A Theory of Plasticity for Porous Materials and Particle

Journal of Applied Mechanics, Transactions ASME 59, 261-268 DOI: 10.1115/1.2899515

Citation Report

#	Article	IF	CITATIONS
1	Thermal stress relief by plastic deformation in aligned two-phase composites. Composites Part B: Engineering, 1993, 3, 219-234.	0.6	5
2	Determination of transient and steady-state creep of metal-matrix composites by a secant-moduli method. Composites Part B: Engineering, 1993, 3, 661-674.	0.6	9
3	Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids. International Journal of Plasticity, 1993, 9, 271-290.	8.8	55
4	The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 301-314.	1.4	25
5	Estimation of yield strength for composites reinforced by grains. International Journal of Fracture, 1994, 68, R53-R56.	2.2	3
6	Plasticity of isotropic composites with randomly oriented and packeted inclusions. International Journal of Plasticity, 1994, 10, 553-578.	8.8	9
7	Pressure sensitivity and strength-differential effect of fiber-reinforced polymer matrix composites. Mechanics of Materials, 1994, 17, 329-349.	3.2	5
8	An energy criterion for the stress-induced martensitic transformation in a ductile system. Journal of the Mechanics and Physics of Solids, 1994, 42, 1699-1724.	4.8	64
9	Variational Estimates for the Elastoplastic Response of Particle-Reinforced Metal-Matrix Composites. Applied Mechanics Reviews, 1994, 47, S77-S94.	10.1	26
10	Mechanical behavior of particulate composites: Experiments and micromechanical predictions. Journal of Applied Polymer Science, 1995, 55, 263-278.	2.6	40
11	An Energy Approach to the Plasticity of a Two-Phase Composite Containing Aligned Inclusions. Journal of Applied Mechanics, Transactions ASME, 1995, 62, 1039-1046.	2.2	40
12	A Theory of Inclusion Debonding and its Influence on the Stress-Strain Relations of a Ductile Matrix Composite. International Journal of Damage Mechanics, 1995, 4, 196-211.	4.2	30
14	Theoretical calculation of the stress-strain behavior of dual-phase metals with randomly oriented spheroidal inclusions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 2359-2365.	2.2	6
15	Influence of random bridging on the elastic and elastoplastic properties of fiber-reinforced composites. Acta Mechanica, 1996, 116, 29-44.	2.1	3
16	The overall elastoplastic behavior of multiphase materials with isotropic components. Acta Mechanica, 1996, 119, 93-117.	2.1	58
17	Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. Journal of the Mechanics and Physics of Solids, 1996, 44, 827-862.	4.8	295
18	Effect of void shape on the macroscopic response of non-linear porous solids. International Journal of Plasticity, 1996, 12, 45-68.	8.8	30
19	A method of plasticity for general aligned spheroidal void or fiber-reinforced composites. International Journal of Plasticity, 1996, 12, 439-449.	8.8	125

