Generalized molecular descriptors

Journal of Mathematical Chemistry 7, 155-168 DOI: 10.1007/bf01200821

Citation Report

#	Article	IF	CITATIONS
1	In search of structural invariants. Journal of Mathematical Chemistry, 1992, 9, 97-146.	0.7	56
2	Novel molecular descriptor for structure—property studies. Chemical Physics Letters, 1993, 211, 478-483.	1.2	273
3	Viewpoint 4 $\hat{a} \in$ "Comparative structure-property studies: the connectivity basis. Computational and Theoretical Chemistry, 1993, 284, 209-221.	1.5	35
4	In search for graph invariants of chemical interes. Journal of Molecular Structure, 1993, 300, 551-571.	1.8	49
5	Integration of Graph Theory and Quantum Chemistry for Structure-Activity Relationships. SAR and QSAR in Environmental Research, 1994, 2, 59-77.	1.0	35
6	On the calculation ofab initioquantum molecular similarities for large systems: Fitting the electron density. Journal of Computational Chemistry, 1994, 15, 1113-1120.	1.5	46
7	On the Basis of Invariants of Labeled Molecular Graphs. Journal of Chemical Information and Computer Sciences, 1995, 35, 527-531.	2.8	59
8	Graph Theoretical Invariant of Randic Revisited. Journal of Chemical Information and Computer Sciences, 1995, 35, 1022-1025.	2.8	32
9	Three-Dimensional Molecular Descriptors Based on Electron Charge Density Weighted Graphs. Journal of Chemical Information and Computer Sciences, 1995, 35, 708-713.	2.8	36
10	Molecular Topology. 15. 3D Distance Matrixes and Related Topological Indices. Journal of Chemical Information and Computer Sciences, 1995, 35, 129-135.	2.8	49
11	Identification of structural similarity of organic molecules. Topics in Current Chemistry, 1995, , 105-133.	4.0	6
12	Spectral Moments of the Edge Adjacency Matrix in Molecular Graphs. 1. Definition and Applications to the Prediction of Physical Properties of Alkanesâ€. Journal of Chemical Information and Computer Sciences, 1996, 36, 844-849.	2.8	239
13	On the Relation between the Path Numbers 1Z, 2Z and the Hosoya Z Index. Journal of Chemical Information and Computer Sciences, 1996, 36, 1118-1122.	2.8	11
14	The Discrimination Ability of Some Topological and Information Distance Indices for Graphs of Unbranched Hexagonal Systems. Journal of Chemical Information and Computer Sciences, 1996, 36, 54-57.	2.8	81
15	Walk NumberseWM:  Wiener-Type Numbers of Higher Rankâ€. Journal of Chemical Information and Computer Sciences, 1996, 36, 535-540.	2.8	48
16	A Theorem about the Algebraic Structure underlying Orthogonal Graph Invariants. Journal of Chemical Information and Computer Sciences, 1996, 36, 1051-1053.	2.8	4
17	Edge Adjacency Relationships and Molecular Topographic Descriptors. Definition and QSAR Applications. Journal of Chemical Information and Computer Sciences, 1996, 36, 837-843.	2.8	65
18	On the Relation between the Pâ \in /P Index and the Wiener Number. Journal of Chemical Information and Computer Sciences, 1996, 36, 1123-1126.	2.8	10

ITATION REDO

#	Article	IF	CITATIONS
19	A Topological Index Based on Distances of Edges of Molecular Graphs. Journal of Chemical Information and Computer Sciences, 1996, 36, 850-853.	2.8	21
20	An alternative approach to orthogonal graph theoretical invariants. Chemical Physics Letters, 1996, 257, 393-396.	1.2	8
21	Molecular bonding profiles. Journal of Mathematical Chemistry, 1996, 19, 375-392.	0.7	38
22	New Developments in QSPR/QSAR Modeling Based on Topological Indices. SAR and QSAR in Environmental Research, 1997, 7, 45-62.	1.0	22
