Virulence of Sclerotinia sclerotiorum and S. minor on D

Weed Science 39, 109-118 DOI: 10.1017/s0043174500057969

Citation Report

ARTICLE

A Method for Assessing the Efficacy of a Biocontrol Agent on Dandelion (<i>Taraxacum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 59 742 Td (o

2	The Effect of Inoculum Substrate and Dew Period on the Pathogenicity of Sclerotinia Sclerotiorum When Applied as a Mycoherbicide to Californian Thistle (Cirsium Arvense) Australasian Plant Pathology, 1994, 23, 50.	1.0	6
3	Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 1994, 16, 93-108.	1.4	915
4	Constraints in the Development of Bioherbicides. Weed Technology, 1995, 9, 638-652.	0.9	128
5	Microorganisms in Weed Control Strategies. Journal of Production Agriculture, 1996, 9, 480-485.	0.4	42
6	Impact of soil microorganisms on weed biology and ecology. Phytoprotection, 1996, 77, 41-56.	0.3	31
7	Biological Control of Weeds with Plant Pathogens and Microbial Pesticides11Published with the approval of the Director, Arkansas Agricultural Experiment Station, Manuscript No. 95053 Advances in Agronomy, 1996, , 115-137.	5.2	17
8	Fun Microbiology: Using a Plant Pathogenic Fungus to Demonstrate Koch's Postulates. American Biology Teacher, 1997, 59, 574-577.	0.2	1
9	Index of plant hosts of <i>Sclerotinia minor</i> . Canadian Journal of Plant Pathology, 1997, 19, 272-280.	1.4	65
10	Histopathology of Ranunculus acris infected by a mycoherbicide, Sclerotinia sclerotiorum. Australasian Plant Pathology, 1998, 27, 73.	1.0	4
11	Influence of phenology, defoliation, and <i>Sclerotinia sclerotiorum</i> on regrowth potential of <i>Ranunculus acris</i> . New Zealand Journal of Agricultural Research, 1998, 41, 125-133.	1.6	6
12	Innovative Applications of Microbial Agents for Biological Weed Control. , 1999, , 73-97.		22
13	Pathogenicity of Sclerotinia sclerotiorum on Ranunculus acris in Dairy Pasture. Biocontrol Science and Technology, 1999, 9, 365-377.	1.3	9
14	Pathogenicity of Sclerotinia sclerotiorum to Chrysanthemoides monilifera ssp. rotundata (Bitoubush) and Selected Species of the Coastal Flora in Eastern Australia. Biological Control, 2000, 18, 10-17.	3.0	11
15	2,4-D and Sclerotinia minor to control common dandelion. Weed Science, 2002, 50, 173-178.	1.5	15
17	The biology of Canadian weeds. 117. <i>Taraxacum officinale</i> G. H. Weber ex Wiggers. Canadian Journal of Plant Science, 2002, 82, 825-853.	0.9	124
18	Influence of host and pathogen variables on the efficacy of Phoma herbarum, a potential biological control agent of Taraxacum officinale. Canadian Journal of Botany, 2002, 80, 425-429.	1.1	17
19	Carpogenic germination of Sclerotinia minor and potential distribution in Australia. A P P Australasian Plant Pathology, 2002, 31, 259-265.	1.0	22

		15	CITATIONS
#	ARTICLE	IF	CHATIONS
20	Septoria polygonorum. Biological Control, 2003, 27, 293-299.	3.0	14
21	Evaluating Isolate Aggressiveness and Host Resistance from Peanut Leaflet Inoculations with Sclerotinia minor. Plant Disease, 2003, 87, 402-406.	1.4	23
22	2,4-D and Phoma herbarum to control dandelion (Taraxacum officinale). Weed Science, 2004, 52, 808-814.	1.5	20
23	Selected cultural and environmental parameters influence disease severity of dandelion caused by the potential bioherbicidal fungi,Phoma herbarumandPhoma exigua. Biocontrol Science and Technology, 2004, 14, 561-569.	1.3	16
24	Weed Biology and Management. , 2004, , .		4
25	Alternative Weed Management Strategies for Landscape and Turf Settings. , 2004, , 403-422.		4
26	Genetic Interactions Between Glycine max and Sclerotinia sclerotiorumUsing a Straw Inoculation Method. Plant Disease, 2004, 88, 891-895.	1.4	24
27	Sclerotinia minoravances fruiting and reduces germination in dandelion (Taraxacum officinale). Biocontrol Science and Technology, 2005, 15, 815-825.	1.3	9
28	Impact of mowing and weed control on broadleaf weed population dynamics in turf. Journal of Plant Interactions, 2005, 1, 239-252.	2.1	17
29	Oil emulsions increase efficacy ofPhoma herbarumto control dandelion but are phytotoxic. Biocontrol Science and Technology, 2005, 15, 671-681.	1.3	8
30	Effect of turfgrass mowing height on biocontrol of dandelion withSclerotinia minor. Biocontrol Science and Technology, 2006, 16, 509-524.	1.3	16
31	Population Dynamics of Broadleaf Weeds in Turfgrass as Influenced by Chemical and Biological Control Methods. Weed Science, 2007, 55, 371-380.	1.5	12
32	SCLEROTINIA MINOR—BIOCONTROL TARGET OR AGENT?. , 2007, , 205-211.		6
33	Efficacy ofSclerotinia minorfor dandelion control: effect of dandelion accession, age and grass competition. Weed Research, 2007, 47, 63-72.	1.7	32
34	Aggressiveness among isolates of <i>Sclerotinia sclerotiorum</i> from sunflower. Australasian Plant Pathology, 2007, 36, 580.	1.0	24
35	Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. European Journal of Plant Pathology, 2010, 126, 305-315.	1.7	60
36	Physiological characterization of the dandelion bioherbicide, <i>Sclerotinia minor</i> IMI 344141. Biocontrol Science and Technology, 2010, 20, 57-76.	1.3	6
37	The effects of Phoma macrostoma on nontarget plant and target weed species. Biological Control, 2011, 58, 379-386.	3.0	54

