, 65-78. Decentralized delayed-feedback control of a one-way coupled ring map lattice. Physica D: Nonlinear 	2.5 2.1 2.1 2.8	82 12 19 2
48 49 50 51 52	 457-493. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos, 1999, 9, 795-804. Metamorphosis of chaotic saddle. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259, 445-450. Stability of steady states in one-way open coupled map lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 307-314. Characterization of the spatial complex behavior and transition to chaos in flow systems. Physica D: Nonlinear Phenomena, 1999, 125, 65-78. Decentralized delayed-feedback control of a one-way coupled ring map lattice. Physica D: Nonlinear Phenomena, 1999, 127, 1-12. Spatiotemporal chaos in a 2D coupled map lattice with pinning-like force. Physica D: Nonlinear 	2.5 2.1 2.1 2.8 2.8	82 12 19 2 15

		CITATION REPORT		
#	Article		IF	CITATIONS
56	Synchronized family dynamics in globally coupled maps. Chaos, 1999, 9, 738-754.		2.5	25
57	Self-disturbance as a Source of Spatiotemporal Heterogeneity: the Case of the Tallgrass Journal of Theoretical Biology, 2000, 204, 153-164.	Prairie.	1.7	22
58	Host-parasitoid population dynamics*. Journal of Animal Ecology, 2000, 69, 543-566.		2.8	223
59	Model of a spatially inhomogeneous one-dimensional active medium. Theoretical and Ma Physics(Russian Federation), 2000, 124, 1286-1297.	athematical	0.9	3
60	Spatial Scales and Low-dimensional Deterministic Dynamics. , 2000, , 209-226.			6
62	FAILURE OF A MEAN-FIELD APPROACH FOR THE MILLER–HUSE PHASE TRANSITION. In Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 251-256.	ternational Journal of	1.7	2
63	Delayed-feedback control of spatial bifurcations and chaos in open-flow models. Physica 2000, 62, 384-388.	l Review E,	2.1	21
64	Bifurcating pulsed neural networks, chaotic neural networks and parametric recursions: conciliating different frameworks in neuro-like computing. , 2000, , .			6
65	Phase Order in Chaotic Maps and in Coupled Map Lattices. Physical Review Letters, 2000), 84, 2610-2613.	7.8	44
66	Decentralized delayed-feedback control of a coupled ring map lattice. IEEE Transactions and Systems Part 1: Regular Papers, 2000, 47, 1100-1102.	on Circuits	0.1	16
67	Pattern selection in extended periodically forced systems: A continuum coupled map ap Physical Review E, 2001, 63, 046202.	proach.	2.1	30
68	Pattern formation in discrete cell lattices. Journal of Mathematical Biology, 2001, 43, 41	1-445.	1.9	61
69	Coupled map lattices with complex order parameter. Physica A: Statistical Mechanics an Applications, 2001, 291, 299-316.	d Its	2.6	5
70	The Bifurcating Neuron Network 1. Neural Networks, 2001, 14, 115-131.		5.9	69
71	Spatially explicit ecological models: a spatial convolution approach. Chaos, Solitons and 2001, 12, 333-347.	Fractals,	5.1	25
72	Recognition of objects rotated in depth using partial synchronization of chaotic units. , (D, , .		2
73	PERCEPTION OF ODORS BY A NONLINEAR MODEL OF THE OLFACTORY BULB. Internation Neural Systems, 2001, 11, 101-124.	anal Journal of	5.2	28
74	PARAMETRICALLY COUPLED SINE MAP NETWORKS. International Journal of Bifurcation Applied Sciences and Engineering, 2001, 11, 1815-1834.	and Chaos in	1.7	16

