Effect pf 5-methylcytosine on the stability of triple-stra

Nucleic Acids Research 19, 5625-5631 DOI: 10.1093/nar/19.20.5625

Citation Report

#	Article	IF	CITATIONS
1	Triple Helical Polynucleotidic Structures: An FTIR Study Of The C ⁺ · G · C Triplet. Journal of Biomolecular Structure and Dynamics, 1992, 10, 577-588.	2.0	37
2	An Indexed Bibliography of Antisense Literature, 1991. Antisense Research and Development, 1992, 2, 63-107.	3.3	2
3	Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science, 1992, 258, 1463-1466.	6.0	481
4	Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry, 1992, 31, 10995-11003.	1.2	159
5	Oligodeoxynucleotides containing C-5 propyne analogs of 2′-deoxyuridine and 2′-deoxycytidine. Tetrahedron Letters, 1992, 33, 5307-5310.	0.7	197
6	DNA structure, mutations, and human genetic disease. Current Opinion in Biotechnology, 1992, 3, 612-622.	3.3	126
7	Homopurine/homopyrimidine sequences as potential regulatory elements in eukaryotic cells. International Journal of Biochemistry & Cell Biology, 1993, 25, 1529-1537.	0.8	11
8	Sequence-Specific Recognition and Modification of Double-Helical DNA by Oligonucleotides. Angewandte Chemie International Edition in English, 1993, 32, 666-690.	4.4	628
9	Sequenzspezifische Erkennung und Modifikation von Doppelhelixâ€DNA durch Oligonucleotide. Angewandte Chemie, 1993, 105, 697-723.	1.6	86
10	Sequence-selective recognition and cleavage of double-helical DNA. Current Opinion in Biotechnology, 1993, 4, 29-36.	3.3	51
11	Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid. FEBS Journal, 1993, 212, 395-401.	0.2	19
12	Rapid purification of double-stranded DNA by triple-helix-mediated affinity capture. Analytical Chemistry, 1993, 65, 1323-1328.	3.2	26
13	Molecular and thermodynamic properties of d(A+-G)10, a single-stranded nucleic acid helix without paired or stacked bases. Biochemistry, 1993, 32, 10263-10270.	1.2	20
14	Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay. Biochemistry, 1993, 32, 8963-8969.	1.2	72
15	7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helixes. Triplex formation without hypochromicity. Biochemistry, 1993, 32, 3249-3254.	1.2	67
16	Triple helix formation by .alphaoligodeoxynucleotides: A vibrational spectroscopy and molecular modeling study. Biochemistry, 1993, 32, 10591-10598.	1.2	30
17	Oligonucleotide-directed triple-helix formation. Current Opinion in Structural Biology, 1993, 3, 345-356.	2.6	162
18	The binding of an antisense oligonucleotide to a hairpin structure via triplex formation inhibits chemical and biological reactions. Nucleic Acids Research, 1993, 21, 5616-5622.	6.5	25

#	Article	IF	CITATIONS
19	Effect of 5-Methylcytosine on the Structure and Stability of DNA. Formation of Triple-Stranded Concatenamers by Overlapping Oligonucleotides. Journal of Biomolecular Structure and Dynamics, 1994, 11, 703-720.	2.0	12
20	Pyrimidine phosphorothioate oligonucleotides form triplestranded helices and promote transcription inhibition. Nucleic Acids Research, 1994, 22, 3322-3330.	6.5	51
21	Divalent Metal Cations upon Coordination to the N7 of Purines Differentially Stabilize the PyPuPu DNA Triplex due to Unequal Hoogsteen-type Hydrogen Bond Enhancement. Journal of Biomolecular Structure and Dynamics, 1994, 11, 1035-1040.	2.0	73
22	Carbometallation of 5-ethynyl-pyrimidine-2′-deoxy nucleosides: Preparation of 5-(1-[E]-butenyl)- and 5-(3-[E]-hex-3-enyl)-2′-deoxyuridine. Tetrahedron Letters, 1994, 35, 3539-3542.	0.7	3
23	The interaction of intercalators and groove-binding agents with DNA triple-helical structures: The influence of ligand structure, DNA backbone modifications and sequence. Journal of Molecular Recognition, 1994, 7, 89-98.	1.1	54
