Efficient algorithms for inferring evolutionary trees

Networks

21, 19-28

DOI: 10.1002/net.3230210104

Citation Report

#	Article	IF	CITATIONS
1	Inferring evolutionary history from DNA sequences. , 0, , .		15
2	Two strikes against perfect phylogeny. Lecture Notes in Computer Science, 1992, , 273-283.	1.0	124
3	Chapter 2 Phylogenetic Trees. Annals of Discrete Mathematics, 1992, 53, 301-321.	1.4	0
4	Triangulating 3-Colored Graphs. SIAM Journal on Discrete Mathematics, 1992, 5, 249-258.	0.4	30
5	On the Exact Location of Steiner Points in General Dimension. SIAM Journal on Computing, 1992, 21, 163-180.	0.8	22
6	Convex tree realizations of partitions. Applied Mathematics Letters, 1992, 5, 3-6.	1.5	47
7	The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 1992, 9, 91-116.	1.2	410
8	The synthesis of two compatible rooted trees in a rooted supertree by an algorithm on sets. , 0, , .		1
9	Constructing phylogenetic trees efficiently using compatibility criteria. New Zealand Journal of Botany, 1993, 31, 239-247.	0.8	11
10	A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. , 0, , .		6
11	Ancestral Inference in Population Genetics. Statistical Science, 1994, 9, 307.	1.6	282
12	Inferring Evolutionary History From DNA Sequences. SIAM Journal on Computing, 1994, 23, 713-737.	0.8	51
13	Reconstructing Trees When Sequence Sites Evolve at Variable Rates. Journal of Computational Biology, 1994, 1, 153-163.	0.8	78
14	Tree Compatibility and Inferring Evolutionary History. Journal of Algorithms, 1994, 16, 388-407.	0.9	40
15	Triangulating Vertex-Colored Graphs. SIAM Journal on Discrete Mathematics, 1994, 7, 296-306.	0.4	61
16	A Polynomial-Time Algorithm For the Perfect Phylogeny Problem When the Number of Character States is Fixed. SIAM Journal on Computing, 1994, 23, 1216-1224.	0.8	89
17	Fast Algorithms for Inferring Evolutionary Trees. Journal of Computational Biology, 1995, 2, 397-407.	0.8	10
18	Hen's Teeth and Whale's Feet: Generalized Characters and Their Compatibility. Journal of Computational Biology, 1995, 2, 515-525.	0.8	19

#	Article	IF	CITATIONS
19	Unrooted genealogical tree probabilities in the infinitely-many-sites model. Mathematical Biosciences, 1995, 127, 77-98.	0.9	92
20	Finding a maximum compatible tree is NP-hard for sequences and trees. Applied Mathematics Letters, 1996, 9, 55-59.	1.5	15
21	On the complexity of comparing evolutionary trees. Discrete Applied Mathematics, 1996, 71, 153-169.	0.5	188
22	The asymmetric median tree — A new model for building consensus trees. Discrete Applied Mathematics, 1996, 71, 311-335.	0.5	44
23	Hunting for Trees in Binary Character Sets: Efficient Algorithms for Extraction, Enumeration, and Optimization. Journal of Computational Biology, 1996, 3, 275-288.	0.8	14
24	Constructing evolutionary trees in the presence of polymorphic characters. , 1996, , .		4
25	General techniques for comparing unrooted evolutionary trees. , 1997, , .		11
26	Heuristic clustering of database objects according to multi-valued attributes. Lecture Notes in Computer Science, 1997, , 162-171.	1.0	1
27	A Fast Algorithm for the Computation and Enumeration of Perfect Phylogenies. SIAM Journal on Computing, 1997, 26, 1749-1763.	0.8	60
28	Inferring evolutionary trees with strong combinatorial evidence. Lecture Notes in Computer Science, 1997, , 111-123.	1.0	12
29	A gene tree for β-globin sequences from melanesia. Journal of Molecular Evolution, 1997, 44, S133-S138.	0.8	29
30	Reconstructing a history of recombinations from a set of sequences. Discrete Applied Mathematics, 1998, 88, 239-260.	0.5	38
31	Reconstructing phylogenies from nucleotide pattern probabilities: A survey and some new results. Discrete Applied Mathematics, 1998, 88, 367-396.	0.5	31
32	Tree Contractions and Evolutionary Trees. SIAM Journal on Computing, 1998, 27, 1592-1616.	0.8	30
33	Computing the Local Consensus of Trees. SIAM Journal on Computing, 1998, 27, 1695-1724.	0.8	20
34	Better methods for solving parsimony and compatibility. , 1998, , .		7
35	Better Methods for Solving Parsimony and Compatibility. Journal of Computational Biology, 1998, 5, 391-407.	0.8	19
36	Rapid Evaluation of Least-Squares and Minimum-Evolution Criteria on Phylogenetic Trees. Molecular Biology and Evolution, 1998, 15, 1346-1359.	3.5	77