23	Molecular Graph Matrices and Derived Structural Descriptors. SAR and QSAR in Environmental Research, 1997, 7, 63-87.	1.0	29
24	Extension of the Z Matrix to Cycle-Containing and Edge-Weighted Molecular Graphs. Journal of Chemical Information and Computer Sciences, 1997, 37, 529-534.	2.8	7
25	Indices of Reciprocal Properties or Harary Indices. Journal of Chemical Information and Computer Sciences, 1997, 37, 292-299.	2.8	50
26	Spectral Moments of the Edge-Adjacency Matrix of Molecular Graphs. 2. Molecules Containing Heteroatoms and QSAR Applications. Journal of Chemical Information and Computer Sciences, 1997, 37, 320-328.	2.8	155
27	A New Topological Index for Molecular Probes Used in Inverse Gas Chromatography for the Surface Nanorugosity Evaluation. Journal of Colloid and Interface Science, 1997, 194, 207-216.	5.0	85
28	Characterization of 3-D sequences of proteins. Chemical Physics Letters, 1997, 272, 115-119.	1.2	46
29	Extension of Edge Connectivity Index. Relationships to Line Graph Indices and QSPR Applications. Journal of Chemical Information and Computer Sciences, 1998, 38, 428-431.	2.8	54
30	Properties of New Orthogonal Graph Theoretical Invariants in Structureâ~'Property Correlations. Journal of Chemical Information and Computer Sciences, 1998, 38, 1031-1037.	2.8	7
31	Approach to Estimation and Prediction for Normal Boiling Point (NBP) of Alkanes Based on a Novel Molecular Distance-Edge (MDE) Vector, λ. Journal of Chemical Information and Computer Sciences, 1998, 38, 387-394.	2.8	110
32	Extended Wiener indices. A new set of descriptors for quantitative structure-property studies. New Journal of Chemistry, 1998, 22, 819-822.	1.4	50
33	On the Calculation of the Molecular Descriptor χ'/χ. Journal of Chemical Information and Computer Sciences, 1998, 38, 889-892.	2.8	6
34	Connectivity polynomial and long-range contributions in the molecular connectivity model. Chemical Physics Letters, 1999, 312, 556-560.	1.2	21
35	Chemical graphs and their basis invariants. Computational and Theoretical Chemistry, 1999, 466, 211-217.	1.5	22
36	Fragmental graphs. A novel approach to generate a new family of descriptors. Applications to QSPR studies. Computational and Theoretical Chemistry, 1999, 493, 29-36.	1.5	3

#	Article	IF	CITATIONS
37	Molecular Distanceâ^'Edge Vector (μ):  An Extension from Alkanes to Alcohols. Journal of Chemical Information and Computer Sciences, 1999, 39, 951-957.	2.8	26
38	Edge-Connectivity Indices in QSPR/QSAR Studies. 1. Comparison to Other Topological Indices in QSPR Studies. Journal of Chemical Information and Computer Sciences, 1999, 39, 1037-1041.	2.8	41
39	Molecular Distance-Edge Vector (μ) and Chromatographic Retention Index of Alkanes. Journal of the Chinese Chemical Society, 2000, 47, 455-460.	0.8	6
40	A computer-based approach to describe the 13C NMR chemical shifts of alkanes by the generalized spectral moments of iterated line graphs. Computers & Chemistry, 2000, 24, 193-201.	1.2	18
43	Molecular Electronegative Distance Vector (MEDV) Related to 15 Properties of Alkanes. Journal of Chemical Information and Computer Sciences, 2000, 40, 1337-1348.	2.8	36
44	The Overall Wiener IndexA New Tool for Characterization of Molecular Topology. Journal of Chemical Information and Computer Sciences, 2001, 41, 582-592.	2.8	54
45	Investigation on quantitative relationship between chemical shift of carbon-13 nuclear magnetic resonance spectra and molecular topological structure based on a novel atomic distance-edge vector (ADEV). Journal of Chemometrics, 2001, 15, 427-438.	0.7	10