#	Article	IF	CITATIONS
20	Plasticity of a two-phase composite with partially debonded inclusions. International Journal of Plasticity, 1996, 12, 781-804.	8.8	94
21	Influence of Debonding Damage on a Crack Tip Field in Particulate-Reinforced Ductile-Matrix Composite. International Journal of Damage Mechanics, 1996, 5, 150-170.	4.2	10
22	Secant Moduli of a Glass Bead-Reinforced Silicone Rubber Specimen. Journal of Composite Materials, 1996, 30, 69-83.	2.4	11
23	Nonlinear Composites. Advances in Applied Mechanics, 1997, , 171-302.	2.3	471
24	A homogenization theory for the overall creep of isotropic viscoplastic composites. Acta Mechanica, 1997, 125, 141-153.	2.1	14
25	Elastic-plastic behavior of textured short-fiber composites. Acta Materialia, 1997, 45, 3327-3340.	7.9	48
26	A secant-viscosity approach to the time-dependent creep of an elastic viscoplastic composite. Journal of the Mechanics and Physics of Solids, 1997, 45, 1069-1083.	4.8	50
27	Composite plasticity based on matrix average second order stress moment. International Journal of Solids and Structures, 1997, 34, 1007-1015.	2.7	22
28	Incremental damage theory and its application to glass-particle-reinforced nylon 66 composites. International Journal of Mechanical Sciences, 1998, 40, 199-213.	6.7	22
29	creep of a composite with dual viscoplastic phases. Composites Science and Technology, 1998, 58, 1803-1810.	7.8	3
30	A unified approach from elasticity to viscoelasticity to viscoplasticity of particle-reinforced solids. International Journal of Plasticity, 1998, 14, 193-208.	8.8	32
31	Time-dependent creep of a dual-phase viscoplastic material with lamellar structure. International Journal of Plasticity, 1998, 14, 755-770.	8.8	13
32	Micromechanics and apparent viscosities of non-Newtonian fluid suspensions. Mechanics of Materials, 1998, 27, 177-185.	3.2	1
33	Influence of thermal residual stresses on the composite macroscopic behavior. Mechanics of Materials, 1998, 27, 229-240.	3.2	52
34	A micromechanical model of influence of particle fracture and particle cluster on mechanical properties of metal matrix composites. Computational Materials Science, 1998, 9, 420-430.	3.0	30
35	Plasticity of Particle-Reinforced Composites With a Ductile Interphase. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 596-604.	2.2	12
36	Prediction of damaged behavior and failure of a metal matrix composite using a multiscale approach. Studies in Applied Mechanics, 1998, 46, 371-384.	0.4	0
37	A first step toward functionally graded plasticity in porous materials. Studies in Applied Mechanics, 1998, , 441-455.	0.4	0

ARTICLE IF CITATIONS # The Influence of a Ductile Interphase on the Overall Elastoplastic Behavior of a Fiber-Reinforced 38 2.2 2 Composite. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 21-31. Multiscale modeling of the damaged plastic behavior and failure of Al/SiCp composites. International 8.8 39 Journal of Plasticity, 1999, 15, 667-685. A dual homogenization and finite-element study on the in-plane local and global behavior of a 40 nonlinear coated fiber composite. Computer Methods in Applied Mechanics and Engineering, 2000, 183, 6.6 12 141-155. Prediction of the effective damage properties and failure properties of nonlinear anisotropic discontinuous reinforced composites. Computer Methods in Applied Mechanics and Engineering, 2000, 185, 93-107. Analytical determination of cyclic hydrostatic stress-strain relations for a composite sphere with a 42 2.1 1 soft inclusion and a hard bilinear, isotropically hardening matrix. Acta Mechanica, 2000, 139, 105-128. Some reflections on the Mori-Tanaka and Ponte Casta�eda-Willis methods with randomly oriented ellipsoidal inclusions. Acta Mechanica, 2000, 140, 31-40. 2.1 Dual finite element methods in homogenization for elastic–plastic fibrous composite material. 44 8.8 22 International Journal of Plasticity, 2000, 16, 199-221. An affine formulation for the prediction of the effective properties of nonlinear composites and 4.8 281 polycrystals. Journal of the Mechanics and Physics of Solids, 2000, 48, 1203-1227. Micromechanically-based acoustic characterization of the fiber orientation distribution function of morphologically textured short-fiber composites: prediction of thermomechanical and physical 46 5.6 11 properties. Materials Science & amp; Engineering A: Structural Materials: Properties, Micróstructure and Processing, 2000, 285, 56-61. Influence of residual stress on the elastic-plastic deformation of composites with two- or 2.1 three-dimensional randomly oriented inclusions. Acta Mechanica, 2000, 141, 193-200. Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Composites Science 304 48 7.8 and Technology, 2001, 61, 1057-1063. An incremental micromechanical scheme for nonlinear particulate composites. International Journal 49 of Mechanical Sciences, 2001, 43, 1179-1193. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal inhomogeneities. Part I: micromechanics-based formulation. International Journal of 50 2.7 174 Solids and Structures, 2001, 38, 183-201. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal Inhomogeneities. Part II: applications. International Journal of Solids and Structures, 2001, 2.7 38,203-225. A Local Theory of Elastoplastic Deformation of Two-Phase Metal Matrix Random Structure 52 2.2 7 Composites. Journal of Applied Mechanics, Transactions ASME, 2002, 69, 489-496. Incremental damage mechanics of particle or short-fiber reinforced composites including cracking damage. Journal of Mechanical Science and Technology, 2002, 16, 192-202. Towards simulation of elasto-plastic deformation: An investigation. Sadhana - Academy Proceedings in 54 1.31 Engineering Sciences, 2002, 27, 251-294. Micromechanical studies of the densification of porous molybdenum. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 333, 270-278.

