Discrete models for chemically reacting systems

Journal of Mathematical Chemistry 6, 113-163 DOI: 10.1007/bf01192578

Citation Report

CITATION	

#	Article	IF	CITATIONS
1	Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. Chaos, 1991, 1, 303-334.	1.0	456
2	Threshold-range scaling of excitable cellular automata. Statistics and Computing, 1991, 1, 23-39.	0.8	69
3	Coupled maps and pattern formation on the Sierpinski gasket. Chaos, 1992, 2, 329-335.	1.0	4
4	Coupled map lattice techniques for simulating interfacial phenomena in reactionâ€diffusion systems. Chaos, 1992, 2, 337-342.	1.0	9
5	Reactive dynamics in a multispecies latticeâ€gas automaton. Journal of Chemical Physics, 1992, 96, 2762-2776.	1.2	39
6	Catalytic CO oxidation on Pt surfaces: a lattice-gas cellular automaton model. Physica A: Statistical Mechanics and Its Applications, 1992, 188, 284-301.	1.2	38
7	Pattern formation in excitable media. Physics Reports, 1992, 218, 1-66.	10.3	390
8	Noise, chaos, and (ε, τ)-entropy per unit time. Physics Reports, 1993, 235, 291-343.	10.3	188
9	Asymptotic Behavior of Excitable Cellular Automata. Experimental Mathematics, 1993, 2, 183-208.	0.5	26
10	Adaptive dynamics on a chaotic lattice. Physical Review Letters, 1993, 71, 2010-2013.	2.9	52
11	Unidirectional adaptive dynamics. Physical Review E, 1994, 49, 4832-4842.	0.8	47
12	Class of cellular automata for reaction-diffusion systems. Physical Review E, 1994, 49, 1749-1752.	0.8	42
13	Molecular dynamics simulations of a chemical wave front. Physica D: Nonlinear Phenomena, 1995, 84, 171-179.	1.3	12
14	Pattern formation in chemical systems. Physica D: Nonlinear Phenomena, 1995, 86, 149-157.	1.3	31
15	Adaptive dynamics on circle maps. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 199, 365-374.	0.9	22
16	Scaling, propagation, and kinetic roughening of flame fronts in random media. Journal of Statistical Physics, 1995, 81, 737-759.	0.5	18
17	Renormalized equilibria of a Schlögl model lattice gas. Journal of Statistical Physics, 1995, 81, 295-317.	0.5	10
18	Chaotic meander of spiral waves in the FitzHugh-Nagumo system. Chaos, Solitons and Fractals, 1995, 5, 661-670.	2.5	40

#	Article	IF	CITATIONS
19	Smoluchowski approach for three-body reactions in one dimension. Physical Review E, 1995, 52, 5800-5805.	0.8	20
20	Surface structure and catalytic CO oxidation oscillations. Physica A: Statistical Mechanics and Its Applications, 1996, 229, 428-443.	1.2	36
21	Lattice gas automata for reactive systems. Physics Reports, 1996, 273, 55-147.	10.3	140
22	Geometric theory of trigger waves ? A dynamical system approach. Journal of Mathematical Chemistry, 1996, 19, 301-315.	0.7	13
23	Phase-field model for activated reaction fronts. Physical Review B, 1996, 53, 6263-6272.	1.1	14
24	Correspondence between discrete and continuous models of excitable media:mTrigger waves. Physical Review E, 1997, 55, 3215-3233.	0.8	15
25	Lattice dynamical models of adaptive spatio-temporal phenomena. Pramana - Journal of Physics, 1997, 48, 287-302.	0.9	1
26	Dynamical stability and finite amplitude perturbations in coupled genetic networks. Physica D: Nonlinear Phenomena, 1997, 108, 379-396.	1.3	4
27	Traveling Waves in Lattice Dynamical Systems. Journal of Differential Equations, 1998, 149, 248-291.	1.1	281
28	Long transients dynamics in biochemical networks. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 91-102.	0.4	0
29	Coupled map lattices dynamics on a variable space for the study of development: A general discussion on Caenorhabditis elegans. Theoretical Computer Science, 1999, 217, 157-172.	0.5	4
30	NONLINEARKINETICS ANDNEWAPPROACHES TOCOMPLEXREACTIONMECHANISMS. Annual Review of Physical Chemistry, 1999, 50, 51-78.	4.8	72
31	Planigon tessellation cellular automata. Complexity, 1999, 4, 31-38.	0.9	189
32	A Lattice Cellular Automata Model for Ion Diffusion in the Brain-Cell Microenvironment and Determination of Tortuosity and Volume Fraction. SIAM Journal on Applied Mathematics, 1999, 59, 2247-2273.	0.8	13
33	Master Equation and Molecular Dynamics Simulations of Spatiotemporal Effects in a Bistable Chemical System. Journal of Physical Chemistry A, 1999, 103, 3200-3209.	1.1	18
34	Discrete versus continual description of solid state reaction dynamics from the angle of meaningful simulation. Discrete Dynamics in Nature and Society, 2000, 4, 165-179.	0.5	5
35	Lyapunov Exponents and Synchronization of Cellular Automata. Nonlinear Phenomena and Complex Systems, 2001, , 69-103.	0.0	0
36	Monte Carlo model of oscillatory CO oxidation having regard to the change of catalytic properties due to the adsorbate-induced Pt(1 0 0) structural transformation. Journal of Molecular Catalysis A, 2001, 166, 23-30.	4.8	29

