Arctiid moth clicks can degrade the accuracy of range d echolocating big brown bats, Eptesicus fuscus

Rhysiology Comparative Physiology A: Neuroethology, Sensory, 168, 571-579 DOI: 10.1007/bf00215079

Citation Report

#	Article	IF	CITATIONS
1	Echolocation behaviour of vespertilionid bats (<i>Lasiurus cinereus</i> and <i>Lasiurus borealis</i>) attacking airborne targets including arctiid moths. Canadian Journal of Zoology, 1992, 70, 1292-1298.	0.4	87
2	Interactions between bats and arctiid moths. Canadian Journal of Zoology, 1992, 70, 2218-2223.	0.4	52
3	Target ranging and the role of time-frequency structure of synthetic echoes in big brown bats, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 83.	0.7	24
4	The neuroethology of sound production in tiger moths (Lepidoptera, Arctiidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 575.	0.7	16
5	Acoustic information available to bats using frequency―modulated sounds for the perception of insect prey. Journal of the Acoustical Society of America, 1994, 95, 2745-2756.	0.5	57
6	Echo SPL influences the ranging performance of the big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 175, 563-71.	0.7	14
7	Acoustic courtship communication inSyntomeida epilais Wlk. (Lepidoptera: Arctiidae, Ctenuchinae). Journal of Insect Behavior, 1995, 8, 19-31.	0.4	38
8	Characterization of auditory afferents in the tiger beetle,Cicindela marutha Dow. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 176, 587-599.	0.7	28
9	Characterization of auditory afferents in the tiger beetle, Cicindela marutha Dow. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 176, 587.	0.7	6
10	Behavioral Studies of Auditory Information Processing. Springer Handbook of Auditory Research, 1995, , 87-145.	0.3	94
11	Acoustical communication and the mating system of the Australian whistling moth <i>Hecatesia exultans</i> (Noctuidae: Agaristinae). Journal of Zoology, 1995, 237, 337-352.	0.8	18
12	Predation upon Moths by Free-Foraging Hipposideros caffer. Journal of Mammalogy, 1996, 77, 708.	0.6	11
13	Ultrasonic signals in the defense and courtship ofEuchaetes egle Drury andE. bolteri Stretch (Lepidoptera: Arctiidae). Journal of Insect Behavior, 1996, 9, 909-919.	0.4	36
14	The degradation of distance discrimination in big brown bats (Eptesicus fuscus) caused by different interference signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 179, 703-713.	0.7	34
15	Detection of jitter in intertarget spacing by the big brown bat Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1997, 181, 279-290.	0.7	10
16	Arctiid moths and bat echolocation: broad-band clicks interfere with neural responses to auditory stimuli in the nuclei of the lateral lemniscus of the big brown bat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 182, 203-215.	0.7	30
17	Echo SPL, training experience, and experimental procedure influence the ranging performance in the big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 213-224.	0.7	17
18	Evolution of ultrasonic signalling in wax moths: discrimination of ultrasonic mating calls from bat echolocation signals and the exploitation of an antipredator receiver bias by sexual advertisement. Ethology Ecology and Evolution, 2000, 12, 259-279.	0.6	60

#	Article	IF	CITATIONS
19	Range discrimination by big brown bats (Eptesicus fuscus) using altered model echoes: Implications for signal processing. Journal of the Acoustical Society of America, 2000, 107, 625-637.	0.5	21
20	How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator. BioScience, 2001, 51, 570.	2.2	212
21	A model of echolocation of multiple targets in 3D space from a single emission. Journal of the Acoustical Society of America, 2001, 110, 607-624.	0.5	33
22	Echolocation of multiple targets in 3-d space from a single emission. Journal of Biological Physics, 2002, 28, 509-525.	0.7	4
23	Bats and moths: what is there left to learn?. Physiological Entomology, 2003, 28, 237-250.	0.6	60
24	A quest for alkaloids: the curious relationship between tiger moths and plants containing pyrrolizidine alkaloids. , 2004, , 248-282.		22
25	The emergence of temporal hyperacuity from widely tuned cell populations. Network: Computation in Neural Systems, 2004, 15, 159-177.	2.2	4
26	Sound strategy: acoustic aposematism in the bat–tiger moth arms race. Die Naturwissenschaften, 2005, 92, 164-169.	0.6	95
27	The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. Journal of Experimental Biology, 2005, 208, 4689-4698.	0.8	68
28	Tiger moth responses to a simulated bat attack: timing and duty cycle. Journal of Experimental Biology, 2006, 209, 2637-2650.	0.8	41
29	Acoustic feature recognition in the dogbane tiger moth, Cycnia tenera. Journal of Experimental Biology, 2007, 210, 2481-2488.	0.8	16
30	Acoustic mimicry in a predator prey interaction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9331-9334.	3.3	109
31	A modeling approach to explain pulse design in bats. Biological Cybernetics, 2007, 97, 159-172.	0.6	26
32	Ultrasonic hearing in moths. Annales De La Societe Entomologique De France, 2009, 45, 145-156.	0.4	10
33	Adaptive echolocation behavior in bats for the analysis of auditory scenes. Journal of Experimental Biology, 2009, 212, 1392-1404.	0.8	59
34	Private ultrasonic whispering in moths. Communicative and Integrative Biology, 2009, 2, 123-126.	0.6	21
35	Nail̂^ve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning. Journal of Experimental Biology, 2009, 212, 2141-2148.	0.8	28
36	Behavioral responses of big brown bats to dives by praying mantises. Journal of Experimental Biology, 2009, 212, 693-703.	0.8	34

CITATION REPORT

.