ARTICLE IF CITATIONS # Stochastic analog to phase transitions in chaotic coupled map lattices. Physical Review E, 2001, 64, 75 2.15 016207. Controlling spatiotemporal chaos in coupled map lattices. Physical Review E, 2001, 63, 067201. 2.1 Spatiotemporal stability and control of one-way open coupled Lorenz systems. Physical Review E, 2002, 77 2.1 3 65,036203. Mode locking of spatiotemporally periodic orbits in coupled sine circle map lattices. Physical Review E, 2002, 65, 046227. EXPERIMENTAL EVIDENCE FOR SPATIOTEMPORAL STABILITY AND CONTROL OF A ONE-WAY OPEN CML. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 79 1.7 1 2937-2944. SPATIAL FORECASTING: DETECTING DETERMINISM FROM SINGLE SNAPSHOTS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 369-376. 1.7 Population Dynamics with a Refuge: Fractal Basins and the Suppression of Chaos. Theoretical 82 1.1 15 Population Biology, 2002, 62, 121-128. Noise-induced effects in population dynamics. Journal of Physics Condensed Matter, 2002, 14, 1.8 2247-2255. 84 Evolution in materio: looking beyond the silicon box., 0,,. 57 A hierarchy of coupled maps. Chaos, 2002, 12, 719-731. 2.5 Locally interdependent preferences in a general equilibrium environment. Journal of Economic 2.0 86 26 Behavior and Organization, 2002, 47, 309-333. Quiet Sun coronal heating: A statistical model. Astronomy and Astrophysics, 2002, 382, 699-712. 87 5.1 On quasiperiodic travelling waves in coupled map lattices. Physica D: Nonlinear Phenomena, 2002, 164, 88 2.8 6 28-44. Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2002, 310, 521-531. 2.6 868 Predicting the spatial distribution of a population in a heterogeneous landscape. Ecological 90 2.529 Modelling, 2003, 166, 53-65. Neural networks with chaotic recursive nodes: techniques for the design of associative memories, contrast with Hopfield architectures, and extensions for time-dependent inputs. Neural Networks, 2003, 16, 675-682. Chaotic itinerancy. Chaos, 2003, 13, 926-936. 92 2.5215 Spatial mechanisms for coexistence of species sharing a common natural enemy. Theoretical 1.1 Population Biology, 2003, 64, 431-438.

#	Article	IF	CITATIONS
94	Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus - Biologies, 2003, 326, 787-840.	0.2	442
95	Morpho-functional Machines: The New Species. , 2003, , .		29
96	DIMENSION CHANGE, COARSE GRAINED CODING AND PATTERN RECOGNITION IN SPATIO-TEMPORAL NONLINEAR SYSTEMS. Journal of Integrative Neuroscience, 2003, 02, 71-102.	1.7	2
97	Chaotic itinerancy generated by coupling of Milnor attractors. Chaos, 2003, 13, 937-946.	2.5	16
98	Analog realization of arbitrary one-dimensional maps. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 1538-1547.	0.1	33
99	Neural networks with chaotic recursive nodes: design of associative memories, performance analysis, and contrast with traditional Hopfield architectures. , 0, , .		0
100	Exploring regenerative mechanisms found in flatworms by artificial evolutionary techniques using genetic regulatory networks. , 0, , .		4
101	Power-Law Spatial Correlations in Arrays of Locally Coupled Lasers. Physical Review Letters, 2004, 92, 093905.	7.8	24
102	The role of heterogeneity on the spatiotemporal dynamics of host–parasite metapopulation. Ecological Modelling, 2004, 180, 435-443.	2.5	27
103	Spectral properties and pattern selection in fractal growth networks. Physica D: Nonlinear Phenomena, 2004, 199, 91-104.	2.8	2
104	Transition to chaos in complex dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 367-378.	2.6	34
105	Phase synchronization in inhomogeneous globally coupled map lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 324, 450-457.	2.1	15
106	Chaos synchronization of general complex dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2004, 334, 281-302.	2.6	378
107	Aging at the edge of chaos: glassy dynamics and nonextensive statistics. Physica A: Statistical Mechanics and Its Applications, 2004, 342, 104-111.	2.6	13
108	Pattern control and suppression of spatiotemporal chaos using geometrical resonance. Chaos, Solitons and Fractals, 2004, 22, 693-703.	5.1	6
109	Pinning a Complex Dynamical Network to Its Equilibrium. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2004, 51, 2074-2087.	0.1	829
110	Allee-like effects in metapopulation dynamics. Mathematical Biosciences, 2004, 189, 103-113.	1.9	48
111	Power-law spatial correlations in arrays of locally coupled lasers. , 2004, , .		ο