24	Effects of 5-methyl substitution in 2′-O-methyloligo-(pyrimidine)nucleotides on triple-helix formation. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1029-1032.	1.0	12
25	Inhibition of T7 RNA Polymerase Transcription by Phosphate and Phosphorothioate Triplex-Forming Oligonucleotides Targeted to a R . Y Site Downstream from the Promoter. FEBS Journal, 1994, 226, 831-839.	0.2	31
26	Distinguishing between duplex and hairpin forms of RNA by15N-1H heteronuclear NMR. FEBS Letters, 1994, 347, 261-264.	1.3	20
27	Interaction of Oligodeoxyribonucleotides Through Formation of Chimeric Duplex/Triplex Complexes. Nucleosides & Nucleotides, 1994, 13, 997-1005.	0.5	8
28	DNA Triplexes: Solution Structures, Hydration Sites, Energetics, Interactions, and Function. Biochemistry, 1994, 33, 11405-11416.	1.2	234
29	Temperature Dependence of the Energetics of Oligonucleotide-Directed Triple-Helix Formation at a Single DNA Site. Journal of the American Chemical Society, 1994, 116, 10376-10382.	6.6	24
30	Electrostatic Effects in DNA Triple Helixes. Biochemistry, 1994, 33, 13502-13508.	1.2	100
31	Kinetic Analysis of Triple-Helix Formation by Pyrimidine Oligodeoxynucleotides and Duplex DNA. FEBS Journal, 1995, 228, 918-926.	0.2	9
32	A Molecular Model of Braid-like DNA Structure. Journal of Theoretical Biology, 1995, 177, 411-416.	0.8	3
33	Investigation of the Influence of Cytosine Methylation on DNA Flexibility. Journal of Biological Chemistry, 1995, 270, 197-201.	1.6	32
34	UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C+-T)6:[d(A-G)6d(Câ^'-T)6]; evidence for a proton switch. Nucleic Acids Research, 1995, 23, 2692-2705.	6.5	77
35	Spectroscopic studies of chimeric DNA-RNA and RNA 29-base intramolecular triple helices. Nucleic Acids Research, 1995, 23, 1722-1728.	6.5	38
36	Effect of Selective Cytosine Methylation and Hydration on the Conformations of DNA Triple Helices Containing a TTTT Loop Structure by FT-IR Spectroscopy. Journal of Biomolecular Structure and Dynamics, 1995, 13, 471-482.	2.0	11

#	Article	IF	CITATIONS
37	A Study of Triplex Formation of 5′-d-T-(C-T-) ₂ C-(T-) ₄ C-(T-C-) ₂ T with 5′-d-A-(G-A-) ₂ G A Hairpin Triplex with Three T · A · T and Three C ⁺ · G · C Bases Triads. Journal of Biomolecular Structure and Dynamics, 1995, 12, 1235-1245.	2.0	10
38	Characterization of the DNA triplex formed by d(TGGGTGGGTGGGTGGGTGGG) and a critical R · Y sequence located in the promoter of the murine Ki-rasproto-oncogene. FEBS Letters, 1995, 370, 153-157.	1.3	17
39	Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA). Nucleic Acids Research, 1995, 23, 3627-3632.	6.5	75
40	Origins of the Large Differences in Stability of DNA and RNA Helixes: C-5 Methyl and 2'-Hydroxyl Effects. Biochemistry, 1995, 34, 4125-4132.	1.2	169
41	Calorimetric Analysis of Triple Helices Targeted to the d(G3A4G3)·d(C3T4C3) Duplexâ€. Biochemistry, 1996, 35, 10985-10994.	1.2	48
42	Quantitation of the pD Dependent Thermodynamics of the N â‡,, S Pseudorotational Equilibrium of the Pentofuranose Moiety in Nucleosides Gives a Direct Measurement of the Strength of the Tunable Anomeric Effect and the pKaof the Nucleobaseâ€. Journal of Organic Chemistry, 1996, 61, 266-286.	1.7	71
43	Targeting RNA structures by antisense oligonucleotides. Biochimie, 1996, 78, 663-673.	1.3	29
44	Inability of RNA To Form the i-Motif:  Implications for Triplex Formation. Biochemistry, 1996, 35, 8715-8722.	1.2	80
45	Targeting nucleic acid secondary structures by antisense oligonucleotides designed through in vitro selection Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10679-10684.	3.3	28
46	Design of artificial sequence-specific DNA bending ligands Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9510-9514.	3.3	29
47	Stabile DNAâ€Schleifen durch Einbau unpolarer und keine Wasserstoffbrücken bildender Nucleosidâ€Isostere. Angewandte Chemie, 1996, 108, 834-837.	1.6	5
