The Bohm criterion and sheath formation

Journal Physics D: Applied Physics 24, 493-518 DOI: 10.1088/0022-3727/24/4/001

Citation Report

#	Article	IF	CITATIONS
1	Bohm criterion and ionâ€acoustic sound barrier. Physics of Fluids B, 1991, 3, 3331-3338.	1.7	23
2	The ion energy distribution in front of a negative wall. Journal Physics D: Applied Physics, 1992, 25, 620-633.	1.3	40
3	Modeling a collisional, capacitive sheath for surface modification applications in radioâ€frequency discharges. Applied Physics Letters, 1992, 60, 1553-1555.	1.5	20
4	Metastable chlorine ion transport in a diverging field electron cyclotron resonance plasma. Journal of Applied Physics, 1992, 72, 3384-3393.	1.1	55
5	DynamicalN-body simulations of Coulomb scattering in plasma sheaths. Physical Review A, 1992, 46, 7815-7829.	1.0	5
6	Influence of negative ions on the plasma boundary sheath. Physical Review A, 1992, 46, 3442-3453.	1.0	33
7	Consistent analysis of a weakly ionized plasma and its boundary layer. Journal Physics D: Applied Physics, 1992, 25, 1432-1442.	1.3	26
8	The validity of Bohm's sheath criterion in rf discharges. Physics of Fluids B, 1992, 4, 2693-2695.	1.7	48
9	Bohm velocity with a two-temperature distribution of negative particles. IEEE Transactions on Plasma Science, 1992, 20, 62-65.	0.6	38
10	High energy electron generation in surface-wave-produced plasmas. Plasma Sources Science and Technology, 1992, 1, 126-131.	1.3	67
11	Measurements of the presheath in an electron cyclotron resonance etching device. Plasma Sources Science and Technology, 1992, 1, 147-150.	1.3	47
12	Analytic model of the cathode region of a short glow discharge in light gases. Physical Review A, 1992, 46, 7837-7852.	1.0	123
13	Plasma—sheath transition and Bohm criterion. Contributions To Plasma Physics, 1992, 32, 231-236.	0.5	7
14	In situ diagnostics of ionospheric plasma with the resonance cone technique. Journal of Geophysical Research, 1993, 98, 19163-19172.	3.3	13
15	A transport theoretical model of the keyhole plasma in penetration laser welding. Journal Physics D: Applied Physics, 1993, 26, 2066-2074.	1.3	39
16	Smooth joining of plasma and sheath. Case I: transverse to the discharge axis. Journal Physics D: Applied Physics, 1993, 26, 1957-1965.	1.3	2
17	Relaxation of the electron energy in the post-discharge of an He-N2mixture. Plasma Sources Science and Technology, 1993, 2, 119-122.	1.3	28
18	Resistive model of the rf discharge including additional dc currents and electrodes. Physical Review E, 1993, 47, 591-603.	0.8	12

TATION REDO

ARTICLE IF CITATIONS # The Bohm criterion for radioâ€frequency discharges: A numerical verification based on Poisson's 19 1.7 4 equation. Physics of Fluids B, 1993, 5, 1656-1660. Effects of boundary conditions in the dynamic model of the RF sheath. IEEE Transactions on 1.2 Magnetics, 1994, 30, 3100-3103. 21 Theory Of The Plasma-sheath Transition And The Bohm Criterion., 0, , . 0 Analysis of the argon additive influence on a nitrogen arcjet flow. Journal of Thermophysics and Heat Transfer, 1994, 8, 466-472. Sheaths, particle fluxes, floating potentials and electromotive force in a cylindrical discharge plasma 23 1.3 16 containing an internal coaxial wall. Journal Physics D: Applied Physics, 1994, 27, 119-128. An investigation of the collisionless discharge in the presence of an electron beam. Journal Physics D: Applied Physics, 1994, 27, 2487-2498. 1.3 Plasma-Sheath Boundary in Plasmas Containing Thermal and Beam Electrons. Japanese Journal of 25 0.8 22 Applied Physics, 1994, 33, 3578-3585. Modeling electronegative plasma discharges. Journal of Applied Physics, 1994, 75, 2339-2347. 1.1 26 Model of a laser heated plasma interacting with walls arising in laser keyhole welding. Physical 27 0.8 19 Review E, 1994, 50, 453-462. Theory of the plasma–sheath transition in an oblique magnetic field. Contributions To Plasma Physics, 1994, 34, 127-132. Fluid Approximation of the Bohm Criterium for Plasmas of Several Ion Species. Contributions To 29 0.5 22 Plasma Physics, 1994, 34, 139-144. Observations of ionosphere heating in the TSS-1 subsatellite presheath. Journal of Geophysical 3.3 Research, 1994, 99, 8961. Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters. Journal of $\mathbf{31}$ 1.1 96 Applied Physics, 1994, 75, 4900-4905. Theory of the collisional presheath in an oblique magnetic field. Physics of Plasmas, 1994, 1, 552-558. 167 Continuity of Electrostatic Potential around Magnetic Mirror Throat. Journal of the Physical Society 33 0.7 6 of Japan, 1994, 63, 393-396. Spreading particle trajectories near a perfectly reflecting surface in a tilted magnetic field. Physics of Plasmas, 1995, 2, 4118-4121. Monotonic Electrostatic Potential Profile around Plug Region of a Tandem Mirror. Journal of the 35 0.7 0 Physical Society of Japan, 1995, 64, 3149-3152. Negative lons in Low Pressure Discharges. Contributions To Plasma Physics, 1995, 35, 331-357.

ARTICLE IF CITATIONS # Characterization of plasma-surface contacts in low-pressure rf discharges using ion energy analysis 37 1.1 45 and langmuir probes'. Plasma Chemistry and Plasma Processing, 1995, 15, 123-157. L-shell X-ray production by 2-12 MeV carbon ions in fifteen selected elements from copper to lead. 23 Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, 1187-1200. Sheath structure in a plane probe inmersed in an electronegative plasma. Journal of Applied Physics, 39 39 1.1 1995, 77, 2937-2944. Criterion for Sheath Formation in Negative Ion Plasma with Electron Beam. Journal of the Physical Society of Japan, 1995, 64, 2444-2454. Ion energy distribution functions in a planar inductively coupled RF discharge. Plasma Sources 41 1.3 69 Science and Technology, 1995, 4, 541-550. Mass spectrometric investigation of high enthalpy plasma flows. Journal of Thermophysics and Heat Transfer, 1995, 9, 620-628 On measurements of the rotation of a magnetoplasma using an ion-energy analyser. Physica Scripta, 43 1.2 0 1995, 52, 588-595. Steady state expansion of a low-pressure plasma including collisions and space charge effects. 44 1.3 Journal Physics D: Applied Physics, 1995, 28, 2279-2286. <title>Plasma electrode pockels cell for ICF lasers</title>., 1995, , . 45 4 Experimental investigation and fast two-dimensional self-consistent kinetic modeling of a low-pressure inductively coupled rf discharge. Physical Review E, 1995, 51, 6063-6078. A model of the cathode region of atmospheric pressure arcs. Journal Physics D: Applied Physics, 1995, 47 230 1.3 28, 1869-1882. The sheath potential formation in the presence of a hot plasma flow. Physics of Plasmas, 1995, 2, 6-13. 48 Electron and ion distribution functions in RF and microwave plasmas. Plasma Sources Science and 49 1.3 49 Technology, 1995, 4, 172-182. The Bohmâ€"Chodura plasma sheath criterion. Physics of Plasmas, 1995, 2, 702-706. Transport of vacuum arc plasmas through magnetic macroparticle filters. Plasma Sources Science 51 1.3 173 and Technology, 1995, 4, 1-12. The ion flux from a thermal plasma to a surface. Journal Physics D: Applied Physics, 1995, 28, 286-294. 48 Magnetic and collisional effects on presheaths. Physics of Plasmas, 1995, 2, 3222-3233. 53 0.7 66 Plasma sheath in a tilted magnetic field: Closing of the diamagnetic currents; effect on plasma 54 convection. Physics of Plasmas, 1995, 2, 2011-2019.

ARTICLE IF CITATIONS # Nonstationary macroparticle charging in an arc plasma jet. IEEE Transactions on Plasma Science, 1995, 0.6 47 55 23, 902-908. The Bohm criterion and boundary conditions for a multicomponent system. IEEE Transactions on 184 Plasma Science, 1995, 23, 709-716. Tonks-Langmuir problem for a bi-Maxwellian plasma. IEEE Transactions on Plasma Science, 1995, 23, 57 0.6 73 728-734. Sheath dynamics in plasma immersion ion implantation. Plasma Sources Science and Technology, 1996, 58 5.54-60. Modelling electronegative discharges at low pressure. Plasma Sources Science and Technology, 1996, 59 1.3 63 5,662-676. The Recombination of Ionized Species in Supersonic Flows., 1996, , 525-542. Design of ion energy distributions by a broad beam ion source. Journal of Applied Physics, 1996, 80, 61 1.1 71 611-622. Electrodynamic tether currents in the day/night ionosphere: Correlations during the Plasma Motor 3.3 Generator mission. Journal of Geophysical Research, 1996, 101, 21657-21688. Comment on â€~ã€~Bohm criterion for the collisional sheath'' [Phys. Plasmas 3, 1459 (1996)]. Physics of 0.7 63 29 Plasmas, 1996, 3, 4751-4753. Bohm criterion for the collisional sheath. Physics of Plasmas, 1996, 3, 1459-1461. Modelling of an reactive magnetron discharge used for deposition of chromium oxide. Plasma 65 1.3 34 Sources Science and Technology, 1996, 5, 607-621. Theory of the collisional presheath in a magnetic field parallel to the wall. Physics of Plasmas, 1996, 3, 29 2486-2495. On the radial distribution and nonambipolarity of charged particle fluxes in a nonmagnetized planar 68 1.1 29 inductively coupled plasma. Journal of Applied Physics, 1996, 80, 6639-6645. Response to â€[°]â€[°]Comment on â€[°]Bohm criterion for the collisional sheathâ€[™] â€[™]â€[™] [Phys. Plasmas 3, 1459 (1996)]. Physics of Plasmas, 1996, 3, 4754-4755. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion 70 0.6 9 technique. Nuclear Instruments & Methods in Physics Research B, 1996, 113, 266-269. Bohm's Criterion and Plasma-Sheath Transition. Contributions To Plasma Physics, 1996, 36, 19-27. Kinetic Theory Analysis of Sheaths and Shocks. Contributions To Plasma Physics, 1996, 36, 207-219. 72 0.5 19 Approximation of the bounded plasma problem by the plasma and the sheath models. Physica D: 1.3 Nonlinear Phenomena, 1996, 97, 498-508.

#	Article	IF	Citations
74	Sheath dynamics in plasma immersion ion implantation. Surface and Coatings Technology, 1996, 85, 98-104.	2.2	8
75	Theoretical aspects of the metal—electronegative plasma interface. Surface and Coatings Technology, 1996, 84, 341-347.	2.2	29
76	The plasma properties adjacent to the target in a magnetron sputtering source. Plasma Sources Science and Technology, 1996, 5, 622-631.	1.3	27
77	Theoretical ion current to cylindrical Langmuir probes for finite ion temperature values. Journal Physics D: Applied Physics, 1996, 29, 2832-2840.	1.3	31
78	Nonlinearity of the radioâ€frequency sheath. Journal of Applied Physics, 1996, 79, 3445-3452.	1.1	110
79	Boundary value problems for multi-component plasmas and a generalized Bohm criterion. Journal Physics D: Applied Physics, 1996, 29, 1175-1180.	1.3	53
80	A fluid model of the edge plasma in low-temperature discharges containing beam electrons. Journal Physics D: Applied Physics, 1996, 29, 706-715.	1.3	20
81	A self-consistent model for the cathode fall region of an electric arc. Journal Physics D: Applied Physics, 1996, 29, 121-128.	1.3	57
82	Boundary layers in collisional plasmas with local plasma generation and recombination in the volume and at the wall. Plasma Sources Science and Technology, 1996, 5, 696-703.	1.3	2
83	RF harmonic suppression in Langmuir probe measurements in RF discharges. Plasma Sources Science and Technology, 1996, 5, 61-69.	1.3	41
84	Multifluid equations of a plasma with various species of positive ions and the Bohm criterion. Journal Physics D: Applied Physics, 1996, 29, 364-368.	1.3	42
85	Pressure and Electrode Distance Effects on Ion Energy Distributions in RF Discharges. Japanese Journal of Applied Physics, 1997, 36, 4711-4716.	0.8	13
86	Joining a collisional sheath to an active plasma. Journal Physics D: Applied Physics, 1997, 30, L45-L47.	1.3	10
87	The modelling of radio frequency hydrogen plasmas in the reactive ion etching of GaAs. Journal Physics D: Applied Physics, 1997, 30, 3187-3196.	1.3	4
88	Transport of argon ions in an inductively coupled high-density plasma reactor. Applied Physics Letters, 1997, 70, 835-837.	1.5	46
89	Asynchronous cycling as a convergence acceleration method in particle simulation of direct current glow discharges. Physics of Plasmas, 1997, 4, 3152-3162.	0.7	5
90	A model of ions interacting with neutrals in high electric field and the application to presheath formations. Physics of Plasmas, 1997, 4, 1308-1315.	0.7	1
91	The influence of collisions on the plasma sheath transition. Physics of Plasmas, 1997, 4, 4158-4166.	0.7	204

#	Article	IF	Citations
92	Study of a low-pressure nitrogen plasma boundary layer over a metallic plate. Physics of Plasmas, 1997, 4, 4144-4157.	0.7	18
93	Arc-cold cathode interactions: parametric dependence on local pressure. Plasma Sources Science and Technology, 1997, 6, 508-517.	1.3	39
94	Modelling plasma discharges at high electronegativity. Plasma Sources Science and Technology, 1997, 6, 437-449.	1.3	108
95	Flush mounted Langmuir probes in an oblique magnetic field. Physics of Plasmas, 1997, 4, 2151-2160.	0.7	59
96	Ion energy distributions in a dc biased rf discharge. Journal of Applied Physics, 1997, 81, 2985-2994.	1.1	62
97	Spatial distribution of Cu sputter ejected by very low energy ion bombardment. Journal of Applied Physics, 1997, 82, 1868-1875.	1.1	16
98	Dynamics of collisionless rf plasma sheaths. Journal of Applied Physics, 1997, 82, 3689-3709.	1.1	130
99	Model of the cathode fall region in magnetron discharges. Plasma Sources Science and Technology, 1997, 6, 524-532.	1.3	38
100	Growth and decay of macroparticles: A feasible approach to clean vacuum arc plasmas?. Journal of Applied Physics, 1997, 82, 3679-3688.	1.1	39
101	Plasma-wall transition: The influence of the electron to ion current ratio on the magnetic presheath structure. Physics of Plasmas, 1997, 4, 3461-3468.	0.7	27
102	The influence of magnetization strength on the sheath: Implications for flush-mounted probes. Physics of Plasmas, 1997, 4, 4435-4446.	0.7	59
103	Effect of two-temperature electron distribution on the Bohm sheath criterion. Physical Review E, 1997, 55, 1213-1216.	0.8	46
104	Current collection by a positively charged spacecraft: Effects of its magnetic presheath. Journal of Geophysical Research, 1997, 102, 2417-2432.	3.3	21
105	Importance of high local cathode spot pressure on the attachment of thermal arcs on cold cathodes. IEEE Transactions on Plasma Science, 1997, 25, 913-918.	0.6	29
106	Study of gross and net erosion in the ASDEX upgrade divertor. Journal of Nuclear Materials, 1997, 241-243, 684-689.	1.3	27
107	Comparison of measured and calculated dose for plasma source ion implantation into 3-D objects. Nuclear Instruments & Methods in Physics Research B, 1997, 127-128, 996-999.	0.6	25
108	Measured and calculated dose distribution for 2D plasma immersion ion implantation. Surface and Coatings Technology, 1997, 93, 229-233.	2.2	17
109	Ion energy distribution in plasma immersion ion implantation. Surface and Coatings Technology, 1997, 93, 234-237.	2.2	9