# 112	ARTICLE Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices. Journal of Theoretical Biology, 2005, 235, 463-475.	IF 1.7	Citations 22
113	Coupled Map Lattices: at the Age of Maturity. , 0, , 9-32.		7
114	Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation. Physical Review E, 2005, 72, 066213.	2.1	17
115	Controlling chaos in a weakly coupled array of Bose-Einstein condensates. Physical Review E, 2005, 71, 016202.	2.1	45
116	Basin bifurcations in quasiperiodically forced coupled systems. Physical Review E, 2005, 72, 036215.	2.1	14
117	MULTISTATE ASSOCIATIVE MEMORY WITH PARAMETRICALLY COUPLED MAP NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1395-1410.	1.7	6
118	Using Predictive Control to Synchronize Chaotic Systems. Automation and Remote Control, 2005, 66, 1905-1915.	0.8	0
119	The Fermi–Pasta–Ulam â€~numerical experiment': history and pedagogical perspectives. European Journal of Physics, 2005, 26, S3-S11.	0.6	65
120	Symbolic synchronization and the detection of global properties of coupled dynamics from local information. Chaos, 2006, 16, 033124.	2.5	19
121	From lag synchronization to pattern formation in one-dimensional open flow models. Chaos, Solitons and Fractals, 2006, 30, 1198-1205.	5.1	7
122	From coupled map lattices to the stochastic Kardar–Parisi–Zhang equation. Physica A: Statistical Mechanics and Its Applications, 2006, 371, 96-99.	2.6	4
123	Formalizing Emergence: the Natural After-Life of Artificial Life. , 2006, , 41-60.		1
124	Hydrodynamic Lyapunov modes in coupled map lattices. Physical Review E, 2006, 73, 016202.	2.1	15
125	Universal Features of Hydrodynamic Lyapunov Modes in Extended Systems with Continuous Symmetries. Physical Review Letters, 2006, 96, 074101.	7.8	14
126	Dynamical behavior of hydrodynamic Lyapunov modes in coupled map lattices. Physical Review E, 2006, 73, 016208.	2.1	13
127	NONINVERTIBLE TRANSFORMATIONS AND SPATIOTEMPORAL RANDOMNESS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 3369-3381.	1.7	2
128	On two approaches to analyzing consensus in complex networks. , 2007, , .		1
129	Pattern with kinks and pulses in coupled periodic map lattices. Physical Review E, 2007, 76, 036215.	2.1	5

	CITATION	Report	
#	Article	IF	CITATIONS
130	Symmetry breaking in linearly coupled dynamical lattices. Physical Review E, 2007, 76, 066606.	2.1	50
131	Control of Spatiotemporal Chaos via Nonlinear Feedback. , 2007, , .		2
132	Neurodynamics of Cognition and Consciousness. , 2007, , .		33
133	Effects of Scale-Free Topological Properties on Dynamical Synchronization and Control in Coupled Map Lattices. Communications in Theoretical Physics, 2007, 47, 361-368.	2.5	1
134	Dynamics of electron-trapping materials under blue light and near-infrared exposure: an improved model. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1927.	2.1	5
136	Model updating and simulation of Lyapunov exponents. , 2007, , .		3
137	From lag synchronization to pattern formation in networked dynamics. Physica A: Statistical Mechanics and Its Applications, 2007, 378, 537-549.	2.6	1
138	Carrying surfaces for return maps of averaged logistic maps. Computers and Graphics, 2007, 31, 887-895.	2.5	2
139	Phase ordering induced by defects in chaotic bistable media. European Physical Journal: Special Topics, 2007, 143, 249-251.	2.6	0
140	Optimization in Control and Learning inÂCoupledÂMapÂLatticeÂSystems. Journal of Optimization Theory and Applications, 2007, 134, 533-547.	1.5	1
141	Corticonic models of brain mechanisms underlying cognition and intelligence. Physics of Life Reviews, 2007, , .	2.8	1
142	Global Synchronization & Anti-Synchronization inÂN-Coupled Map Lattices. International Journal of Theoretical Physics, 2008, 47, 1005-1015.	1.2	2
143	Sudden Shifts in Ecological Systems: Intermittency and Transients in the Coupled Ricker Population Model. Bulletin of Mathematical Biology, 2008, 70, 1013-1031.	1.9	25
144	On some properties of contracting matrices. Linear Algebra and Its Applications, 2008, 428, 2509-2523.	0.9	3
145	Multi-timescale event-scheduling in multi-agent immune simulation models. BioSystems, 2008, 91, 126-145.	2.0	6
146	Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy). Ecological Modelling, 2008, 213, 449-462.	2.5	75
147	LYAPUNOV SPECTRA OF COUPLED CHAOTIC MAPS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3759-3770.	1.7	0
148	Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells. New Journal of Physics, 2008, 10, 055001.	2.9	9

