The glucocorticoid receptor binds to a sequence overlap osteocalcin promoter: a potential mechanism for negati

Molecular and Cellular Biology 11, 3379-3383 DOI: 10.1128/mcb.11.6.3379

Citation Report

#	Article	IF	CITATIONS
1	Influence of dexamethasone on the vitamin D-mediated regulation of osteocalcin gene expression. Journal of Cellular Biochemistry, 1991, 47, 184-196.	2.6	49
2	Regulation of Gene Expression by Steroid Hormones. Progress in Molecular Biology and Translational Science, 1992, 43, 1-36.	1.9	27
3	Vitamin D-responsive protein-DNA interactions at multiple promoter regulatory elements that contribute to the level of rat osteocalcin gene expression Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6119-6123.	7.1	62
4	Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1 Molecular and Cellular Biology, 1992, 12, 4960-4969.	2.3	97
5	Concepts of Osteoblast Growth and Differentiation: Basis for Modulation of Bone Cell Development and Tissue Formation. Critical Reviews in Oral Biology and Medicine, 1992, 3, 269-305.	4.4	502
6	Hematopoietic transcription regulators and the origins of leukemia. Critical Reviews in Oncology/Hematology, 1992, 12, 167-190.	4.4	13
7	Regulation of two rat serine-protease inhibitor gene promoters by somatotropin and glucocorticoids. Study with intact hepatocytes and cell-free systems. FEBS Journal, 1992, 209, 1053-1061.	0.2	35
8	Transcriptional control of vitamin D-regulated proteins. Journal of Cellular Biochemistry, 1992, 49, 37-45.	2.6	38
9	Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes. Journal of Cellular Biochemistry, 1992, 50, 425-440.	2.6	194
10	Osteoblastic gene expression during adipogenesis in hematopoietic supporting murine bone marrow stromal cells. Journal of Cellular Physiology, 1993, 154, 317-328.	4.1	187
11	Insulin-like growth factor-1 modulates steroid hormone effects on osteocalcin synthesis in human MG-63 osteosarcoma cells. FEBS Journal, 1993, 218, 883-891.	0.2	20
12	Molecular Mechanisms Mediating Proliferation/Differentiation Interrelationships During Progressive Development of the Osteoblast Phenotype. Endocrine Reviews, 1993, 14, 424-442.	20.1	950
13	Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids. Nucleic Acids Research, 1993, 21, 1655-1664.	14.5	84
14	Position and orientation-selective silencer in protein-coding sequences of the rat osteocalcin gene. Biochemistry, 1993, 32, 13636-13643.	2.5	35
15	Identification of multiple glucocorticoid receptor binding sites in the rat osteocalcin gene promoter. Biochemistry, 1993, 32, 11436-11444.	2.5	51
16	The human osteocalcin promoter directs bone-specific vitamin D-regulatable gene expression in transgenic mice Molecular Endocrinology, 1993, 7, 462-467.	3.7	50
17	Osteoblasts are target cells for transformation in c-fos transgenic mice. Journal of Cell Biology, 1993, 122, 685-701.	5.2	325
18	Postproliferative transcription of the rat osteocalcin gene is reflected by vitamin D-responsive developmental modifications in protein-DNA interactions at basal and enhancer promoter elements Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1503-1507	7.1	53

