CITATION REPORT List of articles citing

Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing

DOI: 10.1021/ie00057a001 Industrial & Engineering Chemistry Research, 1991, 30, 2021-2058.

Source: https://exaly.com/paper-pdf/22470315/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
755	Characterization of the Surface of MoS2 Based Catalysts Using Thermal Methods. 1992 , 73, 3-10		3
754	Two-stage liquefaction of a Spanish subbituminous coal. 1993 , 33, 159-173		17
753	First-stage hydrocracking: process and catalytic aspects. 1993 , 35, 87-110		41
75 ²	Deep desulphurisation and aromatics saturation for automotive gasoil manufacturing. 1993 , 35, 119-13	6	82
751	Effect of the hydrogen and hydrogen sulfide partial pressures in the hydrodesulfurisation of thiophene and hydrogenation of cyclohexene on rhodium-tungsten catalysts. <i>Applied Catalysis A: General</i> , 1993 , 107, 101-114	5.1	12
750	Hydrogenation of aromatics over hydrodenitrogenation-selective and hydrodesulfurization-selective catalysts. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 156	8 ² 1 ² 572	2 10
749	Hydrodesulfurization reactions of atmospheric gas oil over cobalt-molybdenum/alumina-aluminum borate catalysts. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 1573-1578	3.9	43
748	Development of A Micro Hydroprocessing Test for Rapid Evaluation of Catalysts. 1993 , 75, 1419-1430		
747	DEASPHALTING AND CHARACTERIZATION OF A SYNCRUDE OBTAINED BY DIRECT LIQUEFACTION OF A SPANISH SUBBITUMINOUS COAL. 1994 , 12, 1509-1538		1
746	A comparative analysis of the trickle-bed and the monolithic reactor for three-phase hydrogenations. 1994 , 49, 5653-5666		24
745	Vibrational assignment and analysis for 2,3-dihydrofuran and 2,5-dihydrofuran. 1994 , 50, 1725-1748		27
744	Promotion effects in bulk metal sulfide catalysts. <i>Applied Catalysis A: General</i> , 1994 , 114, 127-139	5.1	14
743	Kinetic study of the hydrogen sulfide effect in the conversion of thiophene on supported Co?Mo catalysts. 1994 , 94, 369-387		17
742	Hydrodesulfurization and hydrogenation of aromatic compounds catalyzed by Ni-Mo/EAl2O3: effects of nickel sulfide and vanadium sulfide deposits. 1994 , 26, 1-7		6
741	Aromatic Hydrogenation Catalysis: A Review. 1994 , 36, 75-123		629
740	PURIFICATION OF 1,2-DIHYDRONAPHTHALENE- AN IMPORTANT INTERMEDIATE IN THE HYDROPROCESSING OF NAPHTHALENE. 1994 , 26, 370-373		0
739	Stepwise activation of Ethienyl ligands at di-tungsten centres. 1994 , 683-684		13

[1996-1994]

738	Catalytic Hydroprocessing of Simulated Heavy Coal Liquids. 2.Reaction Networks of Aromatic Hydrocarbons and Sulfur and Oxygen Heterocyclic Compounds. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2301-2313	3.9	14
737	Olefin versus sulfur coordination of benzo[b]thiophene (BT) in Cp(CO)2Re(0:8-2-BT)Cr(CO)3. 1995 , 240, 393-398		14
736	Studies of the mechanism of thiophene hydrodesulfurization: 2H NMR and mass spectral analysis of 1,3-butadiene produced in the deuterodesulfurization (DDS) of thiophene over PbMo6S8 catalyst. 1995 , 96, 283-299		35
735	Catalytic hydrotreatment of Illinois No. 6 Coalderived naphtha: Comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal. <i>Applied Catalysis A: General</i> , 1995 , 123, 229-250	5.1	23
734	The effect of phosphorus on the HDN reaction of piperidine, decahydroquinoline and ortho-propylaniline over Ni-MoS2/Al2O3 catalysts. 1995 , 35, 193-203		26
733	Polynuclear Aromatic Hydrocarbons Hydrogenation. 1. Experimental Reaction Pathways and Kinetics. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 101-117	3.9	105
732	Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. 1995 , 42, 675-681		20
731	Catalytic Hydroprocessing of Aromatic Compounds: Effects of Nickel and Vanadium Sulfide Deposits on Reactivities and Reaction Networks. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 3203-3209	3.9	15
730	Hydrotreating Catalysis. 1996 , 1-269		407
729	Catalytic Hydrocracking of an Asphaltenic Coal Residue. <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of an Asphaltenic Coal Residue</i> . <i>Energy & Catalytic Hydrocracking of the Catalytic Hydrocrac</i>	4.1	11
728	Evaluation of Alumina Aluminum Phosphate Catalyst Supports for Hydrodenitrogenation of Pyridine and Coal-Derived Liquids. <i>Energy & Description</i> 2015, 10, 579-586	4.1	4
727	Opening and Hydrogenation of Dinaphtho[2,1-b:1[2]thiophene (DNT) by Soluble Rhodium and Iridium Complexes. Homogeneous Hydrogenolysis of DNT to 1,1]inaphthalene-2-thiol by Rhodium Catalysis. 1996 , 15, 4604-4611		35
726	Upgrading of an Asphaltenic Coal Residue: Thermal Hydroprocessing. Energy & Coal Residue: 10, 401	<u>-</u> 408	14
725	A Review of Deep Hydrodesulfurization Catalysis. 1996 , 38, 161-188		169
724	Hydrodesulfurization of Refractory Sulfur Species. 2. Selective Hydrodesulfurization of 4,6-Dimethyldibenzothiophene in the Dominant Presence of Naphthalene over Ternary Sulfides Catalyst. <i>Energy & Dominant Presence</i> 2015 (2015) Catalyst.	4.1	19
723	Heavy Oil Hydroprocessing with the Addition of Hydrogen-Donating Hydrocarbons Derived from Petroleum <i>Energy & Energy & </i>	4.1	14
722	Hydrodenitrogenation of pyridine over activated carbon-supported sulfided Mo and NiMo catalysts. Effects of hydrogen sulfide and oxidation of the support. 1996 , 40, 229-234		7
721	Homogene hydrierende Entschwefelung von Benzo[b]thiophen, durch eine aktive HDS-Komponente (W) und begleitende Untersttzung eines metallischen Vermittlers (Rh) erzielt. 1996 , 108, 1845-1847		2

720	Medium-severity hydrotreating and hydrocracking of Israeli shale oil. 1. Novel catalyst systems. <i>Fuel</i> , 1996 , 75, 858-866	7.1	23	
719	Deep hydrodesulfurization of diesel fuel: Design of reaction process and catalysts. <i>Catalysis Today</i> , 1996 , 29, 185-189	5.3	87	
718	Aromatics saturation by sulfided Nickel?Molybdenum hydrotreating catalysts. <i>Catalysis Today</i> , 1996 , 29, 203-207	5.3	11	
717	Influence of water and ammonia on hydrotreating catalysts and activity for tetralin hydrogenation. <i>Catalysis Today</i> , 1996 , 29, 229-233	5.3	9	
716	Hydrogenolysis reactions in a batch reactor effect of mass balance inaccuracies on the kinetic parameters. <i>Applied Catalysis A: General</i> , 1996 , 135, 317-328	5.1	9	
715	Deep hydrodesulfurization of DBT and diesel fuel on supported Pt and Ir catalysts. <i>Applied Catalysis A: General</i> , 1996 , 137, 269-286	5.1	42	
714	Hydrotreating of compounds containing both oxygen and sulfur: effect of para-hydroxyl substituent on the reactions of mercapto and methylmercapto groups. <i>Applied Catalysis A: General</i> , 1996 , 145, 237-251	5.1	8	
713	Dibenzothiophene hydrodesulfurization on silica-alumina-supported transition metal sulfide catalysts. <i>Applied Catalysis A: General</i> , 1996 , 148, 23-40	5.1	39	
712	Activity of noble metal-promoted hydroprocessing catalysts for pyridine HDN and naphthalene hydrogenation. 1996 , 49, 137-155		14	
711	Reaction Kinetics of the hydrodenitrogenation of decahydroquinoline over NiMo(P)/Al2O3 catalysts. 1996 , 87-96		15	
710	Hydrodenitrogenation of indole over NiMo sulfide catalysts. 1996 , 1223-1232		22	
709	Simultaneous HDN/HDS of model compounds over Ni-Mo sulfide catalysts. 1997 , 106, 69-82		10	
708	Difference of Kinetics between Powdered and Pelletized Catalysts in Liquid-Phase Hydrogenation of 1-Methylnaphthalene. 1997 , 30, 64-71		3	
707	Hydrotreating of compounds and mixtures of compounds having mercapto and hydroxyl groups. 1997 , 106, 343-352		13	
706	Kinetic modelling of HDN reaction over (Ni)Mo(P)/Al2O3 catalysts. 1997, 106, 415-420		2	
705	Hydrodesulfurization of Atmospheric Gas Oil over NiMo/Aluminum Borate Catalysts in a Trickle Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2521-2525	3.9	15	
704	Liquid-Biphase Hydrogenolysis of Benzo[b]thiophene by Rhodium Catalysis. 1997 , 119, 4945-4954		61	
703	Mimicking the HDS Activity of Promoted Tungsten Catalysts. A Homogeneous Modeling Study Using a Two-Component Tungsten/Rhodium System. 1997 , 16, 5696-5705		23	

702	Homogeneous Hydrogenation of Benzo[b]thiophene by Use of Rhodium and Iridium Complexes as the Catalyst Precursors: Kinetic and Mechanistic Aspects 1997, 16, 2465-2471		28
701	Ring-Opening of EThienyl and EFuryl Ligands at Ditungsten (M?M) Centers. 1997, 119, 1634-1647		19
700	Homolytic CB Bond Scission in the Desulfurization of Aromatic and Aliphatic Thiols Mediated by a Mo/Co/S Cluster: Mechanistic Aspects Relevant to HDS Catalysis. 1997 , 119, 1027-1036		103
699	Hydrocracking of Polynuclear Aromatic Hydrocarbons. Development of Rate Laws through Inhibition Studies. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2041-2050	3.9	49
698	Deep Hydrodesulfurization of Light Gas Oil. 1. Kinetics and Mechanisms of Dibenzothiophene Hydrodesulfurization. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 5146-5152	3.9	65
697	Dual-functional Ni-Mo sulfide catalysts on zeolite-alumina supports forhydrotreating and hydrocracking of heavy oils. 1997 , 106, 115-128		15
696	Hydrotreatment Activities of Supported Molybdenum Nitrides and Carbides. <i>Energy & Carbides</i> , 1997 , 11, 668-675	4.1	68
695	Development of a Cosmo deep HDS catalyst for diesel fuel. <i>Catalysis Today</i> , 1997 , 35, 45-50	5.3	26
694	Hydrotreating catalysts, an old story with new challenges. <i>Catalysis Today</i> , 1997 , 36, 375-391	5.3	88
693	Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha II. Removal of individual sulfur compounds. <i>Applied Catalysis A: General</i> , 1997 , 150, 319-342	5.1	20
692	Deuterium Tracer Studies on Hydrotreating Catalystsßotopic Exchange between Hydrogen and Hydrogen Sulfide on Sulfided NiMo/Al2O3. <i>Journal of Catalysis</i> , 1997 , 167, 1-11	7.3	38
691	Comparative Study of Activity and Selectivity of Transition Metal Sulfides in Parallel Hydrodechlorination of Dichlorobenzene and Hydrodesulfurization of Methylthiophene. <i>Journal of Catalysis</i> , 1997 , 167, 286-295	7.3	46
690	Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts. <i>Journal of Catalysis</i> , 1997 , 169, 480	0 - 489	202
689	Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha I. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen. <i>Applied Catalysis A: General</i> , 1997 , 150, 297-318	5.1	48
688	Second row transition metal sulfides for the hydrotreatment of coal derived naphtha III. Removal of individual nitrogen compounds. <i>Applied Catalysis A: General</i> , 1997 , 150, 343-364	5.1	7
687	Efficient rhodium catalysts for the hydrogenolysis of thiophenic molecules in homogeneous phase. 1997 , 16, 3099-3114		36
686	An overview of modeling studies in HDS, HDN and HDO catalysis. 1997 , 16, 3073-3088		153
685	Reactivities in deep catalytic hydrodesulfurization: challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. 1997 , 16, 3213-3217		227

684	Mechanism and kinetics of hydrodenitrogenation. 1997 , 16, 3235-3246		55
683	Insertion of iridium into C-H and C-S bonds of 2,5-dimethylthiophene 2-methylbenzothiophene and 4,6-dimethyldibenzothiophene. 1997 , 541, 143-155		24
682	Through a glass, darkly: Kinetics and reactors for complex mixtures syncrude innovation award lecture. 1997 , 75, 481-493		3
681	Investigation of intrinsic hydrodesulphurization kinetics of a VGO in a trickle bed reactor with backmixing effects. 1998 , 53, 3449-3458		24
68o	Medium severity hydrotreating and hydrocracking of Israeli shale oil []I. Testing of novel catalyst systems in a trickle bed reactor. <i>Fuel</i> , 1998 , 77, 3-13	7.1	24
679	Synthesis and characterization of heterobimetallic complexes containing C-S cleaved thiophenes. 1998 , 272, 55-61		6
678	Structure and Nature of the Active Sites in CoMo Hydrotreating Catalysts Conversion of Thiophene. <i>Journal of Catalysis</i> , 1998 , 175, 108-116	7.3	25
677	NiMoS/EAl2O3Catalysts: The Nature and the Aging Behavior of Active Sites in HDN Reactions. Journal of Catalysis, 1998 , 178, 457-465	7.3	29
676	Mechanism of the Hydrodenitrogenation of Quinoline over NiMo(P)/Al2O3Catalysts. <i>Journal of Catalysis</i> , 1998 , 179, 18-27	7.3	68
675	Influence of different diluents in Pt/Al2O3 catalyst on the hydrogenation of benzene, toluene and o-xylene. <i>Applied Catalysis A: General</i> , 1998 , 175, 191-199	5.1	42
674	Microbial denitrogenation of fossil fuels. 1998 , 16, 390-5		74
673	Catalytic hydrogenation of aromatic hydrocarbons in a trickle bed reactor. 1998 , 72, 74-84		1
672	Studies of molybdenum sulfide catalyst ex ammonium tetrathiomolybdate: effect of pretreatment on hydrodesulfurization of dibenzothiophene. <i>Applied Catalysis A: General</i> , 1998 , 168, 205-217	5.1	19
671	Kinetics of dibenzothiophene hydrodesulfurization over MoS2 supported catalysts: modelization of the H2S partial pressure effect. <i>Applied Catalysis A: General</i> , 1998 , 170, 195-206	5.1	53
670	Key parameters in deep hydrodesulfurization of diesel fuel. <i>Applied Catalysis A: General</i> , 1998 , 170, 1-12	5.1	112
669	A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdenaBlumina catalyst. Part 3. Drying process. <i>Applied Catalysis A: General</i> , 1998 , 170, 343-357	5.1	15
668	Selection of catalysts and reactors for hydroprocessing. <i>Applied Catalysis A: General</i> , 1998 , 171, 177-206	5.1	159
667	Mesoporous molecular sieve MCM-41 supported CoMo catalyst for hydrodesulfurization of petroleum resids. <i>Catalysis Today</i> , 1998 , 43, 261-272	5.3	75

