Drug encapsulation in alginate microspheres by emulsis

Journal of Microencapsulation 9, 309-316

DOI: 10.3109/02652049209021245

Citation Report

#	Article	IF	CITATIONS
1	Influence of hydrophile-lipophile balance on alginate microspheres. International Journal of Pharmaceutics, 1993, 95, 77-83.	2.6	26
3	Surfactant effects on alginate microspheres. International Journal of Pharmaceutics, 1994, 103, 267-275.	2.6	40
4	pH-responsive gelatin microspheres for oral delivery of anticancer drug methotrexate. Journal of Applied Polymer Science, 1995, 58, 1761-1769.	1.3	36
5	Preparation of sodium alginate microspheres containing hydrophilic \hat{l}^2 -lactam antibiotics. Archives of Pharmacal Research, 1996, 19, 106-111.	2.7	25
6	Biodegradable intraoperative system for bone infection treatment. I. The drug/polymer interaction. International Journal of Pharmaceutics, 1996, 143, 195-201.	2.6	19
7	Qualitative and quantitative characterization of a microencapsulated protein with pyrolysis-atmospheric pressure ionization mass spectrometry. Chemometrics and Intelligent Laboratory Systems, 1996, 32, 233-243.	1.8	2
8	Effect of cellulose derivatives on alginate micro spheresprepared by emulsification. Journal of Microencapsulation, 1997, 14, 545-555.	1.2	52
9	Chitosan Microspheres Prepared by Emulsification and Ionotropic Gelation. Drug Development and Industrial Pharmacy, 1997, 23, 981-985.	0.9	69
10	Application of classical experimental design for the development of theophylline microspheres. Journal of Controlled Release, 1997, 45, 265-271.	4.8	11
11	Microencapsulation of apomorphine HCl with gelatin. International Journal of Pharmaceutics, 1997, 148, 23-32.	2.6	12
12	Preparation and characterization of alginate microspheres containing a model antigen. International Journal of Pharmaceutics, 1998, 176, 9-19.	2.6	142
13	Effects of poly(vinylpyrrolidone) and ethylcellulose on alginate microspheres prepared by emulsification. Journal of Microencapsulation, 1998, 15, 409-420.	1.2	30
14	Influence of processing variables on the properties of gelatin microspheres prepared by the emulsification solvent extraction technique. Journal of Microencapsulation, 1998, 15, 273-281.	1.2	27
15	Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. Journal of Controlled Release, 2000, 63, 97-105.	4.8	239
16	Microencapsulation of oils using sodium alginate. Journal of Microencapsulation, 2000, 17, 757-766.	1.2	45
17	Preparation of Cross-Linked Sodium Alginate Microparticles Using Glutaraldehyde in Methanol. Drug Development and Industrial Pharmacy, 2000, 26, 1121-1124.	0.9	29
18	Effect of tabletting compaction pressure on alginate microspheres. Journal of Microencapsulation, 2000, 17, 553-564.	1.2	6
19	The effects of pressure and direct compression on tabletting of microsponges. International Journal of Pharmaceutics, 2002, 242, 191-195.	2.6	28

#	Article	IF	CITATIONS
20	Production of alginate microspheres by internal gelation using an emulsification method. International Journal of Pharmaceutics, 2002, 242, 259-262.	2.6	125
21	Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterials, 2002, 23, 1319-1326.	5.7	68
22	Preparation and in vitro evaluation of modified release ketoprofen microsponges. Il Farmaco, 2003, 58, 101-106.	0.9	66
23	Structural control of core/shell polystyrene microcapsule-immobilized microbial cells and their application to polymeric microbioreactors. Journal of Applied Polymer Science, 2003, 89, 1966-1975.	1.3	17
24	Preparation and release characteristics of polymer-coated and blended alginate microspheres. Journal of Microencapsulation, 2003, 20, 179-192.	1.2	93
25	Sodium Alginate Microspheres of Metoprolol Tartrate for Intranasal Systemic Delivery: Development and Evaluation. Drug Delivery, 2003, 10, 21-28.	2.5	88
26	Administração oral de peptÃdeos e proteÃnas: II. Aplicação de métodos de microencapsulação. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2003, 39, 1-20.	0.5	20
27	Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 2004, 37, 790-802.	0.8	1,428
28	Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosensors and Bioelectronics, 2005, 21, 212-216.	5.3	115
29	Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings. Biotechnology and Bioengineering, 2005, 91, 124-131.	1.7	53
30	Stable Encapsulation of Active Enzyme by Application of Multilayer Nanofilm Coatings to Alginate Microspheres. Macromolecular Bioscience, 2005, 5, 717-727.	2.1	84
31	Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity. Bioconjugate Chemistry, 2005, 16, 1451-1458.	1.8	141
32	Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS Journal, 2005, 7, E903-E913.	2.2	88
33	Spontaneous Loading of Positively Charged Macromolecules into Alginate-Templated Polyelectrolyte Multilayer Microcapsules. Biomacromolecules, 2005, 6, 2221-2228.	2.6	100
34	Application of self-assembled ultra-thin film coatings to stabilize macromolecule encapsulation in alginate microspheres. Journal of Microencapsulation, 2005, 22, 397-411.	1.2	32
35	Influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification. Journal of Microencapsulation, 2006, 23, 912-927.	1.2	18
36	Chitosan-coated alginate microspheres for embolization and/or chemoembolization: <i>In vivo</i> studies. Journal of Microencapsulation, 2006, 23, 367-376.	1.2	21
37	Enzymatic Fluorescent Microsphere Glucose Sensors: Evaluation of Response Under Dynamic Conditions. Diabetes Technology and Therapeutics, 2006, 8, 288-295.	2.4	31