46	Chemometrics to chemical modeling: Structural coding in hydrocarbons and retention indices of gas chromatography. Journal of Separation Science, 2001, 24, 213-220.	1.3	12
47	Application of Topological Descriptors in QSAR and Drug Design: History and New Trends. Current Drug Targets Infectious Disorders, 2002, 2, 93-102.	2.1	143
48	A virtual organisation for exchange of knowledge and transfer of technology. International Journal of Technology Transfer and Commercialisation, 2002, 1, 313.	0.2	1
49	Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons. Chemometrics and Intelligent Laboratory Systems, 2002, 61, 3-15.	1.8	30
50	Molecular Shape Diversity of Combinatorial Libraries:  A Prerequisite for Broad Bioactivityâ€. Journal of Chemical Information and Computer Sciences, 2003, 43, 987-1003.	2.8	393
51	Markovian chemicals "in silico" design (MARCH-INSIDE), a promising approach for computer-aided molecular design I: discovery of anticancer compounds. Journal of Molecular Modeling, 2003, 9, 395-407.	0.8	87
52	Novel topological indexF based on incidence matrix. Journal of Computational Chemistry, 2003, 24, 1812-1820.	1.5	6
53	QSPR modeling of heat of formation and heat of vaporization of aliphatic ketones by means of electrotopological indices. Chemical Physics Letters, 2003, 369, 325-334.	1.2	13
54	Preliminary approach to estimation and prediction of infrared spectroscopy for Mannich bases by atomic electronegativity distance vector (VAED). Computational Biology and Chemistry, 2003, 27, 229-239.	1.1	7
55	What Are the Limits of Applicability for Graph Theoretic Descriptors in QSPR/QSAR? Modeling Dipole Moments of Aromatic Compounds with TOPS-MODE Descriptors. Journal of Chemical Information and Computer Sciences, 2003, 43, 75-84.	2.8	52
56	Discriminating Tests of Information and Topological Indices. Animals and Trees. Journal of Chemical Information and Computer Sciences, 2003, 43, 1860-1871.	2.8	11

#	Article	IF	CITATIONS
57	Generalized Graph Matrix, Graph Geometry, Quantum Chemistry, and Optimal Description of Physicochemical Properties. Journal of Physical Chemistry A, 2003, 107, 7482-7489.	1.1	24
58	Total and Local Quadratic Indices of the Molecular Pseudograph's Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds. Molecules, 2003, 8, 687-726.	1.7	77
59	Total and Local Quadratic Indices of the "Molecular Pseudograph's Atom Adjacency Matrix― Application to Prediction of Caco-2 Permeability of Drugs. International Journal of Molecular Sciences, 2003, 4, 512-536.	1.8	55
60	Protein Quadratic Indices of the "Macromolecular Pseudograph's α-Carbon Atom Adjacency Matrix†1. Prediction of Arc Repressor Alanine-mutant's Stability. Molecules, 2004, 9, 1124-1147.	1.7	43
61	Nucleic Acid Quadratic Indices of the "Macromolecular Graph's Nucleotides Adjacency Matrix― Modeling of Footprints after the Interaction of Paromomycin with the HIV-1 Ψ-RNA Packaging Region. International Journal of Molecular Sciences, 2004, 5, 276-293.	1.8	56
62	Passivation of the calcite surface with malonate ion. Journal of Colloid and Interface Science, 2004, 274, 16-24.	5.0	18
63	Highly Correlating Distance-Connectivity-Based Topological Indices. 2: Prediction of 15 Properties of a Large Set of Alkanes Using a Stepwise Factor Selection-Based PCR Analysis. QSAR and Combinatorial Science, 2004, 23, 734-753.	1.5	13
64	3D-Chiral quadratic indices of the â€~molecular pseudograph's atom adjacency matrix' and their application to central chirality codification: classification of ACE inhibitors and prediction of ΃-receptor antagonist activities. Bioorganic and Medicinal Chemistry, 2004, 12, 5331-5342.	1.4	87