#	Article	IF	CITATIONS
19	Constitutive transcription of the osteocalcin gene in osteosarcoma cells is reflected by altered protein-DNA interactions at promoter regulatory elements Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2300-2304.	7.1	47
20	Cloning and characterization of the rat bone sialoprotein gene promoter. Biochemical Journal, 1993, 289, 625-629.	3.7	98
21	Selective repression of transcriptional activators at a distance by the Drosophila Krüppel protein. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11361-11365.	7.1	47
22	Dioxin receptor and C/EBP regulate the function of the glutathione S-transferase Ya gene xenobiotic response element Molecular and Cellular Biology, 1993, 13, 4365-4373.	2.3	62
23	MOLECULAR MECHANISMS MEDIATING DEVELOPMENTAL AND HORMONE-REGULATED EXPRESSION OF GENES IN OSTEOBLASTS. , 1993, , 47-95.		36
24	The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis EMBO Journal, 1994, 13, 3505-3516.	7.8	168
25	Glucocorticoid inhibition of interleukin-1-induced interleukin-6 production by human lung fibroblasts: evidence for transcriptional and post-transcriptional regulatory mechanisms American Journal of Respiratory Cell and Molecular Biology, 1994, 10, 643-650.	2.9	61
26	Mechanisms of glucocorticoid action in bone cells. Journal of Cellular Biochemistry, 1994, 56, 295-302.	2.6	118
27	Vitamin D receptor alleles and bone physiology. Journal of Cellular Biochemistry, 1994, 56, 307-314.	2.6	14
28	Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone Endocrinology, 1994, 134, 277-286.	2.8	567
29	Dexamethasone regulation of parathyroid hormone-related protein (PTHrP) expression in a squamous cancer cell line. Molecular and Cellular Endocrinology, 1994, 101, 295-306.	3.2	42
30	DNase I hypersensitive sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene. Biochemistry, 1994, 33, 348-353.	2.5	68
31	A composite intragenic silencer domain exhibits negative and positive transcriptional control of the bone-specific osteocalcin gene: promoter and cell type requirements Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10923-10927.	7.1	34
32	Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes Molecular and Cellular Biology, 1994, 14, 7621-7632.	2.3	31
33	Hormone-Independent Repression of AP-1-Inducible Collagenase Promoter Activity by Glucocorticoid Receptors. Molecular and Cellular Biology, 1995, 15, 1005-1013.	2.3	54
34	Ubiquitous and Neuronal DNA-Binding Proteins Interact with a Negative Regulatory Element of the Human Hypoxanthine Phosphoribosyltransferase Gene. Molecular and Cellular Biology, 1995, 15, 6561-6571.	2.3	10
35	Regulation of Bone Sialoprotein Gene Transcription by Steroid Hormones. Connective Tissue Research, 1995, 32, 209-217.	2.3	33
36	Contributions of distal and proximal promoter elements to glucocorticoid regulation of osteocalcin gene transcription Molecular Endocrinology, 1995, 9, 679-690.	3.7	34

#	Article	IF	CITATIONS
37	Negative Transcriptional Regulation of the Interferon-Î ³ Promoter by Glucocorticoids and Dominant Negative Mutants of c-Jun. Journal of Biological Chemistry, 1995, 270, 12548-12556.	3.4	113
38	Glucocorticoid Regulation of Bone Sialoprotein (BSP) Gene Expression. Identification of a Glucocorticoid Response Element in the Bone Sialoprotein Gene Promoter. FEBS Journal, 1995, 230, 183-192.	0.2	110
39	G/C element contributes to the cell line-specific expression of the proximal osteocalcin promoter. Journal of Cellular Biochemistry, 1995, 58, 499-508.	2.6	7
40	Potent vitamin D3 analogs: Their abilities to enhance transactivation and to bind to the vitamin D3 response element. Leukemia Research, 1995, 19, 147-158.	0.8	23
41	The Osteocalcin and Collagen Type I (α1) Promoters Share Common Basal Regulatory Units. DNA and Cell Biology, 1995, 14, 519-528.	1.9	5
42	Insulin potentiates the transactivation potency of the glucocorticoid receptor. FEBS Letters, 1996, 381, 177-182.	2.8	5
43	Retinoic Acid-induced Transcriptional Modulation of the Human Interferon-Î ³ Promoter. Journal of Biological Chemistry, 1996, 271, 26783-26793.	3.4	49
44	Contributions of Nuclear Architecture to Transcriptional Control. International Review of Cytology, 1996, 162A, 251-278.	6.2	36
45	Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochemical Journal, 1996, 316, 361-371.	3.7	228
46	Identification of a vitamin D3-response element that overlaps a unique inverted TATA box in the rat bone sialoprotein gene. Biochemical Journal, 1996, 318, 219-226.	3.7	83
47	Genes mediating glucocorticoid effects and mechanisms of their regulation. Reviews of Physiology, Biochemistry and Pharmacology, 1996, 128, 1-97.	1.6	17
48	Expression of bone matrix proteins during dexamethasone-induced mineralization of human bone marrow stromal cells. , 1996, 61, 182-193.		89
49	Molecular mechanisms of antiâ€inflammatory action of glucocorticoids. BioEssays, 1996, 18, 371-378.	2.5	293
50	Glucocorticoid Repression of the Mouse Gonadotropin-releasing Hormone Gene Is Mediated by Promoter Elements That Are Recognized by Heteromeric Complexes Containing Glucocorticoid Receptor. Journal of Biological Chemistry, 1996, 271, 20412-20420.	3.4	71
51	A dual-function palindromic sequence regulates testis-specific transcription of the mouse lactate dehydrogenase c gene in vitro. Biology of Reproduction, 1996, 54, 84-90.	2.7	21
52	Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila Genes and Development, 1996, 10, 700-710.	5.9	133
53	The Glucocorticoid Receptor Protein: A Hormone-dependent Transcription Factor. American Journal of Respiratory and Critical Care Medicine, 1996, 154, S7-S10.	5.6	5
54	Parathyroid Hormone (PTH 1–34) Regulation of Rat Osteocalcin Gene Transcription. Endocrinology, 1997, 138, 3085-3092.	2.8	49