ARTICLE IF CITATIONS # Elastoplastic constitutive model for particle-dispersed composites accounting for interfacial damage. 1.7 0 56 Nuclear Engineering and Design, 2002, 217, 259-266. Intraphase strain heterogeneity in nonlinear composites: aÂcomputational approach. European Journal of Mechanics, A/Solids, 2003, 22, 751-770. Overall Elastic and Elastoplastic Behavior of a Partially Debonded Fiber-reinforced Composite. 58 2.4 14 Journal of Composite Materials, 2003, 37, 741-758. A Short Introduction to Continuum Micromechanics., 2004, , 1-40. 59 24 Elastoplastic Modeling of Metal Matrix Composites Containing Randomly Located and Oriented 60 2.2 67 Spheroidal Particles. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 774-785. A micromechanical method for particulate composites with finite particle concentration. Mechanics of Materials, 2004, 36, 359-368. 3.2 A theory of compressive yield strength of nano-grained ceramics. International Journal of Plasticity, 62 8.8 96 2004, 20, 2007-2026. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. 4.8 Journal of the Mechanics and Physics of Solids, 2004, 52, 1125-1149. Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models. Journal of the Mechanics and Physics of Solids, 2004, 52, 4.8 64 121 1573-1593. Mechanical field fluctuations in polycrystals estimated by homogenization techniques. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 3589-3612. 2.1 34 Micromechanical modeling and computation of elasto-plastic materials reinforced with 66 8.8 160 distributed-orientation fibers. International Journal of Plasticity, 2005, 21, 1919-1940. Longitudinal deformation of fibre reinforced metals: influence of fibre distribution on stiffness and 3.2 flow stress. Mechanics of Materials, 2005, 37, 1-17. Anisotropic Yield Behavior of Lotus-Type Porous Iron: Measurements and Micromechanical Mean-Field 68 2.6 33 Analysis. Journal of Materials Research, 2005, 20, 135-143. Micromechanical Mean-Field Analysis for Stress-Strain Curve of Lotus-Type Porous Iron. Materials Science Forum, 2005, 486-487, 489-492. Nonlinear Properties of Composites Materials: Thermodynamic Approaches. , 0, , 319-346. 70 0 Overall elastoplastic property for micropolar composites with randomly oriented ellipsoidal 3.0 inclusions. Computational Materials Science, 2006, 37, 582-592. Simplified prediction of the monotonic uniaxial stressâ€"strain curve of non-linear particulate 72 7.9 28 composites. Acta Materialia, 2006, 54, 2145-2155. Uniaxial deformation of microcellular metals. Acta Materialia, 2006, 54, 4129-4142.