49	Formation of Stable DNA Loops by Incorporation of Nonpolar, Non-Hydrogen-Bonding Nucleoside Isosteres. Angewandte Chemie International Edition in English, 1996, 35, 743-746.	4.4	31
50	Synthesis of C-branched spermine tethered oligo-DNA and the thermal stability of the duplexes and triplexes. Tetrahedron, 1996, 52, 12275-12290.	1.0	39
51	Binding of THZif-1, a MAZ-like Zinc Finger Protein to the Nuclease-hypersensitive Element in the Promoter Region of the c-MYC Protooncogene. Journal of Biological Chemistry, 1996, 271, 31322-31333.	1.6	39
52	Sequence composition effects on the stabilities of triple helix formation by oligonucleotides containing N7-deoxyguanosine. Nucleic Acids Research, 1996, 24, 1987-1991.	6.5	28
53	Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Nucleic Acids Research, 1996, 24, 3181-3188.	6.5	50
54	Efficient triple helix formation by oligodeoxyribonucleotides containing alpha- or beta-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues. Nucleic Acids Research, 1996, 24, 4176-4184.	6.5	50
55	Towards Genomic Drug Therapy with Antisense Oligonucleotides. Annals of Medicine, 1996, 28, 511-522.	1.5	18

#	Article	IF	CITATIONS
56	Preparation of Oligonucleotides Containing 5-Bromouracil and 5-Methylcytidine Nucleosides & Nucleotides, 1996, 15, 907-921.	0.5	10
57	Double Hairpin Complexes Allow Accommodation of All Four Base Pairs in Triple Helices Containing Both DNA and RNA Strands. Journal of Biological Chemistry, 1996, 271, 24187-24192.	1.6	14
58	Triplex Formation by a Psoralen-Conjugated Oligodeoxyribonucleotide Containing the Base Analog 8-Oxo-Adenine. Nucleic Acids Research, 1996, 24, 730-736.	6.5	37
59	Triplex Formation at Physiological pH by 5-Me-dC-N4-(Spermine) [X] Oligodeoxynucleotides: Non Protonation of N3 in X of X*G:C Triad and Effect of Base Mismatch/Ionic Strength on Triplex Stabilities. Nucleic Acids Research, 1996, 24, 1229-1237.	6.5	60
60	Relative stability of triplexes containing different numbers of T.AT and C+.GC triplets. Nucleic Acids Research, 1997, 25, 4644-4649.	6.5	35
61	Preparation and Properties of Oligodeoxynucleotides Containing 5-lodouracil and 5-Bromo- and 5-lodocytosine. Bioconjugate Chemistry, 1997, 8, 757-761.	1.8	21
62	Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2-aminopyridine. Nucleic Acids Research, 1997, 25, 4891-4898.	6.5	48
63	Hydrated Water Molecules of Pyrimidine/Purine/Pyrimidine DNA Triple Helices as Revealed by FT-IR Spectroscopy: A Role of Cytosine Methylation. Journal of Biomolecular Structure and Dynamics, 1997, 14, 485-493.	2.0	9
64	Towards a general triple helix mediated DNA recognition scheme. Chemical Society Reviews, 1997, 26, 63.	18.7	76
65	Solution Structure of an Intramolecular DNA Triplex Containing an N7-Glycosylated Guanine Which Mimics a Protonated Cytosineâ€,‡. Biochemistry, 1997, 36, 2659-2668.	1.2	37
66	Preorganization of DNA:  Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides. Chemical Reviews, 1997, 97, 1473-1488.	23.0	299
67	Control of gene expression in viruses and protozoan parasites by antisense oligonucleotides. Parasitology, 1997, 114, 45-59.	0.7	38
68	Recognition of RNA by triplex formation: Divergent effects of pyrimidine C-5 methylation. Bioorganic and Medicinal Chemistry, 1997, 5, 1043-1050.	1.4	10
69	Synthesis of 5′-polyarene-tethered oligo-DNAs and the thermal stability and spectroscopic properties of their duplexes and triplexes. Tetrahedron, 1997, 53, 10409-10432.	1.0	18
70	Thermodynamics of oligonucleotide triple helices. Biopolymers, 1997, 44, 241-256.	1.2	46
71	A cytosine analogue containing a conformationally flexible acyclic linker for triplex formation at sites with contiguous G-C base pairs. Tetrahedron, 1998, 54, 375-392.	1.0	14