65	Total and local (atom and atom type) molecular quadratic indices: significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications. Bioorganic and Medicinal Chemistry, 2004, 12, 6351-6369.	1.4	67
66	Wienerâ^'Hosoya Index A Novel Graph Theoretical Molecular Descriptorâ€. Journal of Chemical Information and Computer Sciences, 2004, 44, 373-377.	2.8	21
67	Linear Indices of the "Molecular Pseudograph's Atom Adjacency Matrixâ€ : Definition, Significance-Interpretation, and Application to QSAR Analysis of Flavone Derivatives as HIV-1 Integrase Inhibitors. Journal of Chemical Information and Computer Sciences, 2004, 44, 2010-2026.	2.8	87
68	The Wiener Distance Matrix for Acyclic Compounds and Polymers. Journal of Chemical Information and Computer Sciences, 2004, 44, 522-528.	2.8	5
69	Linear indices of the â€~macromolecular graph's nucleotides adjacency matrix' as a promising approach for bioinformatics studies. Part 1: Prediction of paromomycin's affinity constant with HIV-1 Î~RNA packaging region. Bioorganic and Medicinal Chemistry, 2005, 13, 3397-3404.	1.4	44
70	The structural relationship between Randić indices, adjacency matrixes, distance matrixes and maximum wave length of linear simple conjugated polyene compounds. Computational and Theoretical Chemistry, 2005, 726, 183-188.	1.5	37
71	Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs. Bioorganic and Medicinal Chemistry, 2006, 14, 6502-6524.	1.4	53
72	Bond-based global and local (bond, group and bond-type) quadratic indices and their applications to computer-aided molecular design. 1. QSPR studies of diverse sets of organic chemicals. Journal of Computer-Aided Molecular Design, 2006, 20, 685-701.	1.3	24
73	Generalized Boolean Descriptors for Biological Macromolecules. AIP Conference Proceedings, 2007, , .	0.3	3
74	Prediction of Tyrosinase Inhibition Activity Using Atom-Based Bilinear Indices. ChemMedChem, 2007, 2, 449-478.	1.6	52

#	Article	IF	CITATIONS
75	Improving the local vertex invariants in alkane graphs through a standard molecular orbital approach. Chemical Physics Letters, 2007, 449, 249-254.	1.2	4
76	Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification. Journal of Molecular Graphics and Modelling, 2007, 26, 32-47.	1.3	45
77	New Molecular Descriptors based upon the Euler Equations for Chemical Graphs. Journal of Mathematical Chemistry, 2007, 41, 193-208.	0.7	11
78	3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification. Journal of Mathematical Chemistry, 2008, 44, 755-786.	0.7	23
79	Novel 2D TOMOCOMD-CARDD molecular descriptors: atom-based stochastic and non-stochastic bilinear indices and their QSPR applications. Journal of Mathematical Chemistry, 2008, 44, 650-673.	0.7	20
80	Estimation of ADME Properties in Drug Discovery: Predicting Caco-2 Cell Permeability Using Atom-Based Stochastic and Non-stochastic Linear Indices. Journal of Pharmaceutical Sciences, 2008, 97, 1946-1976.	1.6	72
81	Mold ² , Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics. Journal of Chemical Information and Modeling, 2008, 48, 1337-1344.	2.5	241
82	Structural Relationship Study of Electrochemical Properties of the Nano Structures of <i>Cis</i> â€unsaturated Thiocrown Ethers and Their Supramolecular Complexes [Xâ€UTâ€Y][La@C ₇₂ (C ₆ H ₃ Cl ₂)] Nonâ€IPR Carbon Cage. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 171-186	1.0	7