#	Article	IF	CITATIONS
55	Studies on the Mechanism of Glucocorticoid-Mediated Repression from a Negative Glucocorticoid Response Element from the Bovine Prolactin Gene. DNA and Cell Biology, 1997, 16, 153-163.	1.9	35
56	The Rat Glucocorticoid Receptor Mutant K461A Differentiates between Two Different Mechanisms of Transrepression. Journal of Biological Chemistry, 1997, 272, 21090-21095.	3.4	26
57	A Weak TATA Box Is a Prerequisite for Glucocorticoid-dependent Repression of the Osteocalcin Gene. Journal of Biological Chemistry, 1997, 272, 30709-30714.	3.4	67
58	A New Function for the C-terminal Zinc Finger of the Glucocorticoid Receptor. Journal of Biological Chemistry, 1997, 272, 21467-21472.	3.4	135
59	Glucocorticoid-Dependent Transcriptional Repression of the Osteocalcin Gene by Competitive Binding at the TATA Box. DNA and Cell Biology, 1997, 16, 919-927.	1.9	66
60	Repression of vasopressin gene expression by glucocorticoids in transgenic mice: evidence of a direct mechanism mediated by proximal 5′ flanking sequence. Neuroscience, 1997, 78, 1177-1185.	2.3	32
61	Glucocorticoid-mediated repression of nuclear factor-κBdependent transcription involves direct interference with transactivation. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13504-13509.	7.1	361
62	Expression of maspin in prostate cells is regulated by a positive Ets element and a negative hormonal responsive element site recognized by androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5673-5678.	7.1	139
63	The osteocalcin gene: a model for multiple parameters of skeletal-specific transcriptional control. Molecular Biology Reports, 1997, 24, 185-196.	2.3	42
64	Tissue specific and vitamin D responsive gene expression in bone. Molecular Biology Reports, 1998, 25, 45-61.	2.3	18
65	Glucocorticoid-Induced Osteoporosis: Both In Vivo and In Vitro Concentrations of Glucocorticoids Higher Than Physiological Levels Attenuate Osteoblast Differentiation. Journal of Bone and Mineral Research, 1998, 13, 1822-1826.	2.8	141
66	Development and Characterization of Conditionally Immortalized Osteoblast Precursor Cell Lines from Human Bone Marrow Stroma. Journal of Bone and Mineral Research, 1998, 13, 205-217.	2.8	112
67	Ursolic acid-induced down-regulation of MMP-9 gene is mediated through the nuclear translocation of glucocorticoid receptor in HT1080 human fibrosarcoma cells. Oncogene, 1998, 16, 771-778.	5.9	92
68	Multiple levels of steroid hormone-dependent control of osteocalcin during osteoblast differentiation: Glucocorticoid regulation of basal and vitamin D stimulated gene expression. Journal of Cellular Biochemistry, 1998, 69, 154-168.	2.6	39
69	Glucocorticoid signalling—multiple variations of a common theme. Molecular and Cellular Endocrinology, 1998, 146, 1-6.	3.2	127
70	Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochemical Journal, 1998, 331, 1-14.	3.7	218
71	Regulated Expression of the Bone-Specific Osteocalcin Gene by Vitamins and Hormones. Vitamins and Hormones, 1998, 55, 443-509.	1.7	73
72	Nuclear Structure - Skeletal Gene Expression Interrelationships. Frontiers in Bioscience - Landmark, 1998, 3, d849-864.	3.0	6