72	PKa of cytosine on the third strand of triplex DNA: Preliminary Poisson-Boltzmann calculations. International Journal of Quantum Chemistry, 1998, 70, 1177-1184.	1.0	11
73	Triple helix stabilization properties of oligonucleotides containing 8-amino-2′-deoxyguanosine. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3011-3016.	1.0	11

#	Article	IF	CITATIONS
74	Dual Recognition of Double-Stranded DNA by 2â€~-Aminoethoxy-Modified Oligonucleotides: The Solution Structure of an Intramolecular Triplex Obtained by NMR Spectroscopy. Biochemistry, 1998, 37, 17714-17725.	1.2	67
75	Thermodynamic, Kinetic, and Conformational Properties of a Parallel Intermolecular DNA Triplex Containing 5â€~ and 3â€~ Junctions. Biochemistry, 1998, 37, 15188-15198.	1.2	35
76	Triple-Helix Formation at Different Positions on Nucleosomal DNAâ€. Biochemistry, 1998, 37, 16139-16151.	1.2	46
77	Formation of Stable DNA Triple Helices Within the HumanbcrPromoter at a Critical Oligopurine Target Interrupted in the Middle by Two Adjacent Pyrimidines. Oligonucleotides, 1998, 8, 477-488.	4.4	5
78	The Design and Synthesis of <i>N</i> ⁴ -Anthraniloyl-2â€2-dC, the Improved Syntheses of <i>N</i> ⁴ -Carbamoyl-and <i>N⁴-</i> Ureidocarbamoyl-2â€2-dC, Incorporation into Oligonucleotides and Triplex Formation Testing. Nucleosides & Nucleotides, 1998, 17, 1191-1207.	0.5	9
79	5-(1-propargylamino)-2'-deoxyuridine (UP): A novel thymidine analogue for generating DNA triplexes with increased stability. Nucleic Acids Research, 1999, 27, 1802-1809.	6.5	74
80	Chemical ligation of oligodeoxyribonucleotides on circular DNA templates. Nucleic Acids Research, 1999, 27, 624-627.	6.5	16
81	Poly(l-lysine)-graft-dextran Copolymer Promotes Pyrimidine Motif Triplex DNA Formation at Physiological pH. Journal of Biological Chemistry, 1999, 274, 6161-6167.	1.6	60
82	Theoretical calculations, synthesis and base pairing properties of oligonucleotides containing 8-amino-2'-deoxyadenosine. Nucleic Acids Research, 1999, 27, 1991-1998.	6.5	31
83	Modified Oligonucleotides with Triple-Helix Stabilization Properties. Nucleosides & Nucleotides, 1999, 18, 1619-1621.	0.5	3
84	Influence of 5-bromodeoxycytosine substitution on triplex DNA stability and conformation. Biophysical Chemistry, 1999, 76, 25-34.	1.5	6
85	Third-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei. Chromosoma, 1999, 108, 181-189.	1.0	31
86	Triplex Formation by Oligonucleotides Containing 5-(1-Propynyl)-2â€~-deoxyuridine: Decreased Magnesium Dependence and Improved Intracellular Gene Targetingâ€. Biochemistry, 1999, 38, 1893-1901.	1.2	54
87	DNA with Altered Bases. , 1999, , 313-339.		4
88	Py*Pu·Py Type Triplexes with Modified Bases:  Ab Initio SCF-MO Studies toward Improved DNA Recognition. Journal of Physical Chemistry A, 1999, 103, 3489-3494.	1.1	4
89	Triplex Formation of Chemically Modified Homopyrimidine Oligonucleotides:  Thermodynamic and Kinetic Studies. Biochemistry, 1999, 38, 14653-14659.	1.2	30
91	pH-Independent Triple-Helix Formation with 6-Oxocytidine as Cytidine Analogue. Chemistry - A European Journal, 2000, 6, 2409-2424.	1.7	15
92	Catalyst for DNA Ligation: Towards a Two-Stage Replication Cycle. Angewandte Chemie - International Edition, 2000, 39, 3641-3643.	7.2	36