#	Article	IF	CITATIONS
110	Utilization of plasma source ion implantation for tribological applications. Surface and Coatings Technology, 1997, 96, 16-21.	2.2	6
111	A theoretical model for gas metal arc welding and gas tungsten arc welding. I Journal of Applied Physics, 1998, 84, 3518-3529.	1.1	100
112	Quasi-neutral particle simulation of magnetized plasma discharges: general formalism and application to ECR discharges. IEEE Transactions on Plasma Science, 1998, 26, 1592-1609.	0.6	33
113	The Ion Current of a Flush Mounted Langmuir Probe in an Oblique Magnetic Field. Contributions To Plasma Physics, 1998, 38, 145-150.	0.5	7
114	Modelling of radio frequency sheaths for plasma processing. European Physical Journal D, 1998, 48, 59-69.	0.4	1
115	Particle simulation of a magnetized plasma contacting the wall. Physics of Plasmas, 1998, 5, 117-126.	0.7	29
116	Sheath and presheath dynamics in plasma immersion ion implantation. Journal Physics D: Applied Physics, 1998, 31, 1109-1117.	1.3	34
117	TSS-1R electron currents: Magnetic limited collection from a heated presheath. Geophysical Research Letters, 1998, 25, 753-756.	1.5	24
118	On the influence of the gas velocity on dissociation degree and gas temperature in a flowing microwave hydrogen discharge. Journal of Applied Physics, 1998, 84, 161-167.	1.1	35
119	Modeling the Hall thruster. , 1998, , .		11
120	Sheath and presheath structure in the plasma–wall transition layer in an oblique magnetic field. Physics of Plasmas, 1998, 5, 1545-1553.	0.7	56
121	Study of the plasma pre-sheath in magnetron discharges dominated by Bohm diffusion of electrons. Plasma Sources Science and Technology, 1998, 7, 572-580.	1.3	24
122	Investigations in the sheath region of a radio frequency biased inductively coupled discharge. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 306-315.	0.9	9
123	Comparison of a consistent theory of radio frequency sheaths with step models. Journal of Applied Physics, 1998, 83, 3521-3528.	1.1	49
124	Plasma–wall sheath in a positive biased duct of the vacuum arc magnetic macroparticle filter. Applied Physics Letters, 1998, 73, 306-308.	1.5	20
125	Confinement of a mirror plasma with an anisotropic electron distribution function. Physical Review E, 1998, 57, 5937-5944.	0.8	24
197			
126	Sheath criterion and boundary conditions for an electrostatic sheath. Physics of Plasmas, 1998, 5, 804-807.	0.7	52

	CITATION		
#	ARTICLE	IF	CITATIONS
128	Ionization layer at the edge of a fully ionized plasma. Physical Review E, 1998, 57, 2230-2241.	0.8	51
129	On the continuous plug potential profile in a tandem mirror. Physics of Plasmas, 1998, 5, 1560-1562.	0.7	4
130	A coupled two-sheath simulation of RF bias at high electronegativities. Plasma Sources Science and Technology, 1998, 7, 289-297.	1.3	18
131	Characterization of a modular broad beam ion source. Plasma Sources Science and Technology, 1998, 7, 252-267.	1.3	28
132	Parameters of plasma layer within the vacuum arc cathode spot. , 0, , .		0
133	An experimental study of ion currents to a flush mounted Langmuir probe in an ECR discharge. Plasma Physics and Controlled Fusion, 1999, 41, 721-732.	0.9	19
134	Experimental study of the nonlinear dynamics of a harmonically forced double layer. Plasma Physics and Controlled Fusion, 1999, 41, 175-190.	0.9	28
135	Shielding and charging of dust particles in the plasma sheath. Physical Review E, 1999, 60, 4708-4714.	0.8	28
136	Characteristic behavior of the sheath formation in thermal plasma. Physics of Plasmas, 1999, 6, 3685-3689.	0.7	34
137	Analytical model of the relaxation of a collisionless ion matrix sheath. Journal of Applied Physics, 1999, 86, 1202-1207.	1.1	52
138	A self-consistent analysis of a collisional presheath. Physics of Plasmas, 1999, 6, 4522-4532.	0.7	8
139	Numerical study of argon ions transported across the sheath in electron cyclotron resonance discharges. Journal of Applied Physics, 1999, 85, 1351-1357.	1.1	11
140	Drifts, boundary conditions and convection on open field lines. Physics of Plasmas, 1999, 6, 1995-2001.	0.7	20
141	Kinetic analysis of the plasma boundary layer in an oblique magnetic field. Physics of Plasmas, 1999, 6, 2409-2417.	0.7	26
142	Formation of an oscillatory potential structure at the plasma boundary in electronegative plasmas. Journal Physics D: Applied Physics, 1999, 32, 1357-1363.	1.3	74
143	B2-EIRENE code modelling of an island divertor. Journal of Nuclear Materials, 1999, 266-269, 1015-1019.	1.3	8
144	Multi-ion species model with initial presheath profile for plasma source ion implantation. Surface and Coatings Technology, 1999, 112, 318-323.	2.2	1
145	Positive ion flux from a low-pressure electronegative discharge. Plasma Sources Science and Technology, 1999, 8, 457-462.	1.3	111

#	Article	IF	CITATIONS
146	Modeling of plasma behavior in a plasma electrode Pockels cell. IEEE Transactions on Plasma Science, 1999, 27, 713-726.	0.6	18
147	Parameters of plasma layer within the vacuum arc cathode spot. IEEE Transactions on Plasma Science, 1999, 27, 858-863.	0.6	7
148	Kinetic two-dimensional modeling of inductively coupled plasmas based on a hybrid kinetic approach. IEEE Transactions on Plasma Science, 1999, 27, 1297-1309.	0.6	22
149	Sheath thickness evaluation for collisionless or weakly collisional bounded plasmas. IEEE Transactions on Plasma Science, 1999, 27, 1358-1365.	0.6	33
150	Spatial profiles of a planar inductively coupled discharge in argon. Journal Physics D: Applied Physics, 1999, 32, 804-814.	1.3	17
151	Internal sheaths in electronegative discharges. Journal of Applied Physics, 1999, 86, 4142-4153.	1.1	71
152	Sheath structure of an electronegative plasma with cold positive ions. IEEE Transactions on Plasma Science, 2000, 28, 248-252.	0.6	22
153	Distribution functions of positive ions and electrons in a plasma near a surface. IEEE Transactions on Plasma Science, 2000, 28, 1244-1253.	0.6	9
154	A self-consistent kinetic modeling of a 1-D, bounded, plasma in equilibrium. Pramana - Journal of Physics, 2000, 55, 887-898.	0.9	0
155	The plasma-wall boundary region in negative-ion-dominated plasmas at low pressures. Plasma Sources Science and Technology, 2000, 9, 191-198.	1.3	82
156	Vacuum arc plasma jet interaction with neutral ambient gas. Journal Physics D: Applied Physics, 2000, 33, 2598-2604.	1.3	16
157	Transitions and scaling laws for electronegative discharge models. Plasma Sources Science and Technology, 2000, 9, 45-56.	1.3	53
158	The numerical modelling of Joule heating effects in thoriated tungsten cathodes of high-current plasma arcs. Journal Physics D: Applied Physics, 2000, 33, 1342-1347.	1.3	16
159	On the contamination of Langmuir probe surfaces in a potassium plasma. Plasma Physics and Controlled Fusion, 2000, 42, 217-223.	0.9	12
160	Presheath dynamics induced by sudden electrode voltage jumps. Journal Physics D: Applied Physics, 2000, 33, 3066-3072.	1.3	8
161	Collision-dominated to collisionless electron-free space-charge sheath in a plasma with variable ion temperature. Physics of Plasmas, 2000, 7, 4403-4411.	0.7	8
162	Kinetic modeling of a one-dimensional, bounded plasma in the ambipolar regime. Physics of Plasmas, 2000, 7, 4845-4850.	0.7	1
163	Sheath formation in low-pressure discharges. Plasma Sources Science and Technology, 2000, 9, 574-582.	1.3	44

#	ARTICLE Damped dust oscillations as a plasma sheath diagnostic. Plasma Sources Science and Technology,	IF	CITATIONS
164	2000, 9, 87-96.	1.3	89
165	Hall thruster with absorbing electrodes. , 2000, , .		4
166	Plasma Fundamentals for Materials Processing. , 2000, , 33-68.		2
167	Bohm criterion for a plasma composed of electrons and positive dust grains. Physical Review E, 2000, 63, 016410.	0.8	12
168	Handbook of Advanced Plasma Processing Techniques. , 2000, , .		86
169	Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge. Physical Review E, 2000, 61, 1875-1889.	0.8	39
170	Experimental investigation of electrodes for high pressure discharge lamps. , 0, , .		4
171	Can the temperature of electrons in a high-pressure plasma be determined by means of an electrostatic probe?. Journal Physics D: Applied Physics, 2000, 33, 1683-1696.	1.3	34
172	Laser ablation of solid substrates in water and ambient air. Journal of Applied Physics, 2001, 89, 2400-2403.	1.1	177
173	Laser ablation of solid substrates in a water-confined environment. Applied Physics Letters, 2001, 79, 1396-1398.	1.5	117
174	Plasma flow and plasma–wall transition in Hall thruster channel. Physics of Plasmas, 2001, 8, 5315-5322.	0.7	163
175	A Langmuir multi-probe system for the characterization of atmospheric pressure arc plasmas. Journal Physics D: Applied Physics, 2001, 34, 2715-2725.	1.3	33
176	Plasma Diffused from External Flowing Plasma. Journal of the Physical Society of Japan, 2001, 70, 3201-3204.	0.7	1
177	Quasi-Neutral Limit for Euler-Poisson System. Journal of Nonlinear Science, 2001, 11, 193-209.	1.0	75
178	Shadowing and the Plasma-Sheath Transition Layer. Journal of Nonlinear Science, 2001, 11, 397-414.	1.0	8
179	A unique ECR broad beam source for thin film processing. Surface and Coatings Technology, 2001, 142-144, 11-20.	2.2	35
180	Numerical study of plasma–wall transition in an oblique magnetic field. Journal of Nuclear Materials, 2001, 290-293, 763-767.	1.3	26
181	Kinetic simulation of a source dominated plasma–wall interaction in an oblique magnetic field. Journal of Nuclear Materials, 2001, 290-293, 725-728.	1.3	3

#	Article	IF	CITATIONS
182	Modeling of harmonic contributions to non-symmetrical RF plasmas. Journal of Materials Processing Technology, 2001, 118, 343-349.	3.1	1
183	Probe Measurements on Parametric Decay and Density Threshold in a Linear Microwave Discharge. Contributions To Plasma Physics, 2001, 41, 524-529.	0.5	3
184	Heat transfer and fluid flow in a high-intensity free-burning arc: an improved modeling approach. International Journal of Heat and Mass Transfer, 2001, 44, 2541-2553.	2.5	34
185	Characteristics of a high-power RF oscillator based on a pulsed hollow-cathode discharge. IEEE Transactions on Plasma Science, 2001, 29, 895-902.	0.6	19
186	Langmuir probe measurements of weakly collisional electronegative RF discharge plasmas. Journal Physics D: Applied Physics, 2001, 34, 95-104.	1.3	21
187	Consistent analysis of the boundary layer of a Saha plasma. Journal Physics D: Applied Physics, 2001, 34, 1193-1202.	1.3	32
188	The plasma boundary containing fast isotropic electrons: a comparison between kinetic and fluid ion models. Journal Physics D: Applied Physics, 2001, 34, 3241-3246.	1.3	15
189	Numerical investigation on plasma and poly-Si etching uniformity control over a large area in a resonant inductively coupled plasma source. Physics of Plasmas, 2001, 8, 1384.	0.7	13
190	Unipolar ion sheath. Journal of Applied Physics, 2001, 90, 5487-5490.	1.1	27
191	Extraction of ions from the matrix sheath in ablation-plasma ion implantation. Applied Physics Letters, 2001, 78, 706-708.	1.5	12
192	Self-consistent kinetic theory of a plasma sheath. Physical Review E, 2002, 65, 046404.	0.8	14
193	Transition of the sheath structure in an electrostatic probe from electropositive to electronegative plasma. Journal of Applied Physics, 2002, 91, 2587-2593.	1.1	29
194	Effects of energetic electrons on magnetized electrostatic plasma sheaths. Physics of Plasmas, 2002, 9, 2486-2496.	0.7	47
195	Atomistic feature scale modeling of the titanium ionized physical vapor deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1284-1294.	0.9	8
196	Relaxation phenomena in pulsed discharges. Journal of Applied Physics, 2002, 91, 1787-1796.	1.1	8
197	Bohm criterion failure in nonstationary plasmas. Physics of Plasmas, 2002, 9, 3311-3317.	0.7	6
198	Boundary conditions and numerical fluid modelling of time-evolutionary plasma sheaths. Journal Physics D: Applied Physics, 2002, 35, 658-664.	1.3	6
199	Determination of HID electrode falls in a model lamp I: Pyrometric measurements. Journal Physics D: Applied Physics, 2002, 35, 1621-1630.	1.3	65

#	Article	IF	CITATIONS
200	Modeling and Diagnostics of Low Pressure Inductively Coupled Plasmas. , 2002, , 329-347.		0
201	The invalidity of a Mach probe model. Physics of Plasmas, 2002, 9, 1832-1833.	0.7	36
202	Plasma recovery in plasma immersion ion implantation: dependence on pulse frequency and duty cycle. Journal Physics D: Applied Physics, 2002, 35, 462-467.	1.3	9
203	Wave-sustained discharges in helium–argon gas mixtures. Journal of Applied Physics, 2002, 92, 6461-6470.	1.1	16
204	You cannot patch active plasma and collisionless sheath. IEEE Transactions on Plasma Science, 2002, 30, 352-356.	0.6	42
205	Dynamic model and electrical characteristics for rf-biased electronegative plasma sheath. IEEE Transactions on Plasma Science, 2002, 30, 1320-1330.	0.6	3
206	How to patch active plasma and collisionless sheath: A practical guide. Physics of Plasmas, 2002, 9, 4788-4793.	0.7	58
207	Numerical study of a direct current plasma sheath based on kinetic theory. Physics of Plasmas, 2002, 9, 691-700.	0.7	15
208	Sparse Quasi-Random Graphs. Combinatorica, 2002, 22, 217-244.	0.6	43
209	Sheath structure and ion current onto a patterned surface immersed in a plasma at floating potential. Surface and Coatings Technology, 2002, 160, 259-268.	2.2	5
210	Ion collection by a sphere in a flowing plasma: I. Quasineutral. Plasma Physics and Controlled Fusion, 2002, 44, 1953-1977.	0.9	126
211	Cathode Sheath Instability at Frequencies Near the Ion Plasma Frequency. Radiophysics and Quantum Electronics, 2003, 46, 873-885.	0.1	3
212	The plasma–sheath boundary region. Journal Physics D: Applied Physics, 2003, 36, R309-R320.	1.3	163
213	Global Existence of Plasma Ion-Sheaths and Their Dynamics. Communications in Mathematical Physics, 2003, 238, 149-186.	1.0	28
214	Good news: you can patch active plasma and collisionless sheath. IEEE Transactions on Plasma Science, 2003, 31, 303-303.	0.6	16
215	Effect of electron collisions on the plasma–sheath formation. Surface and Coatings Technology, 2003, 171, 173-177.	2.2	2
216	Modelling of inductively coupled multi-component plasmas. Surface and Coatings Technology, 2003, 174-175, 482-486.	2.2	4
217	Particle-in-cell Monte Carlo (PIC-MC) simulations of plasma–wall interactions in low-pressure AR plasma. Radiation Physics and Chemistry, 2003, 68, 109-113.	1.4	8