#	Article	IF	CITATIONS
73	Dexamethasone regulation of lung epithelial cell and fibroblast interleukin-11 production. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L175-L185.	2.9	18
74	Composite Glucocorticoid Regulation at a Functionally Defined Negative Glucocorticoid Response Element of the Human Corticotropin-Releasing Hormone Gene. Molecular Endocrinology, 1999, 13, 1629-1644.	3.7	184
75	Glucocorticoid Receptor Isoforms Alpha and Beta: Potential Physiological and Pathological Importance. International Journal on Disability and Human Development, 1999, 1, .	0.2	0
76	Molecular Control of Immune/Inflammatory Responses: Interactions Between Nuclear Factor-κB and Steroid Receptor-Signaling Pathways. Endocrine Reviews, 1999, 20, 435-459.	20.1	663
77	Role of C/A Polymorphism at â^20 on the Expression of Human Angiotensinogen Gene. Hypertension, 1999, 33, 108-115.	2.7	123
78	NEW INSIGHTS INTO THE MOLECULAR BASIS OF GLUCOCORTICOID ACTION. Immunology and Allergy Clinics of North America, 1999, 19, 653-670.	1.9	2
79	Glucocorticoid activity, inactivity and the osteoblast. Journal of Endocrinology, 1999, 163, 159-164.	2.6	73
80	Novel Mechanism of Steroid Action in Skin through Glucocorticoid Receptor Monomers. Molecular and Cellular Biology, 2000, 20, 4328-4339.	2.3	91
81	Glucocorticoid Effects on NF-κB Binding in the Transcription of the ICAM-1 Gene. Biochemical and Biophysical Research Communications, 2000, 273, 1008-1014.	2.1	78
82	Pluripotential Marrow Cells Produce Adipocytes when Transplanted into Steroid-Treated Mice. Connective Tissue Research, 2000, 41, 45-56.	2.3	57
83	Molecular mechanisms of glucocorticoid action: what is important?. Thorax, 2000, 55, 603-613.	5.6	424
84	Molecular Identification and Characterization of A and B Forms of the Glucocorticoid Receptor. Molecular Endocrinology, 2001, 15, 1093-1103.	3.7	137
85	Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16701-16706.	7.1	200
86	Genetics of osteoporosis: role of steroid hormone receptor gene polymorphisms. Journal of Steroid Biochemistry and Molecular Biology, 2002, 81, 1-24.	2.5	83
87	Transcriptional regulation of the mouse fatty acid amide hydrolase gene. Gene, 2002, 291, 203-210.	2.2	96
88	Vitamin D Gene Regulation. , 2002, , 573-586.		1
89	Mechanisms involved in the side effects of glucocorticoids. , 2002, 96, 23-43.		1,467
90	Bone induction by <i>BMPâ€2</i> transduced stem cells derived from human fat. Journal of Orthopaedic Research, 2003, 21, 622-629.	2.3	321