#	Article	IF	CITATIONS
37	Faster reliable phylogenetic analysis. , 1999, , .		12
39	A polynomial time algorithm for constructing the refined Buneman tree. Applied Mathematics Letters, 1999, 12, 51-56.	1.5	9
40	Constructing a Tree from Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology. Algorithmica, 1999, 24, 1-13.	1.0	89
41	Constructing Evolutionary Trees in the Presence of Polymorphic Characters. SIAM Journal on Computing, 1999, 29, 103-131.	0.8	6
42	The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theoretical Computer Science, 2000, 244, 167-188.	0.5	39
43	Inferring evolutionary trees with strong combinatorial evidence. Theoretical Computer Science, 2000, 240, 271-298.	0.5	80
44	Combinatorial Pattern Matching. Lecture Notes in Computer Science, 2000, , .	1.0	1
45	Inference from Gene Trees in a Subdivided Population. Theoretical Population Biology, 2000, 57, 79-95.	0.5	193
46	Cavity Matchings, Label Compressions, and Unrooted Evolutionary Trees. SIAM Journal on Computing, 2000, 30, 602-624.	0.8	9
47	An Error-Correcting Map for Quartets Can Improve the Signals for Phylogenetic Trees. Molecular Biology and Evolution, 2001, 18, 344-351.	3.5	8
48	Finding similar consensus between trees: an algorithm and a distance hierarchy. Pattern Recognition, 2001, 34, 127-137.	5.1	47
49	Perfect Phylogenetic Networks with Recombination. Journal of Computational Biology, 2001, 8, 69-78.	0.8	187
50	Assessment of the Accuracy of Matrix Representation with Parsimony Analysis Supertree Construction. Systematic Biology, 2001, 50, 565-579.	2.7	83
51	Assessment of the Accuracy of Matrix Representation with Parsimony Analysis Supertree Construction. Systematic Biology, 2001, 50, 565-579.	2.7	122
52	Perfect phylogenetic networks with recombination. , 2001, , .		4
53	Haplotyping as perfect phylogeny. , 2002, , .		126
55	On the minimum number of topologies explaining a sample of DNA sequences. Theoretical Population Biology, 2002, 62, 357-363.	0.5	9
56	Some notes on the combinatorial properties of haplotype tagging. Mathematical Biosciences, 2003, 185, 205-216.	0.9	9

#	Article	IF	Citations
57	Haplotyping as Perfect Phylogeny: A Direct Approach. Journal of Computational Biology, 2003, 10, 323-340.	0.8	115
58	Fundamentals of Computation Theory. Lecture Notes in Computer Science, 2003, , .	1.0	0
60	Efficient reconstruction of phylogenetic networks with constrained recombination. , 0, , .		43
61	Computing and Combinatorics. Lecture Notes in Computer Science, 2003, , .	1.0	1
62	EFFICIENT RECONSTRUCTION OF HAPLOTYPE STRUCTURE VIA PERFECT PHYLOGENY. Journal of Bioinformatics and Computational Biology, 2003, 01, 1-20.	0.3	100
63	Computing Refined Buneman Trees in Cubic Time. Lecture Notes in Computer Science, 2003, , 259-270.	1.0	2
64	A Note on Efficient Computation of Haplotypes via Perfect Phylogeny. Journal of Computational Biology, 2004, 11, 858-866.	0.8	28
65	Parameterized and Exact Computation. Lecture Notes in Computer Science, 2004, , .	1.0	1
67	Inference on Recombination and Block Structure Using Unphased Data. Genetics, 2004, 166, 537-545.	1.2	11
68	OPTIMAL, EFFICIENT RECONSTRUCTION OF PHYLOGENETIC NETWORKS WITH CONSTRAINED RECOMBINATION. Journal of Bioinformatics and Computational Biology, 2004, 02, 173-213.	0.3	145
69	The Fine Structure of Galls in Phylogenetic Networks. INFORMS Journal on Computing, 2004, 16, 459-469.	1.0	58
70	Perfect phylogeny and haplotype assignment. , 2004, , .		30
71	Recovering trees from well-separated multi-state characters. Discrete Mathematics, 2004, 278, 151-164.	0.4	2
72	Selecting the branches for an evolutionary tree Journal of Algorithms, 2004, 51, 1-14.	0.9	3
73	Notes on the Maximum Likelihood Estimation of Haplotype Frequencies. Annals of Human Genetics, 2004, 68, 257-264.	0.3	6
74	A Review of Nanobioscience and Bioinformatics Initiatives in North America. IEEE Transactions on Nanobioscience, 2004, 3, 74-84.	2.2	6
75	The number of recombination events in a sample history: conflict graph and lower bounds. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1, 78-90.	1.9	37
76	Ancestral inference on gene trees under selection. Theoretical Population Biology, 2004, 66, 219-232.	0.5	88