#	Article	IF	CITATIONS
37	ATTRACTORS FOR LATTICE DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 143-153.	0.7	206
38	Front Propagation into an Unstable State of Reaction-Transport Systems. Physical Review Letters, 2001, 86, 926-929.	2.9	62
39	Towards Computational Electrochemistry - a Kineticist's Perspective. , 2002, , 135-195.		24
40	Attractors for lattice systems corresponding to evolution equations. Nonlinearity, 2002, 15, 1079-1095.	0.6	23
41	Attractors for first order dissipative lattice dynamical systems. Physica D: Nonlinear Phenomena, 2003, 178, 51-61.	1.3	84
42	Attractors and approximations for lattice dynamical systems. Journal of Differential Equations, 2004, 200, 342-368.	1.1	96
43	Attractors for lattice FitzHugh–Nagumo systems. Physica D: Nonlinear Phenomena, 2005, 212, 317-336.	1.3	58
44	Dynamical behavior for stochastic lattice systems. Chaos, Solitons and Fractals, 2006, 27, 1080-1090.	2.5	54
45	Stable stationary solutions for a reaction–diffusion equation with a multi-stable nonlinearity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 319-322.	0.9	3
46	Dynamics of systems on infinite lattices. Journal of Differential Equations, 2006, 221, 224-245.	1.1	137
47	Asymptotic synchronization in n-dimensional second order dissipative lattices of coupled oscillators. Journal of Mathematical Analysis and Applications, 2006, 322, 1111-1127.	0.5	1
48	Upper Semicontinuity and Kolmogorov ε-Entropy of Global Attractor for k-Dimensional Lattice Dynamical System Corresponding to Klein-Gordon-Schr¶dinger Equation. Acta Mathematicae Applicatae Sinica, 2006, 22, 469-486.	0.4	0
49	ATTRACTORS FOR STOCHASTIC LATTICE DYNAMICAL SYSTEMS. Stochastics and Dynamics, 2006, 06, 1-21.	0.6	244
50	Attractors of retarded first order lattice systems. Nonlinearity, 2007, 20, 1987-2006.	0.6	39
51	Attractors for one kind of lattice dynamical system. Computers and Mathematics With Applications, 2007, 54, 617-626.	1.4	1
52	Attractors for a second order nonautonomous lattice dynamical system with nonlinear damping. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 365, 17-27.	0.9	29
53	Compact kernel sections for nonautonomous Klein–Gordon–Schrödinger equations on infinite lattices. Journal of Mathematical Analysis and Applications, 2007, 332, 32-56.	0.5	29
54	Symbolic dynamics of two coupled Lorenz maps: From uncoupled regime to synchronisation. Physica D: Nonlinear Phenomena, 2008, 237, 2444-2462.	1.3	4

#	Article	IF	CITATIONS
55	Attractors for stochastic lattice dynamical systems with a multiplicative noise. Frontiers of Mathematics in China, 2008, 3, 317-335.	0.4	97
56	Exponential attractors for first-order lattice dynamical systems. Journal of Mathematical Analysis and Applications, 2008, 339, 217-224.	0.5	24
57	Compact kernel sections of long-wave–short-wave resonance equations on infinite lattices. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 652-670.	0.6	11
58	Random attractors for partly dissipative stochastic lattice dynamical systems1. Journal of Difference Equations and Applications, 2008, 14, 799-817.	0.7	20
59	PEANO'S THEOREM AND ATTRACTORS FOR LATTICE DYNAMICAL SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 557-578.	0.7	19
60	Attractor for lattice system of dissipative Zakharov equation. Acta Mathematica Sinica, English Series, 2009, 25, 321-342.	0.2	5
61	Long-Time Behavior for Second Order Lattice DynamicalÂSystems. Acta Applicandae Mathematicae, 2009, 106, 47-59.	0.5	8
62	Random attractors for stochastic discrete Klein–Gordon–Schrödinger equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1268-1275.	0.9	14
63	Stochastic phase-space description for reactions that change particle numbers. Journal of Mathematical Chemistry, 2009, 45, 141-160.	0.7	4
64	Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. Journal of Mathematical Analysis and Applications, 2009, 354, 78-95.	0.5	61
65	Pullback and forward attractors for dissipative lattice dynamical systems with additive noises. Dynamical Systems, 2009, 24, 139-155.	0.2	2
66	Solving the decentralised gathering problem with a reaction–diffusion–chemotaxis scheme. Swarm Intelligence, 2010, 4, 91-115.	1.3	15
67	Random attractors for first order stochastic retarded lattice dynamical systems. Journal of Mathematical Physics, 2010, 51, 032702.	0.5	30
68	Pullback and forward attractors for dissipative cellular neural networks with additive noises. , 2010, , \cdot		0
69	Uniform global attractors for first order non-autonomous lattice dynamical systems. Proceedings of the American Mathematical Society, 2010, 138, 3219-3219.	0.4	14
70	Uniform exponential attractors for first order non-autonomous lattice dynamical systems. Journal of Differential Equations, 2011, 251, 1489-1504.	1.1	28
71	Random Attractors for Stochastic Retarded Lattice Dynamical Systems. Abstract and Applied Analysis, 2012, 2012, 1-27.	0.3	10
72	Random Attractors for Stochastic Three-Component Reversible Gray-Scott System on Infinite Lattices. Discrete Dynamics in Nature and Society, 2012, 2012, 1-17.	0.5	2

