The rifampicin-inducible genes srn6 from F and pnd fro RNAs and mediate plasmid maintenance by kiiling of pl

Molecular Microbiology 5, 1961-1973 DOI: 10.1111/j.1365-2958.1991.tb00818.x

Citation Report

#	Article	IF	CITATIONS
1	Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable Hok, SrnB and PndA effector messenger RNAs. Journal of Molecular Biology, 1992, 226, 637-649.	2.0	126
2	Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Journal of Molecular Biology, 1992, 223, 41-54.	2.0	107
3	Analysis of an Escherichia coli mutant strain resistant to the cell-killing function encoded by the gef gene family. Molecular Microbiology, 1992, 6, 895-905.	1.2	33
4	Determinants of an unusually stable mRNA in the bacterium Myxococcus xanthus. Molecular Microbiology, 1992, 6, 2975-2988.	1.2	17
5	Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3′-end processing EMBO Journal, 1994, 13, 1950-1959.	3.5	55
6	Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′-end single-stranded leader and competes with the 3′-end of Hok mRNA for binding to the mok translational initiation region EMBO Journal, 1994, 13, 1960-1968.	3.5	91
7	Antisense RNA Control in Bacteria, Phages, and Plasmids. Annual Review of Microbiology, 1994, 48, 713-742.	2.9	427
8	Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1. Molecular Microbiology, 1995, 17, 211-220.	1.2	84
9	Mechanism of Post-segregational Killing: Secondary Structure Analysis of the Entire Hok mRNA from Plasmid R1 Suggests a Fold-back Structure that Prevents Translation and Antisense RNA Binding. Journal of Molecular Biology, 1995, 247, 859-873.	2.0	48
10	Mechanism of post-segregational killing by hok-homologue pnd of plasmid R483: Two translational control elements in the pnd mRNA. Journal of Molecular Biology, 1995, 249, 270-282.	2.0	16
11	Nucleotide sequence and characterization of the trbABC region of the Incl1 Plasmid R64: existence of the pnd gene for plasmid maintenance within the transfer region. Journal of Bacteriology, 1996, 178, 1491-1497.	1.0	41
12	The centromereâ€like parC locus of plasmid R1. Molecular Microbiology, 1996, 20, 581-592.	1.2	40
13	Programmed cell death in bacteria: translational repression by mRNA endâ€pairing. Molecular Microbiology, 1996, 21, 1049-1060.	1.2	59
14	ANTISENSE RNA-REGULATED PROGRAMMED CELL DEATH. Annual Review of Genetics, 1997, 31, 1-31.	3.2	209
15	Programmed cell death by hok/sok of plasmid R1: Coupled nucleotide covariations reveal a phylogenetically conserved folding pathway in the hok family of mRNAs. Journal of Molecular Biology, 1997, 273, 26-37.	2.0	51
16	Multiple hok genes on the chromosome of Escherichia coli. Molecular Microbiology, 1999, 32, 1090-1102.	1.2	160
17	Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12643-12648.	3.3	122
18	The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15078-15083.	3.3	131