#	Article	IF	Citations
77	Part I: Ancestral Inference in Population Genetics. Lecture Notes in Mathematics, 2004, , 1-188.	0.1	38
78	Reconstructing reticulate evolution in species. , 2004, , .		59
79	Incomplete Directed Perfect Phylogeny. SIAM Journal on Computing, 2004, 33, 590-607.	0.8	54
80	A new phylogenetic tree model for fuzzy characters. , 2005, , .		1
81	A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters. Lecture Notes in Computer Science, 2005, , 217-232.	1.0	45
82	Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained and structured recombination. Journal of Computer and System Sciences, 2005, 70, 381-398.	0.9	45
83	New voting strategies designed for the classification of nucleic sequences. Knowledge and Information Systems, 2005, 8, $1-15$.	2.1	0
84	Maximum-Likelihood Estimation of Coalescence Times in Genealogical Trees. Genetics, 2005, 171, 2073-2084.	1.2	8
85	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2005, , .	1.0	2
86	Reconstructing Reticulate Evolution in Species—Theory and Practice. Journal of Computational Biology, 2005, 12, 796-811.	0.8	83
87	THE INCOMPLETE PERFECT PHYLOGENY HAPLOTYPE PROBLEM. Journal of Bioinformatics and Computational Biology, 2005, 03, 359-384.	0.3	16
89	Algorithms and Data Structures. Lecture Notes in Computer Science, 2005, , .	1.0	0
90	Convex Recolorings of Strings and Trees: Definitions, Hardness Results and Algorithms. Lecture Notes in Computer Science, 2005, , 218-232.	1.0	22
91	Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. Lecture Notes in Computer Science, 2005, , .	1.0	7
92	Efficient Approximation of Convex Recolorings. Lecture Notes in Computer Science, 2005, , 192-208.	1.0	5
93	Improved Parameterized Complexity of the Maximum Agreement Subtree and Maximum Compatible Tree Problems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 289-302.	1.9	22
94	Detection of Reticulation Events - a Character Based Method. , 2006, , .		3
95	Minimum-Flip Supertrees: Complexity and Algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 165-173.	1.9	39

#	Article	lF	Citations
97	Counting All Possible Ancestral Configurations of Sample Sequences in Population Genetics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 239-251.	1.9	13
98	Mapping Trait Loci by Use of Inferred Ancestral Recombination Graphs. American Journal of Human Genetics, 2006, 79, 910-922.	2.6	105
99	Phylogenetic inference from homologous sequence data: minimum topological assumption, strict mutational compatibility consensus tree as the ultimate solution. Biology Direct, 2006, 1 , 5 .	1.9	0
100	An -time algorithm for the maximum constrained agreement subtree problem for binary trees. Information Processing Letters, 2006, 100, 137-144.	0.4	5
101	Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. Theoretical Computer Science, 2006, 351, 337-350.	0.5	64
102	A Novel Insight into the Perfect Phylogeny Problem. Annals of Combinatorics, 2006, 10, 97-109.	0.3	1
103	Unique Solvability of Certain Hybrid Networks from Their Distances. Annals of Combinatorics, 2006, 10, 165-178.	0.3	6
104	Unique Reconstruction of Tree-Like Phylogenetic Networks from Distances Between Leaves. Bulletin of Mathematical Biology, 2006, 68, 919-944.	0.9	10
105	Whole genome association mapping by incompatibilities and local perfect phylogenies. BMC Bioinformatics, 2006, 7, 454.	1.2	41
106	Graph Theoretical Insights into Evolution of Multidomain Proteins. Journal of Computational Biology, 2006, 13, 351-363.	0.8	76
107	Genetic Association Mapping via Evolution-Based Clustering of Haplotypes. PLoS Genetics, 2007, 3, e111.	1.5	31
108	A Decomposition Theory for Phylogenetic Networks and Incompatible Characters. Journal of Computational Biology, 2007, 14, 1247-1272.	0.8	43
109	Bayesian logistic regression using a perfect phylogeny. Biostatistics, 2007, 8, 32-52.	0.9	19
110	Graph Theoretical Approaches to Delineate Dynamics of Biological Processes. , 2007, , 29-54.		0
111	Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics, 2007, 23, e123-e128.	1.8	46
112	Fixed-Parameter Algorithms in Phylogenetics. Computer Journal, 2007, 51, 79-101.	1.5	22
113	Algorithms for Efficient Near-Perfect Phylogenetic Tree Reconstruction in Theory and Practice. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 561-571.	1.9	20
114	Distorted Metrics on Trees and Phylogenetic Forests. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 108-116.	1.9	31