#	Article	IF	CITATIONS
149	Phase growth in bistable systems with impurities. Physical Review E, 2008, 77, 016204.	2.1	2
150	Complexity measures from interaction structures. Physical Review E, 2009, 79, 026201.	2.1	28
151	Self-Organization in a Parametrically Coupled Logistic Map Network: A Model for Information Processing in the Visual Cortex. IEEE Transactions on Neural Networks, 2009, 20, 597-608.	4.2	11
152	HIGH-DIMENSIONAL CHAOS IN DISSIPATIVE AND DRIVEN DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2823-2869.	1.7	33
153	Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile. Ecological Modelling, 2009, 220, 3394-3403.	2.5	23
154	Control of spatio-temporal on–off intermittency in random driving diffusively coupled map lattices. Chaos, Solitons and Fractals, 2009, 41, 113-122.	5.1	5
155	Adaptive control of spatiotemporal chaos in coupled map lattices. Chaos, Solitons and Fractals, 2009, 41, 1697-1707.	5.1	5
156	Stochastic dynamics and mean field approach in a system of three interacting species. Open Physics, 2009, 7, .	1.7	1
157	ROBUST CONTROL OF SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 2031-2042.	1.7	3
158	MULTISCALE COMPUTATIONS ON NEURAL NETWORKS: FROM THE INDIVIDUAL NEURON INTERACTIONS TO THE MACROSCOPIC-LEVEL ANALYSIS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 121-134.	1.7	7
159	ANALYSIS ON THE EFFICIENCY OF STATISTICAL MEASURES TO IDENTIFY NETWORK STRUCTURE OF CHAOS COUPLED SYSTEMS. International Journal of Modern Physics C, 2010, 21, 1065-1079.	1.7	3
160	Exponential Synchronization of Complex Delayed Dynamical Networks With Switching Topology. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57, 2967-2980.	5.4	117
161	Multi-scale modeling in biology: How to bridge the gaps between scales?. Progress in Biophysics and Molecular Biology, 2011, 107, 21-31.	2.9	111
163	EFFECTS OF NOISE ON CYCLIC COMPETITIONS AMONG THREE SPECIES. International Journal of Modern Physics B, 2011, 25, 3043-3052.	2.0	1
164	Cascading Failures in Bipartite Coupled Map Lattices. Applied Mechanics and Materials, 0, 198-199, 1810-1814.	0.2	0
165	A CA-Based Model Describing Fat Bloom in Chocolate. Lecture Notes in Computer Science, 2012, , 504-513.	1.3	0
166	Combinatorial-topological framework for the analysis of global dynamics. Chaos, 2012, 22, 047508.	2.5	40
167	Complexity measures, emergence, and multiparticle correlations. Physical Review E, 2012, 85, 046209.	2.1	9

IF ARTICLE CITATIONS # FPGA based cellular automata for environmental modeling., 2012, , . 168 11 A general fractional-order dynamical network: Synchronization behavior and state tuning. Chaos, 169 2.5 <u>2012, 22, 023102.</u> A Combinatorial Framework for Analysis of Global Dynamics and Bifurcations. Procedia IUTAM, 2012, 5, 170 1.2 0 195-198. 171 Experimental observation of chimeras in coupled-map lattices. Nature Physics, 2012, 8, 658-661. 515 Tumor-Cut: Segmentation of Brain Tumors on Contrast Enhanced MR Images for Radiosurgery 172 8.9 216 Applications. IEEE Transactions on Medical Imaging, 2012, 31, 790-804. Characterising neurological time series data using biologically motivated networks of coupled discrete maps. BioSystems, 2013, 112, 94-101. 174 A new approach based on coupled map lattices for load forecasting in smart grids., 2013,,. 0 Competitively coupled maps and spatial pattern formation. Physical Review E, 2013, 87, 022902. 2.1 176 Generalized Statistical Mechanics at the Onset of Chaos. Entropy, 2013, 15, 5178-5222. 2.2 13 Exploring Social Systems Dynamics with SOM Variants. Advances in Intelligent Systems and Computing, 2013, , 353-362. Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity 178 0 2.5 in fixational eye movements. Frontiers in Systems Neuroscience, 2014, 8, 29. Evolving Classifiers to Recognize the Movement Characteristics of Parkinson's Disease Patients. IEEE 179 Transactions on Evolutionary Computation, 2014, 18, 559-576. Delayed feedback control and phase reduction of unstable quasi-periodic orbits. Chaos, 2014, 24, 180 2.5 7 033137. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system. Chaos, 2014, 2.5 24,013116. Noise tolerant spatiotemporal chaos computing. Chaos, 2014, 24, 043110. 182 2.517 Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems. IEEE Transactions on Evolutionary Computation, 2014, 18, 145-166. Analysis of propagation dynamics in complex dynamical network based on disturbance propagation 184 2.0 12 model. International Journal of Modern Physics B, 2014, 28, 1450149. Phase transitions in two-dimensional daisyworld with small-world effectsâ€" A study of local and long-range couplings. Future Generation Computer Systems, 2014, 33, 64-80.