#	Article	IF	Citations
218	Interpretation of ion distribution functions measured by a combined energy and mass analyzer. International Journal of Mass Spectrometry, 2003, 223-224, 679-693.	0.7	57
219	On asymptotic matching and the sheath edge. IEEE Transactions on Plasma Science, 2003, 31, 665-677.	0.6	48
220	Self-consistent dusty sheaths in plasmas with two-temperature electrons. Physics of Plasmas, 2003, 10, 546-552.	0.7	19
221	Dusty radio frequency discharges in argon. IEEE Transactions on Plasma Science, 2003, 31, 606-613.	0.6	12
222	Analysis of collisional sheath structure in an argon DC discharge. IEEE Transactions on Plasma Science, 2003, 31, 1032-1037.	0.6	4
223	Nonequilibrium positive column revisited. IEEE Transactions on Plasma Science, 2003, 31, 572-586.	0.6	11
224	Plasma Expansion in Vacuum: Modeling the Breakdown of Quasi Neutrality. Multiscale Modeling and Simulation, 2003, 2, 158-178.	0.6	19
225	Kinetic analysis of the collisional plasma–sheath transition. Journal Physics D: Applied Physics, 2003, 36, 2811-2820.	1.3	74
226	Iterative 1D Calculations for Ion Thruster. , 2003, , .		0
227	Dust grain charging and levitation in a weakly collisional sheath. Physics of Plasmas, 2003, 10, 3874-3880.	0.7	31
228	Plasma-sheath transition and ion sound speed in weakly collisional plasmas. Physics of Plasmas, 2003, 10, 4181-4184.	0.7	10
229	Patching collisionless plasma and sheath solutions to approximate the plasma-wall problem. IEEE Transactions on Plasma Science, 2003, 31, 1395-1401.	0.6	14
230	A note on multi-component Tonks–Langmuir problems. Journal Physics D: Applied Physics, 2003, 36, 2825-2827.	1.3	4
231	Characteristics of an ion induced secondary emission electron gun. Plasma Sources Science and Technology, 2003, 12, 235-243.	1.3	8
232	Effect of non-local electron conductivity on power absorption and plasma density profiles in low pressure inductively coupled discharges. Plasma Sources Science and Technology, 2003, 12, 170-181.	1.3	22
233	Determination of Ti+-flux and Ar+-flux of ionized physical vapor deposition of titanium from multiscale model calibration with test structures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 922-936.	0.9	7
234	Simulation of sheath dynamics and current nonuniformity in plasma-immersion ion implantation of a patterned surface. Journal of Applied Physics, 2003, 93, 4420-4431.	1.1	13
235	Sheath criterion for a collisional sheath. Physics of Plasmas, 2003, 10, 3032-3034.	0.7	55

#	Article	IF	CITATIONS
236	Method of matched asymptotic expansions versus intuitive approaches: calculation of space-charge sheaths. IEEE Transactions on Plasma Science, 2003, 31, 678-690.	0.6	15
237	Collision effects on the saturated electrostatic potential along a magnetic field line. Physics of Plasmas, 2003, 10, 677-682.	0.7	2
238	Diagnostic characterization of ablation plasma ion implantation. Journal of Applied Physics, 2003, 93, 8876-8883.	1.1	13
239	Analytical fit of the I–V characteristic for cylindrical and spherical Langmuir probes. Journal of Applied Physics, 2003, 94, 4788.	1.1	22
240	An explanation of the sheath instability. Physics of Plasmas, 2003, 10, 5-8.	0.7	30
241	Intrinsic sheath edge conditions for sheath instability in low-pressure electronegative plasmas. Journal Physics D: Applied Physics, 2003, 36, 465-472.	1.3	29
242	Sheath Structure of an Electronegative Plasma. Chinese Physics Letters, 2003, 20, 1537-1539.	1.3	23
243	Comment on "On the consistency of the collisionless sheath model―[Phys. Plasmas 9, 4427 (2002)]. Physics of Plasmas, 2003, 10, 4589-4589.	0.7	12
244	Comment on "On the consistency of the collisionless sheath model―[Phys. Plasmas 9, 4427 (2002)]. Physics of Plasmas, 2003, 10, 3432-3434.	0.7	19
245	There is no such thing as a collisionally modified Bohm criterion. Journal Physics D: Applied Physics, 2003, 36, 2821-2824.	1.3	37
246	Sheath Equivalent Electrical Circuit Model for Equilibrium Child Sheath Description. Physica Scripta, 2004, 69, 108-114.	1.2	5
247	Transition Behaviour between Erosion and Deposition on a Tungsten Surface Exposed to Deuterium Plasmas Containing Carbon Impurities. Japanese Journal of Applied Physics, 2004, 43, 6385-6391.	0.8	1
248	Sheath Equivalent Electrical Circuit Model for Transient Sheath Dynamics. Japanese Journal of Applied Physics, 2004, 43, 2704-2710.	0.8	4
249	Characteristic behaviour of dust grains in a magnetized plasma sheath. Journal Physics D: Applied Physics, 2004, 37, 702-708.	1.3	16
250	Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution. Physical Review E, 2004, 70, 046403.	0.8	40
251	Relaxation of a collisionless ion matrix sheath. Journal of Applied Physics, 2004, 95, 4565-4574.	1.1	9
252	Sheath structure in electronegative plasmas with finite positive ion temperature. Journal of Applied Physics, 2004, 95, 4585-4592.	1.1	34
253	Analytical fit of the I-V characteristic for cylindrical and spherical probes in electronegative plasmas. Journal of Applied Physics, 2004, 96, 4777-4783.	1.1	25

#		IF	CITATIONS
254	Analytical fit of the l–V probe characteristic for finite ion temperature values: Justification of the radial model applicability. Journal of Applied Physics, 2004, 95, 2982-2990.	1.1	26
255	Thermophoretic control of building units in the plasma-assisted deposition of nanostructured carbon films. Journal of Applied Physics, 2004, 96, 4421-4428.	1.1	38
256	Simulation of Gas-Phase Nanoparticle Dynamics in the Plasma-Enhanced Chemical Vapor Deposition of Carbon Nanostructures. Physica Scripta, 2004, 70, 322-325.	1.2	6
257	Surface activity of dust with variable charge. Plasma Physics Reports, 2004, 30, 228-234.	0.3	1
258	Application of the Lambert W function in mathematical problems of plasma physics. Plasma Physics Reports, 2004, 30, 872-877.	0.3	20
259	Two-dimensional plasma density distributions in low-pressure gas discharges. Plasma Physics Reports, 2004, 30, 1043-1051.	0.3	0
260	Reply to Comments on "On Asymptotic Matching and the Sheath Edge― IEEE Transactions on Plasma Science, 2004, 32, 2271-2276.	0.6	12
261	Comments on "On Asymptotic Matching and the Sheath Edgeâ€: IEEE Transactions on Plasma Science, 2004, 32, 2265-2270.	0.6	18
262	A Simplified Model Joining the Sheath and the Plasma in Electronegative Plasmas. European Physical Journal D, 2004, 54, 225-238.	0.4	5
263	Subroutines for some plasma surface interaction processes: physical sputtering, chemical erosion, radiation enhanced sublimation, backscattering and thermal evaporation. Computer Physics Communications, 2004, 160, 46-68.	3.0	44
264	KdV dynamics in the plasma-sheath transition. Applied Mathematics Letters, 2004, 17, 401-410.	1.5	20
265	Sheath Physics and Boundary Conditions for Edge Plasmas. Contributions To Plasma Physics, 2004, 44, 111-125.	0.5	36
266	Particle Simulation Study of Dust Particle Dynamics in Sheaths. Contributions To Plasma Physics, 2004, 44, 150-156.	0.5	10
267	Fundamentals of pulsed plasmas for materials processing. Surface and Coatings Technology, 2004, 183, 301-311.	2.2	116
268	Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects. Physics Reports, 2004, 393, 175-380.	10.3	310
269	Vlasov simulations of plasma-wall interactions in a weakly collisional plasma. Computer Physics Communications, 2004, 164, 262-268.	3.0	12
270	Bohm criterion for dust-electron plasmas induced by UV irradiation. Physics of Plasmas, 2004, 11, 5723-5726.	0.7	7
271	Influence of the positive ion thermal motion on the stratified presheath in electronegative plasmas. Journal Physics D: Applied Physics, 2004, 37, 863-867.	1.3	27

		CITATION RE	PORT	
#	Article		IF	CITATIONS
272	On the theory of plasma-wall transition layers. Physics of Plasmas, 2004, 11, 3945-3954.		0.7	19
273	On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology, 200 1571-1575.	94, 15,	1.3	91
274	Lithium-Fed Hollow Cathode Theory. , 2004, , .			4
275	On a sheath between a plasma and a conducting surface. Journal of Applied Physics, 2004	4, 95, 1650-1655.	1.1	30
276	Self-consistent multicomponent plasma sheath theory for the extraction of Hâ^' ions (invior) of Scientific Instruments, 2004, 75, 1687-1693.	ited). Review	0.6	12
277	Transition from plasma to space-charge sheath near the electrode in electrical discharges	. , 0, , .		0
278	Quasi-neutral fluid models for current-carrying plasmas. Journal of Computational Physics 408-438.	, 2005, 205 ,	1.9	28
279	A Geometric Level-Set Formulation of a Plasma-Sheath Interface. Archive for Rational Mec Analysis, 2005, 178, 81-123.	hanics and	1.1	15
280	The plasma boundary layer of HID-cathodes: modelling and numerical results. Journal Phy Applied Physics, 2005, 38, 3112-3127.	sics D:	1.3	58
281	Spectroscopic determination of the cold electron population in very low pressure ECR dis N2/He mixtures. Plasma Sources Science and Technology, 2005, 14, 109-128.	charges in	1.3	31
282	Lowering of the cathode fall voltage by laser exposure of the cathode in a high-pressure n discharge. Journal Physics D: Applied Physics, 2005, 38, 3175-3181.	nercury	1.3	11
283	Exact self-similar solutions for the two-dimensional plasma-ion sheath system. Journal of I 2005, 38, 7197-7204.	Physics A,	1.6	1
284	Fluid model of the magnetic presheath in a turbulent plasma. Plasma Physics and Control 2005, 47, 685-712.	led Fusion,	0.9	6
285	Kinetic Lagrange simulation of a source-driven magnetized oblique presheath. Physics of 2005, 12, 103506.	Plasmas,	0.7	8
286	Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf Physics of Plasmas, 2005, 12, 103507.	plasmas.	0.7	12
287	A study of spot evolution in hot refractory cathodes of high-pressure arcs. Journal of Appl Physics, 2005, 98, 093303.	ied	1.1	7
288	The effect of ion drift on the sheath, presheath, and ion-current collection for cylinders in collisionless plasma. Physics of Plasmas, 2005, 12, 062109.	a	0.7	19
289	The electrostatic sheath in an electronegative dusty plasma. Physics of Plasmas, 2005, 12	2, 012104.	0.7	16

#	Article	IF	CITATIONS
290	Dynamics of dust in the sheath of weakly electronegative plasmas. Journal of Applied Physics, 2005, 97, 023302.	1.1	3
291	Dispersive optical constants and temperature-dependent band gap of cadmium-doped indium selenide thin films. Semiconductor Science and Technology, 2005, 20, 765-769.	1.0	9
292	Plasma, presheath, collisional sheath and collisionless sheath potential profiles in weakly ionized, weakly collisional plasma. Plasma Sources Science and Technology, 2005, 14, 201-208.	1.3	67
293	Measurements of spatial structures of different discharge modes in a helicon source. Plasma Sources Science and Technology, 2005, 14, 226-235.	1.3	31
294	Influence of the positive ion thermal motion on the stratified presheath for spherical and cylindrical Langmuir probes immersed in electronegative plasmas. Journal Physics D: Applied Physics, 2005, 38, 868-871.	1.3	19
295	Theory of the plasma sheath in a magnetic field parallel to the wall. Physics of Plasmas, 2005, 12, 103503.	0.7	53
296	The plasma–sheath matching problem. Plasma Physics and Controlled Fusion, 2005, 47, 1949-1970.	0.9	67
297	Transition from plasma to space-charge sheath near the electrode in electrical discharges. IEEE Transactions on Plasma Science, 2005, 33, 1481-1486.	0.6	22
298	Transition from the constant ion mobility regime to the ion-atom charge-exchange regime for bounded collisional plasmas. Physics of Plasmas, 2005, 12, 023502.	0.7	7
299	Dust particle dynamics in magnetized plasma sheath. Physics of Plasmas, 2005, 12, 073505.	0.7	41
300	The effect of ion–neutral collisions on the weakly collisional plasma-sheath and the reduction of the ion flux to the wall. Plasma Sources Science and Technology, 2005, 14, 32-35.	1.3	19
301	Behavior of Dust Particle in Magnetized Plasma Sheath. , 2005, , .		0
302	Spatial characterization of an IPVD reactor: neutral gas temperature and interpretation of optical spectroscopy measurements. Plasma Sources Science and Technology, 2005, 14, 321-328.	1.3	19
303	Arc attachment at HID anodes: measurements and interpretation. Journal Physics D: Applied Physics, 2006, 39, 2160-2179.	1.3	49
304	Cold Plasma Discharges. , 2006, , 259-365.		0
305	Particle-in-cell simulations of planar and cylindrical Langmuir probes: Floating potential and ion saturation current. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1366-1372.	0.9	33
306	Energy balance and plasma potential in low-density hot-filament discharges. IEEE Transactions on Plasma Science, 2006, 34, 844-849.	0.6	9
307	Time-Resolved Ion and Electron Current Measurements in Pulsed Plasma Sheaths. IEEE Transactions on Plasma Science, 2006, 34, 1156-1159.	0.6	2

#	Article	IF	CITATIONS
308	Plasma-sheath transition in the kinetic Tonks-Langmuir model. Physics of Plasmas, 2006, 13, 063508.	0.7	57
309	Dynamics of the Plasma Sheath. , 2006, , 365-371.		Ο
310	Laser-induced-fluorescence observation of ion velocity distribution functions in a plasma sheath. Physics of Plasmas, 2006, 13, 062103.	0.7	42
311	Sheath and potential characteristics in rf magnetron sputtering plasma. Journal of Applied Physics, 2006, 100, 083303.	1.1	11
312	Link between fluid and kinetic parameters near the plasma boundary. Physics of Plasmas, 2006, 13, 013503.	0.7	61
313	Experimental investigations of the anode boundary layer in high intensity arcs with cross flow. Journal Physics D: Applied Physics, 2006, 39, 2764-2774.	1.3	40
314	Charge exchange collisions and ion velocity distribution at the electrode of low pressure capacitive rf discharges. Journal of Applied Physics, 2006, 99, 093303.	1.1	27
315	Elliptical dust growth in astrophysical plasmas. Astronomy and Astrophysics, 2006, 457, 365-370.	2.1	18
316	Bohm criterion for electronegative dusty plasmas. Thin Solid Films, 2006, 506-507, 637-641.	0.8	17
317	Structure of the charged sheath at the plasma-charged body boundary. Journal of Experimental and Theoretical Physics, 2006, 102, 173-181.	0.2	15
318	Ion flow and sheath physics studies in multiple ion species plasmas using diode laser based laser-induced fluorescence. Thin Solid Films, 2006, 506-507, 674-678.	0.8	13
319	Calculation of the ion extraction boundary of a plasma ion source. IEEE Transactions on Plasma Science, 2006, 34, 23-27.	0.6	17
320	Propagation of ion-acoustic wave in the presheath region of a plasma sheath system. Physica Scripta, 2006, 73, 87-97.	1.2	1
321	Potential distribution in an ion sheath of non-Maxwellian plasma. Physics of Plasmas, 2006, 13, 073506.	0.7	12
322	Presheath structure of a dust-contaminated plasma. Physics of Plasmas, 2006, 13, 013501.	0.7	3
323	Analysis of a multi-fluid plasma model for the near-cathode region in thermal plasmas. Journal Physics D: Applied Physics, 2006, 39, 2738-2746.	1.3	6
324	Floating potential and sheath thickness for cylindrical and spherical probes in electronegative plasmas. Journal of Applied Physics, 2006, 99, 053303.	1.1	17
325	On collisionless energy absorption in plasmas: Theory and experiment in spherical geometry. Physics of Plasmas, 2006, 13, 032108.	0.7	19