83	Relationship study of octanol–water partitioning coefficients and total biodegradation of linear simple conjugated polyene and carotene compounds by use of the <i>Randić</i> index and maximum UV wavelength. Physics and Chemistry of Liquids, 2009, 47, 349-359.	0.4	4
84	Mathematical Modeling of Organic Compounds and of Their Physical Properties. , 2009, , .		0
85	BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction. Molecular Phylogenetics and Evolution, 2009, 52, 887-897.	1.2	16
86	Nucleotide's bilinear indices: Novel bio-macromolecular descriptors for bioinformatics studies of nucleic acids. I. Prediction of paromomycin's affinity constant with HIV-1 Ψ-RNA packaging region. Journal of Theoretical Biology, 2009, 259, 229-241.	0.8	7
88	QSPR studies on normal boiling points and molar refractivities of organic compounds by correlation-ranking-based PCR and PC–ANN analyses of new topological indices. Canadian Journal of Chemistry, 2009, 87, 1593-1604.	0.6	5
89	Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules. Molecular Diversity, 2010, 14, 731-753.	2.1	15
90	Investigation of carbonâ€13 nuclear magnetic resonance spectraâ€structure correlation based on novel atomic distanceâ€edge (ADE) vector. Chinese Journal of Chemistry, 1998, 16, 126-137.	2.6	3
91	An atomic electronegative distance vector and carbonâ€13 nuclear magnetic resonance chemical shifts of alcohols and alkanes. Chinese Journal of Chemistry, 2000, 18, 165-174.	2.6	4
92	Exhaustive Structure Generation for Inverseâ€QSPR/QSAR. Molecular Informatics, 2010, 29, 111-125.	1.4	40
93	Use of the Szeged index and the revised Szeged index for measuring network bipartivity. Discrete Applied Mathematics, 2010, 158, 1936-1944.	0.5	59

#	Article	IF	CITATIONS
94	<scp>tomocomdâ€camps</scp> and protein bilinear indices – novel bioâ€macromolecular descriptors for protein research: I. Predicting protein stability effects of a complete set of alanine substitutions in the Arc repressor. FEBS Journal, 2010, 277, 3118-3146.	2.2	7
95	Molecular Descriptors. Challenges and Advances in Computational Chemistry and Physics, 2010, , 29-102.	0.6	62
96	Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, 2010, , .	0.6	119
97	Theoretical and Quantitative Structural Relationships of the Electron Transfer and Electrochemical Properties of <i>Cis</i> -Unsaturated Thiocrown Ethers and Supramolecular Complexes [X-UT-Y]@[La ₂ @C ₇₂ (Adamantylidene Mono-Adducts) _n] (n=0,1). Eulerenes Nanotubes and Carbon Nanostructures 2011, 19, 166-181	1.0	7
98	Theoretical and quantitative structural relationships of the electrochemical properties of <i>Cis</i> -unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R=PCBM, <i>p</i> -EHO-PCBM, and <i>p</i> -EHO-PCBA). Journal of Information Display, 2011, 12, 145-152.	2.1	0
99	Towards an Information Theory of Complex Networks. , 2011, , .		7
100	Bondâ€extended stochastic and nonstochastic bilinear indices. I. QSPR/QSAR applications to the description of properties/activities of smallâ€medium size organic compounds. International Journal of Quantum Chemistry, 2011, 111, 8-34.	1.0	2
101	Information-Theoretic Methods in Chemical Graph Theory. , 2011, , 97-126.		2
102	Theoretical and Quantitative Structural Relationships Studies of Free Energies of Electron Transfer, Electron Transfer Kinetic, and Electrochemical Properties of Metal Nitride Cluster Fullerenes Y3N@C80Methano Mono Adduct Derivatives in [X-UT-V][Y3N@C80-[6,6]-Methanofullerene-R] (R = DEM,) Tj ET	Ūq 0.0 0 rg	gBTq/Overlock
	2011, 3, 213-228.		