666	Assessment of limitations and potentials for improvement in deep desulfurization through detailed kinetic analysis of mechanistic pathways. <i>Catalysis Today</i> , 1998 , 45, 299-305	5.3	49
665	Kinetics of sulfur model molecules competing with H2S as a tool for evaluating the HDS activities of commercial CoMo/Al2O3 catalysts. <i>Catalysis Today</i> , 1998 , 45, 347-352	5.3	14
664	Catalytic hydroprocessing of chlorobenzenepyridine mixtures. 1998 , 60, 271-285		12
663	Influence of heteroatom removal on aromatic hydrogenation. 1998 , 55, 93-99		1
662	The Literature of Heterocyclic Chemistry, Part V. 1998 , 71, 291-378		16
661	Real-Time Characterization of the Organic Composition and Size of Individual Diesel Engine Smoke Particles. 1998 , 32, 2672-2679		50
660	Hydrogenation, Hydrogenolysis, and Desulfurization of Thiophenes by Soluble Metal Complexes: Recent Achievements and Future Directions. 1998 , 31, 109-116		166
659	Hydrodesulfurization Catalyst Evaluation in an Upflow Three-Phase Microreactor. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2662-2667	3.9	27
658	Kinetic study of the HDN of quinoline over NiMo(P)/Al2O3 catalysts. 1998, 111-123		9
657	Synthesis of Active Hydrodesulfurization Carbon-Supported CoMo Catalysts. Relationships between Preparation Methods and Activity/Selectivity. <i>Industrial & Description of the Mesearch</i> , 1998 , 37, 3533-3539	3.9	55
656	Hydrodesulfurization of Cold Lake Diesel Fraction Using Dispersed Catalysts: Influence of Hydroprocessing Medium and Sources of H2. <i>Energy & Dispersed Catalysts</i> 12, 598-606	4.1	14
655	Kinetics of Sulfur Removal from a Liquid Coal Residue in Thermal, Hydrothermal, and Hydrocatalytic Cracking. <i>Energy & Dels</i> , 1998 , 12, 365-370	4.1	8
654	Kinetics of the Hydrodenitrogenation of Decahydroquinoline over NiMo(P)/Al2O3 Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 834-840	3.9	28
653	Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds. 1998 , 345-471		294
652	Binding and Reactivity of Thiophene-Type Ligands in Transition Metal Complexes and Clusters. 1998 , 89-127		3
651	Effect of light cycle oil on diesel hydrotreatment. 1999 , 127, 343-346		6
650	Kinetic and reactor models for HDT of middle distillates. 1999 , 23, S791-S794		1
649	Mesoporous molecular sieve MCM-41 supported CoMo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. <i>Applied Catalysis A: General</i> , 1999 , 176, 1-10	5.1	129

648	Hydrodenitrogenation of pyridine over GaNiMo/Al2O3 catalyst: effect of gallium. <i>Applied Catalysis A: General</i> , 1999 , 179, 145-153	5.1	12
647	Hydrotreating of straight run gas oillight cycle oil blends. <i>Applied Catalysis A: General</i> , 1999 , 180, 195-2	2055.1	56
646	Deep desulfurization of diesel fuels: kinetic modeling of model compounds in trickle-bed. <i>Catalysis Today</i> , 1999 , 48, 41-48	5.3	39
645	Gas oil deep hydrodesulfurization: refractory compounds and retarded kinetics. <i>Catalysis Today</i> , 1999 , 49, 87-97	5.3	70
644	Deactivation of hydroprocessing catalysts. <i>Catalysis Today</i> , 1999 , 52, 381-495	5.3	535
643	Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. 1999 , 61, 73-88		35
642	Effect of hydrogen sulfide on the hydrotreating of middle distillates over CoMo/Al2O3 catalyst. <i>Applied Catalysis A: General</i> , 1999 , 183, 265-272	5.1	18
641	Thermodynamic properties of the methylpyridines. Part 2. Vapor pressures, heat capacities, critical properties, derived thermodynamic functions between the temperatures 250 K and 560 K, and equilibrium isomer distributions for all temperatures \$\mathbb{Q}\$50 K. 1999 , 31, 339-378		25
640	Modeling the Hydrodesulfurization Reaction at Nickel. Unusual Reactivity of Dibenzothiophenes Relative to Thiophene and Benzothiophene. 1999 , 121, 7606-7617		156
639	Conversion of model sulfur compounds to characterize hydrodesulfurization CoMo/Al2O3 catalysts. 1999 , 127, 51-65		15
638	Influence of the hydrogen sulfide partial pressure on the hydrodeoxygenation reactions over sulfided CoMo/Carbon catalysts. 1999 , 85-95		5
637	Stability of CoMo/Al2O3 catalysts: Effect of HDO cycles on HDS. 1999 , 127, 145-152		15
636	Electrophilic Additions to 🛭-Thiophene Complexes: Synthesis of Novel Thiophenium and Thiafulvenium Species. 1999 , 18, 2988-2998		13
635	Hydroprocessing of a Maya Residue. Intrinsic Kinetics of Sulfur-, Nitrogen-, Nickel-, and Vanadium-Removal Reactions. <i>Energy & Energy</i> 3, 13, 629-636	4.1	40
634	Hydrocracking of Pyrenes over a Nickel-Supported Y-Zeolite Catalyst and an Assessment of the Reaction Mechanism Based on MD Calculations. <i>Energy & Description</i> 2018, 13, 617-623	4.1	14
633	Upgrading of a Petroleum Residue. Kinetics of Conradson Carbon Residue Conversion. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 938-943	3.9	15
632	Design of a model activity test for second stage deep HDS catalysts. 1999 , 127, 211-218		6
631	Hydroprocessing kinetics for oil fractions. 1999 , 179-186		10

630	A cape of HDT industrial reactor for middle distillates. 2000 , 24, 1731-1735	16
629	Catalysis science and technology for cleaner transportation fuels. <i>Catalysis Today</i> , 2000 , 62, 77-90 5.3	164
628	Molecular simulation on hydrodesulfurization of thiophenic compounds over MoS2 using ZINDO. 2000 , 160, 409-427	47
627	Transformation of phosphomolybdates into an active catalyst with potential application in hydroconversion processes. <i>Applied Catalysis A: General</i> , 2000 , 201, 177-190	11
626	Reaction network of indole hydrodenitrogenation over NiMoS/EAl2O3 catalysts. <i>Applied Catalysis A: General</i> , 2000 , 190, 51-60	47
625	Catalytic hydrodeoxygenation. <i>Applied Catalysis A: General</i> , 2000 , 199, 147-190 5.1	994
624	Activities of unsupported second transition series metal sulfides for hydrodesulfurization of sterically hindered 4,6-dimethyldibenzothiophene and of unsubstituted dibenzothiophene. 2000 , 65, 169-174	53
623	Hydrodesulfurization Studies with a Single-Layer Molybdenum Disulfide Catalyst. <i>Journal of Catalysis</i> , 2000 , 193, 96-102	15
622	Kinetics of individual and simultaneous hydrodenitrogenations of aniline and pyridine. <i>Applied Catalysis A: General</i> , 2000 , 201, 115-120	9
621	Mechanism of the hydrodenitrogenation of o-toluidine and methylcyclohexylamine over NiMo/EAl2O3. <i>Topics in Catalysis</i> , 2000 , 11/12, 327-333	19
620	Identification and Reactivity of Nitrogen Molecular Species in Gas Oils. <i>Energy & Discourt Species</i> in Gas Oils. <i>Ener</i>	53
619	Fullerene Evolution in Flame-Generated Soot. 2000 , 122, 11596-11601	29
618	Assessing Compositional Changes of Nitrogen Compounds during Hydrotreating of Typical Diesel Range Gas Oils Using a Novel Preconcentration Technique Coupled with Gas Chromatography and Atomic Emission Detection. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 533-540	75
617	Changes in Desulfurization Reactivity of 4,6-Dimethyldibenzothiophene by Skeletal Isomerization Using a Ni-Supported Y-Type Zeolite. <i>Energy & amp; Fuels</i> , 2000 , 14, 585-590	28
616	Hydroprocessing of a Maya Residue. II. Intrinsic Kinetics of the Asphaltenic Heteroatom and Metal Removal Reactions. <i>Energy & Door 19</i> , 14, 1309-1313	19
615	Photochemical Denitrogenation Processes for Light Oils Effected by a Combination of UV Irradiation and Liquid Diquid Extraction. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 2826-283	6 ¹⁸
614	Kinetic Modeling of the Effect of H2S and of NH3 on Toluene Hydrogenation in the Presence of a NiMo/Al2O3 Hydrotreating Catalyst. Discrimination between Homolytic and Heterolytic Models. 2001 , 105, 10860-10866	14
613	Catalytic hydrodenitrogenation. 2001 , 46, 399-464	108

612	Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Diesels</i> , 2001 , 15, 1186-1193	4.1	160
611	Catalytic Hydroprocessing of Aromatic Compounds: Effects of Metal Sulfide Deposits Formed in Commercial Residuum Hydroprocessing. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 131	-₽ 3 5	10
610	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 5. Denitrogenation Reactivity of Basic and Neutral Nitrogen Compounds. <i>Industrial & Denitrogen Compounds</i> (1998) <i></i>	3.9	12
609	Photochemical Desulfurization and Denitrogenation Process for Vacuum Gas Oil Using an Organic Two-Phase Extraction System. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 293-303	3.9	51
608	A Novel Desulfurization Process for Fuel Oils Based on the Formation and Subsequent Precipitation of S-Alkylsulfonium Salts. 4. Desulfurization and Simultaneous Denitrogenation of Vacuum Gas Oil. <i>Industrial & Desulfurial & De</i>	3.9	10
607	Comparison of Hydrodenitrogenation of Basic and Nonbasic Nitrogen Compounds Present in Oil Sands Derived Heavy Gas Oil. <i>Energy & Doi:</i> 15, 2001, 15, 377-383	4.1	73
606	Hydrodechlorination of chlorobenzene-tetrachloroethylene mixtures over a Pd/Al2O3 csatalyst. 2001 , 521-526		5
605	Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. <i>Catalysis Today</i> , 2001 , 65, 307-314	5.3	140
604	Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst. <i>Applied Catalysis A: General</i> , 2001 , 205, 101-108	5.1	48
603	On the difference between gas- and liquid-phase hydrotreating test reactions. <i>Applied Catalysis A: General</i> , 2001 , 207, 25-36	5.1	28
602	Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor. <i>Applied Catalysis A: General</i> , 2001 , 207, 407-420	5.1	28
601	Simultaneous hydrodesulfurization and hydrodeoxygenation: interactions between mercapto and methoxy groups present in the same or in separate molecules. <i>Applied Catalysis A: General</i> , 2001 , 209, 33-43	5.1	37
600	The role of fluorine, nickel and full sulfidation in the hydrodenitrogenation of o-toluidine over tungsten-based catalysts prepared from oxy- and thiosalts. <i>Applied Catalysis A: General</i> , 2001 , 216, 103-	15.5	10
599	Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems. <i>Applied Catalysis A: General</i> , 2001 , 219, 267-280	5.1	325
598	Modelling the Hydrodenitrogenation of Aromatic N-Heterocycles in the Homogeneous Phase. 2001 , 2001, 43-68		57
597	Liquid phase hydrogenation of tetralin on Ni/Al2O3. 2001 , 56, 1247-1254		40
596	Influences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst. <i>Journal of Catalysis</i> , 2001 , 198, 47-55	7.3	112
595	Direct Aromatic CN Bond Cleavage Evidenced in the Hydrodenitrogenation of 2,6-Dimethylaniline over Cobalt-Promoted Mo/Al2O3 Sulfide Catalysts: A Reactivity and FT-IR Study. <i>Journal of Catalysis</i> , 2001 , 202, 78-88	7.3	25

(2002-2001)

594	A Kinetic Investigation of the Effects of Fluorine and Nickel on the HDN of Toluidine on Fully Sulfided Tungsten Sulfide Catalysts. <i>Journal of Catalysis</i> , 2001 , 203, 192-200	7.3	13	
593	Hydrogenation and Ring-Opening of Tetralin on Ni and NiMo Supported on Alumina-Pillared Exirconium Phosphate Catalysts. A Thiotolerance Study. <i>Journal of Catalysis</i> , 2001 , 203, 122-132	7.3	48	
592	Organometallic compounds of furan, thiophene, and their benzannulated derivatives. 2001 , 78, 1-64		25	
591	Liquid Phase Hydrogenation of Naphthalene on Ni/Al2O3. 2001 , 309-316		6	
590	HYDROGEN ACTIVATION BY TRANSITION METAL SULFIDES. 2002 , 44, 651-735		123	
589	Hydrodesulfurization and Hydrodenitrogenation. 2002, 1-34		3	
588	Coordination and Activation of Thiophenes in Metal Complexes. 2002, 35-61		2	
587	Catalysis. 2002,			
586	Liquid-Phase Hydrogenation of Naphthalene and Tetralin on Ni/Al2O3: Kinetic Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 5966-5975	3.9	35	
585	Hydrogenation of Indole by Phosphine-Modified Rhodium and Ruthenium Catalysts. 2002 , 21, 1430-14	.37	35	
584	Hydrotreating Chemistry of Model Products from Bioprocessing of Carbazoles. <i>Energy & Description</i> 2002, 16, 1076-1086	4.1	10	
583	Catalytic Hydrodechlorination of Chlorinated Olefins over a Pd/Al2O3 Catalyst: Kinetics and Inhibition Phenomena. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 505-511	3.9	37	
582	Performance Evaluation of Hydroprocessing CatalystsA Review of Experimental Techniques. <i>Energy & Energy Examp; Fuels</i> , 2002 , 16, 774-784	4.1	50	
581	Changes in Apparent Reaction Order and Activation Energy in the Hydrodesulfurization of Real Feedstocks. <i>Energy & Description</i> 2002, 16, 189-193	4.1	50	
580	Hydrogenation of Cyclohexene over in Situ Fluorinated NiMoS Catalysts Supported on Alumina and SilicaAlumina. <i>Journal of Catalysis</i> , 2002 , 207, 286-295	7-3	15	
579	Trickle-bed reactor model for desulfurization and dearomatization of diesel. 2002, 48, 126-135		68	
578	Hydrodechlorination of tetrachloroethylene over sulfided catalysts: kinetic study. <i>Catalysis Today</i> , 2002 , 73, 325-331	5.3	13	
577	Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation. <i>Catalysis Today</i> , 2002 , 74, 281-290	5.3	59	

576	Hydrogenation of naphthalene and methylnaphthalene: modeling and spectroscopy. 2002 , 185, 211-27	22	3
575	Comparative inhibiting effect of polycondensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes. <i>Applied Catalysis A: General</i> , 2002 , 231, 253-261	5.1	95
574	Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2. 2002 , 79, 77-80		23
573	Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 1. Fickian diffusion and pseudo-first-order reaction kinetics. 2002 , 57, 3033-3045		33
572	Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 2. Dusty gas model and general reaction kinetics. 2002 , 57, 3047-3059		43
571	Low-Temperature Hydrodesulfurization of Thiophene on Ni/Pt(111) Bimetallic Surfaces with Monolayer Ni Coverage. <i>Journal of Catalysis</i> , 2002 , 205, 259-265	7.3	51
57°	Metal Complexes as Hydrogenation Catalysts. 2003 , 75-139		13
569	Recombinant carbazole-degrading strains for enhanced petroleum processing. 2003, 30, 6-12		28
568	New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. 2003 , 41, 207-238		894
567	Terpenoid-Derived Sulfides as Ultimate Organic Sulfur Compounds in Extensively Desulfurized Fuels. 2003 , 115, 4794-4797		3
566	Terpenoid-derived sulfides as ultimate organic sulfur compounds in extensively desulfurized fuels. 2003 , 42, 4646-9		12
565	Possible precursors and products of deep hydrodesulfurization of gasoline and distillate fuels. Part 2. The thermodynamic properties of 2,3-dihydrobenzo[b]thiophene. 2003 , 35, 1253-1276		10
564	Kinetic study of the gas-phase hydrogenation of aromatic and aliphatic organochlorinated compounds using a Pd/Al2O3 catalyst. 2003 , 97, 281-94		39
563	Deep desulfurization of middle distillates: process adaptation to oil fractions compositions. <i>Catalysis Today</i> , 2003 , 79-80, 371-381	5.3	29
562	Inhibition effects of organosulphur compounds on the hydrodechlorination of tetrachloroethylene over Pd/Al2O3 catalysts. <i>Catalysis Today</i> , 2003 , 84, 121-127	5.3	5
561	Silica Elumina-supported transition metal sulphide catalysts for deep hydrodesulphurization. <i>Catalysis Today</i> , 2003 , 86, 73-85	5.3	31
560	An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. <i>Catalysis Today</i> , 2003 , 86, 211-263	5.3	1611
559	MCM-41-supported Co-Mo catalysts for deep hydrodesulfurization of light cycle oil. <i>Catalysis Today</i> , 2003 , 86, 129-140	5.3	89