# 326	ARTICLE SELF-SIMILAR ISOTHERMAL IRROTATIONAL MOTION FOR THE EULER, EULER–POISSON SYSTEMS AND THE	IF 0.3	CITATIONS 2
327	FORMATION OF THE PLASMA SHEATH. Journal of Hyperbolic Differential Equations, 2006, 03, 233-246. High brightness inductively coupled plasma source for high current focused ion beam applications. Journal of Vacuum Science & Technology B, 2006, 24, 2902.	1.3	120
328	STABILITY FOR SOLUTIONS OF A STATIONARY EULER–POISSON PROBLEM. Mathematical Models and Methods in Applied Sciences, 2006, 16, 1817-1837.	1.7	14
329	Sheath structure in electronegative plasmas. Plasma Sources Science and Technology, 2007, 16, S76-S86.	1.3	40
330	A PLASMA EXPANSION MODEL BASED ON THE FULL EULER–POISSON SYSTEM. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1129-1158.	1.7	19
331	Comment on "Magnetic field effects on gas discharge plasmas―[Phys. Plasmas 13, 063511 (2006)]. Physics of Plasmas, 2007, 14, 024701.	0.7	9
332	The diagnosis of plasmas used in the processing of textiles and other materials. , 2007, , 25-63.		3
333	The Numerical Solution of the Kinetic Sheath Using an Eulerian Vlasov Code. Japanese Journal of Applied Physics, 2007, 46, 3045-3051.	0.8	2
334	lon heating in the presheath. Physics of Plasmas, 2007, 14, 032104.	0.7	16
335	Mach probe interpretation in the presence of suprathermal electrons. Physics of Plasmas, 2007, 14, 032501.	0.7	18
336	Magnetic presheath in a weakly turbulent multicomponent plasma. Physics of Plasmas, 2007, 14, 013504.	0.7	4
337	Dynamic simulation of the ion sheath in the presence of fast monoenergetic electrons. Physics of Plasmas, 2007, 14, .	0.7	12
338	Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data. Nonlinearity, 2007, 20, 1343-1359.	0.6	29
339	The boundary layers of ac-arcs at HID-electrodes: phase resolved electrical measurements and optical observations. Journal Physics D: Applied Physics, 2007, 40, 415-431.	1.3	23
340	A numerical method for a singular perturbation problem arising in the modelling of plasma sheaths. International Journal of Computing Science and Mathematics, 2007, 1, 322.	0.2	2
341	The Bohm Plasma-Sheath Model and the Bohm Criterion Revisited. IEEE Transactions on Plasma Science, 2007, 35, 1341-1349.	0.6	28
342	Response to "Comment on â€̃Comment on "Magnetic field effects on gas discharge plasmasâ€â€‰' Plasmas. 14, 094703 (2007)]. Physics of Plasmas, 2007, 14, .	―[Phys. 0.7	3

#	Article	IF	Citations
344	Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma. Plasma Sources Science and Technology, 2007, 16, 193-199.	1.3	49
345	Effect of burst ions on the excitation of ion-acoustic solitons in a drifting plasma. Physics of Plasmas, 2007, 14, .	0.7	12
346	Beyond the step model: Approximate expressions for the field in the plasma boundary sheath. Journal of Applied Physics, 2007, 102, .	1.1	99
347	Fluid and kinetic parameters near the plasma-sheath boundary for finite Debye lengths. Physics of Plasmas, 2007, 14, .	0.7	37
348	A magnetized plasma sheath where the ion collision frequency depends on ion flow velocity. Journal Physics D: Applied Physics, 2007, 40, 6641-6645.	1.3	20
349	Plasma boundary sheath in the afterglow of a pulsed inductively coupled RF plasma. Plasma Sources Science and Technology, 2007, 16, 355-363.	1.3	33
350	The Double Sheath at the Plasma-Wall Boundary. Contributions To Plasma Physics, 2007, 47, 190-201.	0.5	9
351	The magnetized plasma–wall transition (PWT) and its relation to fluid boundary conditions. Computer Physics Communications, 2007, 177, 80-83.	3.0	3
352	A volume of fluid method for a two-dimensional plasma expansion problem. Journal of Computational Physics, 2007, 225, 1937-1960.	1.9	1
353	On Dimensions of Atmospheric-Pressure Hollow Cathodes. IEEE Transactions on Plasma Science, 2007, 35, 522-526.	0.6	11
354	Mechanical effects in a rarified plasma. Plasma Physics Reports, 2007, 33, 316-328.	0.3	1
355	Understanding Langmuir probe current-voltage characteristics. American Journal of Physics, 2007, 75, 1078-1085.	0.3	259
356	Electrical control of the thermodiffusive instability in premixed propane–air flames. Combustion and Flame, 2007, 151, 639-648.	2.8	70
357	Travelling-wave-sustained discharges. Physics Reports, 2007, 443, 121-255.	10.3	71
358	The Plasma Boundary in a Magnetic Field. Contributions To Plasma Physics, 2008, 48, 400-405.	0.5	29
359	A hybrid Boltzmann electrons and PIC ions model for simulating transient state of partially ionized plasma. Journal of Computational Physics, 2008, 227, 5758-5777.	1.9	6
360	Plasma parameters deduced from cylindrical probe measurements: determination of the electron density at the ion saturation current. Plasma Sources Science and Technology, 2008, 17, 015019.	1.3	20
361	The steady structures of dust voids in electronegative plasmas. Physics of Plasmas, 2008, 15, 073702.	0.7	1

#	Article	IF	CITATIONS
362	Development of the arc attachment at HID lamp electrodes in the range from low to RF-frequencies. Journal Physics D: Applied Physics, 2008, 41, 144002.	1.3	11
363	Film Deposition by Energetic Condensation. Springer Series on Atomic, Optical, and Plasma Physics, 2008, , 363-407.	0.1	8
364	On the Use of Sweeping Langmuir Probes in Cutting-Arc Plasmas—Part II: Interpretation of the Results. IEEE Transactions on Plasma Science, 2008, 36, 271-277.	0.6	19
365	Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. Journal Physics D: Applied Physics, 2008, 41, 144001.	1.3	225
366	Cathodic Arcs. Springer Series on Atomic, Optical, and Plasma Physics, 2008, , .	0.1	443
367	Importance of Electrode Location on Flames Modfied by Low Applied Electric Fields. , 2008, , .		6
368	Plasma sheath structures around a radio frequency antenna. Journal of Geophysical Research, 2008, 113, .	3.3	13
369	Probe measurements in a nonstationary plasma. Journal of Applied Physics, 2008, 103, 053303.	1.1	8
370	Neutral depletion in inductively coupled plasmas using hybrid-type direct simulation Monte Carlo. Journal of Applied Physics, 2008, 103, 033304.	1.1	19
371	Reciprocal interparticle attraction in complex plasmas with cold ion flows. New Journal of Physics, 2008, 10, 063018.	1.2	23
372	Negative ion transport inside collisional presheaths. Review of Scientific Instruments, 2008, 79, 02B709.	0.6	5
373	Chemi-Ion-Current-Induced Dissociative Recombination in Premixed Hydrocarbon/Air Flames. Journal of Propulsion and Power, 2008, 24, 1079-1084.	1.3	10
374	Sheath analysis in collisional electronegative plasmas with finite temperature of positive ions. Journal Physics D: Applied Physics, 2008, 41, 235201.	1.3	16
375	Sheath formation in a collisional electronegative magnetized discharge. Journal Physics D: Applied Physics, 2008, 41, 105215.	1.3	22
376	Measurement of potential distributions in sheath and presheath near a mesh and metal plate. Journal Physics D: Applied Physics, 2008, 41, 225210.	1.3	12
377	Improvement of a multi-fluid plasma model for the near-cathode region in thermal plasmas. Journal Physics D: Applied Physics, 2008, 41, 185206.	1.3	3
378	Power balance of HID lamp electrodes under HF operation. , 2008, , .		0
379	Ion Collection by Oblique Surfaces of an Object in a Transversely Flowing Strongly Magnetized Plasma. Physical Review Letters, 2008, 101, 035004.	2.9	23

#	Article	IF	CITATIONS
380	Experimental studies of transverse metastable ion velocity distribution functions in the presheath of a weakly collisional argon plasma. Physics of Plasmas, 2008, 15, 083503.	0.7	10
381	Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath. Physics of Plasmas, 2008, 15, .	0.7	9
382	Analytical expression for the electric potential in the plasma sheath near an arc-cathode. Physics of Plasmas, 2008, 15, 043503.	0.7	4
383	lon-energy distributions at a substrate in reactive magnetron sputtering discharges in Ar/H2S from copper, indium, and tungsten targets. Journal of Applied Physics, 2009, 105, .	1.1	27
384	Structure of presheath-sheath in magnetized electronegative plasma. Physics of Plasmas, 2009, 16, .	0.7	22
385	Oscillations of the collisionless sheath at grazing incidence of the magnetic field. Physics of Plasmas, 2009, 16, 103506.	0.7	4
386	Improved model for window breakdown at low pressure. Physics of Plasmas, 2009, 16, .	0.7	14
387	Continuum-plasma solution surrounding nonemitting spherical bodies. Physics of Plasmas, 2009, 16, .	0.7	5
388	Energy flow through a nonambipolar Langmuir sheath. Physics of Plasmas, 2009, 16, .	0.7	2
389	The ionization length in plasmas with finite temperature ion sources. Physics of Plasmas, 2009, 16, 123503.	0.7	11
390	From electron depletion to quasi-neutrality: the sheath–bulk transition in RF modulated discharges. Journal Physics D: Applied Physics, 2009, 42, 194009.	1.3	35
391	Effect of the electron energy distribution function in plasma on the Bohm criterion and on the drop voltage through the sheath: Case of microwave expanding plasma. Journal of Applied Physics, 2009, 106, 053307.	1.1	2
392	On the space-charge boundary layer inside the nozzle of a cutting torch. Journal of Applied Physics, 2009, 105, 123303.	1.1	9
393	Analytical approximations for the sheath potential profile. Plasma Sources Science and Technology, 2009, 18, 014007.	1.3	8
394	Modeling Langmuir probes in multi-component plasmas. Plasma Sources Science and Technology, 2009, 18, 014012.	1.3	14
395	Pre-sheath formation in an oblique magnetic field: fluid model and PIC simulation. European Physical Journal D, 2009, 54, 383-389.	0.6	15
396	Physisorption kinetics of electrons at plasma boundaries. European Physical Journal D, 2009, 54, 519-544.	0.6	13
397	Modeling of surface-wave discharges with cylindrical symmetry. Physical Review E, 2009, 79, 016403.	0.8	23

#	Article	IF	CITATIONS
398	Plasma and sheath. Plasma Sources Science and Technology, 2009, 18, 014006.	1.3	42
399	Implementation of the Kinetic Bohm Condition in a Hall Thruster Hybrid Code. , 2009, , .		0
400	The heating sources of spots on the vacuum arc cathodes. Journal Physics D: Applied Physics, 2009, 42, 075206.	1.3	5
401	Self-Sputtering Far above the Runaway Threshold: An Extraordinary Metal-Ion Generator. Physical Review Letters, 2009, 102, 045003.	2.9	72
402	The plasma–sheath boundary: its history and Langmuir's definition of the sheath edge. Plasma Sources Science and Technology, 2009, 18, 014004.	1.3	78
403	The Child–Langmuir law and analytical theory of collisionless to collision-dominated sheaths. Plasma Sources Science and Technology, 2009, 18, 014005.	1.3	90
404	Simulation study of the magnetized sheath of a dusty plasma. Physics of Plasmas, 2009, 16, .	0.7	32
405	The effect of a magnetic field on a cylindrical object in a plasma. Physics of Plasmas, 2009, 16, .	0.7	11
406	On the structure of the charged near-electrode sheath in a plasma with degenerate electrons. Technical Physics, 2010, 55, 799-806.	0.2	2
407	The sheath criterion for a collisional plasma sheath at the presence of external magnetic field. European Physical Journal D, 2010, 59, 421-425.	0.6	8
408	The effect of dust grain size on the floating potential of dust in a collisionless plasma. Plasma Sources Science and Technology, 2010, 19, 065022.	1.3	18
409	Strong Dependency of Ion Acceleration on Ion Beam Divergency in Magnetized Collisionless Plasma Sheath. Journal of Fusion Energy, 2010, 29, 275-278.	0.5	2
410	Ion Temperature Effect on Weakly Collisional DC Plasma Sheath. Journal of Fusion Energy, 2010, 29, 365-370.	0.5	13
411	Simulation of TaN deposition by Reactive PVD. Microelectronic Engineering, 2010, 87, 1907-1913.	1.1	5
412	Optimization of ion energy spread in inductively coupled plasma source designed for focused ion beam applications. Vacuum, 2010, 85, 344-348.	1.6	9
413	Kinetic theory of sheath formation in solar wind plasma. Advances in Space Research, 2010, 46, 942-959.	1.2	4
414	Numerical Simulation of Characteristics of CEX lons in Ion Thruster Optical System. Chinese Journal of Aeronautics, 2010, 23, 15-21.	2.8	14
415	Experimental studies of plasma sheath near meshes of different transmissivity. Chinese Physics B, 2010, 19, 085201.	0.7	10

#	Article	IF	CITATIONS
416	lon energy measurements during plasma immersion ion implantation of an insulator. Plasma Sources Science and Technology, 2010, 19, 045002.	1.3	7
417	A new method of solution for one-dimensional quasi-neutral bounded plasmas. Journal of Plasma Physics, 2010, 76, 617-625.	0.7	1
418	Ionization oscillations in Hall accelerators. Physics of Plasmas, 2010, 17, .	0.7	27
419	Fluid Model of Plasma Sheath Involving Ion Energy Spectrum. IEEE Transactions on Plasma Science, 2010, 38, 2322-2327.	0.6	1
420	Simulated plasma immersion ion implantation processing of thin wires. Journal of Applied Physics, 2010, 108, 063308.	1.1	2
421	Coaxial discharge with axial magnetic field: Demonstration that the Boltzmann relation for electrons generally does not hold in magnetized plasmas. Physics of Plasmas, 2010, 17, 022301.	0.7	21
422	Atomic and molecular effects on spherically convergent ion flow. I. Single atomic species. Physics of Plasmas, 2010, 17, 013502.	0.7	8
423	Using rf impedance probe measurements to determine plasma potential and the electron energy distribution. Physics of Plasmas, 2010, 17, 113503.	0.7	11
424	The magnetized sheath of a dusty plasma with nanosize dust grains. Physics of Plasmas, 2010, 17, 083704.	0.7	11
425	Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model. Physics of Plasmas, 2010, 17, 073507.	0.7	22
426	Modelling of plasma behaviour in the vicinity of intensive impurity sources. Plasma Physics and Controlled Fusion, 2010, 52, 075003.	0.9	9
427	Potential formation in front of an electron emitting electrode immersed in a plasma that contains a monoenergetic electron beam. Physics of Plasmas, 2010, 17, 083504.	0.7	16
428	A Boundary Layer Problem for an Asymptotic Preserving Scheme in the Quasi-Neutral Limit for the Euler–Poisson System. SIAM Journal on Applied Mathematics, 2010, 70, 1761-1787.	0.8	10
429	The gas phase emitter effect at the anode in a high pressure sodium vapour discharge. Journal Physics D: Applied Physics, 2010, 43, 025201.	1.3	19
430	Behavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment. New Journal of Physics, 2010, 12, 033036.	1.2	12
431	The anode region of low current arcs in high intensity discharge lamps. Journal Physics D: Applied Physics, 2010, 43, 023002.	1.3	45
432	Study of sheath thickness in weakly ionized plasmas and its dependence on the electric potential and position of the probe. Plasma Sources Science and Technology, 2010, 19, 025012.	1.3	9
433	New Approach to Numerical Analysis of the Hall Thruster. , 2010, , .		0