CITATION REPORT

#	Article	IF	CITATIONS
38	Control of Turf grass Weeds. Assa, Cssa and Sssa, 0, , 209-248-9.	0.6	3
39	Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Research, 2012, 127, 248-258.	5.1	59
40	First Report of <i>Sclerotium rolfsii</i> in Dandelion in Parana, Brazil. Journal of Phytopathology, 2014, 162, 553-555.	1.0	4
41	Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 2014, 197, 47-59.	1.2	54
42	Sclerotinia Sclerotiorum - Prospects as a Mycoherbicide in Pastures. Assa, Cssa and Sssa, 2015, , 621-642.	0.6	1
43	Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science, 2015, 6, 659.	3.6	154
44	Integrated Pest Management. , 2015, , 933-1006.		4
45	Selective Broadleaf Weed Control in Turfgrass with the Bioherbicides <i>Phoma macrostoma</i> and Thaxtomin A. Weed Technology, 2016, 30, 688-700.	0.9	20
46	Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds. Microorganisms for Sustainability, 2017, , 391-430.	0.7	7
47	Partial stem resistance in <i>Brassica napus</i> to highly aggressive and genetically diverse <i>Sclerotinia sclerotiorum</i> isolates from Australia. Canadian Journal of Plant Pathology, 2018, 40, 551-561.	1.4	30
48	Bioherbicidal Potential of Rhizosphere Microorganisms for Ecofriendly Weed Management. , 2018, , 331-376.		11
49	Biological Weed Control. , 2018, , 115-132.		14
50	Application Potentials of Plant Growth Promoting Rhizobacteria and Fungi as an Alternative to Conventional Weed Control Methods. , 2020, , .		13
51	Managing coolâ€season turfgrass without herbicides: Optimizing maintenance practices to control weeds. Crop Science, 2020, 60, 2204-2220.	1.8	13
52	Resistance against Sclerotinia basal stem rot pathogens in sunflower. Tropical Plant Pathology, 2021, 46, 651.	1.5	1
53	Genetic Improvement of Bioherbicides. , 2002, , 367-374.		2
54	Biological control of weeds with fungal plant pathogens. , 1993, , 1-17.		2
55	Soil Microorganisms for Weed Management. The Journal of Crop Improvement: Innovations in Practiceory and Research, 1999, 2, 123-138.	0.4	38

#	Article	IF	CITATIONS
56	A review of recent research on the microbial control of Californian thistle and other pasture weeds using the fungus Sclerotinia sclerotiorum as a biological herbicide. Proceedings of the New Zealand Grassland Association, 0, , 43-48.	0.0	2
57	Integrated Weed Management. , 2020, , 439-447.		0
58	Morpho-Cultural and Pathogenic Variability of Sclerotinia sclerotiorum Causing White Mold of Common Beans in Temperate Climate. Journal of Fungi (Basel, Switzerland), 2022, 8, 755.	3.5	4
60	Biological Control of Weeds in turfgrass: opportunities and misconceptions. Pest Management Science, 2024, 80, 40-48.	3.4	3
61	Bioherbicide development and commercialization. , 2023, , 119-148.		3
62	Weed biological control with fungi-based bioherbicides. Acta Agriculturae Serbica, 2023, 28, 23-37.	0.6	0

CITATION REPORT