3

#	Article	IF	CITATIONS
38	Core-shell copper hydroxide-polysaccharide composites with hierarchical macroporosity. Progress in Solid State Chemistry, 2006, 34, 161-169.	3.9	7
39	Preparation of Porous Calcium Alginate Membranes/Microspheres via an Emulsion Templating Method. Macromolecular Materials and Engineering, 2006, 291, 485-492.	1.7	26
41	Cation enhanced hydrophilic character of textured alginate gel beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 296, 230-237.	2.3	26
42	A drug delivery system based on alginate microspheres: Mass-transport test and in vitro validation. Biomedical Microdevices, 2007, 9, 395-403.	1.4	43
43	A New Artificial Chaperone for Protein Refolding: Sequential Use of Detergent and Alginate. Protein Journal, 2008, 27, 123-129.	0.7	20
44	Nanostructure of Calcium Alginate Aerogels Obtained from Multistep Solvent Exchange Route. Langmuir, 2008, 24, 12547-12552.	1.6	110
45	Various Non-Injectable Delivery Systems for the Treatment of Diabetes Mellitus. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2009, 9, 1-13.	0.6	38
46	Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 42-53.	2.0	74
47	Development, optimization and <i>in vitro </i> evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. Journal of Microencapsulation, 2009, 26, 432-443.	1.2	69
48	Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery. Colloids and Surfaces B: Biointerfaces, 2010, 81, 521-529.	2.5	108
50	Drying Model for Calcium Alginate Beads. Industrial & Engineering Chemistry Research, 2010, 49, 1986-1990.	1.8	13
51	Development of Re-Usable Yeast-Gellan Gum Micro-Bioreactors for Potential Application in Continuous Fermentation to Produce Bio-Ethanol. Pharmaceutics, 2011, 3, 731-744.	2.0	11
52	A new method for the preparation of gelatin nanoparticles: Encapsulation and drug release characteristics. Journal of Applied Polymer Science, 2011, 121, 3495-3500.	1.3	50
53	Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 2011, 32, 5438-5458.	5.7	165
54	Preparation and in vitro Characterization of Gelatin Microspheres Containing 5-fluorouracil. Journal of Macromolecular Science - Physics, 2012, 51, 1117-1124.	0.4	15
55	Protein release from alginate matrices. Advanced Drug Delivery Reviews, 2012, 64, 194-205.	6.6	1,196
56	Zinc–alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 121-130.	2.0	48
57	Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication, 2013, 5, 015009.	3.7	32