CITATION REPORT

#	Article	IF	CITATIONS
19	Intricate Interactions within the ccd Plasmid Addiction System. Journal of Biological Chemistry, 2002, 277, 3733-3742.	1.6	69
20	12 Antisense RNAs in bacteria and their genetic elements. Advances in Genetics, 2002, 46, 361-398.	0.8	213
21	Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5′ and 3′ ends of the RNAs. Molecular Microbiology, 2002, 37, 661-670.	1.2	44
22	The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Molecular Microbiology, 2002, 37, 652-660.	1.2	69
23	Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Molecular Microbiology, 2004, 52, 385-398.	1.2	128
24	The F-plasmid, a paradigm for bacterial conjugation. , 2005, , 151-206.		5
25	Y. enterocolitica and Y. pseudotuberculosis. , 2006, , 270-398.		21
26	Small Toxic Proteins and the Antisense RNAs That Repress Them. Microbiology and Molecular Biology Reviews, 2008, 72, 579-589.	2.9	222
27	Chapter 2 Analyzing the Decay of Stable RNAs in E. coli. Methods in Enzymology, 2008, 447, 31-45.	0.4	6
28	Movement and equipositioning of plasmids by ParA filament disassembly. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19369-19374.	3.3	171
29	Divergently overlapping <i>cis</i> -encoded antisense RNA regulating toxin-antitoxin systems from <i>E. coli</i> . RNA Biology, 2012, 9, 1520-1527.	1.5	58
30	The <i>hok</i> mRNA family. RNA Biology, 2012, 9, 1399-1404.	1.5	13
31	Type I Toxin-Antitoxin Loci: hok/sok and fst. , 2013, , 9-26.		3
32	sRNA Antitoxins: More than One Way to Repress a Toxin. Toxins, 2014, 6, 2310-2335.	1.5	45
33	To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Research, 2014, 42, 70-86.	6.5	220
34	The antisense leitmotif: A prelude. Plasmid, 2015, 78, 1-3.	0.4	0
35	The opportunistic marine pathogen <i>Vibrio parahaemolyticus</i> becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10798-10803.	3.3	427
36	Linking bacterial type I toxins with their actions. Current Opinion in Microbiology, 2016, 30, 114-121.	2.3	53

#	Article	IF	CITATIONS
37	Hypothesis: type I toxin–antitoxin genes enter the persistence field—a feedback mechanism explaining membrane homoeostasis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160189.	1.8	18
38	pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid, 2016, 84-85, 11-19.	0.4	39
39	Sequence of the R1 plasmid and comparison to F and R100. Plasmid, 2017, 91, 53-60.	0.4	33
40	Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. , 2018, , 171-190.		5
41	Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. Microbiology Spectrum, 2018, 6, .	1.2	47
42	Core elements of the vegetative replication control of the Inc1 plasmid pO104_90 of Escherichia coli O104:H4 also regulate its transfer frequency. International Journal of Medical Microbiology, 2018, 308, 962-968.	1.5	3
43	B/O plasmid R16 from 1956 carries an In1-like class 1 integron embedded in a complex region containing parts of the Acinetobacter baumannii AbaR resistance island. Plasmid, 2019, 105, 102432.	0.4	5
44	Update on early mortality syndrome/acute hepatopancreatic necrosis disease by April 2018. Journal of the World Aquaculture Society, 2019, 50, 5-17.	1.2	42
45	A Review of the Functional Annotations of Important Genes in the AHPND-Causing pVA1 Plasmid. Microorganisms, 2020, 8, 996.	1.6	16
46	Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	24
47	Plasmid Stabilization by Post-Segregational Killing. , 1997, 19, 49-61.		32
48	Control by Antisense RNA. , 1996, , 67-83.		3
49	Conditionally lethal genes associated with bacterial plasmids. Microbiology (United Kingdom), 1997, 143, 3403-3416.	0.7	44
50	Genetic Addiction: a Principle of Gene Symbiosis in a Genome. , 0, , 105-144.		20
51	The 70-Kilobase Virulence Plasmid of Yersiniae. , 0, , 91-126.		14
52	A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Applied and Environmental Microbiology, 1993, 59, 3713-3717.	1.4	70
53	Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability. Applied and Environmental Microbiology, 1997, 63, 1917-1924.	1.4	58
54	Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems Acta Biochimica Polonica, 2001, 48, 1003-1023.	0.3	100

#	Article	IF	CITATIONS
58	Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3'-end processing. EMBO Journal, 1994, 13, 1950-9.	3.5	23
59	Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5'-end single-stranded leader and competes with the 3'-end of Hok mRNA for binding to the mok translational initiation region. EMBO Journal, 1994, 13, 1960-8.	3.5	38

CITATION REPORT