#	Article	IF	CITATIONS
74	Linear and nonlinear dielectric properties of particulate composites at finite concentration. Applied Mathematics and Mechanics (English Edition), 2006, 27, 1021-1030.	3.6	5
75	An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. International Journal of Plasticity, 2006, 22, 131-157.	8.8	89
76	Compressive properties of lotus-type porous stainless steel. Journal of Materials Research, 2006, 21, 185-193.	2.6	32
77	Nonlinear Mechanics of Solids Containing Isolated Voids. Applied Mechanics Reviews, 2006, 59, 210-229.	10.1	12
78	Effect of surface energy on the yield strength of nanoporous materials. Applied Physics Letters, 2007, 90, 063104.	3.3	55
79	Micromehcanics of Heterogenous Materials. , 2007, , .		114
80	Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions. International Journal of Solids and Structures, 2007, 44, 6945-6962.	2.7	123
81	A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials. International Journal of Plasticity, 2007, 23, 2115-2133.	8.8	69
82	Extended mean-field method for predicting yield behaviors of porous materials. Mechanics of Materials, 2007, 39, 53-63.	3.2	9
83	Effective pressure-sensitive elastoplastic behavior of particle-reinforced composites and porous media under isotropic loading. International Journal of Plasticity, 2008, 24, 343-370.	8.8	12
84	Mechanics of creep resistance in nanocrystalline solids. Acta Mechanica, 2008, 195, 327-348.	2.1	26
85	Multiscale modelling and structural characterization of Fe enriched Al alloy. Proceedings in Applied Mathematics and Mechanics, 2008, 8, 10453-10454.	0.2	0
86	The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids. International Journal of Plasticity, 2008, 24, 1380-1410.	8.8	44
87	Modelling of the inelastic behavior of powder based AlFe9V1Si2 alloy with intermetallic phase. Computational Materials Science, 2008, 41, 275-286.	3.0	4
88	A nonlinear theoretical model for prediction of mechanical behavior of particulate composites and experimental verification of the model predictions. Polymer Composites, 2010, 31, 1150-1155.	4.6	2
89	Effect of inner gas pressure on the elastoplastic behavior of porous materials: A second-order moment micromechanics model. International Journal of Plasticity, 2009, 25, 1231-1252.	8.8	25
90	Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. International Journal of Plasticity, 2009, 25, 2410-2434.	8.8	86
91	A revisited generalized self-consistent polycrystal model following an incremental small strain formulation and including grain-size distribution effect. International Journal of Engineering Science, 2009, 47, 537-553.	5.0	28

		15	C
#	ARTICLE	IF	CITATIONS
92	material. Composites Part B: Engineering, 2009, 40, 267-274.	12.0	1
93	Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches. Composites Part B: Engineering, 2009, 40, 349-378.	12.0	202
94	Porous materials with two populations of voids under internal pressure: I. Instantaneous constitutive relations. International Journal of Solids and Structures, 2009, 46, 480-506.	2.7	68
95	Development of constitutive laws for thermomechanical behaviors of composites containing multi-type ellipsoidal reinforcements. International Journal of Solids and Structures, 2009, 46, 824-836.	2.7	4
96	Influence of precipitations on elastic–plastic properties of Al alloys. Computational Materials Science, 2009, 47, 153-161.	3.0	5
97	Theory of Elasticity at the Nanoscale. Advances in Applied Mechanics, 2009, 42, 1-68.	2.3	222
98	Atomistic and Continuum Modeling of Nanocrystalline Materials. Springer Series in Materials Science, 2009, , .	0.6	13
99	Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. International Journal of Plasticity, 2010, 26, 957-975.	8.8	95
100	A bimodal bulk ultra-fine-grained nickel: Experimental and micromechanical investigations. Mechanics of Materials, 2010, 42, 522-536.	3.2	50
101	Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mechanics of Materials, 2010, 42, 852-862.	3.2	37
102	Study on Strain-Rate Sensitivity of Cementitious Composites. Journal of Engineering Mechanics - ASCE, 2010, 136, 1076-1082.	2.9	11
103	Permeability of Sand-Clay Mixtures. Archives of Civil Engineering, 2010, 56, 299-320.	0.7	5
104	Modelling of size effects on strengthening of multiphase Al based composites. Computational Materials Science, 2010, 50, 527-537.	3.0	6
105	An incremental damage theory for micropolar composites taking account of progressive debonding and particle size effect. Computational Materials Science, 2011, 50, 3358-3364.	3.0	9
106	Modeling of microstructure effects on the mechanical behavior of ultrafine-grained nickels processed by hot isostatic pressing. International Journal of Mechanical Sciences, 2011, 53, 812-826.	6.7	7
107	Meso-mechanical constitutive model for ratchetting of particle-reinforced metal matrix composites. International Journal of Plasticity, 2011, 27, 1896-1915.	8.8	40
108	A theory of plasticity for carbon nanotube reinforced composites. International Journal of Plasticity, 2011, 27, 539-559.	8.8	179
109	Compressibility and permeability of sand–kaolin mixtures. Experiments versus nonâ€linear homogenization schemes. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35, 21-52.	3.3	11