(2003-2003)

558	Influence of nitrogen compounds on deep hydrodesulfurization of 4,6-dimethyldibenzothiophene over Al2O3- and MCM-41-supported Co-Mo sulfide catalysts. <i>Catalysis Today</i> , 2003 , 86, 265-275	5.3	72
557	Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: Part 2. <i>Applied Catalysis A: General</i> , 2003 , 243, 207-214	5.1	66
556	Nickel-impregnated zirconium-doped mesoporous molecular sieves as catalysts for the hydrogenation and ring-opening of tetralin. <i>Applied Catalysis A: General</i> , 2003 , 240, 83-94	5.1	36
555	Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. <i>Applied Catalysis A: General</i> , 2003 , 242, 311-320	5.1	20
554	PropertyDeactivity correlation for HDS of middle distillates. Applied Catalysis A: General, 2003, 244, 115-	-1528	37
553	Radioisotopic study of (Co)Mo/Al2O3 sulfide catalysts for HDS. <i>Applied Catalysis A: General</i> , 2003 , 251, 187-198	5.1	21
552	Influences of nitrogen species on the hydrodesulfurization reactivity of a gas oil over sulfide catalysts of variable activity. <i>Applied Catalysis A: General</i> , 2003 , 252, 331-346	5.1	80
551	Effect of surface proton exchange on hydrodesulfurization performance of MCM-41-supported catalysts. <i>Applied Catalysis A: General</i> , 2003 , 254, 319-326	5.1	29
550	Various Approaches in Kinetics Modeling of Real Feedstock Hydrodesulfurization. 2003 , 21, 157-181		8
549	Reactivity of the Bis(dihydrogen) Complex [RuH2(2-H2)2(PCy3)2] toward N-Heteroaromatic Compounds. Regioselective Hydrogenation of Acridine to 1,2,3,4,5,6,7,8-Octahydroacridine. 2003 , 22, 1630-1637		50
548	Kinetics of the HDN of Quinoline under Vapor-Phase Conditions. <i>Industrial & Discrete Manager Chemistry Research</i> , 2003 , 42, 1011-1022	3.9	13
547	Elucidation of Retarding Effects of Sulfur and Nitrogen Compounds on Aromatic Compounds Hydrogenation. <i>Energy & Double Sulfur and Nitrogen Compounds and Sulfur and Nitrogen Compounds and Sulfur and Nitrogen Compounds and Sulfur and Nitrogen Compounds on Aromatic Compounds and Sulfur and S</i>	4.1	13
546	Comparison of Hydrodenitrogenation of Model Basic and Nonbasic Nitrogen Species in a Trickle Bed Reactor Using Commercial NiMo/Al2O3Catalyst. <i>Energy & Dog Species</i> , 2003, 17, 164-171	4.1	37
545	Adsorption of Dibenzothiophene Derivatives over a MoS2 NanoclusterA Density Functional Theory Study of Structure R eactivity Relations. <i>Energy & Description (Note: The Study of Structure)</i> 800 (17, 287-398)	4.1	58
544	Dual character of H2S as promoter and inhibitor for hydrodesulfurization of dibenzothiophene. 2003 , 4, 321-326		27
543	Hydrodesulfurization of Dibenzothiophenic Compounds in a Light Cycle Oil. 2003 , 21, 911-935		19
542	A Comparative Study of the Effect of Catalyst Type on Hydrotreating Kinetics of Kuwaiti Atmospheric Residue. <i>Energy & Camp; Fuels</i> , 2003 , 17, 661-668	4.1	54
541	Hydrogenation and Ring Opening of Tetralin on Supported Nickel Zirconium-Doped Mesoporous Silica Catalysts. Influence of the Nickel Precursor. 2003 , 19, 4985-4991		52

540	Product Selectivity during Hydrotreating and Mild Hydrocracking of Bitumen-Derived Gas Oil. <i>Energy & Discours Selection (Control of Selection of Bitumen-Derived Gas Oil of Selection of Bitumen-Derived Gas Oil of Selection (Control of Selection of Bitumen-Derived Gas Oil of Selection of Bitumen-Derived Gas Oil of Selection of Selection of Bitumen-Derived Gas Oil of Selection of Selection of Bitumen-Derived Gas Oil of Selection of Bitumen-Derived Gas Oil of Selection of Selection of Bitumen-Derived Gas Oil of Selection o</i>	4.1	45
539	A kinetic study on hydrodesulfurization of dibenzothiophene catalyzed by sulfided Ni-Mo/MCM-41. 2003 , 15, 1228-1233		1
538	Hydrogenation of aromatics on Pt/Pd bimetallic catalyst supported by al- containing mesoporous silica. 2003 , 146, 717-720		3
537	Hydrodesulfurizatton of dibenzothiophene over proton-exchanged siliceous MCM-41 supported bimetallic sulfides. 2004 , 2930-2935		1
536	An approach to the deep hydrodesulfurization of light cycle oil. 2004 , 53, 275-283		27
535	Benzene elimination from reformate gasoline by high pressure hydrogenation in a fixed-bed reactor. 2004 , 82, 149-155		10
534	Deep desulfurization of oil refinery streams by extraction with ionic liquids. 2004, 6, 316-322		481
533	Effective supports to moderate H2S inhibition on cobalt and nickel molybdenum sulfide catalysts in deep desulfurization of gas oil. <i>Applied Catalysis A: General</i> , 2004 , 260, 185-190	5.1	23
532	HDS kinetics study of dibenzothiophenic compounds in LCO. <i>Catalysis Today</i> , 2004 , 98, 227-233	5.3	30
531	Deep removal of sulfur and aromatics from diesel through two-stage concurrently and countercurrently operated fixed-bed reactors. 2004 , 59, 5465-5472		24
530	HDS reactivities of dibenzothiophenic compounds in a LC-finer LGO and H2S/NH3 inhibition effect. <i>Fuel</i> , 2004 , 83, 305-313	7.1	36
529	High quality diesel by hydrotreating of atmospheric gas oil/light cycle oil blends. <i>Fuel</i> , 2004 , 83, 1381-13	3 8 9 <u>i</u>	34
528	Inhibition of nitrogen compounds on the hydrodesulfurization of substituted dibenzothiophenes in light cycle oil. 2004 , 85, 1415-1429		68
527	Possible precursors and products of deep hydrodesulfurization of gasoline and distillate fuels III. The thermodynamic properties of 1,2,3,4-tetrahydrodibenzothiophene. 2004 , 36, 497-509		17
526	A model for the hydrogenation of aromatic compounds during gasoil hydroprocessing. 2004 , 59, 5671-5	5677	7
525	Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. <i>Applied Catalysis A: General</i> , 2004 , 265, 171-183	5.1	40
524	Effect of acridine and of octahydroacridine on the HDS of 4,6-dimethyldibenzothiophene catalyzed by sulfided NiMoP/Al2O3. <i>Applied Catalysis A: General</i> , 2004 , 267, 17-25	5.1	23
523	Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al2O3 catalysts: a batch reactor study. <i>Catalysis Today</i> , 2004 , 98, 67-74	5.3	46

522	On the effect of reaction conditions on liquid phase sulfiding of a NiMo HDS catalyst. <i>Catalysis Today</i> , 2004 , 98, 75-81	5.3	30
521	Two stages light gasoil hydrotreating for low sulfur diesel production. <i>Catalysis Today</i> , 2004 , 98, 323-33	3 2 5.3	6
520	Deep HDS of diesel fuel: chemistry and catalysis. <i>Catalysis Today</i> , 2004 , 98, 3-18	5.3	176
519	Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid [liquid Extraction. <i>Energy & Fuels</i> , 2004 , 18, 37-40	4.1	53
518	Desulfurization and Denitrogenation of Light Oils by Methyl Viologen-Modified Aluminosilicate Adsorbent. <i>Energy & Double of the Energy &</i>	4.1	23
517	Modification of Electronic Properties of Mo2C Catalyst by Potassium Doping: Impact on the Reactivity in Hydrodenitrogenation Reaction of Indole. 2004 , 108, 2885-2892		31
516	Ultra-deep Desulfurization of Liquid Hydrocarbon Fuels: Chemistry and Process. 2004 , 1, 167-191		54
515	Activated Carbon-Catalyzed Hydrogenation of Polycyclic Arenes. <i>Energy & amp; Fuels</i> , 2004 , 18, 1500-15	50 <u>4</u> .1	25
514	Novel Methodology toward Deep Desulfurization of Diesel Feed Based on the Selective Elimination of Nitrogen Compounds. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 7843-7849	3.9	59
513	Search for an Efficient 4,6-DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies. <i>Energy & Description (Marches)</i> 18, 1227-1237	4.1	139
512	Two-Stage Hydrotreating of Athabasca Heavy Gas Oil with Interstage Hydrogen Sulfide Removal: Effect of Process Conditions and Kinetic Analyses. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 5854-5861	3.9	17
511	Individual Hydrotreating of FCC Feed Components. <i>Energy & Description</i> 2004, 18, 1001-1004	4.1	16
510	Three-Phase Reactor Model to Simulate the Performance of Pilot-Plant and Industrial Trickle-Bed Reactors Sustaining Hydrotreating Reactions. <i>Industrial & Discours Chemistry Research</i> , 2004 , 43, 6654-6669	3.9	74
509	Kinetics of Hydrodesulfurization of Dibenzothiophene Catalyzed by Sulfided CoMo/MCM-41. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2004 , 43, 2324-2329	3.9	44
508	Hydrotreating Modeling - Helping Refiners to Face Challenges of the Future. 2005,		
507	Reaction pathways on NiMo/Al2O3 catalysts for hydrodesulfurization of diesel fuel. <i>Applied Catalysis A: General</i> , 2005 , 293, 11-23	5.1	34
506	Analysis and removal of heteroatom containing species in coal liquid distillate over NiMo catalysts. <i>Fuel</i> , 2005 , 84, 135-142	7.1	27
505	Light straight-run gas oil hydrotreatment over sulfided CoMoP/Al2O3-USY zeolite catalysts. 2005 , 86, 391-405		21

504	Effect of pre-treatment conditions on the performance of sulfided NiMo/EAl2O3 catalysts for hydrogenation of linear aldehydes. 2005 , 232, 101-112		15
503	Mechanistic aspects of catalyzed benzothiophene hydrodesulfurization. A density functional theory study. 2005 , 726, 67-80		13
502	Catalytic hydrotreating of heavy gasoil FCC feed over a NiMo/EAl2O3-TiO2 catalyst: Effect of hydrogen sulfide on the activity. <i>Catalysis Today</i> , 2005 , 107-108, 559-563	5.3	10
501	First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts. <i>Catalysis Today</i> , 2005 , 109, 49-53	5.3	29
500	Effect of nitrogen removal from light cycle oil on the hydrodesulphurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. <i>Catalysis Today</i> , 2005 , 109, 16-23	5.3	46
499	Performance of spent sulfide catalysts in hydrodesulfurization of straight run and nitrogen-removed gas oils. <i>Applied Catalysis A: General</i> , 2005 , 280, 133-139	5.1	11
498	Ru, Os and RuDs supported on mesoporous silica doped with zirconium as mild thio-tolerant catalysts in the hydrogenation and hydrogenolysis/hydrocracking of tetralin. <i>Applied Catalysis A: General</i> , 2005 , 279, 209-221	5.1	37
497	Effect of S-compounds and CO on hydrogenation of aldehydes over reduced and sulfided NiMo/Al2O3 catalysts. <i>Applied Catalysis A: General</i> , 2005 , 286, 111-119	5.1	12
496	Inhibition effect of nitrogen compounds on CoMoP/Al2O3 catalysts with alkali or zeolite added in hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. <i>Applied Catalysis A: General</i> , 2005 , 295, 193-200	5.1	21
495	Pillar effects in MoS2 catalysts supported on Al and Zr pillared clays in a hydrotreatment reaction. 2005 , 240, 48-62		20
494	On the hydrodesulfurization of FCC gasoline: a review. <i>Applied Catalysis A: General</i> , 2005 , 278, 143-172	5.1	415
493	Supported (NiMo,CoMo)-carbide, -nitride phases: Effect of atomic ratios and phosphorus concentration on the HDS of thiophene and dibenzothiophene. <i>Catalysis Today</i> , 2005 , 109, 33-41	5.3	24
492	A Comparative Study of the HDS Kinetics of Straight Run and Coker Gas Oils Under Deep Desulfurization Conditions. 2005 , 23, 749-760		9
491	Gas-Phase Kinetic Studies of Tetralin Hydrogenation on Pt/Alumina. <i>Industrial & amp; Engineering Chemistry Research</i> , 2005 , 44, 7928-7934	3.9	12
490	Maximizing Aromatic Hydrogenation of Bitumen-Derived Light Gas Oil: Statistical Approach and Kinetic Studies. <i>Energy & Discounty of the Statistical Approach and Maximizing Aromatic Hydrogenation of Bitumen-Derived Light Gas Oil: Statistical Approach and Kinetic Studies. Energy & Discounty of the Statistical Approach and Maximizing Aromatic Hydrogenation of Bitumen-Derived Light Gas Oil: Statistical Approach and Kinetic Studies. Energy & Discounty of the Statistical Approach and Maximizing Aromatic Hydrogenation of Bitumen-Derived Light Gas Oil: Statistical Approach and Kinetic Studies. Energy & Discounty of the Statistical Approach and Maximizing Aromatic Hydrogenation of Bitumen-Derived Light Gas Oil: Statistical Approach and Kinetic Studies. Energy & Discounty of the Statistical Approach and Maximizing Aromatic Hydrogenation of the Statistical Approach and Maximizing Aromatic Hydrogenation of the Statistical Approach and Maximizing Aromatic Hydrogenation of the Statistical Approach Aromatic Hydrogenation of the Statistical Approach Aromatic Hydrogenation of the Statistical Approach Approach Aromatic Hydrogenation of the Statistical Approach Aromatic Hydrogenatic Hydrogenat</i>	4.1	11
489	Characterization of active sites over reduced Ni-Mo/Al(2)O(3) catalysts for hydrogenation of linear aldehydes. 2005 , 109, 1882-90		33
488	Comparative Compositional Analysis of Untreated and Hydrotreated Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & District Composition</i> , 19, 1072-107	7 4 .1	33
487	Kinetics of Two Pathways for 4,6-Dimethyldibenzothiophene Hydrodesulfurization over NiMo, CoMo Sulfide, and Nickel Phosphide Catalysts. <i>Energy & Energy & E</i>	4.1	71