ARTICLE IF CITATIONS # Synthesis and Hybridization Properties of DNA–PNA Chimeras Carrying 5-Bromouracil and 93 1.4 23 5-Methylcytosine. Bioorganic and Medicinal Chemistry, 2000, 8, 291-297. DNA-triplex stabilizing properties of 8-aminoguanine. Nucleic Acids Research, 2000, 28, 4531-4539. 94 6.5 A Four-Way Junction with Triple-Helical Arms: Design, Characterization, and Stability. Archives of 95 2 1.4 Biochemistry and Biophysics, 2000, 377, 31-42. Triplex Formation by Psoralen-Conjugated Chimeric Oligonucleoside Methylphosphonatesâ€. 96 1.2 Biochemistry, 2000, 39, 8683-8691. Influence of Sequence-Dependent Cytosine Protonation and Methylation on DNA Triplex Stabilityâ€. 97 1.2 118 Biochemistry, 2000, 39, 5886-5892. 4-amino-1H-benzo[g]quinazoline-2-one: a fluorescent analog of cytosine to probe protonation sites in triplex forming oligonucleotides. Nucleic Acids Research, 2000, 28, 2977-2985. 6.5 Synthesis and Biophysical Properties of Arabinonucleic Acids (ANA):Â Circular Dichroic Spectra, Melting Temperatures, and Ribonuclease H Susceptibility of ANA·RNA Hybrid Duplexesâ€. Biochemistry, 2000, 39, 7050-7062. 99 1.2 103 Promotion of Duplex and Triplex DNA Formation by Polycation Comb-Type Copolymers., 2001, 65, 100 209-224. pH and Cation Effects on the Properties of Parallel Pyrimidine Motif DNA Triplexes. Biochemistry, 2001, 101 1.2 120 40,9396-9405. Modulation of RNA function by oligonucleotides recognizing RNA structure. Progress in Molecular Biology and Translational Science, 2001, 69, 1-46. Control of reaction chemoselectivity with a circular DNA template in the ligation of short 103 1.4 6 oligodeoxyribonucleotides. Bioorganic and Medicinal Chemistry, 2001, 9, 2493-2500. Conformational Diversity Versus Nucleic Acid Triplex Stability, a Combinatorial Study. Journal of Biological Chemistry, 2001, 276, 35320-35327. 1.6 The effect of amino groups on the stability of DNA duplexes and triplexes based on purines derived 106 6.5 33 from inosine. Nucleic Acids Research, 2001, 29, 2522-2534. $2\hat{a}\in^2$ -O,4 $\hat{a}\in^2$ -C-Methylene Bridged Nucleic Acid Modification Promotes Pyrimidine Motif Triplex DNA Formation at Physiological pH. Journal of Biological Chemistry, 2001, 276, 2354-2360. 1.6 Psoralen-modified clamp-forming antisense oligonucleotides reduce cellular c-Myc protein 108 6.5 14 expression and B16-FO proliferation. Nucleic Acids Research, 2001, 29, 4052-4061. Formation of DNA Triple Helix ContainingN4-(6-Aminopyridin-2-yl)-2â€2-deoxycytidine. Journal of 109 2.0 Biomolecular Structure and Dynamics, 2001, 19, 543-553. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic 110 6.5 39 Acids Research, 2002, 30, 2609-2619. Chemical Modification of the Third Strand: Â Differential Effects on Purine and Pyrimidine Triple Helix 1.2 Formationâ€. Biochemistry, 2002, 41, 357-366.

#	Article	IF	CITATIONS
112	DNA Binding Properties of Oligodeoxynucleotides Containing PyrrolidinoC-Nucleosides. Organic Letters, 2002, 4, 3275-3278.	2.4	14
113	Modified purine nucleosides as dangling ends of DNA duplexes: the effect of the nucleobase polarizability on stacking interactions. Perkin Transactions II RSC, 2002, , 746-750.	1.1	28
114	1,8-Naphthyridin-2,7-(1,8H)-dione is an effective mimic of protonated cytosine in peptide nucleic acid triplex recognition systems. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3121-3124.	1.0	9
115	Effect of divalent cations and cytosine protonation on thermodynamic properties of intermolecular DNA double and triple helices. Journal of Inorganic Biochemistry, 2002, 91, 277-285.	1.5	29
116	Conversion of 2-deoxy-d-ribose into 2-amino-5-(2-deoxy-β-d-ribofuranosyl)pyridine, 2′-deoxypseudouridine, and other C-(2′-deoxyribonucleosides). Organic and Biomolecular Chemistry, 2003, 1, 3160-3172.	1.5	30
117	Resolution of Parallel and Antiparallel Oligonucleotide Triple Helices Formation and Melting Processes by Multivariate Curve Resolution. Journal of Biomolecular Structure and Dynamics, 2003, 21, 267-278.	2.0	23
118	Effect of DNA target sequence on triplex formation by oligo-2'-deoxy- and 2'-O-methylribonucleotides. Nucleic Acids Research, 2003, 31, 4099-4108.	6.5	7
119	Antiparallel Triple Helices. Structural Characteristics and Stabilization by 8-Amino Derivatives. Journal of the American Chemical Society, 2003, 125, 16127-16138.	6.6	38