#	ARTICLE	IF	CITATIONS
115	An efficient strategy for generating all descendant subtree patterns from phylogenetic trees with its implementation. Applied Mathematics and Computation, 2007, 193, 408-418.	1.4	1
116	A Linear-Time Algorithm for the Perfect Phylogeny Haplotype Problem. Algorithmica, 2007, 48, 267-285.	1.0	22
117	Unique Determination of Some Homoplasies at Hybridization Events. Bulletin of Mathematical Biology, 2007, 69, 1709-1725.	0.9	11
118	An efficiently computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study. Discrete Applied Mathematics, 2007, 155, 806-830.	0.5	27
119	Efficient approximation of convex recolorings. Journal of Computer and System Sciences, 2007, 73, 1078-1089.	0.9	39
120	Finding maximal leaf-agreement isomorphic descendent subtrees from phylogenetic trees with different species. Theoretical Computer Science, 2007, 370, 299-308.	0.5	2
121	A new recombination lower bound and the minimum perfect phylogenetic forest problem. Journal of Combinatorial Optimization, 2008, 16, 229-247.	0.8	3
122	A Subdivision Approach to Maximum Parsimony. Annals of Combinatorics, 2008, 12, 45-51.	0.3	6
123	Improved Approximation Algorithm for Convex Recoloring of Trees. Theory of Computing Systems, 2008, 43, 3-18.	0.7	14
124	Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model. Journal of Mathematical Biology, 2008, 57, 435-465.	0.8	54
125	From Constrained to Unconstrained Maximum Agreement Subtree in Linear Time. Algorithmica, 2008, 50, 369-385.	1.0	3
126	Convex recolorings of strings and trees: Definitions, hardness results and algorithms. Journal of Computer and System Sciences, 2008, 74, 850-869.	0.9	42
127	Deterministic Searching on the Line. , 2008, , 235-236.		0
128	Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 323-331.	1.9	50
129	Shorelines of Islands of Tractability: Algorithms for Parsimony and Minimum Perfect Phylogeny Haplotyping Problems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 301-312.	1.9	9
130	Importance Sampling for the Infinite Sites Model. Statistical Applications in Genetics and Molecular Biology, 2008, 7, Article32.	0.2	24
131	Bayesian survival analysis in genetic association studies. Bioinformatics, 2008, 24, 2030-2036.	1.8	4
133	Local Phylogeny Mapping of Quantitative Traits: Higher Accuracy and Better Ranking Than Single-Marker Association in Genomewide Scans. Genetics, 2009, 181, 747-753.	1.2	15

#	Article	IF	Citations
134	Phylogenetic graph models beyond trees. Discrete Applied Mathematics, 2009, 157, 2361-2369.	0.5	14
135	On the complexity of SNP block partitioning under the perfect phylogeny model. Discrete Mathematics, 2009, 309, 5610-5617.	0.4	3
136	The Multi-State Perfect Phylogeny Problem with Missing and Removable Data: Solutions via Integer-Programming and Chordal Graph Theory. Lecture Notes in Computer Science, 2009, , 236-252.	1.0	10
137	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2009, , .	1.0	2
138	Parallel computation of phylogenetic consensus trees. Procedia Computer Science, 2010, 1, 1065-1073.	1.2	7
139	Parallelized phylogenetic post-analysis on multi-core architectures. Journal of Computational Science, 2010, 1, 107-114.	1.5	11
140	Quick path findingâ€"Quick algorithmic solution for unambiguous labeling of phylogenetic tree nodes. Computational Biology and Chemistry, 2010, 34, 300-307.	1.1	3
141	Construction of random perfect phylogeny matrix. Advances and Applications in Bioinformatics and Chemistry, 2010, 3, 89.	1.6	O
142	Topologies of the Conditional Ancestral Trees and Full-Likelihood-Based Inference in the General Coalescent Tree Framework. Genetics, 2010, 185, 1355-1368.	1.2	2
143	The Multi-State Perfect Phylogeny Problem with Missing and Removable Data: Solutions via Integer-Programming and Chordal Graph Theory. Journal of Computational Biology, 2010, 17, 383-399.	0.8	25
144	The Imperfect Ancestral Recombination Graph Reconstruction Problem: Upper Bounds for Recombination and Homoplasy. Journal of Computational Biology, 2010, 17, 767-781.	0.8	0
145	Exact ILP solutions for phylogenetic minimum flip problems. , 2010, , .		39
146	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2010, , .	1.0	0
147	Exact Computation of Coalescent Likelihood for Panmictic and Subdivided Populations under the Infinite Sites Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 611-618.	1.9	11
149	Near Optimal Bounds for Steiner Trees in the Hypercube. SIAM Journal on Computing, 2011, 40, 1340-1360.	0.8	3
150	Rebooting the human mitochondrial phylogeny: an automated and scalable methodology with expert knowledge. BMC Bioinformatics, 2011, 12, 174.	1.2	15
151	An ILP solution for the gene duplication problem. BMC Bioinformatics, 2011, 12, S14.	1.2	19
152	A resampling strategy for reliable network construction. Molecular Phylogenetics and Evolution, 2011, 60, 273-286.	1.2	2