#	Article	IF	CITATIONS
434	Fluid simulation of an electrostatic plasma sheath with two species of positive ions and charged nanoparticles. Physics of Plasmas, 2010, 17, 123711.	0.7	28
435	Simulations of negative ion plasma sheaths. Review of Scientific Instruments, 2010, 81, 02B501.	0.6	8
436	Numerical Simulation of Ion Extraction Through Ion Thruster Optics. Plasma Science and Technology, 2010, 12, 103-108.	0.7	3
437	Changes to Charge and Defects in Dielectrics from Ion and Photon Fluences during Plasma Exposure. Electrochemical and Solid-State Letters, 2011, 14, H107.	2.2	10
438	Bohm Criterion for Collisionless Sheaths in Two-Ion-Species Plasmas. Plasma Science and Technology, 2011, 13, 385-391.	0.7	7
439	Temperature measurements at thoriated tungsten electrodes in a model lamp and their interpretation by numerical simulation. Journal Physics D: Applied Physics, 2011, 44, 505203.	1.3	47
440	Magnetic shielding of the channel walls in a Hall plasma accelerator. Physics of Plasmas, 2011, 18, .	0.7	139
441	A paradigm for the stability of the plasma sheath against fluid perturbations. Physics of Plasmas, 2011, 18, 103508.	0.7	4
442	Investigating the dependence of the temperature of high-intensity discharge (HID) lamp electrodes on the operating frequency by pyrometric measurements. Journal Physics D: Applied Physics, 2011, 44, 095204.	1.3	10
443	Potential of an emissive cylindrical probe in plasma. Physical Review E, 2011, 84, 025402.	0.8	35
444	Electron inertia effects on the planar plasma sheath problem. Physics of Plasmas, 2011, 18, 043504.	0.7	3
445	Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath. Physics of Plasmas, 2011, 18, 053503.	0.7	7
446	On the Double-Arcing Phenomenon in a Cutting Arc Torch. , 0, , .		1
447	Discharge physics of high power impulse magnetron sputtering. Surface and Coatings Technology, 2011, 205, S1-S9.	2.2	225
448	Lofted charged dust distribution above the Moon surface. Planetary and Space Science, 2011, 59, 1795-1803.	0.9	8
449	A non-stationary model for high power impulse magnetron sputtering discharges. Journal of Applied Physics, 2011, 110, .	1.1	33
450	Glow discharge in low pressure plasma PVD: mathematical model and numerical simulations. Meccanica, 2011, 46, 681-697.	1.2	0
451	Study on sheath formation in astroplasmas under Coriolis force and behavior of levitated dust grains forming nebulon around Moon. Astrophysics and Space Science, 2011, 332, 301-308.	0.5	9

#	Article	IF	Citations
452	Comments on the Bohm Criterion and on the Determination of the Ion Velocity at the Sheath Edge in Nonâ€Maxwellian Plasma. Contributions To Plasma Physics, 2011, 51, 944-954.	0.5	6
453	Particle-in-cell (PIC) simulations on plasma–sheath boundary in collision-free plasmas with warm-ion sources. Nuclear Engineering and Design, 2011, 241, 1261-1266.	0.8	7
454	Numerical solution of momentum balance equations for plasmas with two ion species. Journal of Computational Physics, 2011, 230, 2696-2705.	1.9	4
455	Existence of subsonic plasma sheaths. Physical Review E, 2011, 83, 016406.	0.8	30
456	Numerical investigation of the ion temperature effects on magnetized DC plasma sheath. Journal of Applied Physics, 2011, 109, .	1.1	30
457	A simple formula for the wall potential in the plasma sheath. Europhysics Letters, 2011, 94, 55002.	0.7	3
458	Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field. Chinese Physics Letters, 2011, 28, 125201.	1.3	8
459	A Numerical Characterization of the Gravito-Electrostatic Sheath Equilibrium Structure in Solar Plasma. International Journal of Astronomy and Astrophysics, 2011, 01, 210-231.	0.2	18
460	Simulation with the COREDIV code of nitrogen-seeded H-mode discharges at JET. Plasma Physics and Controlled Fusion, 2011, 53, 115002.	0.9	16
461	PIC-MCC Simulation for HPM Multipactor Discharge on Dielectric Surface in Vacuum. Plasma Science and Technology, 2011, 13, 682-688.	0.7	6
462	Bohm Criterion in a Magnetized Plasma Sheath. Plasma Science and Technology, 2011, 13, 519-522.	0.7	11
463	Self-consistent, one-dimensional analysis of the Hall effect thruster. Plasma Sources Science and Technology, 2011, 20, 045021.	1.3	10
464	Spherical conducting probes in finite Debye length plasmas and <i>E</i> × <i>B</i> fields. Plasma Physics and Controlled Fusion, 2011, 53, 025005.	0.9	15
465	On characteristics of sheath damping near a dielectric wall with secondary electron emission. Chinese Physics B, 2011, 20, 065204.	0.7	5
466	Kinetic theory of the presheath and the Bohm criterion. Plasma Sources Science and Technology, 2011, 20, 025013.	1.3	56
467	Pulsating fireballs with high-frequency sheath–plasma instabilities. Plasma Sources Science and Technology, 2011, 20, 045017.	1.3	20
468	The plasma–sheath transition in low temperature plasmas: on the existence of a collisionally modified Bohm criterion. Journal Physics D: Applied Physics, 2011, 44, 042002.	1.3	30
469	Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath boundary. Physics of Plasmas, 2011, 18, 113504.	0.7	7

#	Article	IF	CITATIONS
470	Study of the electropositive to electronegative sheath transition in weakly ionized plasmas. Plasma Sources Science and Technology, 2011, 20, 015019.	1.3	9
471	Effect of surface produced secondary electrons on the sheath structure induced by high-power microwave window breakdown. Physics of Plasmas, 2011, 18, 033507.	0.7	14
472	Ion velocity distributions in the sheath and presheath of a biased object in plasma. Physics of Plasmas, 2011, 18, .	0.7	18
473	Magnetic mirror effects on a collisionless plasma in a convergent geometry. Physics of Plasmas, 2011, 18, .	0.7	30
474	Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature. Physics of Plasmas, 2011, 18, .	0.7	8
475	Debye screening and injection of positrons across the magnetic surfaces of a pure electron plasma in a stellarator. Physics of Plasmas, 2011, 18, 013508.	0.7	7
476	Determination of the levitation limits of dust particles within the sheath in complex plasma experiments. Physics of Plasmas, 2012, 19, .	0.7	27
477	Revisited global drift fluid model for linear devices. Physics of Plasmas, 2012, 19, .	0.7	11
478	Examination of argon metastable atom velocity distribution function close to a conducting wall. Physics of Plasmas, 2012, 19, 032108.	0.7	16
479	Properties of a warm plasma collisional sheath in an oblique magnetic field. Physics of Plasmas, 2012, 19, .	0.7	30
480	Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions. Plasma Physics and Controlled Fusion, 2012, 54, 095013.	0.9	15
481	A Study of GaN Grown on SiH ₄ Pre-Treated 6H-SiC Substrates. Chinese Physics Letters, 2012, 29, 018102.	1.3	2
482	Electron cooling in decaying low-pressure plasmas. Physical Review E, 2012, 85, 046407.	0.8	15
483	The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions. Physics of Plasmas, 2012, 19, .	0.7	18
484	Numerical investigation of the ion temperature effect in magnetized plasma sheath with two species of positive ions. Physics of Plasmas, 2012, 19, .	0.7	9
485	Reply to comment on â€ ⁻ Kinetic theory of the presheath and the Bohm criterion'. Plasma Sources Science and Technology, 2012, 21, 068002.	1.3	13
486	Asymptotic Stability of Boundary Layers to the Euler–Poisson Equations Arising in Plasma Physics. SIAM Journal on Mathematical Analysis, 2012, 44, 761-790.	0.9	24
487	Absence of Debye Sheaths due to Secondary Electron Emission. Physical Review Letters, 2012, 108, 255001.	2.9	80

#	Article	IF	CITATIONS
488	Determining advection mechanism of plasma filaments in the scrape-off layer of MAST. Plasma Physics and Controlled Fusion, 2012, 54, 015002.	0.9	6
489	Instability of ion kinetic waves in a weakly ionized plasma. Physical Review E, 2012, 85, 026412.	0.8	14
490	A kinetic trajectory simulation model for magnetized plasma sheath. Plasma Physics and Controlled Fusion, 2012, 54, 095006.	0.9	12
491	Bohm's criterion in a collisional magnetized plasma with thermal ions. Physics of Plasmas, 2012, 19, .	0.7	24
492	Potential of a plasma bound between two biased walls. Physics of Plasmas, 2012, 19, .	0.7	9
493	Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry. Applied Surface Science, 2012, 258, 9564-9569.	3.1	14
494	Comment on †̃Kinetic theory of the presheath and the Bohm criterion'. Plasma Sources Science and Technology, 2012, 21, 068001.	1.3	13
495	Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Science and Technology, 2012, 21, 055027.	1.3	86
496	Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh. Physical Review E, 2012, 86, 046703.	0.8	97
497	Boundary conditions for plasma fluid models at the magnetic presheath entrance. Physics of Plasmas, 2012, 19, .	0.7	92
498	Effects of fast monoenergetic electrons on the generalized Bohm criterion for electronegative dusty plasma. Physics of Plasmas, 2012, 19, 053502.	0.7	9
499	Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion. Physics of Plasmas, 2012, 19, .	0.7	11
500	Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review B, 2012, 85, .	1.1	49
501	On the space-charge formation in a collisional magnetized electronegative plasma. Physics of Plasmas, 2012, 19, .	0.7	13
502	General Cause of Sheath Instability Identified for Low Collisionality Plasmas in Devices with Secondary Electron Emission. Physical Review Letters, 2012, 108, 235001.	2.9	54
503	Floating potential of large dust grains in a collisionless flowing plasma. Physical Review E, 2012, 85, 036403.	0.8	24
504	Analysis of the Bohm Criterion for Twoâ€lonâ€Species Plasmas Using PARASOL. Contributions To Plasma Physics, 2012, 52, 512-517.	0.5	0
505	One-dimensional solution to the stable, space-charge-limited emission of secondary electrons from plasma-wall interactions. Current Applied Physics, 2012, 12, 663-667.	1.1	9

		CITATION REPORT		
#	Article		IF	CITATIONS
506	Sheaths in laboratory and space plasmas. Plasma Physics and Controlled Fusion, 2013,	55, 093001.	0.9	98
507	Multiple ion species plasmas with thermal ions in an oblique magnetic field. Physics of 20, 083501.	Plasmas, 2013,	0.7	12
508	Ion response in a weakly ionized plasma with ion flow. Physics of Plasmas, 2013, 20, 04	42108.	0.7	5
509	Dynamics of an ion flow in an electron layer. Technical Physics, 2013, 58, 770-773.		0.2	2
510	Kinetic Theory of Plasma Sheaths Surrounding Electron-Emitting Surfaces. Physical Rev 2013, 111, 075002.	iew Letters,	2.9	85
511	Effect of collision parameters in electronegative plasma sheath with two species of pos Physics of Plasmas, 2013, 20, .	itive ions.	0.7	28
512	Bohm velocity in the presence of a hot cathode. Physics of Plasmas, 2013, 20, 083510		0.7	6
513	Generalized Bohm's criterion and negative anode voltage fall in electric discharges. Reports, 2013, 39, 849-856.	Plasma Physics	0.3	8
514	Dynamical behaviors of size graded dust grains levitated in robust sheath in inhomoger Astrophysics and Space Science, 2013, 348, 123-132.	1eous plasmas.	0.5	2
515	Numerical solutions of sheath structures in front of an electron-emitting electrode imm low-density plasma. Physics of Plasmas, 2013, 20, .	nersed in a	0.7	13
516	Particle in cell calculation of plasma force on a small grain in a non-uniform collisional s Plasma Physics and Controlled Fusion, 2013, 55, 115014.	heath.	0.9	10
517	The quest to find the plasma edge and discover a collisionally modified Bohm criterion. Plasma Physics, 2013, 79, 453-455.	Journal of	0.7	1
518	Charge and current transport in open field lines turbulence: Influence of plasma-surface conditions. Journal of Nuclear Materials, 2013, 438, S475-S479.	e boundary	1.3	1
519	Ion-sound velocity at the plasma edge in fusion-relevant plasmas. Nuclear Engineering 2013, 261, 269-274.	and Design,	0.8	3
520	The effect of a dust size distribution on electrostatic sheaths in unmagnetized dusty pl of Plasmas, 2013, 20, 043508.	asmas. Physics	0.7	14
521	Potential Formation in a Bounded Plasma System which is Terminated by an Electron E Collector Studied by a Particleâ€inâ€Cell Computer Simulation. Contributions To Plasn 189-201.	mitting Floating 1a Physics, 2013, 53,	0.5	13
522	The Bohm-sheath criterion in plasmas containing electrons and multiply charged ions. J Plasma Physics, 2013, 79, 267-271.	ournal of	0.7	13
523	Effect of the positive ion collisions on the positive space-charge in electronegative plas Physical Journal D, 2013, 67, 1.	mas. European	0.6	9

ARTICLE IF CITATIONS # Analytical model for the radio-frequency sheath. Physical Review E, 2013, 88, 063101. 524 0.8 29 Plasma-wall interactions in DC discharges and sheath of Langmuir probes. European Physical Journal: 1.2 Special Topics, 2013, 222, 2143-2156. Double einzel lens extraction for the JYFL 14 GHz ECR ion source designed with IBSimu. Journal of 526 0.5 18 Instrumentation, 2013, 8, P05003-P05003. A simple class of singular, two species Vlasov equilibria sustaining nonmonotonic potential distributions. Physics of Plasmas, 2013, 20, 012107. Plasma Wall Potentials with Secondary Electron Emissions up to the Stable Space-Charge-Limited 528 0.7 2 Condition. Plasma Science and Technology, 2013, 15, 1093-1099. Capacitive Electron Cooling in an Inductively Coupled Plasma Source/Capacitively Coupled Plasma Bias Reactor. Japanese Journal of Applied Physics, 2013, 52, 100205. 529 0.8 Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate. Chinese 530 0.7 11 Physics B, 2013, 22, 116804. Carrier-envelope-phase-dependent dissociation of hydrogen. New Journal of Physics, 2013, 15, 023034. 1.2 SPUTTERING AND MOLECULAR SYNTHESIS INDUCED BY 100 keV PROTONS IN CONDENSED 532 1.6 15 CO₂AND RELEVANCE TO THE OUTER SOLAR SYSTEM. Astrophysical Journal, 2013, 772, 53. A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage. Japanese Journal of Applied 0.8 Physics, 2013, 52, 09LE05. Transient Behavior of Negative Hydrogen Ion Extraction from Plasma. Plasma Science and Technology, 534 0.7 1 2013, 15, 945-949. Negative plasma potential relative to electron-emitting surfaces. Physical Review E, 2013, 88, 033103. 0.8 First results of a neutral beam probe for space potential measurements of low temperature plasmas. 536 0 2013,,. A kinetic study of the source–collector sheath system in a drifting plasma. Plasma Sources Science and Technology, 2013, 22, 035003. 1.3 Study of magnetic field enhanced plasma immersion ion implantation in Silicon. Journal of Physics: 538 0.3 2 Conference Series, 2014, 511, 012084. Sheath Criterion for an Electronegative Plasma Sheath in an Oblique Magnetic Field. Plasma Science and Technology, 2014, 16, 633-636. Magnetic geometry and particle source drive of supersonic divertor regimes. Plasma Physics and 540 0.9 9 Controlled Fusion, 2014, 56, 122001. Influence of plasma density on associated electrical elements of an ion sheath. Progress of 541 1.8 Theoretical and Experimental Physics, 2014, 2014, 33J01-0.