#	Article	IF	CITATIONS
186	On a piecewise-smooth map arising in ecology. Journal of Mathematical Analysis and Applications, 2014, 418, 753-765.	1.0	0
187	Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	6
188	Cascading Failures in Weighted Complex Networks of Transit Systems Based on Coupled Map Lattices. Mathematical Problems in Engineering, 2015, 2015, 1-16.	1.1	17
189	Mathematical framework for large-scale brain network modeling in The Virtual Brain. NeuroImage, 2015, 111, 385-430.	4.2	274
190	Novel coupling scheme to control dynamics of coupled discrete systems. Communications in Nonlinear Science and Numerical Simulation, 2015, 25, 50-65.	3.3	2
191	Coupling Reduces Noise: Applying Dynamical Coupling to Reduce Local White Additive Noise. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550040.	1.7	7
192	From globally coupled maps to complex-systems biology. Chaos, 2015, 25, 097608.	2.5	38
193	Heterogeneous agents in multi-markets: A coupled map lattices approach. Mathematics and Computers in Simulation, 2015, 108, 3-15.	4.4	5
194	Noise Induced Phenomena in the Dynamics of Two Competing Species. Mathematical Modelling of Natural Phenomena, 2016, 11, 158-174.	2.4	11
195	An Information Criterion for Inferring Coupling of Distributed Dynamical Systems. Frontiers in Robotics and Al, 2016, 3, .	3.2	12
196	Interplay of degree correlations and cluster synchronization. Physical Review E, 2016, 94, 062202.	2.1	16
197	Synchronous slowing down in coupled logistic maps via random network topology. Scientific Reports, 2016, 6, 23448.	3.3	7
198	Heterogeneous, weakly coupled map lattices. Communications in Nonlinear Science and Numerical Simulation, 2016, 36, 549-563.	3.3	1
199	Stateâ€andâ€transition simulation models: a framework for forecasting landscape change. Methods in Ecology and Evolution, 2016, 7, 1413-1423.	5.2	86
200	Estimation and Identification of Spatio-Temporal Models with Applications in Engineering, Healthcare and Social Science. Annual Reviews in Control, 2016, 42, 285-298.	7.9	0
201	Reduction of Additive Colored Noise Using Coupled Dynamics. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650005.	1.7	5
202	Mixed Synchronization Scheme for Coupled Different Dimensional Dynamical Systems. International Journal of Applied and Computational Mathematics, 2017, 3, 2687-2694.	1.6	0
203	Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics. Physical Review E, 2017, 95, 022311.	2.1	27

#	Article	IF	CITATIONS
204	Dynamical coupling outperforms "majority wins―in organizing redundancy to mitigate noise. Nonlinear Dynamics, 2017, 87, 605-615.	5.2	0
205	Revisiting the logistic map: A closer look at the dynamics of a classic chaotic population model with ecologically realistic spatial structure and dispersal. Theoretical Population Biology, 2017, 114, 10-18.	1.1	9
206	Visibility graphs of random scalar fields and spatial data. Physical Review E, 2017, 96, 012318.	2.1	26
207	The spatial dynamics of ecosystem engineers. Mathematical Biosciences, 2017, 292, 76-85.	1.9	9
208	Complex patterns in a space- and time-discrete predator-prey model with Beddington-DeAngelis functional response. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 182-199.	3.3	39
209	Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure. Physica D: Nonlinear Phenomena, 2017, 338, 26-33.	2.8	2
210	Chaos theory for clinical manifestations in multiple sclerosis. Medical Hypotheses, 2018, 115, 87-93.	1.5	11
211	Multiplex recurrence networks. Physical Review E, 2018, 97, 012312.	2.1	39
212	Experimental research of iterated dynamics for the complex exponentials with linear term. Journal of Physics: Conference Series, 2018, 990, 012008.	0.4	0
213	Spatiotemporal chaos in mixed linear–nonlinear two-dimensional coupled logistic map lattice. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 148-160.	2.6	32
214	Intermittent transition between synchronization and desynchronization in multi-regional business cycles. Structural Change and Economic Dynamics, 2018, 44, 68-76.	4.5	3
215	Integrating continuous stocks and flows into stateâ€andâ€transition simulation models of landscape change. Methods in Ecology and Evolution, 2018, 9, 1133-1143.	5.2	18
216	Manifestations of the onset of chaos in condensed matter and complex systems. European Physical Journal: Special Topics, 2018, 227, 645-660.	2.6	3
217	Almost compact moving breathers with fine-tuned discrete time quantum walks. Chaos, 2018, 28, 123104.	2.5	8
218	Fast and exact search for the partition with minimal information loss. PLoS ONE, 2018, 13, e0201126.	2.5	20
219	Experimental verification of quasi-periodic-orbit stabilization using a switched-capacitor chaotic neural network circuit. Nonlinear Theory and Its Applications IEICE, 2018, 9, 218-230.	0.6	2
220	Complex spatiotemporal behavior and coherent excitations in critically-coupled chains of neural circuits. Chaos, 2018, 28, 093102.	2.5	4
221	The Collapse of Ecosystem Engineer Populations. Mathematics, 2018, 6, 9.	2.2	5