486	Study and modeling of simultaneous hydrodesulfurization, hydrodenitrogenation and hydrodearomatization on vacuum gas oil hydrotreatment. 2005 , 619-624		11
485	Hydrodenitrogenation of Petroleum. 2005 , 47, 297-489		193
484	Experimental and Kinetic Studies of Aromatic Hydrogenation, Hydrodesulfurization, and Hydrodenitrogenation of Light Gas Oils Derived from Athabasca Bitumen. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7935-7944	3.9	20
483	Specific Nitrogen Boiling Point Profiles of Vacuum Gasoils. <i>Energy & amp; Fuels</i> , 2005 , 19, 2438-2444	4.1	16
482	Computer-aided modeling for hydrodesulfurization, hydrodenitrogenation and hydrodearomatization simultaneous reactions in a hydrotreating industrial process. 2006 , 651-657		7
481	Distribution of sulfur-containing aromatics between [hmim][Tf2N] and supercritical CO2: a case study for deep desulfurization of oil refinery streams by extraction with ionic liquids. 2006 , 8, 70-77		64
480	Catalytic Hydroprocessing of Coal-Derived Gasification Residues to Fuel Blending Stocks: Effect of Reaction Variables and Catalyst on Hydrodeoxygenation (HDO), Hydrodenitrogenation (HDN), and Hydrodesulfurization (HDS). <i>Energy & Doology</i> 2006, 20, 1761-1766	4.1	44
479	Hydrodenitrogenation and Hydrodesulfurization of Heavy Gas Oil Using NiMo/Al2O3 Catalyst Containing Boron: Experimental and Kinetic Studies. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 544-552	3.9	35
478	MODELING OF COMPETITIVE ADSORPTION OF NITROGEN SPECIES IN HYDRODESULFURIZATION. 2006 , 193, 460-477		12
477	Hydrodesulfurization & Hydrodenitrogenation. 2006,		4
477 476	Hydrodesulfurization & Hydrodenitrogenation. 2006, Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. Industrial & Engineering Chemistry Research, 2006, 45, 7050-7056	3.9	6
	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & amp</i> ;	3.9	
476	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7050-7056 Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray		6
476 475	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7050-7056 Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Description Syncrology</i> , 2006, 20, 1235-1241 Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization	4.1	6 70
476 475 474	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7050-7056 Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Description Synchrology</i> , 20, 1235-1241 Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Description Synchrology</i> , 20, 661-667 Dual Effect of H2S on Volcano Curves in Hydrotreating Sulfide Catalysis. <i>Oil and Gas Science and</i>	4.1	6 70 51
476 475 474 473	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7050-7056 Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions By Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry By Electron Ionization Fourier Transform Ionization Fo</i></i></i></i></i></i></i>	4.1 4.1 1.9	6 70 51 22
476 475 474 473	Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7050-7056 Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. <i>Energy & Doology</i> , 2006, 20, 1235-1241 Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Distillation Fractions</i> , 2006, 20, 661-667 Dual Effect of H2S on Volcano Curves in Hydrotreating Sulfide Catalysis. <i>Oil and Gas Science and Technology</i> , 2006, 61, 515-525 Mechanisms of hydrodesulfurization and hydrodenitrogenation. <i>Catalysis Today</i> , 2006, 111, 84-93	4.1 4.1 1.9	6 70 51 22 101

468	Autocatalysis-like behavior of hydrogen sulfide on hydrodesulfurization of polyaromatic thiophenes over a synthesized molybdenum sulfide catalyst. <i>Applied Catalysis A: General</i> , 2006 , 314, 114 ⁵	ī́22	9
467	Catalysts based on Ru/mesoporous phosphate heterostructures (PPH) for hydrotreating of aromatic hydrocarbons. 2006 , 255, 41-48		21
466	Mechanism of the hydrodenitrogenation of neopentylamine and adamantylamine on sulfided NiMo/Al2O3. 2006 , 110, 221-228		1
465	Iminium cations as intermediates in the hydrodenitrogenation of alkylamines over sulfided NiMo/FAl2O3. <i>Catalysis Today</i> , 2006 , 116, 542-553	5.3	8
464	Preparation of Partially Hydrogenated 4,6-Dimethyldibenzothiophenes. 2006 , 89, 1623-1640		10
463	Hydrogenation of Tetralin over Pt/EAl2O3 in Trickle-Bed Reactor in the Presence of Compressed CO2. Energy & CO2. Energy & CO2. Energy & En	ļ .1	15
462	Thermodynamic Aspects of Hydrodesulfurization and Hydrodenitrogenation. 2007 , 25, 841-852		8
461	Thermodynamics of Hydroprocessing Reactions. <i>Chemical Industries</i> , 2007 , 51-69		
460	Hydrocarbon Desulfurization to Clean Fuels by Selective Oxidation Versus Conventional Hydrotreating. 2007 , 30, 200-217		25
459	Hydrodesulfurization Activity of MoS2 and Bimetallic Catalysts Prepared by in Situ Decomposition of Thiosalt. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1874-1882	3.9	29
458	Thermodynamic Aspects of Aromatic Hydrogenation. 2007 , 25, 1293-1304		14
457	Influence of Nitrogen-Containing Compounds on the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Pt, Pd, and PtPd on Amorphous SilicaAlumina Catalysts. Industrial & Catalysts & 3 Industrial & 3 I	3.9	7
456	Modeling of trickle bed reactor for hydrotreating of vacuum gas oils: effect of kinetic type on reactor modeling. 2007 , 24, 515-520		5
455	Coke Deposition Profiles during Artificial Aging of Hydroprocessing Catalysts. <i>Industrial & amp;</i> Engineering Chemistry Research, 2007 , 46, 421-429	3.9	10
454	StructureReactivityMechanistic Considerations in Heavy Oil Desulfurization. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 8363-8370	3.9	41
453	Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5881-5897	3.9	53
452	Structure and catalytic properties of molybdenum sulfide nanoplatelets. <i>Applied Catalysis A: General</i> , 2007 , 328, 88-97	5.1	26
451	Hydrodenitrogenation of indole over Mo2C catalyst: Insights into mechanistic events through DFT modeling. <i>Catalysis Today</i> , 2007 , 119, 39-43	5.3	19

(2008-2007)

4	450	Hydrogenation of naphthalene on NiMo- and Ni/Al2O3 catalysts: Pre-treatment and deactivation. <i>Catalysis Today</i> , 2007 , 128, 63-73	5.3	15	
4	149	Modeling of industrial reactor for hydrotreating of vacuum gas oils. 2007 , 134, 200-208		44	
4	148	Effect of surface Na+ or K+ ion exchange on hydrodesulfurization performance of MCM-41-supported Nil catalysts. <i>Applied Catalysis A: General</i> , 2007 , 316, 134-141	5.1	13	
4	147	A comparative assessment of the effect of H2S on hydrodesulfurization of dibenzothiophene over nanosize MoS2- and CoMo-based Al2O3 catalysts. <i>Applied Catalysis A: General</i> , 2007 , 331, 51-59	5.1	12	
4	₁₄₆	HDS of straight-run gas oil at various nitrogen contents. Comparison between different reaction systems. <i>Fuel</i> , 2007 , 86, 1240-1246	7.1	12	
4	145	Heavy oil hydroprocessing over supported NiMo sulfided catalyst: An inhibition effect by added H2S. <i>Fuel</i> , 2007 , 86, 1263-1269	7.1	29	
4	144	Estimation of activation energies during hydrodesulfurization of middle distillates. Fuel, 2007, 86, 1247	- 1/ 2 <u>1</u> 53	18	
4	143	Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst. 2007 , 307, 1-8		23	
4	142	The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. <i>Journal of Catalysis</i> , 2007 , 248, 188-203	7-3	228	
4	141	Influence of nitrogen-containing components on the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt, Pd, and PtPd on alumina catalysts. <i>Topics in Catalysis</i> , 2007 , 46, 65-78	2.3	6	
4	140	Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene. <i>Catalysis Today</i> , 2007 , 119, 7-12	5.3	36	
4	139	Comparative study of the hydrogenation of tetralin on supported Ni, Pt, and Pd catalysts. <i>Catalysis Today</i> , 2007 , 123, 218-223	5.3	41	
4	438	Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt, Pd, and PtPd catalysts supported on amorphous silicaElumina. <i>Catalysis Today</i> , 2007 , 123, 198-207	5.3	55	
4	137	Synthesis of 4,6-dimethyl-tetrahydro- and hexahydro-dibenzothiophene. 2008 , 49, 2063-2065		8	
4	4 36	Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over NiMo/Al2O3. 2008 , 123, 181-185		43	
4	1 35	NiMo Supported on Faujasite-modified Al2O3 as Catalysts for the Hydrotreatment of a Light Cycle Oil/Straight Run Gas Oil Mixture. 2008 , 80, 903-910		6	
4	134	Kinetics of Bitumen-Derived Gas Oil Upgrading Using a Commercial NiMo/Al2O3 Catalyst. 2008 , 82, 478	-487	18	
4	433	Hydrodenitrogenation and Hydrodesulphurization of Heavy Gas Oil Using NiMo/Al2O3 Catalyst Containing Phosphorus: Experimental and Kinetic Studies. 2008 , 83, 855-864		13	

432	Experimental and Kinetics Studies of Aromatic Hydrogenation in a Two-Stage Hydrotreating Process using NiMo/Al2O3 and NiW/Al2O3 Catalysts. 2008 , 84, 572-580		4
431	Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. 2008 , 47, 8478-81		165
430	Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Noble Metals Supported on Mesoporous Zeolites. 2008 , 120, 8606-8609		21
429	Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: Effect of support Si/Al ratio. <i>Applied Catalysis A: General</i> , 2008 , 335, 159-171	5.1	131
428	Simulation of hydrotreating of light cycle oil with a system dynamics model. <i>Applied Catalysis A: General</i> , 2008 , 339, 209-220	5.1	19
427	Hydroprocessing catalysis on metal sulfides prepared from molecular complexes. <i>Catalysis Today</i> , 2008 , 130, 206-220	5.3	31
426	A density functional theory study of the hydrodesulfurization reaction of dibenzothiophene to biphenyl on a single-layer NiMoS cluster. <i>Catalysis Today</i> , 2008 , 130, 170-177	5.3	43
425	Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt supported on EAl2O3, SBA-15, and HZSM-5. <i>Catalysis Today</i> , 2008 , 130, 249-253	5.3	22
424	Effect of Mo and Co loading in HDS catalysts supported on solvo-thermally treated ZrO2IiiO2 mixed oxides. <i>Catalysis Today</i> , 2008 , 133-135, 282-291	5.3	23
423	Isomerization and cracking under HDS conditions using Ealumina modified with boron as catalysts support. <i>Catalysis Today</i> , 2008 , 133-135, 255-260	5.3	20
422	The effect of sulfur compound on the hydrogenation of tetralin over a Pd P t/HDAY catalyst. 2008 , 140, 424-431		18
421	Thermodynamic analysis of a reactive distillation process for deep hydrodesulfurization of diesel: Effect of the solvent and operating conditions. 2008 , 143, 210-219		12
420	Benzene hydrogenation over Ni/Al2O3 catalysts prepared by conventional and solgel techniques. 2008 , 79, 199-207		93
419	Effect of organosulphur, organonitrogen and organooxygen compounds on the hydrodechlorination of tetrachloroethylene over Pd/Al2O3. 2008 , 82, 264-272		7
418	Computer aided kinetic modeling with KMT and KME. 2008, 89, 350-363		43
417	Proton affinity of S-containing aromatic compounds: Implications for crude oil hydrodesulfurization. 2008 , 281, 79-84		27
416	Arene Binding Affinities in [CpRu(B-arene)]+ Complexes: Models for the Adsorption of Arenes on Hydrodesulfurization Catalysts. 2008 , 27, 1098-1105		17
415	In situ FT-IR spectroscopy investigations of carbon nanotubes supported Co-Mo catalysts for selective hydrodesulfurization of FCC gasoline. 2008 , 17, 165-170		11

(2009-2008)

414	Hydrodeoxygenation of Phenolic Model Compounds over MoS2 Catalysts with Different Structures. 2008 , 16, 733-739	46
413	Kinetic Modeling of Large-Scale Reaction Systems. 2008 , 50, 287-378	43
412	High Quality Diesel by Hydrotreating Gas Oil over Modified Titania-supported NiMo Catalysts. 2008 , 30, 698-722	4
411	Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride. 2008 , 10, 524	77
410	Extractive Desulfurization Using Fe-Containing Ionic Liquids. <i>Energy & Desulfurization Using Fe-Containing Ionic Liquids</i> .	159
409	Effects of Nitrogen and Aromatics on Hydrodesulfurization of Light Cycle Oil Predicted by a System Dynamics Model. <i>Energy & Energy & 2008</i> , 22, 860-866	15
408	Hydrotreating. 2008 , 2695	4
407	Unraveling heavy oil desulfurization chemistry: targeting clean fuels. 2008, 42, 1944-7	52
406	Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. 2008 , 130, 14026-7	193
405	Substituent Effects. 2008, 1561	
404	On the continuum approximation of large reaction mixtures. 2009 , 56, 1894-1906	5
403	Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes. 2009 , 121, 4047-4050	144
402	Highly selective catalytic conversion of phenolic bio-oil to alkanes. 2009 , 48, 3987-90	529
401	SBA-15 modified with Al, Ti, or Zr as supports for highly active NiW catalysts for HDS. 2009 , 44, 6617-6628	44
400	Adsorptive desulfurization by activated alumina. 2009 , 170, 1133-40	204
399	Revisiting dibenzothiophene thermochemical data: Experimental and computational studies. 2009 , 41, 1199-1205	32
398	Correlation of the deactivation of CoMo/Al2O3 in hydrodesulfurization with surface carbon species. 2009 , 86, 176-181	18
397	Impact of Oxygenated Compounds from Lignocellulosic Biomass Pyrolysis Oils on Gas Oil Hydrotreatment. <i>Energy & Discourse Augustus</i> 23, 1007-1014	87

396	Kinetic Study of the HDS of 4,6-DMDBT over NiMo/Al2O3BiO2(x) Catalysts. <i>Industrial & amp;</i> Engineering Chemistry Research, 2009 , 48, 1178-1185	3.9	15
395	Effect of Hydrogen Purity on Hydroprocessing of Heavy Gas Oil Derived from Oil-Sands Bitumen. <i>Energy & Derived Science (Control of the Control of the Contr</i>	4.1	15
394	Role of the Ru and Support in Sulfided RuNiMo Catalysts in Simultaneous Hydrodearomatization (HDA), Hydrodesulfurization (HDS), and Hydrodenitrogenation (HDN) Reactions. <i>Energy & amp; Fuels</i> , 2009 , 23, 1364-1372	4.1	15
393	Influence of Templates on the Overgrowth of MCM-41 over HY and the Hydrodesulfurization Performances of the Supported NiMo Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2870-2877	3.9	14
392	Modification of Activity and Selectivity of NiMo/SBA-15 HDS Catalysts by Grafting of Different Metal Oxides on the Support Surface. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 1126-1	1333	56
391	Hydroprocessing Euro 4-Type Diesel from High-Temperature Fischer Tropsch Vacuum Gas Oils. <i>Energy & Diesels</i> , 2009 , 23, 38-45	4.1	21
390	Structure Effects on Pyridine Hydrogenation over Pt(111) and Pt(100) Studied with Sum Frequency Generation Vibrational Spectroscopy. 2010 , 137, 118-122		16
389	Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil. <i>Journal of Catalysis</i> , 2010 , 269, 169-178	7.3	37
388	Simulation of hydrodesulfurization using artificial neural network. 2010 , 88, n/a-n/a		2
387	Como/Al2O3 VERSUS Nimo/Al2O3 SULPHIDE CATALYSTS: SENSITIVITY TO REACTION CONDITIONS FOR HDS AND HYDROGENATION. 2010 , 104, 189-195		10
386	EFFECT OF THE H2S AND H2 PARTIAL PRESSURE ON THE HYDRODENITROGENATION (HDN) OF ANILINE AND INDOLE OVER A NIMOP-AL2O3 CATALYST. 2010 , 104, 245-251		14
385	Organometallic Complexes as Models for the Adsorption of Thiophenes on Hydrodesulfurization (HDS) Catalysts. 2010 , 104, 265-282		75
384	Primary carbon-nitrogen bond scission and methyl dehydrogenation across a W-W multiple bond. 2010 , 49, 9711-4		8
383	Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over CoMoP/Al2O3 catalyst. <i>Applied Catalysis A: General</i> , 2010 , 383, 14-23	5.1	27
382	Molecular energetics of 4-methyldibenzothiophene: An experimental study. 2010 , 42, 251-255		18
381	Effects of the operating variables on hydrotreating of heavy gas oil: Experimental, modeling, and kinetic studies. <i>Fuel</i> , 2010 , 89, 2536-2543	7.1	30
380	Hydrodenitrogenation propertyfeactivity correlation. <i>Applied Catalysis A: General</i> , 2010 , 378, 52-58	5.1	20
379	Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals. <i>Catalysis Today</i> , 2010 , 149, 122-126	5.3	49