#	ARTICLE	IF	CITATIONS
58	Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid. Carbohydrate Polymers, 2013, 92, 1915-1920.	5.1	12
59	Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polymers, 2013, 96, 181-189.	5.1	108
60	A design full of holes: functional nanofilm-coated microdomains in alginate hydrogels. Journal of Materials Chemistry B, 2013, 1, 3195.	2.9	28
61	Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 2013, 67, 380-389.	1.4	173
62	Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: Formulation optimization using factorial design, characterization, and in vitro evaluation. Journal of Pharmacy and Bioallied Sciences, 2014, 6, 267.	0.2	32
63	Sphyga: a multiparameter open source tool for fabricating smart and tunable hydrogel microbeads. Biofabrication, 2014, 6, 025009.	3.7	9
64	Feasibility study on microencapsulation of anaerobic <i>Clostridium acetobutylicum</i> ATCC 824 by emulsification method for application in biobutanol production. Journal of Microencapsulation, 2014, 31, 469-478.	1.2	3
65	Preparation of alginate microspheres by emulsification/internal gelation to encapsulate cocoa polyphenols. Food Hydrocolloids, 2014, 38, 56-65.	5.6	59
66	Mucoadhesive microsphere based suppository containing granisetron hydrochloride for management of emesis in chemotherapy. Journal of Pharmaceutical Investigation, 2014, 44, 253-263.	2.7	13
67	Structural optimization of calcium carbonate cores as templates for protein encapsulation. Journal of Microencapsulation, 2014, 31, 333-343.	1.2	18
68	Formulation, Development and Evaluation of Meclozine Hydrochloride Microspheres. Journal of Bioequivalence $\&$ Bioavailability, 2015, 08, .	0.1	1
69	Morphological and Proteomic Analyses Reveal that Unsaturated Guluronate Oligosaccharide Modulates Multiple Functional Pathways in Murine Macrophage RAW264.7 Cells. Marine Drugs, 2015, 13, 1798-1818.	2.2	28
70	Alginate microparticles loaded with lipopolysaccharide subunit antigen for mucosal vaccination against Klebsiella pneumoniae. Biologicals, 2015, 43, 195-201.	0.5	30
71	Development of microspheres for biomedical applications: a review. Progress in Biomaterials, 2015, 4, 1-19.	1.8	158
72	Microencapsulation of <i>Clostridium acetobutylicum </i> ATCC 824 spores in gellan gum microspheres for the production of biobutanol. Journal of Microencapsulation, 2015, 32, 290-299.	1.2	3
73	Stabilization Challenges and Formulation Strategies Associated with Oral Biologic Drug Delivery Systems. Advanced Drug Delivery Reviews, 2015, 93, 95-108.	6.6	80
74	Alginate oligosaccharide enhances LDL uptake via regulation of LDLR and PCSK9 expression. Journal of Nutritional Biochemistry, 2015, 26, 1393-1400.	1.9	37
7 5	Development and optimization of modified release IPN macromolecules of oxcarbazepine using natural polymers. International Journal of Biological Macromolecules, 2015, 73, 160-169.	3.6	10

#	ARTICLE	IF	Citations
76	Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis. Marine Drugs, 2016, 14, 231.	2.2	75
77	Combination of Controlled Release Plateletâ€Rich Plasma Alginate Beads and Bone Morphogenetic Proteinâ€2 Genetically Modified Mesenchymal Stem Cells for Bone Regeneration. Journal of Periodontology, 2016, 87, 470-480.	1.7	29
78	Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV). Journal of Microencapsulation, 2016, 33, 153-161.	1.2	2
79	Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 2017, 57, 1133-1152.	5.4	398
80	Preparation and characterization of three types of cefquinome-loaded microspheres. International Journal of Polymer Analysis and Characterization, 2017, 22, 256-265.	0.9	0
81	Screening of alginate lyase-excreting microorganisms from the surface of brown algae. AMB Express, 2017, 7, 74.	1.4	27
82	Gelatin scaffolds functionalized by silver nanoparticle-containing calcium alginate beads for wound care applications. Polymers for Advanced Technologies, 2017, 28, 849-858.	1.6	14
83	Alginate oligosaccharide alleviates myocardial reperfusion injury by inhibiting nitrative and oxidative stress and endoplasmic reticulum stress-mediated apoptosis. Drug Design, Development and Therapy, 2017, Volume 11, 2387-2397.	2.0	35
84	Transparent, UV-proof and mechanically strong montmorillonite/alginate/Ca2+ nanocomposite hydrogel films with solvent sensitivity. Applied Clay Science, 2018, 165, 223-233.	2.6	25
85	Topical Digitoxigenin for Wound Healing: A Feasibility Study. Bioengineering, 2018, 5, 21.	1.6	6
86	Non-Conventional Methods for Gelation of Alginate. Gels, 2018, 4, 14.	2.1	93
87	Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. International Journal of Biological Macromolecules, 2019, 136, 386-394.	3.6	64
88	Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules, 2020, 25, 3156.	1.7	50
89	Adsorption of Deoxynivalenol (DON) from Corn Steep Liquor (CSL) by the Microsphere Adsorbent SA/CMC Loaded with Calcium. Toxins, 2020, 12, 208.	1.5	12
90	Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules. Journal of Colloid and Interface Science, 2021, 587, 240-251.	5.0	25
91	Alginate oligosaccharides preparation, biological activities and their application in livestock and poultry. Journal of Integrative Agriculture, 2021, 20, 24-34.	1.7	35
92	Alginate oligosaccharides can maintain activities of lysosomes under low pH condition. Scientific Reports, 2021, 11, 11504.	1.6	7
93	Preparation and release characteristics of polymer-coated and blended alginate microspheres. , 0, .		10

CITATION REPORT

#	Article	IF	CITATIONS
94	Probiocs and Their Therapeuc Role. , 2014, , 61-108.		4
95	Improving the Stability of Astaxanthin by Microencapsulation in Calcium Alginate Beads. PLoS ONE, 2016, 11, e0153685.	1.1	34
97	Polymeric Systems for Oral Protein and Peptide Delivery., 2005,, 283-306.		0
98	Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. Journal of Pharmaceutical Sciences, 2022, 111, 1250-1261.	1.6	57