#	ARTICLE	IF	CITATIONS
91	Glucocorticoids inhibit activation-induced cell death (AICD) via direct DNA-dependent repression of the CD95 ligand gene by a glucocorticoid receptor dimer. Blood, 2005, 106, 617-625.	1.4	78
92	Glucocorticoids inhibit osteocalcin transcription in osteoblasts by suppressing Egr2/Krox20-binding enhancer. Arthritis and Rheumatism, 2005, 52, 929-939.	6.7	46
93	Glucocorticoid-Induced Osteoporosis: From Basic Mechanisms to Clinical Aspects. NeuroImmunoModulation, 2005, 12, 1-19.	1.8	37
94	MOLECULAR MECHANISMS OF GLUCOCORTICOIDS IN THE CONTROL OF INFLAMMATION AND LYMPHOCYTE APOPTOSIS. Critical Reviews in Clinical Laboratory Sciences, 2005, 42, 71-104.	6.1	164
95	The human glucocorticoid receptor: One gene, multiple proteins and diverse responses. Steroids, 2005, 70, 407-417.	1.8	327
96	The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutrition and Metabolism, 2005, 2, 3.	3.0	232
97	Glucocorticoid therapyâ€induced skin atrophy. Experimental Dermatology, 2006, 15, 406-420.	2.9	274
98	Separating Transrepression and Transactivation: A Distressing Divorce for the Glucocorticoid Receptor?. Molecular Pharmacology, 2007, 72, 799-809.	2.3	278
99	Glucocorticoids and the innate immune system: Crosstalk with the Toll-like receptor signaling network. Molecular and Cellular Endocrinology, 2007, 275, 30-42.	3.2	109
100	Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects. Molecular and Cellular Endocrinology, 2007, 275, 13-29.	3.2	240
101	Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage. Journal of Cellular Biochemistry, 2008, 103, 812-824.	2.6	24
102	Pre-receptorial regulation of steroid hormones in bone cells: Insights on glucocorticoid-induced osteoporosis. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 292-299.	2.5	26
103	Variations in Intracellular Levels of TATA Binding Protein Can Affect Specific Genes by Different Mechanisms. Molecular and Cellular Biology, 2008, 28, 83-92.	2.3	5
104	Clinical and Basic Aspects of Glucocorticoid Action in Bone. , 2008, , 955-981.		12
105	Crosstalk in Inflammation: The Interplay of Glucocorticoid Receptor-Based Mechanisms and Kinases and Phosphatases. Endocrine Reviews, 2009, 30, 830-882.	20.1	251
106	Role of the negative glucocorticoid regulatory element in glucocorticoid repression of the human osteocalcin promoter. Journal of Bone and Mineral Research, 1993, 8, 969-975.	2.8	81
107	Effects of transforming growth factor β2 on the regulation of osteocalcin synthesis in human mg-63 osteosarcoma cells. Journal of Bone and Mineral Research, 1994, 9, 1635-1642.	2.8	19
108	Nuclear Mechanisms of Glucocorticoid Action. , 2009, , 1329-1366.		Ο

			0
#		IF	CITATIONS
109	Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. , 2010, 125, 286-327.		93
110	Novel regulation of 25â€hydroxyvitamin D ₃ 24â€hydroxylase (24(OH)ase) transcription by glucocorticoids: Cooperative effects of the glucocorticoid receptor, C/EBPβ, and the Vitamin D receptor in 24(OH)ase transcription. Journal of Cellular Biochemistry, 2010, 110, 1314-1323.	2.6	71
111	Steroid-induced glaucoma. , 2010, , 146-152.		1
112	Generating diversity in glucocorticoid receptor signaling: mechanisms, receptor isoforms, and post-translational modifications. Hormone Molecular Biology and Clinical Investigation, 2010, 3, 319-28.	0.7	5
113	Col3.6-HSD2 transgenic mice: A glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone, 2010, 47, 573-582.	2.9	29
114	Effect of dexamethasone on serum osteocalcin and metacarpal mineral content in horses. Equine Veterinary Journal, 1995, 27, 448-452.	1.7	0
115	Discovery of selective glucocorticoid receptor modulator MK-5932. Bioorganic and Medicinal Chemistry, 2011, 19, 7374-7386.	3.0	20
116	Glucocorticoids and Vitamin D. , 2011, , 1233-1244.		0
117	Glycyrrhizic acid (GCA) as 11β-hydroxysteroid dehydrogenase inhibitor exerts protective effect against glucocorticoid-induced osteoporosis. Journal of Bone and Mineral Metabolism, 2013, 31, 262-273.	2.7	28
118	How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering. Molecular and Cellular Endocrinology, 2013, 380, 41-54.	3.2	341
119	Transcription regulatory codes of eukaryotic genomes. Russian Journal of Genetics, 2013, 49, 29-45.	0.6	9
120	Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acids Research, 2013, 41, 6161-6174.	14.5	90
121	Glucocorticoid-Induced Osteoporosis in Children with 21-Hydroxylase Deficiency. BioMed Research International, 2013, 2013, 1-8.	1.9	39
122	Glucocorticoid-Induced Osteoporosis. Advances in Experimental Medicine and Biology, 2015, 872, 179-215.	1.6	135
123	Glucocorticoid Signaling. Advances in Experimental Medicine and Biology, 2015, , .	1.6	15
124	Mechanisms of Clucocorticoid-Regulated Gene Transcription. Advances in Experimental Medicine and Biology, 2015, 872, 59-81.	1.6	46
125	Glucocorticoid receptor-mediated cis -repression of osteogenic genes requires BRM-SWI/SNF. Bone Reports, 2016, 5, 222-227.	0.4	9
126	Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling. Journal of Biological Chemistry, 2016, 291, 23628-23644.	3.4	11