#	ARTICLE	IF	CITATIONS
222	A downstream drift into chaos: Asymmetric dispersal in a classic density dependent population model. Theoretical Population Biology, 2018, 123, 9-17.	1.1	2
223	Riddling: Chimera's dilemma. Chaos, 2018, 28, 081105.	2.5	17
224	Image encryption technique with key diffused by coupled map lattice. , 2018, , .		4
225	Deterministic phase transitions and self-organization in logistic cellular automata. Physical Review E, 2019, 100, 042216.	2.1	2
226	A Novel Construction Scheme for Nonlinear Component Based on Quantum Map. International Journal of Theoretical Physics, 2019, 58, 3871-3898.	1.2	11
227	Chimeras in digital phase-locked loops. Chaos, 2019, 29, 013102.	2.5	13
228	Cascading Failures and Vulnerability Evolution in Bus–Metro Complex Bilayer Networks under Rainstorm Weather Conditions. International Journal of Environmental Research and Public Health, 2019, 16, 329.	2.6	30
229	Exotic Patterns of Synchrony in Planar Lattice Networks. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1930003.	1.7	5
230	Chaotic behavior of the CML model with respect to the state and coupling parameters. Journal of Mathematical Chemistry, 2019, 57, 1670-1681.	1.5	9
231	Mean field model of a game for power. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 535-547.	2.6	7
232	Adaptive rewiring in weighted networks. Cognitive Systems Research, 2019, 55, 205-218.	2.7	13
233	Emergence of extreme events in networks of parametrically coupled chaotic populations. Chaos, 2019, 29, 023131.	2.5	16
234	Symmetries of Quotient Networks for Doubly Periodic Patterns on the Square Lattice. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1930026.	1.7	5
235	A general deep learning framework for network reconstruction and dynamics learning. Applied Network Science, 2019, 4, .	1.5	36
236	Study of encapsulated microbubble cluster based on association schemes perspective. Ultrasonics Sonochemistry, 2019, 52, 131-141.	8.2	3
237	The coupled map lattice models of thin liquid film rupture. Surface Innovations, 2019, 7, 112-121.	2.3	2
238	Cellular Automata Tractography: Fast Geodesic Diffusion MR Tractography and Connectivity Based Segmentation on the GPU. Neuroinformatics, 2020, 18, 25-41.	2.8	3
239	Chaotic maps with nonlocal coupling: Lyapunov exponents, synchronization of chaos, and characterization of chimeras. Chaos, Solitons and Fractals, 2020, 131, 109501.	5.1	9

#	Article	IF	Citations
240	Hidden similarities in the dynamics of a weakly synchronous marine metapopulation. Proceedings of the United States of America, 2020, 117, 479-485.	7.1	12
241	A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Computing and Applications, 2020, 32, 11859-11873.	5.6	24
242	Transitional Channel Flow: A Minimal Stochastic Model. Entropy, 2020, 22, 1348.	2.2	5
243	Discrete Langevin machine: Bridging the gap between thermodynamic and neuromorphic systems. Physical Review E, 2020, 101, 063304.	2.1	3
244	Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers. Journal of the European Mathematical Society, 2020, 22, 2183-2252.	1.4	11
245	On the transition to the antiferromagnetic pattern in coupled logistic lattice in 2-dimensions. AIP Conference Proceedings, 2020, , .	0.4	1
246	A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality. Cognitive Neurodynamics, 2020, 14, 657-674.	4.0	7
247	Where and how do localized perturbations affect stream and coastal ocean populations with nonlinear growth dynamics?. Theoretical Ecology, 2020, 13, 223-238.	1.0	0
248	Adaptive rewiring evolves brain-like structure in weighted networks. Scientific Reports, 2020, 10, 6075.	3.3	4
249	Dynamic Robustness Analysis for Subway Network With Spatiotemporal Characteristic of Passenger Flow. IEEE Access, 2020, 8, 45544-45555.	4.2	20
250	Turbulence as a Network of Fourier Modes. Mathematics, 2020, 8, 530.	2.2	4
251	Cooperators overcome migration dilemma through synchronization. Physical Review Research, 2021, 3, .	3.6	6
252	Chimeralike states in a minimal network of active camphor ribbons. Physical Review E, 2021, 103, 012214.	2.1	13
253	Extreme Value Metaheuristics and Coupled Mapped Lattice Approaches for Gas Turbine-Absorption Chiller Optimization. Advances in Computer and Electrical Engineering Book Series, 2021, , 283-312.	0.3	1
254	Analysis of dynamics in chaotic neural network reservoirs: Time-series prediction tasks. Nonlinear Theory and Its Applications IEICE, 2021, 12, 639-661.	0.6	8
255	Using machine-learning modeling to understand macroscopic dynamics in a system of coupled maps. Chaos, 2021, 31, 023102.	2.5	2
256	Detecting interactions in discrete-time dynamics by random variable resetting. Chaos, 2021, 31, 033146.	2.5	3
257	A Novel Intermittent Jumping Coupled Map Lattice Based on Multiple Chaotic Maps. Applied Sciences (Switzerland), 2021, 11, 3797.	2.5	10