#	Article	IF	CITATIONS
153	On the Genealogy of Asexual Diploids. Journal of Computational Biology, 2011, 18, 415-428.	0.8	2
154	Generalizing the Splits Equivalence Theorem and Four Gamete Condition: Perfect Phylogeny on Three-State Characters. SIAM Journal on Discrete Mathematics, 2011, 25, 1144-1175.	0.4	8
155	maxAlike: maximum likelihood-based sequence reconstruction with application to improved primer design for unknown sequences. Bioinformatics, 2011, 27, 317-325.	1.8	25
156	HTreeQA: Using Semi-Perfect Phylogeny Trees in Quantitative Trait Loci Study on Genotype Data. G3: Genes, Genomes, Genetics, 2012, 2, 175-189.	0.8	16
157	Improved Fixed-Parameter Algorithms for Minimum-Flip Consensus Trees. ACM Transactions on Algorithms, 2012, 8, 1-17.	0.9	3
158	Optimizing Phylogenetic Networks for Circular Split Systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 535-547.	1.9	2
159	The binary perfect phylogeny with persistent characters. Theoretical Computer Science, 2012, 454, 51-63.	0.5	57
160	Matching Split Distance for Unrooted Binary Phylogenetic Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 150-160.	1.9	61
161	Coalescent: an open-source and scalable framework for exact calculations in coalescent theory. BMC Bioinformatics, 2012, 13, 257.	1.2	3
162	Constructing perfect phylogenies and proper triangulations for three-state characters. Algorithms for Molecular Biology, 2012, 7, 26.	0.3	4
163	Analytical Framework for Identifying and Differentiating Recent Hitchhiking and Severe Bottleneck Effects from Multi-Locus DNA Sequence Data. PLoS ONE, 2012, 7, e37588.	1.1	1
164	A simple characterization of the minimal obstruction sets for three-state perfect phylogenies. Applied Mathematics Letters, 2012, 25, 1226-1229.	1.5	2
165	Incompatible quartets, triplets, and characters. Algorithms for Molecular Biology, 2013, 8, 11.	0.3	4
166	A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. Algorithms for Molecular Biology, 2013, 8, 3.	0.3	9
167	FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time. Algorithmica, 2013, 67, 142-160.	1.0	4
168	Affine and Projective Tree Metric Theorems. Annals of Combinatorics, 2013, 17, 205-228.	0.3	5
169	Optimizing tree and character compatibility across several phylogenetic trees. Theoretical Computer Science, 2013, 513, 129-136.	0.5	2
170	Reconstructing phylogenetic network with ReTF algorithm (rearranging transcriptional factor). , 2013, , .		3

#	Article	IF	Citations
171	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2013, , .	1.0	17
172	Unique perfect phylogeny is intractable. Theoretical Computer Science, 2013, 476, 47-66.	0.5	3
173	A Fast Estimate for the Population Recombination Rate Based on Regression. Genetics, 2013, 194, 473-484.	1.2	37
174	Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery. Journal of Computational Biology, 2013, 20, 933-944.	0.8	45
175	On Coalescence Analysis Using Genealogy Rooted Trees. Computational and Mathematical Methods in Medicine, 2014, 2014, 1-8.	0.7	0
176	A Cubic-Vertex Kernel for Flip Consensus Tree. Algorithmica, 2014, 68, 81-108.	1.0	4
177	Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinformatics, 2014, 15, 27.	1,2	58
180	Fast and scalable inference of multi-sample cancer lineages. Genome Biology, 2015, 16, 91.	3.8	180
181	Persistent phylogeny., 2015,,.		12
182	Construction, enumeration, and optimization of perfect phylogenies on multi-state data., 2015,,.		3
183	A coalescent-based method for population tree inference with haplotypes. Bioinformatics, 2015, 31, 691-698.	1.8	9
184	Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics, 2015, 31, i62-i70.	1.8	194
185	Tractability and hardness of flood-filling games on trees. Theoretical Computer Science, 2015, 576, 102-116.	0.5	3
186	BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biology, 2015, 16, 36.	3.8	103
187	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2015, , .	1.0	1
188	Estimation of Phyletic Trees from Cladograms and Birth Orders. Procedia Computer Science, 2015, 60, 824-833.	1.2	1
189	Towards Improving Searches for Optimal Phylogenies. Systematic Biology, 2015, 64, 56-65.	2.7	3
190	Review Paper: The Shape of Phylogenetic Treespace. Systematic Biology, 2017, 66, syw025.	2.7	27