#	Article	IF	CITATIONS
73	Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. Journal of Differential Equations, 2012, 253, 667-693.	1.1	93
74	Energy bands for finite two-dimensional systems in a quantised magnetic field: the symmetry of the model. Journal of Mathematical Chemistry, 2013, 51, 2285-2316.	0.7	0
75	Dynamics of the discrete coupled nonlinear Schrödinger–Boussinesq equations. Applied Mathematics and Computation, 2013, 219, 8508-8524.	1.4	17
76	Microstructure evolution influenced by dislocation density gradients modeled in a reaction–diffusion system. Computational Materials Science, 2013, 67, 373-383.	1.4	17
77	Pullback Exponential Attractors for Nonautonomous Klein-Gordon-Schrödinger Equations on Infinite Lattices. Abstract and Applied Analysis, 2013, 2013, 1-9.	0.3	1
78	Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system. Advances in Difference Equations, 2014, 2014, .	3.5	4
79	Attractors of non-autonomous stochastic lattice systems in weighted spaces. Physica D: Nonlinear Phenomena, 2014, 289, 32-50.	1.3	114
80	On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34, 51-77.	0.5	46
81	Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34, 4019-4037.	0.5	15
82	The Existence of Exponential Attractor for Discrete Ginzburg-Landau Equation. Discrete Dynamics in Nature and Society, 2015, 2015, 1-6.	0.5	2
84	Non-autonomous lattice systems with switching effects and delayed recovery. Journal of Differential Equations, 2016, 261, 2986-3009.	1.1	44
85	Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise. Nonlinear Analysis: Theory, Methods & Applications, 2016, 130, 255-278.	0.6	42
86	Finite Dimensionality and Upper Semicontinuity of Kernel Sections for the Discrete Zakharov Equations. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 135-161.	0.4	2
87	Turing pattern formation in anisotropic medium. Journal of Mathematical Chemistry, 2017, 55, 818-831.	0.7	6
88	Stochastic Lattice Dynamical Systems with Fractional Noise. SIAM Journal on Mathematical Analysis, 2017, 49, 1495-1518.	0.9	24
89	Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg–Landau equations with time-varying delays in the delay. Journal of Difference Equations and Applications, 2018, 24, 872-897.	0.7	17
90	A novel chaos control strategy for discrete-time Brusselator models. Journal of Mathematical Chemistry, 2018, 56, 3045-3075.	0.7	41
91	Invariant Borel probability measures for discrete long-wave-short-wave resonance equations. Applied Mathematics and Computation, 2018, 339, 853-865.	1.4	17