ARTICLE IF CITATIONS # Electrostatic waves in plasma: the case of an expanding microwave plasma sustained in argon. Plasma 542 1.3 0 Sources Science and Technology, 2014, 23, 064010. Measurement of effective sheath width around cutoff probe in low-pressure plasmas. Physics of 543 Plasmas, 2014, 21, 053504. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies 544 0.7 15 in linear plasma devices. Physics of Plasmas, 2014, 21, 032302. Numerical matching of the sheath and presheath solutions for a spherical probe in radial-motion 545 theory. Physics of Plasmas, 2014, 21, 103509. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2De., 2014,,. 546 14 Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma. 0.8 24 Physical Review E, 2014, 90, 033101. A unified analysis of plasma-sheath transition in the Tonks–Langmuir model with warm ion source. 548 0.7 13 Physics of Plasmas, 2014, 21, . Effects of emitted electron temperature on the plasma sheath. Physics of Plasmas, 2014, 21, . 549 Sheath formation under collisional conditions in presence of dust. Physics of Plasmas, 2014, 21, 550 0.7 9 083702. Direct measurements of ion dynamics in collisional magnetic presheaths. Physics of Plasmas, 2014, 21, 102103. Increasing the laser damage threshold of the Nd:YAG crystal by the color center annihilation. Journal 552 2 0.3 of Physics: Conference Series, 2014, 497, 012012. Examining the range of validity of the Bohm criterion. Journal of Plasma Physics, 2014, 80, 495-511. Effect of <i>q</i>-non-extensive distribution of electrons on the plasma sheath floating potential. 554 0.7 23 Journal of Plasma Physics, 2014, 80, 607-618. Electron inertia effect on floating plasma potential. Journal of Physics: Conference Series, 2014, 511, 0.3 012015. A Method for Estimating the Sheath Edge of Plasma Ion Sources. IEEE Transactions on Plasma Science, 556 0.6 4 2014, 42, 944-947. Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma. Physics of Plasmas, 2014, 21, 043501. Numerical and experimental study on a pulsed-dc plasma jet. Plasma Sources Science and Technology, 558 1.399 2014, 23, 035007. Fluid simulation of the sheath formation in a multi-component plasma containing charged dust 559 nanoparticles. Thin Solid Films, 2014, 550, 381-388.

ARTICLE IF CITATIONS # Emissive sheath measurements in the afterglow of a radio frequency plasma. Physics of Plasmas, 2014, 560 0.7 13 21,013510. Ensemble of ions and electrons in the electric field., 2014,,. 562 What is the size of a floating sheath? Plasma Sources Science and Technology, 2014, 23, 065042. 1.3 22 An analytical model for time-averaged ion energy distributions in collisional rf sheaths. Journal Physics D: Applied Physics, 2014, 47, 345201. Wakes in inhomogeneous plasmas. Physical Review E, 2014, 89, 043108. 564 0.8 16 Plasma sheath behavior and ionic wind effect in electric field modified flames. Combustion and Flame, 2.8 2014, 161, 1678-1686. On the quality of hydrogenated amorphous silicon deposited by sputtering. Materials Science in 566 1.9 4 Semiconductor Processing, 2014, 26, 367-373. Integrodifferential models of electron transport for negative ion sources. Journal of Plasma Physics, 2015, 81, . Mass spectrometry measurements of a low pressure expanding plasma jet. Journal of Vacuum Science 568 0.9 6 and Technology A: Vacuum, Surfaces and Films, 2015, 33, . A self-consistent two-fluid model of a magnetized plasma-wall transition. Physics of Plasmas, 2015, 22, Theory of the electron sheath and presheath. Physics of Plasmas, 2015, 22, . 570 0.7 54 Theory of a plasma emitter of positive ions. Physics-Uspekhi, 2015, 58, 701-718. 571 0.8 Unified Bohm criterion. Physics of Plasmas, 2015, 22, . 572 0.7 12 Sheath energy transmission in a collisional plasma with collisionless sheath. Physics of Plasmas, 2015, 22, 100703 The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor. 574 7 0.7 Physics of Plasmas, 2015, 22, 103514. Thermionic and photoelectric emission of electrons from positively charged particles in a plasma with Debye shielding. Physics of Plasmas, 2015, 22, 093704. Magnetized plasma sheath with two positive ions where collision frequencies have a power law 576 1.2 3 dependency on ions velocities. Iranian Physical Journal, 2015, 9, 307-313. Self-consistent one dimension in space and three dimension in velocity kinetic trajectory simulation model of magnetized plasma-wall transition. Physics of Plasmas, 2015, 22, .

ARTICLE IF CITATIONS # Predicting cathode material evaporation by the electric arc in PVD processes. EPJ Applied Physics, 2015, 578 0.3 3 70, 30801. Entire plasmas can be restructured when electrons are emitted from the boundaries. Physics of 579 Plasmas, 2015, 22, . Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields. 580 0.7 47 Physics of Plasmas, 2015, 22, . Extensions and applications of the Bohm criterion. Plasma Physics and Controlled Fusion, 2015, 57, 0.9 044003. A generalized two-fluid model of plasma sheath equilibrium structure. Europhysics Letters, 2015, 112, 582 0.7 9 45002. Presheath and boundary effects on helicon discharge equilibria. Plasma Sources Science and 1.3 Technology, 2015, 24, Ó15022. Instability-enhanced friction in the presheath of two-ion-species plasmas. Plasma Sources Science and 584 1.3 19 Technology, 2015, 24, 015034. Nonextensive statistics and the sheath criterion in collisional plasmas. Physics of Plasmas, 2015, 22, . An analytic expression for the sheath criterion in magnetized plasmas with multi-charged ion species. 586 0.7 9 Physics of Plasmas, 2015, 22, 043510. Influence of oblique magnetic field on electron cross-field transport in a Hall effect thruster. 587 Physics of Plasmas, 2015, 22, 043511. Measurement of the force exerted on the surface of an object immersed in a plasma. European Physical 588 0.6 11 Journal D, 2015, 69, 1. Asymptotic Stability of Plasma Boundary Layers to the Euler--Poisson Equations with Fluid-Boundary Interaction. SIAM Journal on Mathematical Ánalysis, 2015, 47, 2795-2831. Measurement of effective sheath width around the cutoff probe based on electromagnetic 590 0.7 7 simulation. Physics of Plasmas, 2016, 23, 053516. A perturbative correction for electron-inertia in magnetized sheath structures. European Physical 0.6 Journal D, 2016, 70, 1. A comparative study of sheath potential profile measurements with laser-heated and current-heated 592 0.6 8 emissive probes. Review of Scientific Instruments, 2016, 87, 043508. Oscillating plasma bubble and its associated nonlinear studies in presence of low magnetic field. Physics of Plasmas, 2016, 23, 072102. Stability of the Tonks–Langmuir discharge pre-sheath. Physics of Plasmas, 2016, 23, . 594 0.7 6 Numerical study on propagation mechanism and bioâ€medicine applications of plasma jet. High Voltage, 595 2016, 1, 62-73.

#	Article	IF	CITATIONS
596	Maximum available flux of charged particles from the laser ablation plasma. Physics of Plasmas, 2016, 23, 123112.	0.7	2
597	Critical role of electron heat flux on Bohm criterion. Physics of Plasmas, 2016, 23, .	0.7	15
598	The ion polytropic coefficient in a collisionless sheath containing hot ions. Physics of Plasmas, 2016, 23, 083508.	0.7	9
599	Revisiting the plasma sheath—dust in plasma sheath. Physics of Plasmas, 2016, 23, 042308.	0.7	6
600	Experimental study of the stochastic heating of a single Brownian particle by charge fluctuations. Physics of Plasmas, 2016, 23, 083704.	0.7	5
601	Plasma sheath properties in a magnetic field parallel to the wall. Physics of Plasmas, 2016, 23, .	0.7	19
602	Bohm-criterion approximation versus optimal matched solution for a cylindrical probe in radial-motion theory. Physics of Plasmas, 2016, 23, 083505.	0.7	2
603	Kinetic model for the collisionless sheath of a collisional plasma. Physics of Plasmas, 2016, 23, .	0.7	17
604	Ion temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model. Physics of Plasmas, 2016, 23, .	0.7	7
605	Particle-in-cell study of the ion-to-electron sheath transition. Physics of Plasmas, 2016, 23, .	0.7	14
606	Onset of normal and inverse homoclinic bifurcation in a double plasma system near a plasma fireball. Physics of Plasmas, 2016, 23, .	0.7	7
607	On the upper bound in the Bohm sheath criterion. Plasma Physics Reports, 2016, 42, 186-190.	0.3	2
608	Plasma Density Analysis of CubeSat Wakes in the Earth's Ionosphere. Journal of Spacecraft and Rockets, 2016, 53, 393-400.	1.3	11
609	Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2919-2932.	1.6	17
610	Interparticle Attraction in 2D Complex Plasmas. Physical Review Letters, 2016, 116, 125001.	2.9	32
611	Quasi-neutral limit for the Euler–Poisson system in the presence of plasma sheaths with spherical symmetry. Mathematical Models and Methods in Applied Sciences, 2016, 26, 2369-2392.	1.7	12
612	Comparative Measurements of Ion and Electron Beams from Laser Ablation Plasma. Plasma and Fusion Research, 2016, 11, 1206107-1206107.	0.3	2
613	Space charge formation and Bohm's criterion in the edge of thermal electronegative plasma. Iranian Physical Journal, 2016, 10, 241-249.	1.2	0

#	Article	IF	CITATIONS
614	Models, assumptions, and experimental tests of flows near boundaries in magnetized plasmas. Physics of Plasmas, 2016, 23, .	0.7	15
615	Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence. Plasma Physics and Controlled Fusion, 2016, 58, 025008.	0.9	24
616	The GBS code for tokamak scrape-off layer simulations. Journal of Computational Physics, 2016, 315, 388-408.	1.9	83
617	Approaches to modeling of plasmas containing impurity at arbitrary concentration. Plasma Physics and Controlled Fusion, 2016, 58, 025015.	0.9	1
618	An Integrated Predictive Simulation Model for the Plasma-Assisted Ignition of a Fuel Jet in a Turbulent Crossflow. , 2016, , .		8
619	A review of cathode-arc coupling modeling in GTAW. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 821-835.	1.3	28
620	A computational analysis of the vibrational levels of molecular oxygen in low-pressure stationary and transient radio-frequency oxygen plasma. Plasma Sources Science and Technology, 2016, 25, 025025.	1.3	24
621	Physics of the Advanced Plasma Source: a review of recent experimental and modeling approaches. Plasma Physics and Controlled Fusion, 2016, 58, 014033.	0.9	4
622	Comprehensive understanding of chamber conditioning effects on plasma characteristics in an advanced capacitively coupled plasma etcher. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	10
623	A low power miniaturized dielectric barrier discharge based atmospheric pressure plasma jet. Review of Scientific Instruments, 2017, 88, 013505.	0.6	14
624	On the Bohm criterion in the presence of a magnetic field. Nuclear Materials and Energy, 2017, 12, 999-1003.	0.6	8
625	Experimental investigation of free and bounded presheaths in weakly magnetized plasmas. Current Applied Physics, 2017, 17, 358-365.	1.1	9
626	Electron presheaths: the outsized influence of positive boundaries on plasmas. Plasma Sources Science and Technology, 2017, 26, 025009.	1.3	17
627	Characteristics of floating potential of a probe in electronegative plasma. Physics of Plasmas, 2017, 24,	0.7	14
628	Spatial profiles of interelectrode electron density in direct current superposed dual-frequency capacitively coupled plasmas. Journal Physics D: Applied Physics, 2017, 50, 155201.	1.3	12
629	Continuum kinetic and multi-fluid simulations of classical sheaths. Physics of Plasmas, 2017, 24, .	0.7	41
630	Generalized sheath criterion for arbitrary degenerate plasmas. Physics of Plasmas, 2017, 24, .	0.7	12
631	Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion. Plasma Sources Science and Technology, 2017, 26, 055003.	1.3	26

#	Article	IF	CITATIONS
632	Numerical investigation of plasma-wall interaction during burst of ELMs in a tokamak device. Physics of Plasmas, 2017, 24, 012510.	0.7	2
633	Gyrokinetic treatment of a grazing angle magnetic presheath. Plasma Physics and Controlled Fusion, 2017, 59, 025015.	0.9	17
634	Experimental studies of ion flow near the sheath edge in multiple ion species plasma including argon, xenon and neon. Plasma Sources Science and Technology, 2017, 26, 055021.	1.3	10
635	Are two plasma equilibrium states possible when the emission coefficient exceeds unity?. Physics of Plasmas, 2017, 24, 057101.	0.7	29
636	Plasma–wall transition in the quasiâ€neutral region of collisional and stationary plasmas in a magnetic field enclosed by totally absorbing walls. Contributions To Plasma Physics, 2017, 57, 151-166.	0.5	0
637	Effects of a monoenergetic electron beam on the sheath formation in a plasma with a q-nonextensive electron velocity distribution. Physics of Plasmas, 2017, 24, .	0.7	14
638	Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite Debye to ionization length ratio. Physics of Plasmas, 2017, 24, 063505.	0.7	19
639	The effect of asymmetric surface topography on dust dynamics on airless bodies. Icarus, 2017, 291, 65-74.	1.1	23
640	Scaling of plasma-body interactions in low Earth orbit. Physics of Plasmas, 2017, 24, .	0.7	12
641	pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions. Computers and Fluids, 2017, 149, 160-171.	1.3	21
642	Observation of ion-ion counter streaming instability in presheath-sheath region of a mesh grid immersed in low temperature plasma. Physics of Plasmas, 2017, 24, 032110.	0.7	1
643	Main Issues for a Fully Predictive Plasma Spray Torch Model and Numerical Considerations. Plasma Chemistry and Plasma Processing, 2017, 37, 627-651.	1.1	22
644	Effect of Dielectric Barrier Discharge Body Forces on Hydrogen Flames. , 2017, , .		0
645	Effect of total emitted electron velocity distribution function on the plasma sheath near a floating wall. AIP Advances, 2017, 7, .	0.6	7
646	Electric Field Modified Bunsen Flame with Variable Anode Placement. Journal of Thermophysics and Heat Transfer, 2017, 31, 956-964.	0.9	4
647	Physics of ultimate detachment of a tokamak divertor plasma. Journal of Plasma Physics, 2017, 83, .	0.7	115
648	Dust particle charging in a stratified glow discharge considering nonlocal electron kinetics. Plasma Sources Science and Technology, 2017, 26, 115003.	1.3	21
649	Removal of singularity in radial Langmuir probe models for non-zero ion temperature. Physics of Plasmas, 2017, 24, 103516.	0.7	9

#	Article	IF	CITATIONS
650	Analytical model of particle and heat flux collection by dust immersed in dense magnetized plasmas. Plasma Physics and Controlled Fusion, 2017, 59, 104002.	0.9	20
651	One-dimensional plasma sheath model in front of the divertor plates. Plasma Physics and Controlled Fusion, 2017, 59, 114001.	0.9	40
652	Foundations of low-temperature plasma physics—an introduction. Plasma Sources Science and Technology, 2017, 26, 113001.	1.3	72
653	Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential. Journal of Geophysical Research: Space Physics, 2017, 122, 9603-9621.	0.8	11
654	Ion injection in electrostatic particle-in-cell simulations of the ion sheath. Journal of Computational Physics, 2017, 350, 747-758.	1.9	6
655	Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. II. Asymptotic two-scale limit. Physics of Plasmas, 2017, 24, 063506.	0.7	10
656	Effects of an anode sheath on energy and momentum transfer in vacuum arcs. Journal Physics D: Applied Physics, 2017, 50, 295203.	1.3	6
657	The influence of multi-ion streaming on the variation of dust particle surface potential with Maxwellian/non-Maxwellian dusty plasmas. Physics of Plasmas, 2017, 24, .	0.7	5
658	Some studies on transient behaviours of sheath formation in dusty plasma with the effect of adiabatically heated electrons and ions. Plasma Science and Technology, 2017, 19, 095002.	0.7	1
659	Criterion of sheath formation in magnetized low pressure plasma. Physics of Plasmas, 2017, 24, .	0.7	19
660	An analytical force balance model for dust particles with size up to several Debye lengths. Physics of Plasmas, 2017, 24, 113702.	0.7	3
661	Characterization by laser-induced photodetachment of anions formed during dust particle growth in a magnetically confined very low-pressure argon–acetylene plasma. Plasma Sources Science and Technology, 2017, 26, 085001.	1.3	2
662	Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters. Physical Review Applied, 2017, 7, .	1.5	19
663	Kinetic modeling of the electronic response of a dielectric plasma-facing solid. Journal Physics D: Applied Physics, 2017, 50, 294003.	1.3	16
664	Simulation study of the photoemission effects in an electrostatic plasma sheath containing charged nanoparticles. Physics of Plasmas, 2017, 24, .	0.7	2
665	Evolutionary sheath structure in magnetized collisionless plasma with electron inertia. Plasma Physics Reports, 2017, 43, 957-968.	0.3	3
666	Recommended Practice for Use of Emissive Probes in Electric Propulsion Testing. Journal of Propulsion and Power, 2017, 33, 614-637.	1.3	41
667	Miniature ion thruster ring-cusp discharge performance and behavior. Journal of Applied Physics, 2017, 122, .	1.1	21