#	Article	IF	CITATIONS
110	Incremental damage theory of particulate-reinforced composites with a ductile interphase. Composite Structures, 2011, 93, 2655-2662.	5.8	11
111	A micro-continuum model for the creep behavior of complex nanocrystalline materials. International Journal of Engineering Science, 2011, 49, 155-174.	5.0	9
112	Multiaxial yield behaviour of Al replicated foam. Journal of the Mechanics and Physics of Solids, 2011, 59, 1777-1793.	4.8	50
113	Mechanics of a nanocrystalline coating and grain-size dependence of its plastic strength. Mechanics of Materials, 2011, 43, 496-504.	3.2	16
114	Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mechanics of Materials, 2012, 51, 74-87.	3.2	17
115	A study on the plastic properties of unidirectional nanocomposites with interface energy effects. Acta Mechanica, 2013, 224, 789-809.	2.1	2
116	A cyclic visco-plastic constitutive model for time-dependent ratchetting of particle-reinforced metal matrix composites. International Journal of Plasticity, 2013, 40, 101-125.	8.8	40
117	Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. International Journal of Plasticity, 2013, 41, 124-146.	8.8	115
118	A new formulation of the effective elastic–plastic response of two-phase particulate composite materials. Mechanics Research Communications, 2013, 52, 81-87.	1.8	11
119	AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR POROUS MATERIALS. International Journal of Applied Mechanics, 2013, 05, 1350035.	2.2	7
120	EFFECTS OF TANGENT OPERATORS ON PREDICTION ACCURACY OF MESO-MECHANICAL CONSTITUTIVE MODEL OF ELASTO-PLASTIC COMPOSITES. International Journal of Computational Methods, 2014, 11, 1350064.	1.3	0
121	A New Incremental Formulation of Elastic–Plastic Deformation of Two-Phase Particulate Composite Materials. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	6
122	Third-order bound of nonlinear composites and porous media under hydrostatic deformation. Mechanics of Materials, 2014, 68, 137-146.	3.2	1
123	Biography of the Prager Medalist: Professor George Weng. Acta Mechanica, 2014, 225, 967-977.	2.1	0
124	A micromechanics based multiscale model for nonlinear composites. Acta Mechanica, 2014, 225, 1391-1417.	2.1	67
125	Elastoplastic mechanics of porous materials with varied inner pressures. Mechanics of Materials, 2014, 73, 58-75.	3.2	11
126	Tribological and mechanical behavior of particulate aluminum matrix composites. Journal of Reinforced Plastics and Composites, 2014, 33, 2192-2202.	3.1	60
127	Porous Metals. , 2014, , 2399-2595.		23

#	Article	IF	CITATIONS
128	A novel two-scale progressive failure analysis method for laminated fiber-reinforced composites. , 2015, , .		11
129	Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions. International Journal of Solids and Structures, 2016, 78-79, 38-46.	2.7	20
130	Elastoplastic damage micromechanics for continuous fiber-reinforced ductile matrix composites with progressive fiber breakage. International Journal of Damage Mechanics, 2017, 26, 4-28.	4.2	32
131	A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites. International Journal of Plasticity, 2017, 99, 58-80.	8.8	34
132	An ellipsoidal yield criterion for porous metals with accurate descriptions of theoretical strength and Poisson's ratio. Acta Mechanica, 2017, 228, 4199-4210.	2.1	3
133	On the yield strength of a ductile material reinforced with rigid spherical inclusions. Acta Mechanica, 2018, 229, 1971-1988.	2.1	5
134	Analytical Micromechanics Models for Elastoplastic Behavior of Long Fibrous Composites: A Critical Review and Comparative Study. Materials, 2018, 11, 1919.	2.9	30
135	Particulate metal matrix composites and their fabrication via friction stir processing – a review. Materials and Manufacturing Processes, 2019, 34, 833-881.	4.7	74
136	A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. International Journal of Mechanical Sciences, 2019, 152, 524-534.	6.7	29
137	Micromechanics-based analyses of short fiber-reinforced composites with functionally graded interphases. Journal of Composite Materials, 2020, 54, 1031-1048.	2.4	6
138	Elastoplastic mean-field homogenization: recent advances review. Mechanics of Advanced Materials and Structures, 2022, 29, 449-474.	2.6	14
139	Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105889.	7.6	27
140	Elasto-plastic behavior of graphene reinforced nanocomposites with hard/soft interface effects. Materials and Design, 2021, 199, 109421.	7.0	11
141	A Micromechanics Analysis for Creep of Powder Metallurgy Aluminum Alloys with Continuous Precipitation. International Journal of Applied Mechanics, 0, , 2150031.	2.2	1
142	A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary. International Journal of Plasticity, 2021, 144, 103024.	8.8	20
143	Energy Absorption and Stiffness Balance in Modified and Conventional Syntactic Foams. Applied Composite Materials, 0, , 1.	2.5	0
144	A time-incremental homogenization method for elasto-viscoplastic particulate composites based on a modified secant formulation. International Journal of Solids and Structures, 2021, 229, 111136.	2.7	4
145	Multiscale Structural Analyses Incorporating Damage Mechanics at the Meso- or Micro-Scales. Lecture Notes in Applied and Computational Mechanics, 2003, , 35-74.	2.2	1