#	Article	IF	CITATIONS
191	An algorithm for computing the gene tree probability under the multispecies coalescent and its application in the inference of population tree. Bioinformatics, 2016, 32, i225-i233.	1.8	12
192	Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny Mixtures. Cell Systems, 2016, 3, 43-53.	2.9	140
193	Characterizing Long-tail SEO Spam on Cloud Web Hosting Services. , 2016, , .		15
194	Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5528-37.	3.3	200
195	The dual complex of $f^{0,n}}\$ M \hat{A}^{-} O , n via phylogenetics. Archiv Der Mathematik, 2016, 106, 525-529.	0.3	2
196	Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nature Biotechnology, 2016, 34, 64-69.	9.4	93
197	Reconstructing metastatic seeding patterns of human cancers. Nature Communications, 2017, 8, 14114.	5.8	118
198	Character-Based Phylogeny Construction and Its Application to Tumor Evolution. Lecture Notes in Computer Science, 2017, , 3-13.	1.0	2
199	The Minimum Conflict-Free Row Split Problem Revisited. Lecture Notes in Computer Science, 2017, , 303-315.	1.0	0
200	Species-Driven Persistent Phylogeny. Fundamenta Informaticae, 2017, 154, 47-63.	0.3	O
201	A colored graph approach to perfect phylogeny with persistent characters. Theoretical Computer Science, 2017, 658, 60-73.	0.5	12
203	Tumor phylogeny inference using tree-constrained importance sampling. Bioinformatics, 2017, 33, i152-i160.	1.8	46
204	Severe infections emerge from commensal bacteria by adaptive evolution. ELife, 2017, 6, .	2.8	93
205	Beyond Perfect Phylogeny. , 2017, , .		42
206	The matroid structure of representative triple sets and triple-closure computation. European Journal of Combinatorics, 2018, 70, 384-407.	0.5	7
207	Perfect Phylogenies via Branchings in Acyclic Digraphs and a Generalization of Dilworth's Theorem. ACM Transactions on Algorithms, 2018, 14, 1-26.	0.9	4
208	Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 96-108.	1.9	7
209	SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics, 2018, 34, i671-i679.	1.8	99

#	Article	IF	Citations
210	Using Gene Genealogies to Localize Rare Variants Associated with Complex Traits in Diploid Populations. Human Heredity, 2018, 83, 30-39.	0.4	4
211	PULLPRU: a practical approach to estimate phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. Computational and Applied Mathematics, 2018, 37, 5681-5701.	1.3	O
212	MIPUP: minimum perfect unmixed phylogenies for multi-sampled tumors via branchings and ILP. Bioinformatics, 2019, 35, 769-777.	1.8	12
213	Does Relaxing the Infinite Sites Assumption Give Better Tumor Phylogenies? An ILP-Based Comparative Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1410-1423.	1.9	14
214	Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via "grafting to―approach. Journal of Saudi Chemical Society, 2019, 23, 1080-1089.	2.4	19
215	Accurate and efficient cell lineage tree inference from noisy single cell data: the maximum likelihood perfect phylogeny approach. Bioinformatics, 2020, 36, 742-750.	1.8	21
216	Bayesian Estimation of Population Size Changes by Sampling Tajima's Trees. Genetics, 2019, 213, 967-986.	1.2	14
217	Effective Clustering for Single Cell Sequencing Cancer Data. , 2019, , .		3
218	perfectphyloR: An R package for reconstructing perfect phylogenies. BMC Bioinformatics, 2019, 20, 729.	1.2	2
219	Non-parametric correction of estimated gene trees using TRACTION. Algorithms for Molecular Biology, 2020, 15, 1.	0.3	11
220	An Iterated Local Search Algorithm for the Clonal Deconvolution Problem. , 2020, , .		0
221	PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem. Bioinformatics, 2020, 36, i169-i176.	1.8	19
222	Tumor Phylogeny Topology Inference via Deep Learning. IScience, 2020, 23, 101655.	1.9	11
223	Mathematical and Computational Oncology. Lecture Notes in Computer Science, 2020, , .	1.0	0
224	gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data. BMC Bioinformatics, 2020, 21, 413.	1.2	10
225	Most Parsimonious Likelihood Exhibits Multiple Optima for Compatible Characters. Bulletin of Mathematical Biology, 2020, 82, 10.	0.9	O
226	SCARLET: Single-Cell Tumor Phylogeny Inference with Copy-Number Constrained Mutation Losses. Cell Systems, 2020, 10, 323-332.e8.	2.9	61
227	Inference of single-cell phylogenies from lineage tracing data using Cassiopeia. Genome Biology, 2020, 21, 92.	3.8	61

#	Article	IF	CITATIONS
228	Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses. Bioinformatics, 2021, 37, 326-333.	1.8	35
229	Effective Clustering for Single Cell Sequencing Cancer Data. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4068-4078.	3.9	8
230	Incomplete Directed Perfect Phylogeny inÂLinear Time. Lecture Notes in Computer Science, 2021, , 172-185.	1.0	0
231	VERSO: A comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples. Patterns, 2021, 2, 100212.	3.1	26
232	Genealogies and inference for populations with highly skewed offspring distributions., 2021,, 151-178.		6
233	Genomic Analysis Revealed Mutational Traits Associated with Clinical Outcomes in Osteosarcoma. Cancer Management and Research, 2021, Volume 13, 5101-5111.	0.9	1
236	Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature, 2021, 597, 393-397.	13.7	70
237	Studying the History of Tumor Evolution from Single-Cell Sequencing Data by Exploring the Space of Binary Matrices. Journal of Computational Biology, 2021, 28, 857-879.	0.8	1
238	Graph Theoretical Insights into Evolution of Multidomain Proteins. Lecture Notes in Computer Science, 2005, , 311-325.	1.0	6
239	Minimum Recombination Histories by Branch and Bound. Lecture Notes in Computer Science, 2005, , 239-250.	1.0	49
240	Improved Approximation Algorithm for Convex Recoloring of Trees. Lecture Notes in Computer Science, 2006, , 55-68.	1.0	6
241	Simple Reconstruction of Binary Near-Perfect Phylogenetic Trees. Lecture Notes in Computer Science, 2006, , 799-806.	1.0	9
242	Fixed Parameter Tractability of Binary Near-Perfect Phylogenetic Tree Reconstruction. Lecture Notes in Computer Science, 2006, , 667-678.	1.0	14
243	Empirical Exploration of Perfect Phylogeny Haplotyping and Haplotypers. Lecture Notes in Computer Science, 2003, , 5-19.	1.0	14
244	Approximating the Complement of the Maximum Compatible Subset of Leaves of k Trees. Lecture Notes in Computer Science, 2002, , 122-134.	1.0	7
246	A Decomposition Theorem for MaximumWeight Bipartite Matchings with Applications to Evolutionary Trees. Lecture Notes in Computer Science, 1999, , 438-449.	1.0	16
248	The asymmetric median tree â€" A new model for building consensus trees. Lecture Notes in Computer Science, 1996, , 234-252.	1.0	5
249	A polynomial-time algorithm for near-perfect phylogeny. Lecture Notes in Computer Science, 1996, , 670-680.	1.0	4