(2011-2010)

378	Effect of the nitrogen heterocyclic compounds on hydrodesulfurization using in situ hydrogen and a dispersed Mo catalyst. <i>Catalysis Today</i> , 2010 , 149, 28-34	5.3	30
377	Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. <i>Catalysis Today</i> , 2010 , 153, 1-68	5.3	909
376	Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids. 2010 , 12, 2030	0	113
375	Kinetics and Modeling of Petroleum Residues Hydroprocessing. 2010 , 52, 204-324		37
374	Characterization and Identification of the most Refractory Nitrogen Compounds in Hydroprocessed Vacuum Gas Oil. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 3184-3193	3.9	32
373	Study of the Surface Chemical Reactions of Thiophene with Ag/Titania by the Complementary Temperature-Programmed Electron Spin Resonance, Temperature-Programmed Desorption, and X-ray Photoelectron Spectroscopy: Adsorption, Desorption, and Sorbent Regeneration		20
372	Catalytically Active Sites of Supported Pt Catalysts for Hydrogenation of Tetralin in the Presence of Dibenzothiophene and Quinoline. 2010 , 114, 14532-14541		11
371	Assessment of Selected Apparent Kinetic Parameters of the HDM and HDS Reactions of Two Kuwaiti Residual Oils, Using Two Types of Commercial ARDS Catalysts. <i>Energy & Discours</i> , 2010, 24, 1495-1501	4.1	11
370	Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. 2010 , 12, 1139		360
369	The catalytic valorization of lignin for the production of renewable chemicals. 2010 , 110, 3552-99		3089
369 368	The catalytic valorization of lignin for the production of renewable chemicals. 2010 , 110, 3552-99 Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010 , 122, 9905-9908		3089
	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond.	4.1	
368	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010, 122, 9905-9908 Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands	4.1	2
368 367	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010, 122, 9905-9908 Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands Bitumen: Experimental and Kinetics. Energy & E		2
368 367 366	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010, 122, 9905-9908 Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands Bitumen: Experimental and Kinetics. Energy & E		2 18 56
368 367 366 365	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010, 122, 9905-9908 Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands Bitumen: Experimental and Kinetics. Energy & Samp; Fuels, 2010, 24, 772-784 Analysis and Comparison of Nitrogen Compounds in Different Liquid Hydrocarbon Streams Derived from Petroleum and Coal. Energy & Samp; Fuels, 2010, 24, 5539-5547 Retracted article: Towards near zero-sulfur liquid fuels: a perspective review. 2011, 1, 23		2 18 56 205
368 367 366 365 364	Primary Carbon Nitrogen Bond Scission and Methyl Dehydrogenation across a W?W Multiple Bond. 2010, 122, 9905-9908 Effects of Hydrogen Partial Pressure on Hydrotreating of Heavy Gas Oil Derived from Oil-Sands Bitumen: Experimental and Kinetics. Energy & E		2 18 56 205

2

360 Modeling of Catalytic Hydrotreating. 2011, 211-312

Hydrodesulfurization & Hydrodenitrogenation. 2011, 359 Deep Oxidative Desulfurization of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. Industrial & Description of Diesel Fuels by Acidic Ionic Liquids. 358 69 3.9 Chemistry Research, **2011**, 50, 11690-11697 Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported 117 357 platinum catalysts. **2011**, 47, 12209-11 Conversion of Anisole Catalyzed by Platinum Supported on Alumina: The Reaction Network. Energy 356 4.1 64 & Fuels, 2011, 25, 4776-4785 Deactivation Modes of Solid Catalysts with Different Active Sites. 2011, 32, 51-59 355 10 4,6-Dimethyl-dibenzothiophene conversion over Al2O3TiO2-supported noble metal catalysts. 22 354 2011, 126, 237-247 Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 426 7.3 353 **2011**, 280, 8-16 Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. Journal of 7.3 396 352 Catalysis, 2011, 281, 21-29 Inhibition of the hydrogenation of tetralin by nitrogen and sulfur compounds over Ir/SBA-16. 351 5.1 4 Applied Catalysis A: General, **2011**, 404, 30-30 Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean 350 7.1 75 liquid fuels. Fuel, 2011, 90, 3404-3409 Mechanism and Site Requirements of Thiophene Hydrodesulfurization Catalyzed by Supported Pt 349 33 Clusters. 2011, 3, 1166-1175 Hydrodesulfurization of Dibenzothiophene and its Hydrogenated Intermediates Over Bulk Ni2P. 348 18 2.3 Topics in Catalysis, 2011, 54, 290-298 Nitrogen Tolerant Hydrodesulfurization Catalysts Based on Rh and Ru Promoted Mo/Al2O3. Topics 2.3 347 in Catalysis, **2011**, 54, 1325-1330 Hydrotreating of light gas oil using carbon nanotube supported NiMoS catalysts: Kinetic modelling. 346 7 **2011**, 89, 562-575 Rare-earth metal allyl and hydrido complexes supported by an (NNNN)-type macrocyclic ligand: 345 42 synthesis, structure, and reactivity toward biomass-derived furanics. 2011, 17, 15014-26 Catalyst development for ultra-deep hydrodesulfurization (HDS) of dibenzothiophenes. I: Effects of 344 5.3 33 Ni promotion in molybdenum-based catalysts. Catalysis Today, 2011, 164, 538-543 Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of 343 74 crude oil. **2011**, 66, 859-871

342	Integrated design of diesel hydrotreating processes. 2011 , 89, 1025-1036		25
341	Renewable fuels via catalytic hydrodeoxygenation. <i>Applied Catalysis A: General</i> , 2011 , 397, 1-12	5.1	330
340	Enhanced oxidative desulfurization of model fuels using a film-shear reactor. <i>Fuel</i> , 2011 , 90, 898-901	7.1	8
339	Diesel production in coal-based high-temperature Fischer Tropsch plants using fixed bed dry bottom gasification technology. 2011 , 92, 959-969		17
338	Distillate Hydrotreating to Ultra-low-sulfur Diesel Ithe Impact of Aromatics. 2011 , 53, 152-169		2
337	Mapas de Curvas Residuales para Procesos de Destilacifi Reactiva Multicomponente. 2012 , 23, 121-128		
336	Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. 2012 , 1,		61
335	Dihydrogen catalysis: a degradation mechanism for N2-fixation intermediates. 2012 , 116, 11618-42		15
334	Kinetics of HDS and of the inhibitory effect of quinoline on HDS of 4,6-DMDBT over a NiMoP/Al2O3 catalyst: Part I. 2012 , 210, 53-62		32
333	Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. <i>Journal of Catalysis</i> , 2012 , 296, 12-23	7.3	178
333 332			178
	hydrodeoxygenation. <i>Journal of Catalysis</i> , 2012 , 296, 12-23		
332	hydrodeoxygenation. <i>Journal of Catalysis</i> , 2012 , 296, 12-23 A Study on the Lumping Kinetic Model for a Residual Oil Hydrodesulfurization Process. 2012 , 34, 1933- Adsorptive Denitrogenation and Desulfurization of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix	1942	1
332	hydrodeoxygenation. <i>Journal of Catalysis</i> , 2012 , 296, 12-23 A Study on the Lumping Kinetic Model for a Residual Oil Hydrodesulfurization Process. 2012 , 34, 1933- Adsorptive Denitrogenation and Desulfurization of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. <i>Industrial & Diesel Fractions and Pathology</i> , 2012, 51, 14503-14510 Hydrodesulfurization of Dibenzothiophene over MCM-41-Supported Pd and Pt Catalysts. <i>Energy</i>	1942 3.9	32
332 331 330	A Study on the Lumping Kinetic Model for a Residual Oil Hydrodesulfurization Process. 2012, 34, 1933- Adsorptive Denitrogenation and Desulfurization of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. <i>Industrial & Diesel Fractions of Diesel Fractions of Urea Matrix Combustion of Diesel Fractions of Urea Matrix Combustion of Diesel Fractions of Urea Matrix Combustion of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. <i>Industrial & Diesel Fractions of Diesel Fractions of Urea Matrix Combustion of Diesel Fractions of Urea Matrix Combustion of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. <i>Industrial & Diesel Fractions of Urea Matrix Combustion of Diesel Fractions of Urea Matrix Combustion and Pt Catalysts. Energy & Diesel Fractions of Urea Matrix Combustion and Desulfurization and </i></i></i>	3.9 4.1	1 32 10
332 331 330 329	A Study on the Lumping Kinetic Model for a Residual Oil Hydrodesulfurization Process. 2012, 34, 1933- Adsorptive Denitrogenation and Desulfurization of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. <i>Industrial & Diesel Engineering Chemistry Research</i> , 2012, 51, 14503-14510 Hydrodesulfurization of Dibenzothiophene over MCM-41-Supported Pd and Pt Catalysts. <i>Energy & Diesel</i> , 2012, 26, 4671-4679 Effect of Pressure on the Hydrocracking of Light Cycle Oil with a PtPd/HY Catalyst. <i>Energy & Diesel</i> , 2012, 26, 5897-5904 Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics	3.9 4.1	1 32 10 20
332 331 330 329 328	A Study on the Lumping Kinetic Model for a Residual Oil Hydrodesulfurization Process. 2012, 34, 1933- Adsorptive Denitrogenation and Desulfurization of Diesel Fractions by Mesoporous SBA15-Supported Nickel(II) Phosphide Synthesized through a Novel Approach of Urea Matrix Combustion. Industrial & Samp; Engineering Chemistry Research, 2012, 51, 14503-14510 Hydrodesulfurization of Dibenzothiophene over MCM-41-Supported Pd and Pt Catalysts. Energy & Samp; Fuels, 2012, 26, 4671-4679 Effect of Pressure on the Hydrocracking of Light Cycle Oil with a PtPd/HY Catalyst. Energy & Samp; Fuels, 2012, 26, 5897-5904 Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics Hydrogenation on a Pt Catalyst. 2012, 2, 1305-1318 Study of hydrodesulfurization of 4,6-DM-DBT over Pd supported on mesoporous USY zeolite.	3.9 4.1 4.1	1 32 10 20

324	Synthesis, characterization and catalytic activity during hydrodesulphurization of dibenzothiophene of NiMoW catalysts supported on AlTi mixed oxides modified with MgO. <i>Fuel</i> , 2012 , 100, 57-65	7.1	12
323	Modeling the performance of a bench-scale reactor sustaining HDS and HDM of heavy crude oil at moderate conditions. <i>Fuel</i> , 2012 , 100, 152-162	7.1	15
322	Aromaticity of five- and six-membered heterocycles present in crude oils [An electronic description for hydrotreatment process. <i>Fuel</i> , 2012 , 100, 177-185	7.1	14
321	An evaluation of desulfurization technologies for sulfur removal from liquid fuels. 2012 , 2, 759-783		551
320	A Monte Carlo modeling methodology for the simulation of hydrotreating processes. 2012 , 207-208, 94-102		39
319	Recent advances of sodium borohydride reduction in coal water slurry desulfurization: integration of chemical and electrochemical reduction. 2012 , 2, 8867		30
318	Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating. 2012 , 29, 135-146		9
317	Reaction mechanism of hydrogenation and direct desulfurization routes of dibenzothiophene-like compounds: A density functional theory study. 2012 , 112, 3599-3605		15
316	Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. 2012 , 2, 869		165
315	Bimetallic catalysts for upgrading of biomass to fuels and chemicals. 2012 , 41, 8075-98		934
314	Production of Gasoline and Diesel from Coal Tar via Its Catalytic Hydrogenation in Serial Fixed Beds. <i>Energy & Diesels</i> , 2012 , 26, 3604-3611	4.1	77
313	Detailed characterization of coal-derived liquids from direct coal liquefaction on supported catalysts. <i>Fuel</i> , 2012 , 95, 79-87	7.1	40
312	Reactivity characteristics of Pt-encapsulated zeolite catalysts for hydrogenation and hydrodesulfurization. <i>Applied Catalysis A: General</i> , 2012 , 415-416, 70-79	5.1	18
311	Effect of TiO2 on the hydrodesulfurization performance of bulk Ni2P. <i>Applied Catalysis A: General</i> , 2012 , 417-418, 19-25	5.1	16
310	Microspectroscopic insight into the deactivation process of individual cracking catalyst particles with basic sulfur components. <i>Applied Catalysis A: General</i> , 2012 , 419-420, 84-94	5.1	32
309	Active species of copper chromite catalyst in CD hydrogenolysis of 5-methylfurfuryl alcohol. <i>Journal of Catalysis</i> , 2012 , 285, 235-241	7-3	123
308	Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. <i>Journal of Catalysis</i> , 2012 , 287, 161-169	7.3	106

306	Conversion of 4-Methylanisole Catalyzed by Pt/EAl2O3 and by Pt/SiO2-Al2O3: Reaction Networks and Evidence of Oxygen Removal. 2012 , 142, 7-15	37
305	Optimization of hydrodesulfurization activity in the hydrotreating process: canonical analysis and the combined application of factorial design and response surface methodology. <i>Reaction Kinetics</i> , 1.6 <i>Mechanisms and Catalysis</i> , 2013 , 108, 371-390	11
304	Hydrotreating: Removal of Sulfur from Crude Oil Fractions with Sulfide Catalysts. 2013, 287-321	6
303	Topological and Electronic Structure of Heterocyclic Compounds Adsorbed on Hydrotreating Catalysts. 2013 , 143, 1354-1361	5
302	Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: Experimentals, optimization of metals loading, and kinetics study. <i>Catalysis Today</i> , 2013 , 207, 101-111	16
301	Dipalladium(I) terphenyl diphosphine complexes as models for two-site adsorption and activation of organic molecules. 2013 , 135, 15830-40	49
300	Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency. 2013, 20, 696-702	17
299	Denitrogenation of middle distillates using adsorbent materials towards ULSD production: A review. 2013 , 106, 21-32	103
298	XAS study of Ni2P/MCM-41 prepared by hydrogen plasma reduction. <i>Catalysis Today</i> , 2013 , 211, 126-130 _{5.3}	8
297	Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization. 2013 , 282, 809-819	22
296	Process Systems Engineering, 4. Process and Product Synthesis, Design, and Analysis. 2013,	2
295	Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. <i>Journal of Catalysis</i> , 2013 , 300, 197-200	38
294	Synthesis, characterization and evaluation of unsupported porous NiS2 sub-micrometer spheres as a potential hydrodesulfurization catalyst. <i>Applied Catalysis A: General</i> , 2013 , 450, 230-236	24
293	Preparation of High-Performance Adsorbent from Coal for Adsorptive Denitrogenation of Liquid Hydrocarbon Streams. <i>Energy & Denitrogenation of Liquid A.1</i>	6
292	Identification of ion series using ion mobility mass spectrometry: the example of alkyl-benzothiophene and alkyl-dibenzothiophene ions in diesel fuels. 2013 , 85, 5530-4	20
291	Transformation of Nitrogen Compounds in Deasphalted Oil Hydrotreating: Characterized by Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. <i>Energy</i> 4.1 & amp; Fuels, 2013 , 27, 2952-2959	51
29 0	Hydrodeoxygenation of Phenol and Derivatives over an Ionic Liquid-Like Copolymer Stabilized Nanocatalyst in Aqueous Media. 2013 , 5, 1598-1605	25
289	Well-ordered transition metal oxide layers in model catalysisa series of case studies. 2013 , 113, 3986-4034	164