103	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20.	1.0	5
103 104	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347.	1.0 0.3	5
103 104 105	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246.	1.0 0.3 1.3	5 3 17
103 104 105 107	 2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246. Free Energies of Electron Transfer, Electron Transfer Kinetic Theoretical and Quantitative Structural Relationships and Electrochemical Properties Studies of Gadolinium Nitride Cluster Fullerenes Gd3N@Cnin [X-UT-Y][Gd3N@Cn](n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 485-502. 	1.0 0.3 1.3 1.0	5 3 17 10
103 104 105 107	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60〓M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246. Free Energies of Electron Transfer, Electron Transfer Kinetic Theoretical and Quantitative Structural Relationships and Electrochemical Properties Studies of Gadolinium Nitride Cluster Fullerenes Gd3N@Cnin [X-UT-Y][Gd3N@Cn](n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 485-502. Relations frequency hypermatrices in mutual, conditional, and joint entropyâ€based information indices. Journal of Computational Chemistry, 2013, 34, 259-274.	1.0 0.3 1.3 1.0 1.5	5 3 17 10 28
103 104 105 107 108	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60à€"M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246. Free Energies of Electron Transfer, Electron Transfer Kinetic Theoretical and Quantitative Structural Relationships and Electrochemical Properties Studies of Gadolinium Nitride Cluster Fullerenes Gd3N@Cnin [X-UT-Y][Gd3N@Cn](n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 485-502. Relations frequency hypermatrices in mutual, conditional, and joint entropyâ€based information indices. Journal of Computational Chemistry, 2013, 34, 259-274. QSAR Modeling: Where Have You Been? Where Are You Going To?. Journal of Medicinal Chemistry, 2014, 57, 4977-5010.	1.0 0.3 1.3 1.0 1.5 2.9	5 3 17 10 28 1,401
103 104 105 107 108 109	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60a6"M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246. Free Energies of Electron Transfer, Electron Transfer Kinetic Theoretical and Quantitative Structural Relationships and Electrochemical Properties Studies of Gadolinium Nitride Cluster Fullerenes Gd3N@Cnin [X-UT-Y][Gd3N@Cn] (n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 24, 259-274. QSAR Modeling: Where Have You Been? Where Are You Going To?. Journal of Medicinal Chemistry, 2014, 57, 4977-5010. Discrete Derivatives for Atomâ€Pairs as a Novel Graphâ€Theoretical Invariant for Generating New Molecular Descriptors: Orthogonality, Interpretation and QSARs/QSPRs on Benchmark Databases. Molecular Informatics, 2014, 33, 343-368.	1.0 0.3 1.3 1.0 1.5 2.9	5 3 17 10 28 1,401 15
103 104 105 107 108 109 110	2011, 3, 213-228. New topological indices with very high discriminatory power. SAR and QSAR in Environmental Research, 2011, 22, 1-20. Theoretical free energies of electron transfer, electrochemical properties, electron transfer kinetic and quantitative structural relationships studies of alkynyldihydrofullerene in [X-UT-Y][R-C60–M+] supramolecular complexes. European Journal of Chemistry, 2012, 3, 340-347. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application. Journal of Computer-Aided Molecular Design, 2012, 26, 1229-1246. Free Energies of Electron Transfer, Electron Transfer Kinetic Theoretical and Quantitative Structural Relationships and Electrochemical Properties Studies of Gadolinium Nitride Cluster Fullerenes Gd3N@Cnin [X-UT-Y][Gd3N@Cn](n = 80, 82, 84, 86 and 88) Supramolecular Complexes. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 485-502. Relations frequency hypermatrices in mutual, conditional, and joint entropyâ&based information indices. Journal of Computational Chemistry, 2013, 34, 259-274. QSAR Modeling: Where Have You Been? Where Are You Going To?. Journal of Medicinal Chemistry, 2014, 57, 4977-5010. Discrete Derivatives for Atomâ&Pairs as a Novel Graphå&Theoretical Invariant for Generating New Molecular Descriptors: Onthogonality, Interpretation and QSARs/QSPRs on Benchmark Databases. Molecular Informatics, 2014, 33, 343-368. Detour matrix-based adjacent path eccentric distance sum indices for QSAR/QSPR. Part I: development and evaluation. International Journal of Computational Biology and Drug Design, 2014, 7, 295.	1.0 0.3 1.3 1.0 1.5 2.9 1.4 0.3	5 3 17 10 28 1,401 15

#	Article	IF	CITATIONS
113	Quantitative structure–activity relationship: promising advances in drug discovery platforms. Expert Opinion on Drug Discovery, 2015, 10, 1283-1300.	2.5	96
114	Computer Assisted QSAR/QSPR Approaches – A Review. Indian Journal of Science and Technology, 2016, 9, .	0.5	13
115	Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms. International Journal of Molecular Sciences, 2016, 17, 812.	1.8	7
116	Classification of tRNA isoacceptor sequences by using graphâ€based molecular descriptors. Journal of Chemometrics, 2016, 30, 182-187.	0.7	0
117	<i>N</i> -tuple topological/geometric cutoffs for 3D <i>N</i> -linear algebraic molecular codifications: variability, linear independence and QSAR analysis. SAR and QSAR in Environmental Research, 2016, 27, 949-975.	1.0	11
118	Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discovery Today, 2016, 21, 1291-1302.	3.2	235
119	The advancement of multidimensional QSAR for novel drug discovery - where are we headed?. Expert Opinion on Drug Discovery, 2017, 12, 1-16.	2.5	32
120	Computer-Assisted Decision Support for Student Admissions Based on Their Predicted Academic Performance. American Journal of Pharmaceutical Education, 2017, 81, 46.	0.7	16
121	Analytic results on the polymerisation random graph model. Journal of Mathematical Chemistry, 2018, 56, 140-157.	0.7	19
122	In Silico Approaches for Predictive Toxicology. , 2018, , 91-109.		19
123	Basic Chemical Graph Theory. Carbon Materials, 2018, , 1-21.	0.2	1
124	Emerging Computational Methods for Predicting Chemically Induced Mutagenicity. , 2018, , 161-176.		1
125	Prediction of the Normal Boiling Points and Enthalpy of Vaporizations of Alcohols and Phenols Using Topological Indices. Journal of Structural Chemistry, 2018, 59, 748-754.	0.3	22
126	Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chemical Science, 2019, 10, 8154-8163.	3.7	85
127	Enhancing Acute Oral Toxicity Predictions by using Consensus Modeling and Algebraic Form-Based OD-to-2D Molecular Encodes. Chemical Research in Toxicology, 2019, 32, 1178-1192.	1.7	19
128	Attribute driven inverse materials design using deep learning Bayesian framework. Npj Computational Materials, 2019, 5, .	3.5	29
129	Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach. Scientific Reports, 2020, 10, 18074.	1.6	29
130	2-D chemical structure image-based in silico model to predict agonist activity for androgen receptor. BMC Bioinformatics, 2020, 21, 245.	1.2	4

#	Article	IF	CITATIONS
131	QSPR/QSAR: State-of-Art, Weirdness, the Future. Molecules, 2020, 25, 1292.	1.7	42
132	Distributed and multicore QuBiLSâ€MIDAS software v2.0: Computing chiral, fuzzy, weighted and truncated geometrical molecular descriptors based on tensor algebra. Journal of Computational Chemistry, 2020, 41, 1209-1227.	1.5	9
133	Detonation Velocity Assessment of Energetic Cocrystals Using QSPR Approach. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 30-35.	0.6	9
135	NanoTox: Development of a Parsimonious <i>In Silico</i> Model for Toxicity Assessment of Metal-Oxide Nanoparticles Using Physicochemical Features. ACS Omega, 2021, 6, 11729-11739.	1.6	18