#	Article	IF	CITATIONS
92	Lattice Dynamical Systems in the Biological Sciences. The IMA Volumes in Mathematics and Its Applications, 2019, , 201-233.	0.5	4
93	Dynamics of stochastic reaction–diffusion lattice systems driven by nonlinear noise. Journal of Mathematical Analysis and Applications, 2019, 477, 104-132.	0.5	49
94	Discretisation of Global Attractors for Lattice Dynamical Systems. Journal of Dynamics and Differential Equations, 2020, 32, 1457-1474.	1.0	18
95	Asymptotic behavior of stochastic SchrĶdinger lattice systems driven by nonlinear noise. Stochastic Analysis and Applications, 2020, 38, 213-237.	0.9	27
96	Regularity of random attractors for non-autonomous stochastic discrete complex Ginzburg-Landau equations. Journal of Difference Equations and Applications, 2020, 26, 587-608.	0.7	0
97	Long time behavior for the stochastic parabolic-wave systems with delay on infinite lattice. Nonlinear Analysis: Theory, Methods & Applications, 2020, 197, 111866.	0.6	2
98	Long Term Behavior for a Class of Stochastic Delay Lattice Systems inXÏ S pace. Discrete Dynamics in Nature and Society, 2020, 2020, 1-10.	0.5	0
99	Random attractor for second-order stochastic delay lattice sine-Gordon equation. Boundary Value Problems, 2021, 2021, .	0.3	0
100	Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise. Journal of Mathematical Physics, 2021, 62, .	0.5	4
101	Wong–Zakai approximations and random attractors of non-autonomous stochastic discrete complex Ginzburg–Landau equations. Journal of Mathematical Physics, 2021, 62, .	0.5	6
102	Dynamics of Second Order Lattice Systems with Almost Periodic Nonlinear Part. Qualitative Theory of Dynamical Systems, 2021, 20, 1.	0.8	5
103	Asymptotic behaviour of non-autonomous discrete complex Ginzburg–Landau equations driven by nonlinear noise. Journal of Difference Equations and Applications, 2021, 27, 947-965.	0.7	1
104	Periodic measures of impulsive stochastic Hopfield-type lattice systems. Stochastic Analysis and Applications, 0, , 1-17.	0.9	4
105	Traveling waves for a fourâ€compartment lattice epidemic system with exposed class and standard incidence. Mathematical Methods in the Applied Sciences, 2022, 45, 113-136.	1.2	7
106	Numerical attractors and approximations for stochastic or deterministic sine-Gordon lattice equations. Applied Mathematics and Computation, 2022, 413, 126640.	1.4	3
107	Invariant measures of stochastic delay lattice systems. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3235.	0.5	13
108	Traveling Wave Solutions for a Class of Discrete Diffusive SIR Epidemic Model. Journal of Nonlinear Science, 2021, 31, 1.	1.0	25
109	Internal Noise, Oscillations, Chaos and Chemical Waves. , 1995, , 609-634.		2

#	Article	IF	CITATIONS
110	STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY. Taiwanese Journal of Mathematics, 2012, 16, .	0.2	11
111	Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8, 803-813.	0.4	20
112	Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34, 229-248.	0.5	4
113	Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 1587-1599.	0.5	7
114	Attractors for multi-valued lattice dynamical systems with nonlinear diffusion terms. Stochastics and Dynamics, 0, , .	0.6	1
115	Attractors for Lattice Dynamical Systems. Advances in Mechanics and Mathematics, 2012, , 119-160.	0.2	0
116	Modeling Front Pattern Formation and Intermittent Bursting Phenomena in the Couette Flow Reactor. , 1995, , 517-570.		0
117	Percolation Times in Two-Dimensional Models For Excitable Media. Electronic Journal of Probability, 1996, 1, .	0.5	3
118	Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 2715-2732.	0.5	2
119	PULLBACK ATTRACTORS AND INVARIANT MEASURES FOR THE DISCRETE ZAKHAROV EQUATIONS. Journal of Applied Analysis and Computation, 2019, 9, 2333-2357.	0.2	7
120	Pullback attractors of nonautonomous discrete p-Laplacian complex Ginzburg–Landau equations with fast-varying delays. Advances in Difference Equations, 2020, 2020, .	3.5	0
121	Periodic measures of reaction-diffusion lattice systems driven by superlinear noise. Electronic Research Archive, 2022, 30, 35-51.	0.4	0
122	Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.5	0
123	Wong-Zakai approximations and long term behavior of second order non-autonomous stochastic lattice dynamical systems with additive noise. AIMS Mathematics, 2022, 7, 7569-7594.	0.7	0
124	Traveling wave solutions for a discrete diffusive epidemic model with asymptomatic carriers. International Journal of Biomathematics, 2023, 16, .	1.5	1
125	Periodic solutions in distribution of stochastic lattice differential equations. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.5	2
126	Dynamical stability of random delayed FitzHugh–Nagumo lattice systems driven by nonlinear Wong–Zakai noise. Journal of Mathematical Physics, 2022, 63, .	0.5	3
127	Random Attractor, Invariant Measures, and Ergodicity of Lattice p-Laplacian Equations Driven by Superlinear Noise. Journal of Geometric Analysis, 2023, 33, .	0.5	4

#	Article	IF	CITATIONS
128	Pullback attractor for a class of non-autonomous lattice differential equations with delays. Journal of Mathematical Analysis and Applications, 2023, 521, 126966.	0.5	0
129	Random Uniform Attractors for First Order Stochastic Non-Autonomous Lattice Systems. Qualitative Theory of Dynamical Systems, 2023, 22, .	0.8	0
131	Existence and Uniqueness of Solution of Fractional FitzHugh-Nagumo System. , 2022, , .		0