288	Catalyst Performance Testing in Multiphase Systems: Implications of Using Small Catalyst Particles in Hydrodesulfurization. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 9069-9085	3.9	30
287	Mechanism for catalytic hydrodenitrogenation of isoquinoline. 2013 , 106, 661-665		21
286	Citric acid loading for MoS2-based catalysts supported on SBA-15. New catalytic materials with high hydrogenolysis ability in hydrodesulfurization. 2013 , 129, 137-145		83
285	Analysis of the Nitrogen Content of Distillate Cut Gas Oils and Treated Heavy Gas Oils Using Normal Phase HPLC, Fraction Collection and Petroleomic FT-ICR MS Data. <i>Energy & amp; Fuels</i> , 2013 , 27, 35-45	4.1	14
284	Molecule-based kinetic modeling by Monte Carlo methods for heavy petroleum conversion. 2013 , 56, 1608-1622		16
283	Compositional Analysis of Oil Residues by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Energy & 2013</i> , 27, 2002-2009	4.1	25
282	Hydrogenation of Tetralin over Supported Ni and Ir Catalysts. 2013 , 2013, 1-6		9
281	Modeling of Catalytic Hydroprocessing. <i>Chemical Industries</i> , 2013 , 203-270		
280	Hydrodenitrogenation of Pyrrole over Silica-supported Ruthenium Phosphide Catalyst. <i>Journal of the Japan Petroleum Institute</i> , 2013 , 56, 94-101	1	4
279	Function of Metals and Supports on the Hydrodeoxygenation of Phenolic Compounds. 2014 , 79, 1573-	1583	36
278	Competitive hydrodesulfurization of dibenzothiophene and hydrodenitrogenation of quinoline over unsupported MoS2 catalyst. <i>Applied Catalysis A: General</i> , 2014 , 469, 173-182	5.1	24
277	Simulating vacuum residue hydroconversion by means of Monte-Carlo techniques. <i>Catalysis Today</i> , 2014 , 220-222, 208-220	5.3	35
276	Comparison of nitrogen tolerance of PdMo/Al2O3 and CoMo/Al2O3 catalysts in hydrodesulfurization of model compounds. <i>Fuel</i> , 2014 , 120, 86-90	7.1	7
275	Dispersion effects of Ni2P catalysts on hydrotreating of light cycle oil. 2014 , 150-151, 647-655		42
274	Fuels from Crude Oil (Petroleum). 2014 , 48-120		1
273	Molecular Simulation Assisted Design and Preparation of Magnetic Molecularly Imprinted Polymers and Their Characteristics. 2014 , 42, 249-257		5
272	Mild hydrotreatment of low temperature coal tar distillate: Product composition. 2014 , 236, 529-537		47

(2014-2014)

270	Modeling a Catalytic Reactor for Hydrotreating of Straight-Run Gas Oil Blended with Fluid Catalytic Cracking Naphtha and Light Cycle Oil: Influence of Vapor[liquid Equilibrium. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 19104-19116	3.9	5
269	Intensification of Deep Hydrodesulfurization Through a Two-stage Combination of Monolith and Trickle Bed Reactors. 2014 , 22, 888-897		9
268	Selective continuous flow extractive denitrogenation of oil containing S- and N-heteroaromatics using metal-containing ionic liquids supported on monolithic silica with hierarchical porosity. 2014 , 4, 1045-1054		16
267	Dihydrogen Catalysis: A Remarkable Avenue in the Reactivity of Molecular Hydrogen. 2014 , 56, 403-47	5	12
266	Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. <i>Applied Catalysis A: General</i> , 2014 , 484, 108-121	5.1	30
265	Pyrrolic Ring Opening and Nitrogen Removal from Solution without Hydrogenation: Natural Chabazite as a Cracking Catalyst. <i>Energy & Energy & Energy</i>	4.1	4
264	Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. <i>Journal of Catalysis</i> , 2014 , 317, 22-29	7.3	128
263	Hydrodesulfurization of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over bulk Ni2P. <i>Journal of Catalysis</i> , 2014 , 317, 144-152	7.3	34
262	CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. 2014 , 147, 879-887		107
261	Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst. <i>Fuel</i> , 2014 , 138, 98-103	7.1	21
260	Structure-reactivity relationship in catalytic hydrogenation of heterocyclic compounds over ruthenium black-Part A: Effect of substitution of pyrrole ring and side chain in N-heterocycles. 2014 , 160-161, 22-34		22
259	Two [1,2,4-(Me3C)3C5H2]2CeH molecules are involved in hydrogenation of pyridine to piperidine as shown by experiments and computations. <i>Inorganic Chemistry</i> , 2014 , 53, 6361-73	5.1	18
258	Atomic level characterization and sulfur resistance of unsupported W2C during dibenzothiophene hydrodesulfurization. Classical kinetic simulation of the reaction. 2014 , 144, 750-759		14
257	A solution-phase synthesis of supported Ni2P catalysts with high activity for hydrodesulfurization of dibenzothiophene. 2014 , 385, 149-159		23
256	Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction. 2014 , 148-149, 221-230		56
255	Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. 2014 , 7, 103-129		627
254	Hydrodeoxygenation of acetonefurfural condensation adducts over alumina-supported noble metal catalysts. 2014 , 160-161, 436-444		42
253	Supported on alumina Co-Mo hydrotreating catalysts: Dependence of catalytic and strength characteristics on the initial AlOOH particle morphology. <i>Catalysis Today</i> , 2014 , 220-222, 66-77	5.3	33

252	Efficient Hydrodeoxygenation of Ketones, Phenols, and Ethers Promoted by PlatinumHeteropolyacid Bifunctional Catalysts. 2014 , 43, 1086-1088	15
251	Adsorption of nitrogen- and sulfur-containing compounds on NiMoS for hydrotreating reactions: A DFT and vdW-corrected study. 2015 , 61, 4036-4050	34
250	Understanding Ni Promotion of MoS2/EAl2O3 and its Implications for the Hydrogenation of Phenanthrene. 2015 , 7, 4118-4130	30
249	Noble Metal Phosphides as New Hydrotreating Catalysts: Highly Active Rhodium Phosphide Catalyst. <i>Journal of the Japan Petroleum Institute</i> , 2015 , 58, 20-32	11
248	Enhanced oxidative desulfurization in a film-shear reactor. <i>Fuel</i> , 2015 , 156, 142-147 7.1	37
247	A simulation of diesel hydrotreating process with real component method. 2015 , 23, 780-788	3
246	Anisole and Guaiacol Hydrodeoxygenation Reaction Pathways over Selected Catalysts. <i>Energy & amp; Fuels</i> , 2015 , 29, 909-916	52
245	Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems. 2015 , 17, 1710-1717	85
244	Synthesis and application of functionalized polymers for the removal of nitrogen and sulfur species from gas oil. 2015 , 131, 473-482	9
243	Dealing with uncertainties: Sensitivity analysis of vacuum gas oil hydrotreatment. 2015 , 278, 469-478	9
242	Influence of Na content on behavior of NiMo catalysts supported on titania nanotubes in hydrodesulfurization. <i>Journal of Catalysis</i> , 2015 , 329, 457-470	29
241	Slurry-Phase Batch Microreactor for Hydroconversion Studies. <i>Energy & Energy & Ener</i>	2
240	Optimization of reaction variables and macrokinetics for the hydrodeoxygenation of full range low temperature coal tar. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2015 , 116, 433-450	20
239	Influence of Support Acidity of NiMo Sulfide Catalysts for Hydrogenation and Hydrocracking of Tetralin and Its Reaction Intermediates. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 2646-2855	6 33
238	Catalytic Hydrodenitrogenation of Asphaltene Model Compounds. <i>Energy & Catalytic Hydrodenitrogenation</i> of Asphaltene Model Compounds. <i>Energy & Catalytic Hydrodenitrogena</i> of Asphaltene Model Compounds. <i>Energy & Catalytic Hydrodenitrog</i>	6
237	Kinetic study of the conversion of 2-methoxyphenol over supported Re catalysts: Sulfide and oxide state. <i>Applied Catalysis A: General</i> , 2015 , 505, 302-308	18
236	Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. 2015 , 115, 11559-624	1600
235	Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over bulk tungsten phosphide. <i>Journal of Catalysis</i> , 2015 , 330, 330-343	62

(2016-2015)

234	Reactive Adsorption Desulfurization of Hydrotreated Diesel over a Ni/ZnOAl2O3BiO2 Adsorbent. <i>Energy & Diesels</i> , 2015 , 29, 6057-6067	ļ .1	15
233	StructureActivity Correlations in Hydrodesulfurization Reactions over Ni-Promoted MoxW(1🛭)S2/Al2O3 Catalysts. 2015 , 5, 7276-7287		78
232	Ni- and Pd/C-catalyzed Hydrodenitrogenation of Isoquinoline. 2015 , 37, 55-60		2
231	Synthesis of ionic liquids and their use for extracting nitrogen compounds from gas oil feeds towards diesel fuel production. 2015 , 130, 38-45		27
230	Synthesis, characterization and catalytic properties of NiMoP/MCM41-Al2O3 catalysts for DBT hydrodesulfurization. <i>Catalysis Today</i> , 2015 , 250, 2-11	5.3	19
229	Synergistic effects of Ni and acid sites for hydrogenation and CD bond cleavage of substituted phenols. 2015 , 17, 1204-1218		174
228	Influence of the sulfidation temperature in a NiMoW catalyst derived from layered structure (NH4)Ni2OH(H2O)(MoO4)2. <i>Fuel</i> , 2015 , 139, 575-583	7.1	20
227	Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. 2016 , 9, 578-587		82
226	Diesel Fuels for Compression Ignition Internal Combustion Engines. 2016 , 1-34		
225	Iridium addition enhances hydrodesulfurization selectivity in 4,6-dimethyldibenzothiophene conversion on palladium. 2016 , 191, 138-146		21
224	HDN of indole over Ir-modified Ti-SBA-15. 2016 , 192, 220-233		23
223	DFT Insights into the Competitive Adsorption of Sulfur- and Nitrogen-Containing Compounds and Hydrocarbons on Co-Promoted Molybdenum Sulfide Catalysts. 2016 , 6, 2904-2917		58
222	Comparison of the metalBrganic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks. <i>Fuel</i> , 2016 , 180, 284-291	7.1	23
221	Isolation and characterization of new lignin streams derived from extractive-ammonia (EA) pretreatment. 2016 , 18, 4205-4215		57
220	Photo-assisted adsorptive desulfurization of hydrocarbon fuels over TiO2 and Ag/TiO2. <i>Fuel</i> , 2016 , 183, 550-556	7.1	30
219	Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2016 , 119, 491-509	1.6	9
218	Extractive denitrogenation of fuel oils using ionic liquids: a review. 2016 , 6, 93932-93946		38
217	Experimental Investigation on Upgrading of Lignin-Derived Bio-Oils: Kinetic Analysis of Anisole Conversion on Sulfided CoMo/Al2O3 Catalyst. <i>International Journal of Chemical Kinetics</i> , 2016 , 48, 702-71	[[] 3 [‡]	28

216	Deep-desulfurization of the petroleum diesel using the heterogeneous carboxyl functionalized poly-ionic liquid. 2016 , 2, S105-S113		19
215	Adsorptive removal of organic chloride from model jet fuel by Na-LSX zeolite: Kinetic, equilibrium and thermodynamic studies. 2016 , 114, 321-330		9
214	Hydrotreating of oil fractions. 2016 , 295-329		8
213	Effect of Dephenolization on Low-Temperature Coal Tar Hydrogenation To Produce Fuel Oil. <i>Energy & Energy & Ene</i>	4.1	20
212	Metal-Organic Frameworks as a Potential Platform for Selective Treatment of Gaseous Sulfur Compounds. 2016 , 8, 29835-29857		55
211	An investigation on the aqueous-phase hydrodeoxygenation of various methoxy-substituted lignin monomers on Pd/C and HZSM-5 catalysts. 2016 , 6, 104398-104406		10
21 0	Deep oxidative extractive desulfurization of fuels using benzyl-based ionic liquid. 2016 , 62, 4023-4034		23
209	Hydroprocessing of 4-methylanisole as a representative of lignin-derived bio-oils catalyzed by sulphided CoMo/FAl2O3: A semi-quantitative reaction network. 2016 , 94, 1524-1532		23
208	CN bond hydrogenolysis of aniline and cyclohexylamine over TaOxAl2O3. 2016 , 40, 6001-6004		4
207	Catalytic hydroprocessing of microalgae-derived biofuels: a review. 2016 , 18, 3684-3699		109
207	Catalytic hydroprocessing of microalgae-derived biofuels: a review. 2016 , 18, 3684-3699 Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198	5.3	109
ĺ	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and	5-3	
206	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198 Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment.	5-3	11
206	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198 Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. 2016 , 101, 380-389 Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. <i>Catalysis</i>		11 39
206 205 204	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198 Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. 2016 , 101, 380-389 Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. <i>Catalysis Today</i> , 2016 , 259, 409-416 Mapping reactivities of aromatic models with a lignin disassembly catalyst. Steps toward		11 39 13
206 205 204 203	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198 Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. 2016 , 101, 380-389 Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. <i>Catalysis Today</i> , 2016 , 259, 409-416 Mapping reactivities of aromatic models with a lignin disassembly catalyst. Steps toward controlling product selectivity. 2016 , 6, 2984-2994 Optimization of crude oil hydrotreating process as a function of operating conditions: Application		11 39 13 31
206 205 204 203	Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling. <i>Catalysis Today</i> , 2016 , 271, 188-198 Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. 2016 , 101, 380-389 Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. <i>Catalysis Today</i> , 2016 , 259, 409-416 Mapping reactivities of aromatic models with a lignin disassembly catalyst. Steps toward controlling product selectivity. 2016 , 6, 2984-2994 Optimization of crude oil hydrotreating process as a function of operating conditions: Application of response surface methodology. 2016 , 89, 158-165 Substrate induced diastereoselective hydrogenation/reduction of arenes and heteroarenes. 2016 ,		11 39 13 31

(2017-2016)