#	Article	IF	CITATIONS
258	A Plaintext-related Image Encryption Algorithm Usable in Biometric Systems. , 2021, , .		3
259	Beyond Statistical Analysis in Chaos-Based CSPRNG Design. Security and Communication Networks, 2021, 2021, 1-14.	1.5	2
260	PSO with Coupled Map Lattice and Worker Antâ \in Ms Law. , 2021, , .		0
261	Extreme events in globally coupled chaotic maps. Journal of Physics Complexity, 2021, 2, 035021.	2.2	18
262	A spatiotemporal chaotic system based on pseudo-random coupled map lattices and elementary cellular automata. Chaos, Solitons and Fractals, 2021, 151, 111217.	5.1	9
263	Design and Evaluation of a Hybrid Chaotic-Bistable Ring PUF. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29, 1912-1921.	3.1	6
264	Dynamic Robustness Analysis of a Two-Layer Rail Transit Network Model. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 6509-6524.	8.0	48
266	Hierarchies of Spatially Extended Systems and Synchronous Concurrent Algorithms. Lecture Notes in Computer Science, 1998, , 184-235.	1.3	2
267	Ecological Systems. , 2009, , 2711-2728.		1
268	Dynamic Spatio-temporal Landscape Models. Landscape Series, 2007, , 273-296.	0.2	7
269	EvoDynamic: A Framework for the Evolution of Generally Represented Dynamical Systems and Its Application to Criticality. Lecture Notes in Computer Science, 2020, , 133-148.	1.3	3
270	A Blind Dual Color Images Watermarking Method via SVD and DNA Sequences. Lecture Notes in Computer Science, 2016, , 246-259.	1.3	3
271	Lattice Dynamical Systems. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2001, , 59-83.	0.1	2
272	Combining developmental processes and their physics in an artificial evolutionary system to evolve shapes. , 2003, , 302-318.		15
273	A Simple Model of Neurogenesis and Cell Differentiation Based on Evolutionary Large-Scale Chaos. Artificial Life, 1994, 2, 79-99.	1.3	17
274	Chimera states are fragile under random links. Europhysics Letters, 2019, 128, 40004.	2.0	8
275	Delayed global feedback in the genesis and stability of spatiotemporalÂexcitationÂpatterns in paced biological excitable media. PLoS Computational Biology, 2020, 16, e1007931.	3.2	7
276	An Attempt to Understand Global Structure of Dynamics in Nonlinear Phenomena. The Brain & Neural Networks, 2015, 22, 68-77.	0.1	1

C	E A 751	0.11	REPO	DT
				ו גוו

#	Article	IF	CITATIONS
277	Influence of technological progress and renewability on the sustainability of ecosystem engineers populations. Mathematical Biosciences and Engineering, 2019, 16, 3450-3464.	1.9	3
278	Collective Dynamics and Homeostatic Emergence in Complex Adaptive Ecosystem. , 0, , .		1
279	Adaptive rewiring in nonuniform coupled oscillators. Network Neuroscience, 2022, 6, 90-117.	2.6	2
280	Amplitude death in coupled replicator map lattice: Averting migration dilemma. Physical Review E, 2021, 104, 044304.	2.1	1
281	Spatio-Temporal Chaos in Bistable Coupled Map Lattices. Springer Series in Synergetics, 2002, , 279-323.	0.4	0
282	Evolving Morphologies and Neural Controllers Based on the Same Underlying Principle: Specific Ligand-Receptor Interactions. , 2003, , 217-236.		0
283	Frozen random patterns in a globally coupled discontinuous map lattices system. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 040507.	0.5	3
284	Continuous or Discrete State Dynamical Systems as Models for Computation in Neural Systems. NATO ASI Series Series B: Physics, 1993, , 513-516.	0.2	0
285	Cell differentiation and neurogenesis in evolutionary large scale chaos. Lecture Notes in Computer Science, 1995, , 341-352.	1.3	1
287	Computational Sensitivity Analysis on a Mathematical Model of Epileptic Seizures. Biomath, 2015, 4, .	0.7	0
288	Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 173-184.	0.9	1
290	Analysing Emergent Dynamics of Evolving Computation in 2D Cellular Automata. Lecture Notes in Computer Science, 2019, , 3-40.	1.3	2
293	Critical Attractors and the Physical Realm of q-statistics. , 2006, , 72-113.		0
294	Recursive Nodes with Rich Dynamics as Modeling Tools for Cognitive Functions. , 2007, , 279-304.		0
295	Suppressing spatial bifurcations and chaos in one-way open coupled map lattices. , 0, , .		0
296	From Chaos to Pseudorandomness: A Case Study on the 2-D Coupled Map Lattice. IEEE Transactions on Cybernetics, 2023, 53, 1324-1334.	9.5	12
297	A secure dual-color image watermarking scheme based 2D DWT, SVD and Chaotic map. Multimedia Tools and Applications, 2022, 81, 6159-6190.	3.9	15
298	Ageing transitions in a network of Rulkov neurons. Scientific Reports, 2022, 12, 433.	3.3	6