#	Article	IF	CITATIONS
250	Evolutionary Phylogenetic Networks: Models and Issues. , 2010, , 125-158.		54
251	Parameterized Computational Feasibility. , 1995, , 219-244.		90
252	The Perfect Phylogeny Problem. Combinatorial Optimization, 2001, , 203-234.	0.7	24
253	Combinatoral Optimization in Clustering. , 1998, , 1007-1075.		2
254	Fixed-Parameter Algorithms in Phylogenetics. Methods in Molecular Biology, 2008, 452, 507-535.	0.4	4
255	Efficient Algorithms for Descendent Subtrees Comparison of Phylogenetic Trees with Applications to Co-evolutionary Classifications in Bacterial Genome. Lecture Notes in Computer Science, 2003, , 339-351.	1.0	5
256	An Overview of Combinatorial Methods for Haplotype Inference. Lecture Notes in Computer Science, 2004, , 9-25.	1.0	31
257	Maximum Agreement and Compatible Supertrees. Lecture Notes in Computer Science, 2004, , 205-219.	1.0	13
258	Parameterized Enumeration, Transversals, and Imperfect Phylogeny Reconstruction. Lecture Notes in Computer Science, 2004, , 1-12.	1.0	13
259	An O(nlog n)-Time Algorithm for the Maximum Constrained Agreement Subtree Problem for Binary Trees. Lecture Notes in Computer Science, 2004, , 754-765.	1.0	4
260	On the Application of Evolutionary Algorithms to the Consensus Tree Problem. Lecture Notes in Computer Science, 2005, , 58-67.	1.0	2
261	Fast Perfect Phylogeny Haplotype Inference. Lecture Notes in Computer Science, 2003, , 183-194.	1.0	5
262	Efficiently Finding the Most Parsimonious Phylogenetic Tree Via Linear Programming., 2007,, 37-48.		15
263	Integer Programming Formulations and Computations Solving Phylogenetic and Population Genetic Problems with Missing or Genotypic Data. Lecture Notes in Computer Science, 2007, , 51-64.	1.0	52
264	Exact Computation of Coalescent Likelihood under the Infinite Sites Model. Lecture Notes in Computer Science, 2009, , 209-220.	1.0	2
265	Reducing Multi-state to Binary Perfect Phylogeny with Applications to Missing, Removable, Inserted, and Deleted Data. Lecture Notes in Computer Science, 2010, , 274-287.	1.0	5
266	Towards a Characterisation of the Generalised Cladistic Character Compatibility Problem for Non-branching Character Trees. Lecture Notes in Computer Science, 2011, , 440-451.	1.0	2
267	Constructing Perfect Phylogenies and Proper Triangulations for Three-State Characters. Lecture Notes in Computer Science, 2011, , 104-115.	1.0	2