120	Monitoring denaturation behaviour and comparative stability of DNA triple helices using oligonucleotide-gold nanoparticle conjugates. Nucleic Acids Research, 2004, 32, e65-e65.	6.5	20
121	Solution structure of a dsDNA:LNA triplex. Nucleic Acids Research, 2004, 32, 6078-6085.	6.5	32
122	Synthesis and Triple-Helix-Stabilization Properties of Branched Oligonucleotides Carrying 8-Aminoadenine Moieties. Helvetica Chimica Acta, 2004, 87, 303-316.	1.0	15
123	Linkage of proton binding to the thermal dissociation of triple helix complex. Biophysical Chemistry, 2004, 110, 73-81.	1.5	2
124	Synthesis and Triplex-Forming Properties of Cyclic Oligonucleotides with (G,A)-Antiparallel Strands. Chemistry and Biodiversity, 2005, 2, 275-285.	1.0	11
125	Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Research, 2005, 33, 7039-7047.	6.5	49
126	Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Research, 2005, 33, 3492-3502.	6.5	39
127	Mechanism of Site-Specific Psoralen Photoadducts Formation in Triplex DNA Directed by Psoralen-Conjugated Oligonucleotidesâ€. Biochemistry, 2005, 44, 2501-2509.	1.2	17
128	pH-Independent triplex formation: hairpin DNA containing isoguanine or 9-deaza-9-propynylguanine in place of protonated cytosine. Organic and Biomolecular Chemistry, 2006, 4, 3993.	1.5	9
129	DNA Intramolecular Triplexes Containing dT → dU Substitutions: Unfolding Energetics and Ligand Bindingâ€. Biochemistry, 2006, 45, 3051-3059.	1.2	16

#	Article	IF	CITATIONS
131	High Thermal Stability of 5′-5′-Linked Alternate Hoogsteen Triplexes at Physiological pH. Angewandte Chemie - International Edition, 2006, 45, 5311-5315.	7.2	29
132	pH-Independent Recognition of the dG â‹â€‰dC Base Pair in Triplex DNA: 9-DeazaguanineN7-(2′-Deoxyribonucleoside) and Halogenated Derivatives Replacing Protonated dC. Helvetica Chimica Acta, 2006, 89, 598-613.	1.0	5
134	LNA (locked nucleic acid) and analogs as triplex-forming oligonucleotides. Organic and Biomolecular Chemistry, 2007, 5, 2375-2379.	1.5	39
135	Oligonucleotide Probes for RNAâ€Targeted Fluorescence In Situ Hybridization. Advances in Clinical Chemistry, 2007, , 79-115.	1.8	38
136	Repair and recombination induced by triple helix DNA. Frontiers in Bioscience - Landmark, 2007, 12, 4288.	3.0	56
137	Triplex Formation by Pyrene‣abelled Probes for Nucleic Acid Detection in Fluorescence Assays. ChemBioChem, 2008, 9, 791-801.	1.3	27
138	Stability of <i>Hoogsteen</i> â€Type Triplexes – Electrostatic Attraction between Duplex Backbone and Triplexâ€Forming Oligonucleotide (TFO) Using an Intercalating Conjugate. Helvetica Chimica Acta, 2008, 91, 805-818.	1.0	8
139	Using an aryl phenanthroimidazole moiety as a conjugated flexible intercalator to improve the hybridization efficiency of a triplex-forming oligonucleotide. Bioorganic and Medicinal Chemistry, 2008, 16, 9937-9947.	1.4	13
140	DNA triple helices: Biological consequences and therapeutic potential. Biochimie, 2008, 90, 1117-1130.	1.3	246
141	Triplex Formation on DNA Targets: How To Choose the Oligonucleotide. Biochemistry, 2008, 47, 12277-12289.	1.2	32
142	Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Research, 2008, 36, 3494-3507.	6.5	40
143	The First Postsynthetic 5′â€5′ Intercalators in Triplex DNA – Solidâ€Phase Postsynthetic <i>Sonogashira<, Reaction and Homocouplings on Arylacetylenes. Helvetica Chimica Acta, 2009, 92, 716-730.</i>	^{/i} ì.o	7
144	Use of Adsorptive Transfer Stripping Voltammetry for Analyzing Variations of Cytosine Methylation in DNA. Electroanalysis, 2009, 21, 2685-2692.	1.5	6
145	Thermodynamic and Kinetic Effects of Morpholino Modification on Pyrimidine Motif Triplex Nucleic Acid Formation under Physiological Condition. Journal of Biochemistry, 2009, 146, 173-183.	0.9	8