136	Alignment-Free Antimicrobial Peptide Predictors: Improving Performance by a Thorough Analysis of the Largest Available Data Set. Journal of Chemical Information and Modeling, 2021, 61, 3141-3157.	2.5	27
137	Virtual screening of potential anticancer drugs based on microbial products. Seminars in Cancer Biology, 2022, 86, 1207-1217.	4.3	6
138	Comparative study on structural sensitivity of eigenvalue–based molecular descriptors. Journal of Mathematical Chemistry, 2021, 59, 476-487.	0.7	5
139	On Some Applications of Information Indices in Chemical Graph Theory. Lecture Notes in Computer Science, 2006, , 831-852.	1.0	9
140	Drug Design, Molecular Descriptors in. , 2009, , 2196-2215.		3
141	General Suggestions and Applications of Quantum Molecular Similarity Measures from ab initio Fitted Electron Densities. , 1995, , 89-111.		5
142	Automatic search for substructure similarity. Advances in Molecular Similarity, 1996, , 213-241.	0.5	3
143	Structural similarity analysis based on topological fragment spectra. Advances in Molecular Similarity, 1999, , 93-104.	0.5	15
145	Prediction of the Density of Energetic Co-crystals: a Way to Design High Performance Energetic Materials. Central European Journal of Energetic Materials, 2020, 17, 31-48.	0.5	5
146	Quantitative Structure-Activity/Property/Toxicity Relationships through Conceptual Density Functional Theory-Based Reactivity Descriptors. , 2017, , 1517-1572.		7
147	The Wiener Number in the Context of Generalized Topological Indices. , 2002, , 185-207.		1
148	The Wiener Number in the Context of Generalized Topological Indices. , 2002, , 185-207.		0
149	Bond, Bond-Type, and Total Linear Indices of the Non-Stochastic and Stochastic Edge Adjacency Matrix. 1. Theory and QSPR Studies. , 0, , .		0
150	Drug Design, Molecular Descriptors in. , 2014, , 1-31.		1

#	Article	IF	CITATIONS
151	Digital Communication and Chemical Structure Codification. , 2015, , 1-28.		0
152	Digital Communication and Chemical Structure Codification. , 2016, , 1-28.		Ο
153	Estimation of the Detonation Pressure of Co-crystal Explosives through a Novel, Simple and Reliable Model. Central European Journal of Energetic Materials, 2020, 17, 492-505.	0.5	2
154	A relation between a vertex-degree-based topological index and its energy. Linear Algebra and Its Applications, 2022, 636, 134-142.	0.4	11
155	Artificial intelligence: machine learning for chemical sciences. Journal of Chemical Sciences, 2022, 134, 2.	0.7	32
157	Hosoya index of VDB-weighted graphs. Discrete Applied Mathematics, 2022, 317, 18-25.	0.5	1
158	New Versions of Locating Indices and Their Significance in Predicting the Physicochemical Properties of Benzenoid Hydrocarbons. Symmetry, 2022, 14, 1022.	1.1	5
159	Energy of a digraph with respect to a VDB topological index. Special Matrices, 2022, 10, 417-426.	0.2	2
160	Vertex-degree-based topological indices of oriented trees. Applied Mathematics and Computation, 2022, 433, 127395.	1.4	1
162	On Some Topological Indices Defined via the Modified Sombor Matrix. Molecules, 2022, 27, 6772.	1.7	3
163	Handcrafted versus non-handcrafted (self-supervised) features for the classification of antimicrobial peptides: complementary or redundant?. Briefings in Bioinformatics, 2022, 23, .	3.2	6
164	Partition of topological indices of benzenoid hydrocarbons into ring contributions. International Journal of Quantum Chemistry, 2023, 123, .	1.0	0
165	Graph machine learning in drug discovery. , 2023, , 141-160.		0
167	Quantitative structure-activity relationships (QSARs) in medicinal chemistry. , 2023, , 3-38.		0
168	Molecular Descriptors in QSPR/QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, 2023, , 25-56.	0.6	1