198	Hydrodesulfurization of Dibenzothiophene in a Micro Trickle Bed Catalytic Reactor under Operating Conditions from Reactive Distillation. <i>International Journal of Chemical Reactor Engineering</i> , 2016 , 14, 769-783	1.2	4
197	Competitive adsorption of nitrogen and sulphur compounds on a multisite model of NiMoS catalyst: A theoretical study. <i>Journal of Catalysis</i> , 2016 , 333, 78-93	7.3	44
196	Performance assessment of NiMo/EAl 2 O 3 catalysts for upgrading KEC-AR: An assessment of selected apparent kinetic parameters of selected hydrotreating reactions. <i>Fuel</i> , 2016 , 164, 38-45	7.1	3
195	Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. 2017 , 72, 673-722		119
194	A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels. 2017, 2,		39
193	Experimental and First-Principles Evidence for Interfacial Activity of Ru/TiO2 for the Direct Conversion of m-Cresol to Toluene. 2017 , 9, 2642-2651		31
192	Adsorptive Removal of Nitrogen, Sulfur, and Aromatic Compounds from Gas Oil by Poly(glycidy methacrylate) Using Two Kinds of Graft Polymerization Methods. <i>Energy & Description</i> (2017), 31, 2430-2.	43 ¹ 8 ¹	2
191	Development of a Structure-Based Lumping Kinetic Model for Light Gas Oil Hydrodesulfurization. <i>Energy & Development Structure-Based Lumping Kinetic Model for Light Gas Oil Hydrodesulfurization.</i>	4.1	17
190	Hydrogenation of aromatics compounds: Calculation of thermodynamic properties using molecular index connectivity. 2017 , 95, 2272-2277		2
189	Impact of Ni promotion on the hydrogenation pathways of phenanthrene on MoS2/EAl2O3. Journal of Catalysis, 2017 , 352, 171-181	7.3	30
188	Naphthalene hydrogenation over Mg-doped Pt/Al 2 O 3. <i>Catalysis Today</i> , 2017 , 296, 197-204	5.3	17
187	Influences of sodium and potassium cations on the hydrodesulfurization performances of Pd and Pt catalysts supported on siliceous MCM-41. <i>Catalysis Today</i> , 2017 , 297, 124-130	5.3	8
186	Fluid dynamics and reaction assessment of diesel oil hydrotreating reactors via CFD. 2017 , 166, 17-29		11
185	The hydrodeoxygenation, hydrogenation, hydrodealkylation and ring-opening reaction in the hydrotreating of low temperature coal tar over NiMo/FAl2O3 catalyst. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2017 , 121, 487-503	1.6	12
184	Hydroprocessing of Low-Temperature Coal Tar for the Production of Clean Fuel over Fluorinated NiW/Al2O3BiO2 Catalyst. <i>Energy & Damp; Fuels</i> , 2017 , 31, 3768-3783	4.1	36
183	Hydrodesulfurization Kinetics of Middle Distillates: A Four-Lumping Model with Consideration of Nitrogen and Aromatics Inhibitions. <i>Energy & District Supply</i> 2017, 31, 831-838	4.1	10
182	On the Preferred Active Sites of Promoted MoS2 for Hydrodesulfurization with Minimal Organonitrogen Inhibition. 2017 , 7, 501-509		53
181	Rationally Positioning Zirconium on Supported Ru Catalyst for Synergistically Catalytic Upgrading Bio-oil. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 13566-13571	3.9	1

180	Characterization of Heteroatom-Containing Compounds in Thermally Cracked Naphtha from Oilsands Bitumen. <i>Energy & Discounty of the State of the Stat</i>	4.1	8
179	Modeling, simulation and kinetic parameter estimation for diesel hydrotreating. <i>Fuel</i> , 2017 , 209, 184-7	1937.1	24
178	Production of Clean Fuels by Catalytic Hydrotreating a Low Temperature Coal Tar Distillate in a Pilot-Scale Reactor. <i>Energy & District Scale Reactor</i> (2017), 31, 11495-11508	4.1	24
177	Change of Hydrocarbon Structure Type in Lube Hydroprocessing and Correlation Model for Viscosity Index. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8016-8028	3.9	7
176	A framework for developing a structure-based lumping kinetic model for the design and simulation of refinery reactors. 2017 , 106, 385-395		3
175	Properties, environmental fate and biodegradation of carbazole. 2017 , 7, 111		12
174	Inhibiting effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst. <i>Fuel</i> , 2017 , 188, 401-407	7.1	27
173	Hydrogenation of tetralin in presence of nitrogen using a noble-bimetallic couple over a Ti-modified SBA-15. <i>Catalysis Today</i> , 2017 , 282, 111-122	5.3	15
172	Hydrotreating and hydrothermal treatment of alkaline lignin as technological valorization options for future biorefinery concepts: a review. 2017 , 92, 257-270		16
171	Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv HS measurements in a petrochemical process gas stream. 2017 , 409, 729-739		30
170	Bifunctional Ni-ZSM-5 Catalysts for the Pyrolysis and Hydropyrolysis of Biomass. 2017 , 5, 172-182		30
169	Extractive Denitrogenation of Fuel Oils with Ionic Liquids: A Systematic Study. <i>Energy & amp; Fuels</i> , 2017 , 31, 2183-2189	4.1	20
168	Removal of sulphur from model gasoline by CuAgY zeolite: equilibrium, thermodynamics and kinetics. 2017 , 7, 51528-51537		6
167	Modern Approaches to Hydrotreating Catalysis. <i>Springer Handbooks</i> , 2017 , 675-712	1.3	3
166	Kinetic Studies of Hydrodesulphurization of Dibenzothiophen on a Ni2P/MCM-41 Catalyst. 2017 , 90, 1883-1891		
165	Hydrodesulfurization, Hydrodenitrogenation and Hydrodearomatization over CoMo/SAPO-11-Al2O3 Catalysts. <i>Journal of the Japan Petroleum Institute</i> , 2017 , 60, 301-310	1	6
164	Experimental and Modeling Study of Organic Chloride Compounds Removal from Naphtha Fraction of Contaminated Crude Oil Using Sintered EAl2O3 Nanoparticles: Equilibrium, Kinetic, and Thermodynamic Analysis. <i>Energy & Energy</i> 32, 4025-4039	4.1	6
163	Unravelling the chemical reactions of fatty acids and triacylglycerides under hydrodeoxygenation conditions based on a comprehensive thermodynamic analysis. 2018 , 112, 37-44		15

(2018-2018)

162	Pilot-scale evaluation of hydrotreating inferior coker gas oil prior to its fluid catalytic cracking. <i>Fuel</i> , 2018 , 226, 27-34	7.1	8
161	Effect of TiO2 Coating on Morphology of Active Phase on Sulfided CoMo/Al2O3 Hydrotreating Catalysts. <i>Energy & Description</i> (2018), 32, 1665-1673	4.1	12
160	Detoxification of Crude Oil. 2018 , 173-194		
159	Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp. 2018 , 252, 28-36		47
158	Sulfur and Total Carboxylic Acid Number Determination in Vacuum Gas Oil by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. <i>Energy & Description</i> 2018, 32, 2128-2136	4.1	3
157	Ambient Pressure Hydrodesulfurization of Refractory Sulfur Compounds in Highly Sensitive Reactor Platform Coupled to a Time-of-Flight Mass Spectrometer. 2018 , 122, 1699-1705		4
156	Deep oxidative desulfurization with simultaneous oxidative denitrogenation of diesel fuel and straight run gas oil. 2018 , 236, 326-337		45
155	Remarkable adsorptive removal of nitrogen-containing compounds from hydrotreated fuel by molecularly imprinted poly-2-(1-imidazol-2-yl)-4-phenol nanofibers 2018 , 8, 8039-8050		6
154	Combined Hydrotreating and Fluid Catalytic Cracking Processing for the Conversion of Inferior Coker Gas Oil: Effect on Nitrogen Compounds and Condensed Aromatics. <i>Energy & Discounty States</i> 2018, 32, 4979-4987	4.1	12
153	Kinetic Assessment of the Simultaneous Hydrodesulfurization of Dibenzothiophene and the Hydrogenation of Diverse Polyaromatic Structures. 2018 , 8, 3926-3942		27
152	Advances in Nanocatalyzed Hydrodesulfurization of Gasoline and Diesel Fuels. 2018, 67-96		3
151	Selectivity effects related to the diversity of active sites operating on nanostructured multifunctional catalysts. 2018 , 21, 369-381		
150	A theory of ultradeep hydrodesulfurization of diesel in stacked-bed reactors. 2018 , 64, 595-605		10
149	Thermodynamic analysis of diesel hydrotreating reactions. Fuel, 2018, 214, 314-321	7.1	7
148	Kinetics of thiophene hydrodesulfurization over a supported Mollolli catalyst. 2018 , 21, 277-287		12
147	Production of High-Density Jet and Diesel Fuels by Hydrogenation of Highly Aromatic Fractions. 2018 , 91, 1223-1254		4
146	Kinetic and Mechanistic Analysis of Dibenzothiophene Hydrodesulfurization on Ti-SBA-15NiMo Catalysts. <i>Energy & Discourt Senior Catalysts</i> (2018), 32, 11383-11389	4.1	9
145	Adsorption of Biomass-Derived Products on MoO: Hydrogen Bonding Interactions under the Spotlight. 2018 , 3, 14165-14172		7

144	Cobalt(II)-Mediated Desulfurization of Thiophenes, Sulfides, and Thiols. <i>Inorganic Chemistry</i> , 2018 , 57, 11306-11309	5.1	12
143	Hydrotreating Reactivities of Atmospheric Residues and Correlation with Their Composition and Properties. <i>Energy & Double Bernous Energy & Double Bernous & Double Be</i>	4.1	11
142	Guaiacol Hydrogenation in an Aqueous Medium in the Presence of a Palladium Catalyst Supported on a Mesoporous Dendrimer-Containing Polymer. 2018 , 58, 407-411		5
141	Simulation, exergy analysis and optimization of a shale oil hydrogenation process for clean fuels production. 2018 , 140, 102-111		16
140	Evidence of heterogeneous catalytic activity of ZSM-5 in supercritical water for dodecane cracking. <i>Catalysis Today</i> , 2018 , 317, 2-11	5.3	14
139	Selective direct desulfurization way (DDS) with CoMoS supported over mesostructured titania for the deep hydrodesulfurization of 4,6-dimethydibenzothiophene. <i>Applied Catalysis A: General</i> , 2018 , 563, 91-97	5.1	12
138	Enantioselective Enzymatic Naphthoyl Ring Reduction. 2018, 24, 12505-12508		11
137	Catalytic hydrogenation of Low temperature coal tar into jet fuel by using two-reactors system. 2018 , 134, 202-208		15
136	Mechanism and site requirements for thiophene hydrodesulfurization on supported Re domains in metal or sulfide form. <i>Journal of Catalysis</i> , 2018 , 368, 411-426	7.3	14
135	Molecular-Level Kinetic Modeling of Lube Base Oil Hydroisomerization. <i>Energy & amp; Fuels</i> , 2018 , 32, 9804-9812	4.1	3
134	Refractory Character of 4,6-Dialkyldibenzothiophenes: Structural and Electronic Instabilities Reign Deep Hydrodesulfurization. 2018 , 3, 8849-8856		7
133	Hydrodearomatization of Model Monoaromatics Over Ni/Al2O3: Theoretical and Experimental Approaches. 2018 , 148, 2548-2560		1
132	Multiple C-H Bond Activations and Ring-Opening C-S Bond Cleavage of Thiophene by Dirhenium Carbonyl Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 7957-7965	5.1	9
131	Iron(II) Mediated Desulfurization of Organosulfur Substrates Produces Nonheme Diiron(II)-hydrosulfides. <i>Inorganic Chemistry</i> , 2019 , 58, 9998-10011	5.1	7
130	Using DFT Models of Thiophene Adsorption at Transition Metal Interfaces to Interpret Periodic Trends in Thiophene Hydrodesulfurization on Transition Metal Sulfides. 2019 , 149, 2953-2960		O
129	Nitrogen Speciation: Application to Reactivity of Feeds to Hydroprocessing and Catalyst Deactivation. 2019 , 261-280		
128	On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation. <i>Journal of Catalysis</i> , 2019 , 380, 332-342	7:3	12
127	CFD Studies on Efficacy of Flow Modulation in a Hydrotreating Trickle-Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 18073-18083	3.9	1

126	Insights from Nitrogen Compounds in Gas Oils Highlighted by High-Resolution Fourier Transform Mass Spectrometry. 2019 , 91, 12644-12652		14
125	Molecular-Level Kinetic Modeling of a Real Vacuum Gas Oil Hydroprocessing Refinery System. <i>Energy & Energy & E</i>	4.1	7
124	Kinetics study and reactor simulation of full-range low-temperature coal tar during hydrodeoxygenation process. 2019 , 41, 2725-2733		3
123	Effects of Aging Treatment on the Hydrotreating Performance of the Unsupported Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2683-2688	3.9	2
122	Evaluation of the Interest of NiMo Catalysts Supported on MgOIIiO2 for Hydrodesulfurization Applications. 2019 , 149, 2656-2670		1
121	Complete Hydrodesulfurization of Dibenzothiophene via Direct Desulfurization Pathway over Mesoporous TiO2-Supported NiMo Catalyst Incorporated with Potassium. 2019 , 9, 448		8
120	Extractive desulfurization of gasoline using binary solvent of bronsted-based ionic liquids and non-volatile organic compound. 2019 , 73, 2757-2765		3
119	Paving the way towards green catalytic materials for green fuels: impact of chemical species on Mo-based catalysts for hydrodeoxygenation 2019 , 9, 18292-18301		5
118	Liquid Liquid Equilibrium for Ternary Systems of N-Methylformamide + Pyrrole/Indole + Alkanes at 298.15 K: Phase Equilibrium Measurement and Correlation. 2019 , 64, 3085-3091		5
117	MoO3-based catalysts supported on SiO2 and their performance in hydrodeoxygenation. 2019 , 251, 226-229		6
116	Catalytic upgrading of hydrothermal liquefaction biocrudes: Different challenges for different feedstocks. <i>Renewable Energy</i> , 2019 , 141, 420-430	8.1	69
115	Production of liquid fuels from low-temperature coal tar via hydrogenation over CoMo/USY catalysts. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2019 , 127, 961-978	1.6	8
114	Molecular-Level Insights into Coker/Straight-Run Gas Oil Hydrodenitrogenation by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & District Straight Straight Spectrometry</i> . <i>Energy & District Straight Spectrometry</i> . <i>Energy & District Spectrometry</i> . <i>Energy</i>	4.1	15
113	Exploring thiophene desulfurization: The adsorption of thiophene on transition metal surfaces. 2019 , 686, 30-38		2
112	Modelling of H2 consumption and process optimization for hydrotreating of light gas oils. 2019 , 97, 18	328-183	37 ₂
111	Heteroatom Removal as Pretreatment of Boiler Fuels. <i>Energy & Fuels</i> , 2019 , 33, 5790-5801	4.1	3
110	Upgrading of light cycle oil for ultra low sulphur diesel production by a solvent extraction procedure. 2019 , 22, 315		
109	Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. <i>Fuel</i> , 2019 , 236, 55-64	7.1	40