146	Triplexes with 8â€Azaâ€2â€2â€Deoxyisoguanosine Replacing Protonated dC: Probing Third Strand Stability with a Fluorescent Nucleobase Targeting Duplex DNA. ChemBioChem, 2010, 11, 1443-1450.	1.3	17
147	Triplexâ€Stabilizing Properties of Parallel Clamps Carrying LNA Derivatives at the <i>Hoogsteen</i> Strand. Chemistry and Biodiversity, 2010, 7, 376-382.	1.0	8
148	Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chemical Communications, 2011, 47, 5325.	2.2	65
149	Oligodeoxynucleotide Containing Disulphide Bond Stabilizes Triplex DNA Structure. E-Journal of Chemistry, 2011, 8, 507-512.	0.4	1

#	Article	IF	CITATIONS
150	2′â€ <i>O</i> ,4′â€ <i>C</i> â€Aminomethyleneâ€Bridged Nucleic Acid Modification with Enhancement of Nu Resistance Promotes Pyrimidine Motif Triplex Nucleic Acid Formation at Physiological pH. Chemistry - A European Journal, 2011, 17, 2742-2751.	ıclease 1.7	15
151	Potential in vivo roles of nucleic acid triple-helices. RNA Biology, 2011, 8, 427-439.	1.5	166
152	Interrupted 2′- <i>O</i> ,4′- <i>C</i> -Aminomethylene Bridged Nucleic Acid Modification Enhances Pyrimidine Motif Triplex-Forming Ability and Nuclease Resistance Under Physiological Condition. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 63-81.	0.4	7
153	2'-O,4'-C-ethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability under physiological condition. Journal of Biochemistry, 2012, 152, 17-26.	0.9	9
154	A 2-AMINO-6-METHYLPYRIDIN-5-YL NUCLEOBASE FOR GC BASE PAIR RECOGNITION IN THE PARALLEL TRIPLEX DNA. Heterocycles, 2012, 86, 1135.	0.4	3
155	Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH. Biochimie, 2012, 94, 1032-1040.	1.3	13
156	Towards the Sequenceâ€Selective Recognition of Doubleâ€Stranded DNA Containing Pyrimidineâ€Purine Interruptions by Triplexâ€Forming Oligonucleotides. European Journal of Organic Chemistry, 2012, 2012, 2875-2887.	1.2	63
157	Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies. Journal of Physical Chemistry B, 2014, 118, 14774-14784.	1.2	45
158	Siteâ€Directed RNA Editing with Antagomir Deaminases — A Tool to Study Protein and RNA Function. ChemMedChem, 2014, 9, 2021-2025.	1.6	33
159	Improved bioactivity of C-rich triplex-forming oligonucleotides containing modified guanine bases. Artificial DNA, PNA & XNA, 2014, 5, e27792.	1.4	7
160	Intermolecular 'cross-torque': the N4-cytosine propargyl residue is rotated to the 'CH'-edge as a result of Watson-Crick interaction. Nucleic Acids Research, 2015, 43, 5275-5283.	6.5	5
161	LNA units present in the (2â€2-OMe)-RNA strand stabilize parallel duplexes (2â€2-OMe)-RNA/[All-R _P -PS]-DNA and parallel triplexes (2â€2-OMe)-RNA/[All-R _P -PS]-DNA/RNA. An improved tool for the inhibition of reverse transcription. Organic and Biomolecular Chemistry. 2015, 13, 2375-2384.	1.5	10
162	Triplex Crosslinking through Furan Oxidation Requires Perturbation of the Structured Tripleâ€Helix. ChemBioChem, 2015, 16, 651-658.	1.3	6
163	Loop Sequence Context Influences the Formation and Stability of the i-Motif for DNA Oligomers of Sequence (CCCXXX) ₄ , where X = A and/or T, under Slightly Acidic Conditions. Journal of Physical Chemistry B, 2016, 120, 7652-7661.	1.2	27
164	Targeting duplex DNA with the reversible reactivity of quinone methides. Signal Transduction and Targeted Therapy, 2016, 1, .	7.1	16
165	Baseâ€Modified Nucleic Acids as a Powerful Tool for Synthetic Biology and Biotechnology. Chemistry - A European Journal, 2017, 23, 9560-9576.	1.7	28
166	Oligonucleotides Containing Aminated 2′-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA. Bioconjugate Chemistry, 2017, 28, 1214-1220.	1.8	18
167	Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2′-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue. Journal of Physical Chemistry B, 2017, 121, 4048-4060.	1.2	24