#	Article	IF	Citations
" 37	Tiger Moth Jams Bat Sonar. Science, 2009, 325, 325-327.	6.0	136
38	Anti-bat tiger moth sounds: Form and function. Environmental Epigenetics, 2010, 56, 358-369.	0.9	40
39	Sonar detection of jittering real targets in a free-flying bat. Journal of the Acoustical Society of America, 2010, 128, 1467-1475.	0.5	16
40	How do tiger moths jam bat sonar?. Journal of Experimental Biology, 2011, 214, 2416-2425.	0.8	40
41	Sonar jamming in the field: effectiveness and behavior of a unique prey defense. Journal of Experimental Biology, 2012, 215, 4278-4287.	0.8	58
42	Sound Strategies: The 65-Million-Year-Old Battle Between Bats and Insects. Annual Review of Entomology, 2012, 57, 21-39.	5.7	139
43	Echolocation by the harbour porpoise: life in coastal waters. Frontiers in Physiology, 2013, 4, 52.	1.3	20
44	Adaptive Sounds and Silences: Acoustic Anti-Predator Strategies in Insects. Animal Signals and Communication, 2014, , 65-79.	0.4	18
45	Animal visual illusion and confusion: the importance of a perceptual perspective. Behavioral Ecology, 2014, 25, 450-463.	1.0	108
46	Convergent evolution of anti-bat sounds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 811-821.	0.7	20
47	Acoustic Aposematism and Evasive Action in Select Chemically Defended Arctiine (Lepidoptera:) Tj ETQq0 0 0 rg	BT /Qverlc	ock 10 Tf 50 3
48	Passive and Active Acoustic Defences of Prey Against Bat Predation. Springer Briefs in Animal Sciences, 2016, , 43-71.	0.1	0
49	To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats. Springer Handbook of Auditory Research, 2016, , 93-116.	0.3	18
50	To seek or speak? Dual function of an acoustic signal limits its versatility in communication. Animal Behaviour, 2017, 127, 135-152.	0.8	17
51	Sensing in a noisy world: lessons from auditory specialists, echolocating bats. Journal of Experimental Biology, 2017, 220, 4554-4566.	0.8	66
52	Flutter sensitivity in FM bats. Part I: delay modulation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 929-939.	0.7	5
53	Active acoustic interference elicits echolocation changes in heterospecific bats. Journal of Experimental Biology, 2018, 221, .	0.8	9
54	Influence of signal direction on sonar interference. Animal Behaviour, 2019, 155, 249-256.	0.8	3

CITATION REPORT

	CITATION RI	EPORT	
# 55	ARTICLE The jamming avoidance response in echolocating bats. Communicative and Integrative Biology, 2019, 12, 10-13.	IF 0.6	Citations 8
56	Natural History and Biosonar Signals. Springer Handbook of Auditory Research, 1995, , 37-86.	0.3	49
59	Background matching. , 2004, , 7-25.		1
60	Transparency and silvering. , 2004, , 38-48.		1
61	The evolution and maintenance of Batesian mimicry. , 2004, , 139-163.		1
62	The relationship between Batesian and Müllerian mimicry. , 2004, , 164-171.		2
63	Jamming Bat Echolocation: the Dogbane Tiger Moth <i>Cycnia Tenera</i> Times Its Clicks to the Terminal Attack Calls of the Big Brown Bat <i>Eptesicus Fuscus</i> . Journal of Experimental Biology, 1994, 194, 285-298.	0.8	70
64	Echolocation Call Structure and Intensity in Five Species of Insectivorous Bats. Journal of Experimental Biology, 1995, 198, 475-489.	0.8	132
65	â€~Un chant d'appel amoureux': acoustic communication in moths. Journal of Experimental Biology, 199 202, 1711-1723.	^{9,} _{0.8}	127
66	Signalling to predators. , 2004, , 70-81.		0
67	Deflection and startling of predators. , 2004, , 183-199.		0
68	The initial evolution of warning displays. , 2004, , 104-114.		0
69	Other forms of adaptive resemblance. , 2004, , 172-182.		0
70	Secondary defences. , 2004, , 51-69.		1
71	Countershading and counterillumination. , 2004, , 30-37.		0
72	The form and function of warning displays. , 2004, , 82-103.		0
73	Disruptive colouration. , 2004, , 26-29.		0
74	The evolution and maintenance of Müllerian mimicry. , 2004, , 115-136.		2

C	ΓΑΤΙ	 . n			-
			ъΡ	U 15	
\sim					

#	Article	IF	CITATIONS
76	Extreme Duty Cycles in the Acoustic Signals of Tiger Moths: Sexual and Natural Selection Operating in Parallel. Integrative Organismal Biology, 2020, 2, obaa046.	0.9	4
78	Communication with self, friends and foes in active-sensing animals. Journal of Experimental Biology, 2021, 224, .	0.8	18
79	Darwin's Hawkmoth (<i>Xanthopan praedicta</i>) responds to bat ultrasound at sonarâ€ j amming rates. Biotropica, 2022, 54, 571-575.	0.8	2
84	High duty cycle moth sounds jam bat echolocation: bats counter with compensatory changes in buzz duration. Journal of Experimental Biology, 2022, 225, .	0.8	3
86	Sensory systems used by echolocating bats foraging in natural settings. , 2024, , 57-82.		0