#	Article	IF	CITATIONS
268	Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery. Lecture Notes in Computer Science, 2013, , 249-263.	1.0	2
269	Finding a Perfect Phylogeny from Mixed Tumor Samples. Lecture Notes in Computer Science, 2015, , 80-92.	1.0	3
270	Bounds on the Minimum Number of Recombination Events in a Sample History. Genetics, 2003, 163, 375-394.	1.2	163
282	OPTIMAL IMPERFECT PHYLOGENY RECONSTRUCTION AND HAPLOTYPING (IPPH). , 2006, , .		9
283	The ages of mutations in gene trees. Annals of Applied Probability, 1999, 9, .	0.6	48
284	Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses. PLoS ONE, 2015, 10, e0129183.	1.1	98
285	On a matching distance between rooted phylogenetic trees. International Journal of Applied Mathematics and Computer Science, 2013, 23, 669-684.	1.5	41
286	Simpler and Faster Development of Tumor Phylogeny Pipelines. Journal of Computational Biology, 2021, 28, 1142-1155.	0.8	10
287	Incomplete Directed Perfect Phylogeny. Lecture Notes in Computer Science, 2000, , 143-153.	1.0	10
288	Computing Refined Buneman Trees in Cubic Time. BRICS Report Series, 2002, 9, .	0.2	0
289	Linear-Time Algorithms for Two Subtree-Comparison Problems on Phylogenetic Trees with Different Species. Lecture Notes in Computer Science, 2006, , 164-175.	1.0	0
290	On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model. Lecture Notes in Computer Science, 2006, , 92-102.	1.0	2
292	Parallel Construction of Conflict Graph for Phylogenetic Network Problem. Lecture Notes in Computer Science, 2007, , 398-405.	1.0	0
293	A New Recombination Lower Bound and the Minimum Perfect Phylogenetic Forest Problem. Lecture Notes in Computer Science, 2007, , 16-26.	1.0	2
294	Maximum Compatible Tree. , 2008, , 499-502.		0
295	Perfect Phylogeny (Bounded Number of States). , 2008, , 644-647.		0
296	Directed Perfect Phylogeny (Binary Characters). , 2008, , 246-248.		1
297	Inferring Pedigree Graphs from Genetic Distances. IEICE Transactions on Information and Systems, 2008, E91-D, 162-169.	0.4	2

#	Article	IF	CITATIONS
298	Generalizing the Four Gamete Condition and Splits Equivalence Theorem: Perfect Phylogeny on Three State Characters. Lecture Notes in Computer Science, 2009, , 206-219.	1.0	4
299	On the Genealogy of Asexual Diploids. Lecture Notes in Computer Science, 2010, , 325-340.	1.0	0
300	FlipCut Supertrees: Towards Matrix Representation Accuracy in Polynomial Time. Lecture Notes in Computer Science, 2011, , 37-48.	1.0	1
302	On a Conjecture about Compatibility of Multi-states Characters. Lecture Notes in Computer Science, 2011, , 116-127.	1.0	1
303	Improved Lower Bounds on the Compatibility of Quartets, Triplets, and Multi-state Characters. Lecture Notes in Computer Science, 2012, , 190-200.	1.0	0
304	Parameterized Complexity of Flood-Filling Games on Trees. Lecture Notes in Computer Science, 2013, , 531-542.	1.0	4
305	Tree contractions and evolutionary trees. Lecture Notes in Computer Science, 1997, , 299-310.	1.0	1
306	Directed Perfect Phylogeny (Binary Characters). , 2015, , 1-5.		0
307	Maximum Compatible Tree. , 2015, , 1-6.		0
308	Perfect Phylogeny (Bounded Number of States). , 2015, , 1-5.		0
309	Matching Similar Splits between Unrooted Leaf-labeled Trees. Open Cybernetics and Systemics Journal, 2015, 9, 110-114.	0.3	0
311	Perfect Phylogeny (Bounded Number of States). , 2016, , 1550-1553.		0
312	Maximum Compatible Tree. , 2016, , 1230-1234.		0
313	Directed Perfect Phylogeny (Binary Characters). , 2016, , 553-556.		0
314	A Survey on the Complexity of Flood-Filling Games. Lecture Notes in Computer Science, 2018, , 357-376.	1.0	0
316	Minimum-Width Drawings of Phylogenetic Trees. Lecture Notes in Computer Science, 2019, , 39-55.	1.0	2
321	Sequential importance sampling for multiresolution Kingman–Tajima coalescent counting. Annals of Applied Statistics, 2020, 14, 727-751.	0.5	4
322	Theoretical Foundation of the Performance of Phylogeny-Based Somatic Variant Detection. Lecture Notes in Computer Science, 2020, , 87-101.	1.0	0

#	Article	IF	CITATIONS
324	Phylogenetic Trees. , 2007, , 257-286.		0
326	A Generalized Robinson-Foulds Distance for Clonal Trees, Mutation Trees, and Phylogenetic Trees and Networks. , 2020, , .		2
328	LACE: Inference of cancer evolution models from longitudinal single-cell sequencing data. Journal of Computational Science, 2022, 58, 101523.	1.5	14
330	A simpler linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set. Algorithms for Molecular Biology, 2021, 16, 23.	0.3	3
332	Phylovar: toward scalable phylogeny-aware inference of single-nucleotide variations from single-cell DNA sequencing data. Bioinformatics, 2022, 38, i195-i202.	1.8	4
334	Enumeration of binary trees compatible with a perfect phylogeny. Journal of Mathematical Biology, 2022, 84, 54.	0.8	1
335	Fast intratumor heterogeneity inference from single-cell sequencing data. Nature Computational Science, 2022, 2, 577-583.	3.8	3
336	An exploration of linkage fineâ€mapping on sequences from caseâ€control studies. Genetic Epidemiology, 2023, 47, 78-94.	0.6	1
341	Theoretical guarantees for phylogeny inference from single-cell lineage tracing. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0