#	Article	IF	CITATIONS
668	Flame exposure time on Langmuir probe degradation, ion density, and thermionic emission for flame temperature. Review of Scientific Instruments, 2017, 88, 113503.	0.6	1
669	Heating of heavy plasma species by damping electron beam in beam-generated plasma. Physics of Plasmas, 2017, 24, 113508.	0.7	1
670	Nanostructuring of an alkali halide surface by low temperature plasma exposure. Physical Chemistry Chemical Physics, 2017, 19, 16251-16256.	1.3	2
671	Dynamic Coupling of Boltzmann Plasma Model to Surface Erosion Model for Kinetic Treatment of Plasma-Material Interactions. Fusion Science and Technology, 2017, 71, 93-102.	0.6	4
672	Numerical analysis of the asymptotic two-scale limit of the plasma-wall transition using a one-dimensional two-fluid model. Journal of Physics: Conference Series, 2018, 982, 012005.	0.3	0
673	Introduction to the theory and application of a unified Bohm criterion for arbitrary-ion-temperature collision-free plasmas with finite Debye lengths. Physics of Plasmas, 2018, 25, 043509.	0.7	3
674	Alternative model of space-charge-limited thermionic current flow through a plasma. Physical Review E, 2018, 97, 043207.	0.8	16
675	Sheath Properties in Two-Temperature Non-Maxwellian Electron Plasmas. IEEE Transactions on Plasma Science, 2018, 46, 868-874.	0.6	15
676	Dielectric-barrier-discharge plasma-assisted hydrogen diffusion flame. Part 2: Modeling and comparison with experiments. Combustion and Flame, 2018, 191, 541-557.	2.8	12
677	The plasma-wall transition layers in the presence of collisions with a magnetic field parallel to the wall. Physics of Plasmas, 2018, 25, 013534.	0.7	8
678	Numerical Study of Plasma–Electrode Interaction During Arc Discharge in a DC Plasma Torch. IEEE Transactions on Plasma Science, 2018, 46, 363-372.	0.6	26
679	Gas tungsten arc models including the physics of the cathode layer: remaining issues. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 177-196.	1.3	17
680	Nonextensive GES instability with nonlinear pressure effects. Results in Physics, 2018, 8, 592-597.	2.0	3
681	Relation between the ion flux and plasma density in an rf CCP discharge. Plasma Sources Science and Technology, 2018, 27, 025003.	1.3	6
682	Non-equilibrium synergistic effects in atmospheric pressure plasmas. Scientific Reports, 2018, 8, 4783.	1.6	17
683	The effects of secondary emission on the sheath structure in an electrostatic dusty plasma containing energetic electrons and charged nanoparticles. Physics of Plasmas, 2018, 25, 033701.	0.7	3
684	Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties. Plasma Chemistry and Plasma Processing, 2018, 38, 147-176.	1.1	6
685	Estimation of the reduction of sputtering for fusion grade materials after disappearance of the Debye sheath. Indian Journal of Physics, 2018, 92, 259-270.	0.9	2

~			_	
CI	ΓΑΤΙ	ION	REI	PORT

#	Article	IF	CITATIONS
686	Semi-analytical model for a static sheath including a weakly collisional presheath. Japanese Journal of Applied Physics, 2018, 57, 06JG02.	0.8	0
687	Solution to a collisionless shallow-angle magnetic presheath with kinetic ions. Plasma Physics and Controlled Fusion, 2018, 60, 125002.	0.9	11
688	Measuring the plasma-wall charge by infrared spectroscopy. Europhysics Letters, 2018, 124, 25001.	0.7	4
689	Theoretical models of collisional transport in negative ion source presheath. AIP Conference Proceedings, 2018, , .	0.3	0
690	Two-fluid solutions for Langmuir probes in collisionless and isothermal plasma, over all space and bias potential. Physics of Plasmas, 2018, 25, 093519.	0.7	4
691	Dust levitation in an inverse sheath. Physics of Plasmas, 2018, 25, .	0.7	5
692	A dust particle based technique to measure potential profiles in a plasma. Physics of Plasmas, 2018, 25, 083711.	0.7	9
693	Electrical characterization of argon and nitrogen based cold plasma jet. EPJ Applied Physics, 2018, 83, 20801.	0.3	9
694	Effects of collision and ion Mach number on magnetized plasma sheath with two species of positive ions. AIP Advances, 2018, 8, 105321.	0.6	7
695	Atomic processes leading to asymmetric divertor detachment in KSTAR L-mode plasmas. Nuclear Fusion, 2018, 58, 126033.	1.6	20
696	Ion dynamics in a magnetized source-collector sheath. Physics of Plasmas, 2018, 25, .	0.7	8
697	The influence of polarization and charge gradient forces on the dust sheath formation. Physics of Plasmas, 2018, 25, 083712.	0.7	7
698	Test cases for grid-based direct kinetic modeling of plasma flows. Plasma Sources Science and Technology, 2018, 27, 065004.	1.3	39
699	Electron kinetics at the plasma interface. European Physical Journal D, 2018, 72, 1.	0.6	8
700	Analysis of wall-embedded Langmuir probe signals in different conditions on the Tokamak Ã Configuration Variable. Review of Scientific Instruments, 2018, 89, 053502.	0.6	49
701	A detailed study on the structures of steady-state collisionless kinetic sheath near a dielectric wall with secondary electron emission. I. Classic sheath and its structure transition. Physics of Plasmas, 2018, 25, 063519.	0.7	3
702	A detailed study on the structures of steady-state collisionless kinetic sheath near a dielectric wall with secondary electron emission. II. Inverse and space-charge limited sheaths. Physics of Plasmas, 2018, 25, 063520.	0.7	4
703	Plasma Physics Fundamentals. , 0, , 1-35.		0

#	Article	IF	Citations
704	Positive ion temperature effect on the plasma-wall transition. Physics of Plasmas, 2018, 25, .	0.7	7
705	A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster. , 2018, , .		6
706	Modeling Plasma via Electron Impact Ionization. Aerospace, 2018, 5, 2.	1.1	10
707	Sheath criterion in constant mean free path collisional plasma with two distinct temperature q-nonextensive electrons. Indian Journal of Physics, 2019, 93, 107-114.	0.9	4
708	Experimental measurements of the RF sheath thickness with a cylindrical Langmuir probe. Physics of Plasmas, 2019, 26, .	0.7	9
709	Instability-enhanced transport in low temperature magnetized plasma. Physics of Plasmas, 2019, 26, .	0.7	12
710	Effect of High Ion Temperature on the Polytropic Coefficient in the End Region of GAMMA 10/PDX. Plasma and Fusion Research, 2019, 14, 2401086-2401086.	0.3	1
711	Influence of collisions in a fluid model for the warm-ion sheath around a cylindrical Langmuir probe. Plasma Sources Science and Technology, 2019, 28, 115017.	1.3	3
712	Structure of the Wall Sheath in a Gas-Discharge Plasma for an Arbitrary Orientation of a Flat Probe Relative to the Electric Field in the Plasma. Technical Physics, 2019, 64, 1462-1472.	0.2	0
713	Edge of magnetized electronegative plasma ion source in the presence of collisional adiabatic thermal positive ions. Journal of Theoretical and Applied Physics, 2019, 13, 251-261.	1.4	2
714	Modified Frost formula for the mobilities of positive ions in their parent gases. AIP Advances, 2019, 9, 095008.	0.6	10
715	Kinetic Theory of the Wall Sheath for Arbitrary Conditions in a Gas-Discharge Plasma. Technical Physics, 2019, 64, 1308-1318.	0.2	0
716	Investigation of multi-component magnetized plasma interaction with the carbon surface. AIP Advances, 2019, 9, 095030.	0.6	4
717	Numerically studying the effects of discharge conditions on plasma-wall transition region of magnetized methane plasma. Physics of Plasmas, 2019, 26, 013502.	0.7	5
718	Plasma Sheath Formation at Craters on Airless Bodies. Journal of Geophysical Research: Space Physics, 2019, 124, 4188-4193.	0.8	1
719	Reply to â€ [~] Comment on "Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterionâ€â€™. Plasma Sources Science and Technology, 2019, 28, 078002.	1.3	1
720	Presheath-sheath coupling for kinetic trajectory simulation of a magnetized plasma sheath. AIP Advances, 2019, 9, 055123.	0.6	5
721	Non-isothermal sheath model for low pressure plasmas. Plasma Sources Science and Technology, 2019, 28, 075007.	1.3	5

ITATION R

#	Article	IF	CITATIONS
722	Lunar surface potential and electric field [*] . Research in Astronomy and Astrophysics, 2019, 19, 077.	0.7	2
723	Numerical Study of the Current Constriction in a Vacuum Arc at Large Contact Gap. IEEE Transactions on Plasma Science, 2019, 47, 2765-2774.	0.6	3
724	A truly forward semi-Lagrangian WENO scheme for the Vlasov-Poisson system. Journal of Computational Physics, 2019, 392, 619-665.	1.9	6
725	Towards an integrated modeling of the plasma-solid interface. Frontiers of Chemical Science and Engineering, 2019, 13, 201-237.	2.3	34
726	The effect of gyration on the deposition of beryllium and deuterium at rough surface on the divertor tiles with ITER-like-wall in JET. Nuclear Materials and Energy, 2019, 19, 155-160.	0.6	1
727	The plasma-wall transition with collisions and an oblique magnetic field: Reversal of potential drops at grazing incidences. Physics of Plasmas, 2019, 26, .	0.7	5
728	Influence of metastable atoms on the formation of nonlocal EDF, electron reaction rates, and transport coefficients in argon plasma. Plasma Sources Science and Technology, 2019, 28, 035017.	1.3	8
729	Plasma potential probes for hot plasmas. European Physical Journal D, 2019, 73, 1.	0.6	11
730	Polytropic Coefficient Function for Tonks-Langmuir-Type Bounded Plasmas with Kappa-Distributed Electrons and Cold Ion Source. Brazilian Journal of Physics, 2019, 49, 372-378.	0.7	0
731	Comment on â€~Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion'. Plasma Sources Science and Technology, 2019, 28, 078001.	1.3	3
732	Integrated modeling of plasma-dielectric interaction: kinetic boundary effects. Plasma Sources Science and Technology, 2019, 28, 055001.	1.3	16
733	Potential profile near the virtual cathode in presence of charged dust. Contributions To Plasma Physics, 2019, 59, e201900007.	0.5	1
734	A Particle-in-Cell solver based on a high-order hybridizable discontinuous Galerkin spectral element method on unstructured curved meshes. Computer Methods in Applied Mechanics and Engineering, 2019, 349, 149-166.	3.4	6
735	New collective trampoline mechanism of accelerated ion-plasma sputtering. Journal Physics D: Applied Physics, 2019, 52, 185201.	1.3	6
736	Comprehensive kinetic theory of an electron emitting electrode in a low-density isotropic plasma. Physics of Plasmas, 2019, 26, .	0.7	3
737	Stability of different plasma sheaths near a dielectric wall with secondary electron emission. Journal of Plasma Physics, 2019, 85, .	0.7	1
738	Kinetic Bohm criterion in the Tonks-Langmuir model: Assumption or theorem?. Physics of Plasmas, 2019, 26, .	0.7	0
739	Dependence on ion temperature of shallow-angle magnetic presheaths with adiabatic electrons. Journal of Plasma Physics, 2019, 85, .	0.7	4

#	Article	IF	CITATIONS
740	Regular sensitivity computation avoiding chaotic effects in particle-in-cell plasma methods. Journal of Computational Physics, 2020, 400, 108969.	1.9	4
741	Saturation of the magnetic confinement in weakly ionized plasma. Plasma Sources Science and Technology, 2020, 29, 065014.	1.3	7
742	Analytic solution for a joint Bohm sheath and pre-sheath potential profile. Physica Scripta, 2020, 95, 015602.	1.2	2
743	Plasma-material boundary conditions for discontinuous Galerkin continuum-kinetic simulations, with a focus on secondary electron emission. Journal of Computational Physics, 2020, 406, 109215.	1.9	4
744	Understanding baffle overloads observed in high-mirror configuration on Wendelstein 7-X. Nuclear Fusion, 2020, 60, 096012.	1.6	9
745	Langmuir Probe Diagnostics with Optical Emission Spectrometry (OES) for Coaxial Line Microwave Plasma. Applied Sciences (Switzerland), 2020, 10, 8117.	1.3	8
746	Kinetic modeling of the electric double layer at a dielectric plasma-solid interface. Physical Review E, 2020, 102, 023206.	0.8	6
747	Dynamics of dust particles confined in imposed potential structures in strongly magnetized, low-temperature plasmas. Physical Review E, 2020, 102, 023208.	0.8	8
748	Quasi-neutral limit for Euler-Poisson system in the presence of boundary layers in an annular domain. Journal of Differential Equations, 2020, 269, 8007-8054.	1.1	7
749	Effect of dust grains size distribution on the Bohm sheath criterion in plasmas. Physics of Plasmas, 2020, 27, 093701.	0.7	1
750	Variation of Velocity of Ions in a Magnetized Plasma Sheath for Different Magnetic Field. Journal of Nepal Physical Society, 2020, 6, 25-29.	0.1	0
751	More about hot electrons between cold walls. Physics of Plasmas, 2020, 27, .	0.7	1
752	Laser-induced fluorescence measurements of ion fluctuations in electron and ion presheaths. Physics of Plasmas, 2020, 27, .	0.7	8
753	An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure. Journal of Computational Physics, 2020, 419, 109634.	1.9	8
754	Automated electron temperature fitting of Langmuir probe l–V trace in plasmas with multiple Maxwellian EEDFs. Plasma Science and Technology, 2020, 22, 085404.	0.7	8
755	Interaction of biased electrodes and plasmas: sheaths, double layers, and fireballs. Plasma Sources Science and Technology, 2020, 29, 053001.	1.3	46
756	Magnetized plasma sheath in the presence of negative ions. Physics of Plasmas, 2020, 27, .	0.7	8
757	Hot electrons between cold walls. Physics of Plasmas, 2020, 27, .	0.7	2

#	Article	IF	CITATIONS
758	A Self-Consistent Open Boundary Condition for Fully Kinetic Plasma Thruster Plume Simulations. IEEE Transactions on Plasma Science, 2020, 48, 610-630.	0.6	8
759	Kinetic model of an inverted sheath in a bounded plasma system. Physics of Plasmas, 2020, 27, .	0.7	6
760	Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma. Nuclear Fusion, 2020, 60, 046029.	1.6	13
761	Boundary conditions for drift-diffusion equations in gas-discharge plasmas. Physics of Plasmas, 2020, 27, .	0.7	11
762	Sheath formation criterion in collisional electronegative warm plasma. Vacuum, 2020, 177, 109354.	1.6	13
763	The effects of electron energy distribution function on the plasma sheath structure in the presence of charged nanoparticles. Journal of Plasma Physics, 2020, 86, .	0.7	5
764	CRISP: A compact RF ion source prototype for emittance scanner testing. Review of Scientific Instruments, 2020, 91, 033314.	0.6	0
765	Firetube formation through sheath-plasma instability in expanding RF plasma. Indian Journal of Physics, 2021, 95, 1545-1556.	0.9	0
766	Issues in the numerical modelling of positive ion extraction. Computer Physics Communications, 2021, 259, 107629.	3.0	9
767	Stability and Existence of Stationary Solutions to the Euler–Poisson Equations in a Domain with a Curved Boundary. Archive for Rational Mechanics and Analysis, 2021, 239, 357-387.	1.1	4
768	High Resolution Modeling and Experiments for Deeper Understanding of Plasma Dynamics. , 2021, , .		0
769	Plasma sheath and presheath development near a partially reflective surface. Journal of Plasma Physics, 2021, 87, .	0.7	1
770	Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic and Related Models, 2021, 14, 149.	0.5	1
771	Large gyro-orbit model of ion velocity distribution in plasma near a wall in a grazing-angle magnetic field. Journal of Plasma Physics, 2021, 87, .	0.7	2
772	Kinetic-theory-based investigation of electronegative plasma–wall transition with two populations of electrons. Plasma Science and Technology, 2021, 23, 035002.	0.7	1
773	Grid-Assisted Co-Sputtering Method: Background, Advancement, and Prospect. Plasma Chemistry and Plasma Processing, 2021, 41, 713-744.	1.1	3
774	Particle-in-cell simulations of heat flux to tokamak divertors in an oblique magnetic field. Plasma Physics and Controlled Fusion, 2021, 63, 045025.	0.9	2
775	Laser induced fluorescence diagnostic for velocity distribution functions: applications, physics, methods and developments. Plasma Science and Technology, 2021, 23, 055501.	0.7	5