#	Article	IF	CITATIONS
146	Nonlinear Composite Materials: Effective Constitutive Behavior and Microstructure Evolution. , 1997, , 131-195.		9
147	Effective Properties of Nonlinear Composites. , 1997, , 197-264.		73
148	Micromechanical determination of the viscoplastic behavior of a metal-matrix composite. Studies in Applied Mechanics, 1994, , 213-227.	0.4	2
149	Damage micromechanics modelling of discontinuous reinforced composites. , 2002, , 115-163.		3
150	A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites. Journal of the Computational Structural Engineering Institute of Korea, 2013, 26, 423-430.	0.4	3
151	Nonlinear Composites: Secant Methods and Variational Bounds. , 2001, , 968-983.		0
152	The Influence of an Heterogeneous Dispersion on the Failure Behaviour of Metal-Matrix Composites: Micromechanical Approach. Solid Mechanics and Its Applications, 2004, , 291-298.	0.2	0
153	Predictive Capabilities and Limitations of Continuum Micromechanics. Springer Series in Materials Science, 2009, , 169-284.	0.6	0
154	Mechanical Properties of Lotus Metals and Alloys. , 2013, , 127-181.		0
155	Modeling of the Overall Elastoplastic Behavior of Multiphase Materials by the Effective Field Method. Solid Mechanics and Its Applications, 1996, , 35-42.	0.2	0
157	Micromechanical Modeling and Simulation of the Elastoplastic Behavior of Composite Materials. Lecture Notes in Mechanical Engineering, 2020, , 716-724.	0.4	1
158	Simultaneously enhanced strength-plasticity of graphene/metal nanocomposites via interfacial microstructure regulation. International Journal of Plasticity, 2022, 148, 103143.	8.8	14
160	Effect of Pore Shape on Mechanical Properties of Porous Shape Memory Alloy. Micromachines, 2022, 13, 566.	2.9	3
161	Mesostructural impact on the macroscopic stress state and yield locus of porous polycrystalline silver. Materials and Design, 2022, 219, 110785.	7.0	4
162	A comparative study of the elasto-plastic properties for ceramic nanocomposites filled by graphene or graphene oxide nanoplates. Nanotechnology Reviews, 2022, 11, 2584-2594.	5.8	0
163	A micromechanical analysis of strain concentration tensor for elastoplastic medium containing aligned and misaligned pores. Mechanics Research Communications, 2022, 125, 103989.	1.8	2
164	Multiscale structural analysis of oil rig mast using mean fields and finite element method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45, .	1.6	0
165	Multiscale modeling of CNT-based nanocomposites with soft/hard interphase effects. Acta Mechanica, 2023, 234, 2045-2058.	2.1	1

		CITATION REPORT	
#	Article	IF	CITATIONS
166	Theoretical framework to predict the balance of strength-ductility in graphene/metal nanocomposites. International Journal of Solids and Structures, 2023, 268, 112182.	2.7	3
167	Tailoring the strength and ductility of graphene/metal composites with percolation network. International Journal of Solids and Structures, 2024, 286-287, 112533.	2.7	0