#	Article	IF	CITATIONS
168	Methylated Cytosine Maintains G-Quadruplex Structures during Polymerase Chain Reaction and Contributes to Allelic Dropout. Biochemistry, 2017, 56, 3691-3698.	1.2	5
169	Triplex- and Duplex-Forming Abilities of Oligonucleotides Containing 2′-Deoxy-5-trifluoromethyluridine and 2′-Deoxy-5-trifluoromethylcytidine. Chemical and Pharmaceutical Bulletin, 2017, 65, 982-988.	0.6	5
170	Effect of dC → d(m5C) substitutions on the folding of intramolecular triplexes with mixed TAT and C+GC base triplets. Biochimie, 2018, 146, 156-165.	1.3	6
171	Conformations and N-glycosidic bond stabilities of sodium cationized $2\hat{a}\in^2$ -deoxycytidine and cytidine: Solution conformation of [Cyd + Na]+ is preserved upon ESI. International Journal of Mass Spectrometry, 2018, 429, 18-27.	0.7	20
172	Protonation of Nucleobases in Single―and Double‧tranded DNA. ChemBioChem, 2018, 19, 2088-2098.	1.3	10
173	Unraveling the structure and biological functions of <scp>RNA</scp> triple helices. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1598.	3.2	51
174	Unnatural bases for recognition of noncoding nucleic acid interfaces. Biopolymers, 2021, 112, e23399.	1.2	13
175	Polyamineâ€Functionalized 2′â€Aminoâ€LNA in Oligonucleotides: Facile Synthesis of New Monomers and Highâ€Affinity Binding towards ssDNA and dsDNA. Chemistry - A European Journal, 2021, 27, 1416-1422.	1.7	7
176	Xrn1-resistant RNA structures are well-conserved within the genus flavivirus. RNA Biology, 2021, 18, 709-717.	1.5	5
177	5â€Methylcytosine Substantially Enhances the Thermal Stability of DNA Minidumbbells. Chemistry - A European Journal, 2021, 27, 6740-6747.	1.7	2
179	<i>anti–syn</i> Unnatural Base Pair Enables Alphabet-Expanded DNA Self-Assembly. Journal of the American Chemical Society, 2021, 143, 14207-14217.	6.6	15
180	Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. International Journal of Molecular Sciences, 2021, 22, 9552.	1.8	9
181	Fluorescence In Situ Hybridization of Small Non-Coding RNAs. Methods in Molecular Biology, 2021, 2300, 73-85.	0.4	1
182	Synthetic Control of DNA Triplex Structure through Chemical Modifications. Perspectives in Supramolecular Chemistry, 0, , 263-327.	0.1	5
183	Fluorescence In Situ Hybridization of Small Non-Coding RNAs. Methods in Molecular Biology, 2015, 1296, 73-83.	0.4	11
184	Methylation of cytosine influences the DNA structure. , 1993, 64, 27-38.		20
185	Triple-Stranded DNA. Nucleic Acids and Molecular Biology, 1995, , 1-21.	0.2	13
186	DNA Recognition by Parallel Triplex Formation. Chemical Biology, 2018, , 1-32.	0.1	10

#	Article	IF	CITATIONS
187	Kinetic Analysis of Triple-Helix Formation by Pyrimidine Oligodeoxynucleotides and Duplex DNA. FEBS Journal, 1995, 228, 918-926.	0.2	30
188	The potential for gene repair via triple helix formation. Journal of Clinical Investigation, 2003, 112, 487-494.	3.9	135
189	Triplex Forming Oligonucleotides – Tool for Gene Targeting. Acta Medica (Hradec Kralove), 2004, 47, 151-156.	0.2	3
190	Stereoelectronic Effects in Nucleosides and Nucleotides. , 2014, , 181-196.		0
191	Thermodynamic State Diagrams of Oligonucleotide Triple Helices. Perspectives in Antisense Science, 1999, , 33-47.	0.2	0
193	The Dynamic Regulation of C-Quadruplex DNA Structures by Cytosine Methylation. International Journal of Molecular Sciences, 2022, 23, 2407.	1.8	7
194	Enzymatic Synthesis of Chemical Nuclease Triplex-Forming Oligonucleotides with Gene-Silencing Applications. Nucleic Acids Research, 2022, 50, 5467-5481.	6.5	10
195	A single natural RNA modification can destabilize a U•A-T-rich RNA•DNA-DNA triple helix. Rna, 2022, 28, 1172-1184.	1.6	3
196	G-quadruplex formation at human DAT1 gene promoter: Effect of cytosine methylation. Biochemistry and Biophysics Reports, 2023, 34, 101464.	0.7	0