108	Hollow monocrystalline silicalite-1 hybrid membranes for efficient pervaporative desulfurization. 2019 , 65, 196-206		7
107	Deep Desulfurization of Fuels Using Imidazole Anion-Based Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1890-1900	8.3	28
106	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. 2019 , 71, 1-80		184
105	Effects of Citric Acid Addition Method on the Activity of NiMo/FAl2O3 Catalysts in Simultaneous Hydrodesulfurization and Hydrodenitrogenation Reactions. <i>Energy & Description</i> 2019, 33, 1450-1457	4.1	8
104	Adsorption of nitrogenous inhibitor molecules on MoS2 and CoMoS hydrodesulfurization catalysts particles investigated by scanning tunneling microscopy. <i>Journal of Catalysis</i> , 2019 , 370, 232-240	7.3	18
103	Shifting Desulfurization Equilibria in Ionic LiquidDil Mixtures. <i>Energy & Desulfurization Equilibria</i> in Ionic LiquidDil Mixtures.	4.1	6
102	A carbon-number lump based model for simulation of industrial hydrotreaters: Vacuum gas oil (VGO). 2019 , 358, 504-519		7
101	Molecular-level kinetic modelling of fluid catalytic cracking slurry oil hydrotreating. 2019 , 195, 619-630		22
100	Towards oxidative denitrogenation of fuel oils: Vanadium oxide-catalysed oxidation of quinoline and adsorptive removal of quinoline-N-oxide using 2,6-pyridine-polybenzimidazole nanofibers. 2019 , 12, 198-214		16
99	HDS of 4,6-dimethyldibenzothiophene over CoMoS supported mesoporous SiO2-TiO2 materials. <i>Catalysis Today</i> , 2020 , 357, 675-683	5.3	4
98	Extractive desulfurization of fuels using trialkylamine-based protic ionic liquids. 2020 , 231, 115923		38
97	CYHPO oxidation followed by methylation for selective characterization of thiophenic and sulfidic compounds in petroleum via ESI FT-ICR MS. <i>Fuel</i> , 2020 , 265, 116907	7.1	3
96	The Upgrading of Bio-Oil via Hydrodeoxygenation. 2020 , 35-60		5
95	Catalytic kinetics for ultra-deep hydrodesulfurization of diesel. 2020 , 214, 115446		12
94	Sulfided Homogeneous Iron Precatalyst for Partial Hydrogenation and Hydrodesulfurization of Polycyclic Aromatic Model Asphaltenes. <i>Energy & Energy & Energy</i>	4.1	1
93	Effect of Hydroconversion Conditions on the Composition and Properties of an Ultrafine Mo-Containing Catalyst Formed in situ. 2020 , 60, 1154-1163		2
92	Zr-Based MOFs for oxidative desulfurization: what matters?. 2020 , 22, 6351-6356		19
91	Bruce Gates: A Career in Catalysis. 2020 , 10, 11912-11935		5

90	Computational insights on intensification of hydrodenitrogenation in a trickle bed reactor using periodic flow modulation. 2020 , 157, 108135		5
89	Change in the Apparent Order at Different Temperatures and Catalyst Volumes: Hydrodesulfurization of KEC-AR. 2020 , 5, 32564-32572		2
88	Hydrofining Process of Coal Tar Based on Four Kinds of Catalyst Grading. <i>Energy & Camp; Fuels</i> , 2020 , 34, 6510-6517	4.1	7
87	Enhancing hydrogenation activity of Ni-Mo sulfide hydrodesulfurization catalysts. 2020 , 6, eaax5331		18
86	Kinetic Parameter Calculation and Trickle Bed Reactor Simulation Based on Pilot-Scale Hydrodesulfurization Test of High-Temperature Coal Tar. 2020 , 5, 12923-12936		3
85	Kinetics and mechanisms of homogeneous catalytic reactions. Part 16. Regioselective hydrogenation of quinoline catalyzed by dichlorotris(triphenylphosphine)ruthenium(II). 2020 , 490, 1109	70	3
84	Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review. 2020 , 1-86		41
83	Effect of sulfur compounds on the hydrodenitrogenation of 1,2,3,4-tetrahydroquinoline and its intermediates over NiMo/Al2O3 catalyst. <i>Fuel</i> , 2020 , 277, 118186	7.1	3
82	Evaluation of pressure and temperature effects on hydropyrolysis of pine sawdust: pyrolysate composition and kinetics studies. 2020 , 5, 1484-1500		11
81	Can Heteroarenes/Arenes Be Hydrogenated Over Catalytic Pd/C Under Ambient Conditions?. 2020 , 2020, 5514-5522		8
80	Multiscale Exploration and Experimental Insights into Separating Neutral Heterocyclic Nitrogen Compounds Using [emim][NO3] as an Extractant. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 5662-5673	8.3	24
79	Epitaxial synthesis of Ni-MoS/TiCT MXene heterostructures for hydrodesulfurization 2020 , 10, 12308-1	2317	2
78	Comparative Study for the Cobalt(II)- and Iron(II)-Mediated Desulfurization of Disulfides Demonstrating That the C-S Bond Cleavage Step Precedes the S-S Bond Cleavage Step. <i>Inorganic Chemistry</i> , 2020 , 59, 4037-4048	5.1	5
77	Extractive Catalytic Oxidative Denitrogenation of Fuels and Their Promoting Effect for Desulfurization Catalyzed by Vanadium Substituted Heteropolyacids and Molecular Oxygen. <i>Energy & Mamp; Fuels</i> , 2020 , 34, 8099-8109	4.1	10
76	Maldistribution Effects in an Industrial-Scale Trickle Bed Reactor. <i>Industrial & Description of the Manager of the Manager Scale Trickle Bed Reactor. Industrial & Description of the Manager of the Man</i>	3.9	4
75	Extractive denitrogenation of shale oil using imidazolium ionic liquids. 2020 , 5, 173-182		15
74	Steric Hindrance of Methyl Group on the Reaction Pathway of Hydrodesulfurization in the Presence of Quinoline. 2021 , 151, 194-211		3
73	Desulfurization of gasoline by [C4, 6, 8mim]Br/FeCl3 ILs collaboration with CTAB. 2021 , 56, 310-321		3

72	Properties and utilization of waste tire pyrolysis oil: A mini review. 2021 , 211, 106582		37
71	Influence of the Ir content and the support on the thiotolerance of the Ir/SiO2-Al2O3 catalysts for selective ring opening of decalin. 2021 , 99, 1146-1157		2
70	An insight into the molecular structure of sulfur compounds and their reactivity during residual oil hydroprocessing. <i>Fuel</i> , 2021 , 283, 119334	7.1	6
69	Naphthalene hydrogenation using Rh/Fe2O3-TiO2 magnetic catalysts. <i>Catalysis Today</i> , 2021 , 360, 176-1	8,4 3	4
68	Effect of pre-activation treatment temperature on hydrodesulfurization catalytic activity of CoMoS/KIT-6. <i>Catalysis Today</i> , 2021 , 360, 106-115	5.3	2
67	How to select ionic liquids as extracting agents systematically: a special case study for extractive denitrification processes 2020 , 11, 700-710		
66	Selective hydrogenation of light cycle oil for BTX and gasoline production purposes. <i>International Journal of Chemical Reactor Engineering</i> , 2021 ,	1.2	1
65	A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. 2021 , 138, 110667		24
64	Thermodynamics and kinetics insights into naphthalene hydrogenation over a Ni-Mo catalyst. 2021,		2
63	Effects of Water Addition on the Conversion of o-Cresol in the Presence of In Situ Ni M o Sulfide Catalysts. 2021 , 61, 682		О
62	Mechanism of Guaiacol Hydrodeoxygenation on Cu (111): Insights from Density Functional Theory Studies. 2021 , 11, 523		1
61	Synthesis of Few Layer Amorphous 1T/2H MoS2 by a One-Step Ethanol/Water Solvothermal Method and Its Hydrodesulfurization Performance. 1		1
60	Electrostatic Reaction Inhibition in Nanoparticle Catalysis. 2021, 37, 6800-6810		0
59	Effect of blending on hydrotreating reactivities of atmospheric residues: Synergistic effects. <i>Fuel</i> , 2021 , 293, 120429	7.1	2
58	Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. 2021 , 278, 116836		21
57	A Review on the Reaction Mechanism of Hydrodesulfurization and Hydrodenitrogenation in Heavy Oil Upgrading. <i>Energy & Discounty (Marchaeles)</i> 2021, 35, 10998-11016	4.1	12
56	Impact of Feedstock Properties on the Deactivation of a Vacuum Gas Oil Hydrocracking Catalyst. <i>Energy & Energy & Energy</i>	4.1	2
55	The Influence of Hydrodearomatisation Reaction Kinetics on the Modelling of Sulphur and Aromatics Removal from Diesel Fuel in an Industrial Hydrotreating Process. <i>Energies</i> , 2021 , 14, 4616	3.1	O

(2003-2021)

54	Study of Crude Oil Fouling from Sulfur-Containing Compounds Using High-Resolution Mass Spectrometry. <i>Energy & Discourse Spectrometry</i> . <i>Energy & Discourse </i>	4.1	2
53	Enhancement of hydrotreating process evaluation: correlation between feedstock properties, in-line monitoring and catalyst deactivation. <i>Catalysis Today</i> , 2021 ,	5.3	O
52	One-step synthesis of mesoporous alumina-supported molybdenum carbide with enhanced activity for thiophene hydrodesulfurization. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105693	6.8	2
51	Lumped kinetic model for the hydrodeoxygenation of full-range middle-low temperature coal tar. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2021 , 134, 179	1.6	
50	Application of Laser-Desorption Silver-Ionization Ultrahigh-Resolution Mass Spectrometry for Analysis of Petroleum Samples Subjected to Hydrotreating. <i>Energy & Energy & Ener</i>	4.1	O
49	Fabrication of CoNiMo/FAl2O3 from waste aluminum foil to convert waste lube oil to hydrotreated oil. <i>Egyptian Journal of Petroleum</i> , 2021 , 30, 21-21	3.4	1
48	Lumped kinetic simulation of hydrodenitrogenation for full-range middle-low temperature coal tar. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 716-730	1.4	О
47	Nitrogen compounds removal from oil-derived middle distillates by MIL-101(Cr) and its impact on ULSD production by hydrotreating. <i>Oil and Gas Science and Technology</i> , 2021 , 76, 56	1.9	1
46	Carbazole Metabolism by Pseudomonads. 2007 , 107-145		8
45	Hydrodeoxygenation of Oxygenated Model Compounds: Simulation of the Hydro-Purification of Bio-Oils. 1993 , 1403-1414		2
44	Effects of Catalyst Composition and Pretreatment on the Product Distribution in Hydrodesulphurization, Hydrodenitrogenation and Hydrodechlorination. 1998 , 273-309		1
43	Hydrogenation, Hydrogenolysis and Desulphurization of Thiophenes by Soluble Metal Complexes. 1998 , 129-154		4
42	Tailoring silicallumina-supported PtPd as poison-tolerant catalyst for aromatics hydrogenation. Journal of Catalysis, 2013 , 304, 135-148	7.3	29
41	Precious metal catalysts for deep hydrodesulfurization. <i>Catalysis</i> , 96-138	1.6	3
40	Promotion of Catalytic Activity and Suppression of Deactivation by Solvent Addition in the Hydrotreating of Atmospheric Residue. <i>Journal of the Japan Petroleum Institute</i> , 2004 , 47, 303-310	1	3
39	Hydrodesulfurization of light gas oil: Kinetic determination in a batch reactor. <i>Hemijska Industrija</i> , 2002 , 56, 529-532	0.6	1
38	Conversion of sulphur compounds into light gas oil: I. Kinetics of the conversion of model compounds. <i>Hemijska Industrija</i> , 2002 , 56, 68-75	0.6	
37	Hydrofining and Hydrotreating. 2003,		

36 Automated Kinetic Modeling of Gas Oil Hydroprocessing. *Chemical Industries*, **2005**, 159-182

35	Detergent Enzymes. 2005 , 673-684		
34	Characteristics of Heavy Oil Hydroprocessing Catalysts. <i>Chemical Industries</i> , 2007 , 121-190		2
33	Chemistry of Hydroprocessing. <i>Chemical Industries</i> , 2007 , 223-264		
32	Cleaner Energy Fuels. Advances in Chemical and Materials Engineering Book Series, 2016, 84-128	0.2	
31	saturation kinetics.		
30	Kinetic Modelling of the Influence of H₂S on Dibenzothiophene Hydrodesulfurization in a Batch System over Nano-MoS₂. <i>Advances in Chemical Engineering and Science</i> , 2020 , 10, 135-148	0.4	0
29	Surfaces of Bulk Oxides. <i>Springer Handbooks</i> , 2020 , 155-195	1.3	1
28	Hydrodesulfurization of dibenzothiophene using NiMoWS catalysts supported on AlMg and TiMg mixed oxides. <i>International Journal of Chemical Reactor Engineering</i> , 2020 , 18,	1.2	
27	Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process. <i>Renewable Energy</i> , 2022 , 183, 627-650	8.1	O
26	Molybdenum boron based catalysts loaded on MnO alumina support for hydrodesulfurization of dibenzothiophene. <i>Inorganic Chemistry Communication</i> , 2022 , 109237	3.1	3
25	Molecular Structures of Refractory Sulfur Compounds in Heavy Oil Hydrodesulfurization Characterized by Collision-Induced Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. <i>Energy & Dissociation</i> 2022, 36, 1326-1337	4.1	1
24	Integrated Approaches and Future Perspectives. 2022 , 613-651		
23	The effect of the nanoscale intimacy of platinum and acid centres on the hydroisomerization of short-chain alkanes. <i>Applied Catalysis A: General</i> , 2022 , 118535	5.1	O
22	Low-temperature selective transformation of diethylbenzene to isobutane and cyclohexanes via the interplay of Pt and acid centres in Pt/H-*BEA zeolites. <i>Journal of Catalysis</i> , 2022 ,	7.3	O
21	Martini 3 Coarse-Grained Model for Type III Deep Eutectic Solvents: Thermodynamic, Structural, and Extraction Properties. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 17338-17350	8.3	1
20	Conversion of Phenol and Lignin as Components of Renewable Raw Materials on Pt and Ru-Supported Catalysts <i>Molecules</i> , 2022 , 27,	4.8	1
19	Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues. <i>Journal of Catalysis</i> , 2022 , 407, 333-341	7.3	O

18	Optimization of the Metal Phase Composition of Ir P d/SiO2Al2O3 Catalysts to Increase Thiotolerance in Selective Ring Opening of Decalin. <i>Topics in Catalysis</i> , 1	2.3	
17	Synthesis and characterization of Fe2O3-TiO2 magnetic materials: Effect of heat-treatment on catalytic activity of naphthalene hydrogenation. <i>Catalysis Today</i> , 2022 , 392-393, 167-179	5.3	O
16	Extractive desulfurization of fuel oils using deep eutectic solvents TA comprehensive review. Journal of Environmental Chemical Engineering, 2022, 10, 107369	6.8	1
15	Catalytic Hydrolysis of Thiolates to Alcohols <i>Inorganic Chemistry</i> , 2022 ,	5.1	
14	Molecular analysis of nitrogen-containing compounds in vacuum gas oils hydrodenitrogenation by (ESI+/-)-FTICR-MS. <i>Fuel</i> , 2022 , 323, 124302	7.1	О
13	Hydrotreating of bio-crude obtained from hydrothermal liquefaction of biopulp: effects of aqueous phase recirculation on the hydrotreated oil. <i>Sustainable Energy and Fuels</i> ,	5.8	О
12	Hydrocarbon Fuels from Lignite Hydrothermal Liquefaction. SSRN Electronic Journal,	1	
11	Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction. <i>Tikrit Journal of Engineering Science</i> , 2022 , 16, 1-11	1.2	
10	The characteristics and evolution of nitrogen in bio-oil from microalgae pyrolysis in molten salt. 2023 , 331, 125903		3
9	Understanding the Upgrading of Sewage Sludge-Derived Hydrothermal Liquefaction Biocrude via Advanced Characterization. 2022 , 36, 12010-12020		O
8	Selective hydrogenation and defunctionalization of heavy oil model compounds using an unsupported iron catalyst. 2023 , 333, 126184		O
7	Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review. 2023 , 334, 126404		O
6	Tracing the Composition and Structure Evolution of Oxygen-enriched Asphaltenes During the Hydrotreating of Middle-low Temperature Coal Tar. 2022 , 105780		О
5	Hydrodenitrogenation [Homogeneous.		O
4	Hydrodenitrogenation [Heterogeneous.		O
3	The catalytic hydrogenolysis of compounds derived from guaiacol on the Cu (111) surface: mechanisms from DFT studies.		O
2	Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Al2O3 and NiMoP/Al2O3. 2023 , 275, 118725		О
1	Preparation of ultrasmall Ni2P nanoparticles with low P/Ni ratios supported on SiO2 and an Al2O3-B2O3 mixed oxide for dibenzothiophene hydrodesulfurization. 2023 , 420, 110-122		O