#	Article	IF	CITATIONS
127	The biochemical signatures of stress: A preliminary analysis of osteocalcin concentrations and macroscopic skeletal changes associated with stress in the 13th ―17th centuries black friars population. American Journal of Physical Anthropology, 2016, 159, 596-606.	2.1	12
128	Cytoplasmic Interactions between the Glucocorticoid Receptor and HDAC2 Regulate Osteocalcin Expression in VPA-Treated MSCs. Cells, 2019, 8, 217.	4.1	30
129	Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene?. Endocrine-Related Cancer, 2021, 28, R157-R171.	3.1	31
130	The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Medical Journal, 2021, 33, 212.	1.1	16
131	The glucocorticoid receptor: expression, function, and regulation of glucocorticoid responsiveness. , 2001, , 55-80.		7
132	DNA-Dependent Cofactor Selectivity of the Glucocorticoid Receptor. , 2002, , 279-295.		2
133	Nuclear Architecture in Developmental Transcriptional Control of Cell Growth and Tissue-Specific Genes. , 1997, , 177-214.		3
134	Glucocorticoids and Vitamin D. , 2005, , 1239-1251.		2
135	The cAMP response element in the rat thyrotropin receptor promoter. Regulation by each decanucleotide of a flanking tandem repeat uses different, additive, and novel mechanisms Journal of Biological Chemistry, 1993, 268, 24125-24137.	3.4	28
136	A steroid hormone response unit in the late leader of the noncoding control region of the human polyomavirus BK confers enhanced host cell permissivity. Journal of Virology, 1994, 68, 2398-2408.	3.4	70
137	A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat. Journal of Virology, 1995, 69, 7868-7876.	3.4	36
138	Functional Interference between the Ubiquitous and Constitutive Octamer Transcription Factor 1 (OTF-1) and the Glucocorticoid Receptor by Direct Protein-Protein Interaction Involving the Homeo Subdomain of OTF-1. Molecular and Cellular Biology, 1992, 12, 4960-4969.	2.3	39
139	RU486 Reversal of Cortisol Repression of 1,25-Dihydroxyvitamin D ₃ Induction of the Human Osteocalcin Promoter. Open Journal of Endocrine and Metabolic Diseases, 2013, 03, 55-62.	0.2	1
140	Molecular Mechanisms of Glucocorticoid Action. Lung Biology in Health and Disease, 2001, , 167-194.	0.1	0
141	Clinical and Basic Aspects of Glucocorticoid Action in Bone. , 2002, , 723-740.		1
142	Dioxin Receptor and C/EBP Regulate the Function of the Glutathione <i>S</i> -Transferase Ya Gene Xenobiotic Response Element. Molecular and Cellular Biology, 1993, 13, 4365-4373.	2.3	21
143	Hormonally Regulated Transcription Factors. , 1994, , 389-441.		0
144	Isolation of a Thyroid Hormone-Responsive Gene by Immunoprecipitation of Thyroid Hormone Receptor-DNA Complexes. Molecular and Cellular Biology, 1994, 14, 7621-7632.	2.3	14

~			_
Сп	ΓΑΤΙ	ON	Report

#	Article	IF	CITATIONS
145	Functional Analysis of the Glucocorticoid Receptor. , 1995, , 305-364.		0
146	Interrelationships Between Nuclear Structure and Transcriptional Control of Cell Cycle and Tissue-Specific Genes. , 1997, , 57-82.		0
147	CHANGES IN BONE METABOLISM MARKERS ASSOCIATED WITH LONG-DISTANCE RUNNING. Japanese Journal of Physical Fitness and Sports Medicine, 1999, 48, 179-185.	0.0	0
148	Glucocorticoid Regulation of Bone Sialoprotein (BSP) Gene Expression. Identification of a Glucocorticoid Response Element in the Bone Sialoprotein Gene Promoter. FEBS Journal, 1995, 230, 183-192.	0.2	1
151	The Broad-Complex directly controls a tissue-specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. EMBO Journal, 1994, 13, 3505-16.	7.8	53
152	Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa orthopaedic journal, The, 1995, 15, 118-40.	0.5	161