		CITATION REP	ORT	
#	Article		IF	CITATIONS
299	Inferring network structure with unobservable nodes from time series data. Chaos, 2022, 3	2, 013126.	2.5	3
300	Permutation-Loewner entropy analysis for 2-dimensional Ising system interface. Physica A: Mechanics and Its Applications, 2022, , 126943.	Statistical	2.6	2
301	Map Lattices Coupled by Collisions: Hitting Time Statistics and Collisions Per Lattice Unit. A Henri Poincare, 2022, 23, 2919-2947.	ınnales	1.7	1
302	Vulnerability assessment of freeway network considering the probabilities and consequenc perspective based on network cascade failure. PLoS ONE, 2022, 17, e0265260.	es from a	2.5	0
304	A complete description of the dynamics of legal outer-totalistic affine continuous cellular a Nonlinear Dynamics, 2022, 110, 589-610.	utomata.	5.2	1
305	Manifestation of strange nonchaotic attractors in extended systems: a study through out-of-time-ordered correlators. European Physical Journal B, 2022, 95, .		1.5	1
306	Robustness Quantification of Transit Infrastructure under Systemic Risks: A Hybrid Network–Analytics Approach for Resilience Planning. Journal of Transportation Engineeri Systems, 2022, 148, .	ng Part A:	1.4	7
307	Network inference combining mutual information rate and statistical tests. Communication Nonlinear Science and Numerical Simulation, 2023, 116, 106896.	ns in	3.3	1
309	The dynamics of coupled logistic maps. Networks and Heterogeneous Media, 2022, 18, 27	5-290.	1.1	1
310	A Novel Image Encryption Technique Using Multi-Coupled Map Lattice System with Genera Symmetric Map and Adaptive Control Parameter. SN Computer Science, 2023, 4, .	lized	3.6	2
311	Higher-order organization of multivariate time series. Nature Physics, 0, , .		16.7	13
312	Emergent properties of collective gene-expression patterns in multicellular systems. Cell Re Physical Science, 2023, 4, 101247.	ports	5.6	5
313	Quenching of oscillations via attenuated coupling for dissimilar electrochemical systems. P Review E, 2023, 107, .	hysical	2.1	0
314	A resource efficient pseudo random number generator basedÂon sawtooth maps for <scp>InternetÂofÂThings</scp> . Security and Privacy, 2023, 6, .		2.7	1
315	Quantifying bus route service disruptions under interdependent cascading failures of a mul public transit system based on an improved coupled map lattice model. Reliability Engineer System Safety, 2023, 235, 109250.		8.9	5
316	Unsupervised relational inference using masked reconstruction. Applied Network Science, 2	2023, 8, .	1.5	0
317	<i>Colloquium</i> : Quantum and classical discrete time crystals. Reviews of Modern Physi 95, .	cs, 2023,	45.6	16
319	The attractor structure of functional connectivity in coupled logistic maps. Chaos, 2023, 33	3, .	2.5	1

#	Article	IF	CITATIONS
320	Vegee Brain Automata: Ultradiscretization of Essential Chaos Transversal in Neural and Ecosystem Dynamics. Lecture Notes in Computer Science, 2023, , 133-150.	1.3	0
321	Absolutely Stable Time Crystals at Finite Temperature. Physical Review Letters, 2023, 131, .	7.8	0
323	Breaking reflection symmetry: evolving long dynamical cycles in Boolean systems. New Journal of Physics, 2024, 26, 023006.	2.9	0
324	Pattern dynamics analysis of a time-space discrete FitzHugh-Nagumo (FHN) model based on coupled map lattices. Computers and Mathematics With Applications, 2024, 157, 92-123.	2.7	1
325	Nonreciprocal Frustration: Time Crystalline Order-by-Disorder Phenomenon and a Spin-Glass-like State. Physical Review X, 2024, 14, .	8.9	0
326	Synchronization transitions in coupled q-deformed logistic maps. Chaos, Solitons and Fractals, 2024, 181, 114703.	5.1	0