#	Article	IF	CITATIONS
776	Sheath properties in active magnetized multi-component plasmas. Scientific Reports, 2021, 11, 9531.	1.6	7
777	Effect of collisions on the plasma sheath in the presence of an inhomogeneous magnetic field. Physica Scripta, 2021, 96, 075606.	1.2	6
778	On approximate solutions to the Euler–Poisson system with boundary layers. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105717.	1.7	2
779	Challenges and opportunities in verification and validation of low temperature plasma simulations and experiments. European Physical Journal D, 2021, 75, 1.	0.6	6

780 Đ'Đ¿Đ»Đ,Đ² Đ²â€™ÑĐ·ĐºĐ¾ÑŇ,Ñ– Ñ–Đ¾Đ½Ñ–Đ² Đ½Đ° Ñ€Đ¾Đ·Đ¿Đ¾ĐÑ–Đ» Đ¿Đ°Ñ€Đ°Đ¼ĐµÑ,ріĐ² ĐỵлаĐ·Đ¼Đ₄Đ, Đ² Ñ¥

781	Lock-in technique for precise measurement of ion distribution functions. Journal Physics D: Applied Physics, 2021, 54, 305202.	1.3	0
782	Enhanced thermionic emission of mayenite electride composites in an Ar glow discharge plasma. Ceramics International, 2021, 47, 16614-16631.	2.3	14
783	Power deposition behavior of high-density transient hydrogen plasma on tungsten in Magnum-PSI. Plasma Physics and Controlled Fusion, 2021, 63, 085016.	0.9	4
784	Sheath formation in the presence of nonâ€extensive electron distribution. Contributions To Plasma Physics, 2021, 61, e202100047.	0.5	7
785	Study of numerical error of a Eulerian–Lagrangian scheme in the presence of particle source. Computer Physics Communications, 2021, 264, 107960.	3.0	1
786	Numerical and theoretical modeling of the sheath upstream of ion optics: sheath structure transition and its effect on the beam divergence. Plasma Sources Science and Technology, 2021, 30, 075019.	1.3	5
787	Multiâ€Point Measurements of the Plasma Properties Inside an Aurora From the SPIDER Sounding Rocket. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029204.	0.8	5
788	Influence of magnetic angle on the E × B drift in a magnetic presheath. Physics of Plasmas, 2021, 28, 083507.	0.7	0
789	Sheath size and Child–Langmuir law in one dimensional bounded plasma system in the presence of an oblique magnetic field: PIC results. Physics of Plasmas, 2021, 28, 083501.	0.7	6
790	Numerical study of the effect of secondary electron emission on the sheath characteristics in q â€nonâ€extensive plasma. Contributions To Plasma Physics, 0, , e202100084.	0.5	1
791	Generalized Bohm sheath criterion in dusty plasma of space environment. Advances in Space Research, 2021, 68, 3455-3463.	1.2	3
792	A boundary value "reservoir problem―and boundary conditions for multi-moment multifluid simulations of sheaths. Physics of Plasmas, 2021, 28, .	0.7	2
793	Surface Electrons at Plasma Walls. Springer Series on Atomic, Optical, and Plasma Physics, 2014, , 267-298.	0.1	3

# 794	ARTICLE The Use of Plasma Source Ion Implantation for Wear Protection. , 1997, , 635-647.	IF	Citations 4
795	Plasma Based Ion Implantation. , 1999, , 191-244.		4
797	Evidence for electron-tunneling-limited Knudsen diffusion of mercury in phosphor layers and coatings of fluorescent lamps. EPJ Applied Physics, 2020, 91, 30801.	0.3	2
798	Electronegative magnetized plasma sheath properties in the presence of non-Maxwellian electrons with a homogeneous ion source. Plasma Physics and Controlled Fusion, 2020, 62, 115011.	0.9	10
799	Approximation of the Mobility of Atomic Ions of Noble Gases in Their Parent Gas. High Temperature, 2020, 58, 545-549.	0.1	4
800	Effects of Yushmanov-Trapped Particles and Anisotropy of Velocity Distribution on the Potential Formation in the End Region of a Tandem Mirror. Journal of the Physical Society of Japan, 1994, 63, 558-572.	0.7	19
801	The Role and Properties of the Sheath. Series in Plasma Physics, 2000, , 61-110.	0.2	3
802	Further Aspects of the Sheath. Series in Plasma Physics, 2000, , 629-655.	0.2	1
803	Models of low pressure plasma-aided materials processing. , 1992, , .		1
805	Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic and Related Models, 2011, 4, 569-588.	0.5	29
806	Asymptotic stability of a boundary layer to the EulerPoisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9, 587-603.	0.5	8
807	A minimization formulation of a bi-kinetic sheath. Kinetic and Related Models, 2016, 9, 621-656.	0.5	7
808	Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II. Journal De L'Ecole Polytechnique - Mathematiques, 0, 1, 343-386.	0.0	21
809	A Half-Space Problem on the Full EulerPoisson System. SIAM Journal on Mathematical Analysis, 2021, 53, 6094-6121.	0.9	4
810	A variational sheath model for stationary gyrokinetic Vlasov–Poisson equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 2609-2642.	0.8	0
811	Kinetic Numerical Modelling. , 2000, , 205-236.		0
812	Conduction of Electricity in Gases. , 2006, , 1319-1334.		0
813	The Bohm criterion for a collisional plasma sheath in an oblique magnetic field. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 1902.	0.2	11

ARTICLE IF CITATIONS Bohm criterion for an electronegative magnetized plasma sheath. Wuli Xuebao/Acta Physica Sinica, 0.2 3 814 2012, 61, 035201. Surface and Thin Film Analysis., 2012, , 269-298. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. 816 0.5 4 Discrete and Continuous Dynamical Systems, 2013, 33, 723-737. Special issue : Recent sheath problems.3.Sheath in magnetic field confinement nuclear fusion.. KakuyūgÅ• 818 Kenkyū, 1992, 68, 562-567. Probe Diagnostics of Plasmas., 1992, , 27-44. 819 0 Physics of Open-Field Line Plasmas. Structures of Electrostatic Potential inthe End Region of Magnetic 820 0.4 Mirror Systems.. Journal of Plasma and Fusion Research, 1999, 75, 1180-1187. Physics of Open-Field Line Plasmas. 4. Formation of Electrostatic Potential in a Tandem Mirror Plasma.. 821 0.4 0 Journal of Plasma and Fusion Research, 1999, 75, 934-944. Modeling: 2-D., 2016, , 833-846. Effects of <i>q</i>-nonextensive distribution of electrons on secondary electron emission in plasma 824 0.2 4 sheath. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 185204. The generalized criterion for collisionless plasma sheaths with kappa distributed electrons. Plasma Physics and Controlled Fusion, 2020, 62, 105004. Basics of Cathode-Plasma Transition. Application to the Vacuum Arc. Springer Series on Atomic, 826 2 0.1 Optical, and Plasma Physics, 2020, , 113-139. The structure of an electronegative magnetized plasma sheath with non-extensive electron distribution. Plasma Science and Technology, 2020, 22, 125001. New method for rekindling the explosive waves in Maxwellian space plasmas. Plasma Science and 828 0.7 1 Technology, 2020, 22, 125302. New heat flux model for non-axisymmetric divertor infrared structures. Nuclear Fusion, 2021, 61, 829 1.6 016018. Sheath collapse at critical shallow angle due to kinetic effects. Plasma Physics and Controlled Fusion, 830 0 0.9 0, , . Formation of an inverted sheath in a one-dimensional bounded plasma system studied by particle-in-cell simulation. Physics of Plasmas, 2021, 28, 123507. The differential analysis for temperature distribution diagnostics of arc current-carrying region in 832 sheet slanting tungsten electrode inert gas welding with the electrostatic probe. High Temperature 0.6 3 Materials and Processes, 2021, 40, 410-420. Benchmark experiments of the power law parametrization of the effective ion collecting area of a 834 planar Langmuir probe in low temperature plasmas. Plasma Sources Science and Technology, 2022, 31, 1.3 024001.

CITATION	Report
onnon	

#	Article	IF	CITATIONS
835	Particle-in-Cell Investigation on Temporal Flow and Expansion Behaviors of Deuterium-Titanium Plasmas From Ion Source to Expansion Cup. IEEE Transactions on Plasma Science, 2022, 50, 295-304.	0.6	1
836	Self-Organized Space Charge Structure Formations in DC Glow Discharge. IEEE Transactions on Plasma Science, 2022, 50, 1115-1121.	0.6	2
837	Effect of plasma sheath with secondary electron emission on the Ti N chemical bond formation in titanium dental implantation. Materials Today: Proceedings, 2022, , .	0.9	0
838	Bohm Criterion of Plasma Sheaths away from Asymptotic Limits. Physical Review Letters, 2022, 128, 085002.	2.9	9
839	Equilibrium properties of inhomogeneous partially-magnetized plasma containing negative ions. Journal Physics D: Applied Physics, 2022, 55, 235201.	1.3	1
840	Charge kinetics across a negatively biased semiconducting plasma-solid interface. Physical Review E, 2022, 105, 045202.	0.8	0
841	Isentropic plasma sheath model for improved fidelity. Physics of Plasmas, 2022, 29, 040701.	0.7	3
842	Measurement of Mach probe on plasma flow velocity in highly collisional plasma jet. Current Applied Physics, 2022, 39, 45-50.	1.1	2
843	Determination of positive anode sheath in anodic carbon arc for synthesis of nanomaterials. Journal Physics D: Applied Physics, 2022, 55, 114001.	1.3	1
844	The role and properties of the sheath. , 0, , .		0
845	The mathematical justification of the Bohm criterion in plasma physics. , 0, , .		0
846	Investigation of the interaction of dense noble gas plasmas with cold cathodes: l—Experimental setup and application to Al, Cu, Ti, and graphite cathodes. Contributions To Plasma Physics, 0, , .	0.5	3
847	Empirical study of multidimensional Child-Langmuir law with plasma ion source extraction using round apertures. Journal of Physics: Conference Series, 2022, 2244, 012079.	0.3	2
848	On the electron sheath theory and its applications in plasma–surface interactions. Plasma Science and Technology, 2022, 24, 095401.	0.7	5
849	Observation of non-thermal metastable ion velocity distributions in a miniaturized multi-dipole confined plasma device. Physics of Plasmas, 2022, 29, 063504.	0.7	1
850	Investigation of ion collision effect on electrostatic sheath formation in weakly ionized and weakly collisional plasma. Plasma Sources Science and Technology, 2022, 31, 084006.	1.3	4
851	A method for deposition rate estimation on a low-cost home-built DC sputter system. , 2022, , .		0
852	DirectÂmeasurementÂofÂionÂandÂelectronÂfluxÂratio at their respective sheath-edges and absence of the electron Bohm criterion effects. Plasma Sources Science and Technology, 0, , .	1.3	3

#	Article	IF	CITATIONS
853	Modeling of the impact of neon seeding on the detachment in EAST by SOLPS-ITER. Physics of Plasmas, 2022, 29, .	0.7	5
854	On the effect of incoherence in a polarized dusty plasma and Wigner stability. Physica Scripta, 2022, 97, 125601.	1.2	1
855	Transport physics dependence of Bohm speed in presheath–sheath transition. Physics of Plasmas, 2022, 29, .	0.7	6
856	Kinetic modeling and experiments of a pulsed-bias plasma in a multipole plasma chamber. Physics of Plasmas, 2022, 29, .	0.7	0
858	Sheath Physics. Springer Series on Atomic, Optical, and Plasma Physics, 2022, , 89-143.	0.1	0
859	Plasma Treatment Mechanism in Si–SiO ₂ Direct Wafer Bonding. Science of Advanced Materials, 2022, 14, 1265-1270.	0.1	0
860	Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source. Plasma Science and Technology, 2023, 25, 035003.	0.7	3
861	ITER relevant multi-emissive sheaths at normal magnetic field inclination. Nuclear Fusion, 2023, 63, 026007.	1.6	4
862	An extraction system design with a strongly inhomogeneous electric field for a JYFL electron cyclotron resonance ion source. Physics of Plasmas, 2022, 29, 123506.	0.7	2
863	Analysis of ion orbits in front of a negative planar electrode immersed in an oblique magnetic field. AIP Advances, 2022, 12, 125211.	0.6	1
864	New achievement of the global sheath-bulk model for the collisionless radio-frequency using in scale industries. Heliyon, 2022, , e12264.	1.4	0
865	Study of two-electron temperature plasma sheath using non-extensive electron distribution in presence of an external magnetic field. AIP Advances, 2023, 13, .	0.6	2
866	Theoretical Study and PIC Verification on High-Voltage Child-Sheath of Mixed Deuterium–Titanium Plasmas. IEEE Transactions on Plasma Science, 2023, 51, 367-373.	0.6	1
867	Measurements of ion fluxes in extreme ultraviolet-induced plasma of new EUV-beam-line 2 nanolithography research machine and their applications for optical component tests. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2023, 41, 012603.	0.6	0
868	Sheath formation time for spherical Langmuir probes. Journal of Plasma Physics, 2023, 89, .	0.7	1
869	Effect of Cathode-Plasma Coupling on Plasma Torch Operation Predicted by a 3D Two-Temperature Electric Arc Model. Journal of Thermal Spray Technology, 0, , .	1.6	0
870	Fume emissions by electric arc during gas metal arc welding. Physics of Aerodisperse Systems, 2022, , 120-142.	0.1	0
871	Studies of Transient Photoplasma Evolution in an Electrostatic Field: Single Particle Motion to Its Collective Behavior. IEEE Transactions on Plasma Science, 2023, 51, 344-351.	0.6	1

#	Article	IF	CITATIONS
872	Effect of q-Nonextensively Distributed Plasma Electrons on Double Sheath Characteristics and Virtual Cathode Formation Associated With Electron Emitting Surfaces. IEEE Transactions on Plasma Science, 2023, 51, 737-746.	0.6	0
873	Plasma sheath in the presence of warm ions. Contributions To Plasma Physics, 0, , .	0.5	0
874	A new global model with two electron groups for weakly ionized argon discharges at low pressure. Plasma Sources Science and Technology, 2023, 32, 025010.	1.3	2
875	Effects of trapped electrons on the sheath at the boundary of a dusty plasma. Japanese Journal of Applied Physics, 2023, 62, 046002.	0.8	1
876	INFLUENCE OF ION VISCOSITY ON THE DISTRIBUTION OF PARAMETERS IN THE SHEATH AT THE BOUNDARY OF A STATIONARY WEAKLY IONIZED STRONGLY NONISOTHERMAL PLASMA. , 2023, , 32-37.		0
877	Langmuir probe measurements of the secondary electron population across the cathodic pre-sheath of a DC argon discharge. Physics of Plasmas, 2023, 30, 043502.	0.7	0
878	The longitudinal energy spread of ion beams extracted from an electron cyclotron resonance ion source. Journal of Instrumentation, 2023, 18, P04018.	0.5	0
890	Double Layer Solutions of the Vlasov–Poisson System. Springer Proceedings in Mathematics and Statistics, 2023, , 41-52.	0.1	0