Higher Alcohol Synthesis

Catalysis Reviews - Science and Engineering 33, 109-168 DOI: 10.1080/01614949108020298

Citation Report

#	Article	IF	CITATIONS
1	Characterization of the Surface of MoS2 Based Catalysts Using Thermal Methods. Studies in Surface Science and Catalysis, 1992, 73, 3-10.	1.5	3
2	Dynamic Effects in CO Adsorption on Ru/ZSM-5. Part I: Oxidative Disruption of Ru. Applied Spectroscopy, 1992, 46, 1279-1287.	2.2	8
3	Production of branched-chain hydrocarbons via Isosynthesis. Catalysis Today, 1992, 15, 149-175.	4.4	24
4	Preparation and characterization of hydroxycarbonate precursors that yield successful alcohol synthesis catalysts. Materials Chemistry and Physics, 1993, 35, 233-239.	4.0	22
5	Catalysis in C1 chemistry: Future and prospect. Catalysis Letters, 1993, 22, 67-91.	2.6	79
6	The Different Catalytic Routes for Methane Valorization: An Assessment of Processes for Liquid Fuels. Catalysis Reviews - Science and Engineering, 1993, 35, 169-212.	12.9	208
7	Identifying the Reaction Network of the Higher Alcohol Synthesis Over Alkali-Promoted ZnCrO Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 2765-2768.	1.5	0
8	Status and future opportunities for conversion of synthesis gas to liquid fuels. Fuel, 1994, 73, 1243-1279.	6.4	88
9	Synthesis of 2-methylpropan-1-ol–methanol mixtures from H2–CO synthesis gas over double-bed Cs/Cu/ZnO/Cr2O3and Cs/ZnO/Cr2O3catalysts. Journal of the Chemical Society Chemical Communications, 1995, , 2525-2526.	2.0	7
10	Production of Methanol and Isobutyl Alcohol Mixtures over Double-Bed Cesium-Promoted Cu/ZnO/Cr2O3and ZnO/Cr2O3Catalysts. Industrial & Engineering Chemistry Research, 1996, 35, 1534-1542.	3.7	50
11	Formation and detection of subsurface oxygen at polycrystalline Pd surfaces. Catalysis Letters, 1996, 39, 179-182.	2.6	8
12	A high pressure, high temperature infrared study of CO hydrogenation over Rh/ZrO2. Journal of Molecular Catalysis A, 1996, 105, 175-183.	4.8	18
13	Role of methoxide species in isobutene formation from CO and H2 over oxide catalysts methoxide species in isobutene formation. Journal of Molecular Catalysis A, 1996, 112, 143-151.	4.8	12
14	Reactions of synthesis gas. Fuel Processing Technology, 1996, 48, 189-297.	7.2	526
15	Effect of Oxygenates on Water Uptake in Hydrocarbon Fuels. Industrial & Engineering Chemistry Research, 1997, 36, 5023-5027.	3.7	8
16	High-Temperature Slurry Reactors for Synthesis Gas Reactions. 1. Liquid Thermal Stability. Industrial & Engineering Chemistry Research, 1997, 36, 4143-4154.	3.7	7
17	Reaction and Surface Characterization Study of Higher AlcoholSynthesis Catalysts. Journal of Catalysis, 1997, 169, 438-446.	6.2	46
18	Isobutanol and Methanol Synthesis on Copper Catalysts Supported on Modified Magnesium Oxide. Journal of Catalysis, 1997, 171, 130-147.	6.2	79

#	Article	IF	CITATIONS
19	Reaction and Surface Characterization Study of Higher Alcohol Synthesis Catalysts. Journal of Catalysis, 1997, 172, 13-23.	6.2	36
20	Higher alcohol synthesis reaction study using K- promoted ZnO catalysts. III. Catalysis Letters, 1997, 45, 135-138.	2.6	35
21	Catalysts for producing methanol and isobutanol mixtures from synthesis gas. Catalysis Letters, 1997, 44, 1-5.	2.6	28
22	Alcohol synthesis in a high-temperature slurry reactor. Catalysis Today, 1997, 36, 255-263.	4.4	19
23	Reaction and Surface Characterization Study of Higher Alcohol Synthesis Catalysts. Journal of Catalysis, 1998, 175, 175-184.	6.2	36
24	Bifunctional Condensation Reactions of Alcohols on Basic Oxides Modified by Copper and Potassium. Journal of Catalysis, 1998, 176, 155-172.	6.2	137
25	Reaction and Surface Characterization Study of Higher Alcohol Synthesis Catalysts. Journal of Catalysis, 1998, 179, 241-257.	6.2	11
26	Higher-alcohol synthesis reaction study V. Effect of excess ZnO on catalyst performance. Applied Catalysis A: General, 1998, 166, 375-385.	4.3	22
27	Surface characterization study of a 1wt% K-promoted ZnO, higher alcohol synthesis catalyst. Journal of Electron Spectroscopy and Related Phenomena, 1998, 95, 289-297.	1.7	7
28	Alcohol synthesis over bulk aluminium-nickel-copper based catalysts from syngas. Reaction Kinetics and Catalysis Letters, 1998, 64, 331-336.	0.6	9
29	Synthesis of short chain alcohols over a Cs-promoted Cu/ZnO/Cr2O3 catalyst. Applied Catalysis A: General, 1998, 166, 393-405.	4.3	23
30	Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides. Applied Catalysis A: General, 1998, 169, 355-372.	4.3	98
31	Higher Alcohols from Synthesis Gas Using Carbon-Supported Doped Molybdenum-Based Catalysts. Industrial & Engineering Chemistry Research, 1998, 37, 3853-3863.	3.7	65
32	Higher Alcohol Synthesis over Double Bed Csâ^'Cu/ZnO/Cr2O3Catalysts:Â Optimizing the Yields of 2-Methyl-1-propanol (Isobutanol). Industrial & Engineering Chemistry Research, 1998, 37, 4657-4668.	3.7	39
33	Kinetics of Higher Alcohol Synthesis over low and high temperature catalysts and simulation of a double-bed reactor. Studies in Surface Science and Catalysis, 1998, 119, 497-502.	1.5	3
34	Heterogeneous hydrogenation catalysts. Russian Chemical Reviews, 1998, 67, 587-616.	6.5	58
35	Isobutanol and Methanol Synthesis on Copper Supported on Alkali-Modified MgO and ZnO Supports. Studies in Surface Science and Catalysis, 1998, 119, 509-514.	1.5	6
36	Effect of the preparation procedure and parameters on the physico-chemical properties of higher alcohol synthesis znCrO catalysts. Studies in Surface Science and Catalysis, 1998, , 395-402.	1.5	2

#	Article	IF	CITATIONS
37	Isoalcohol synthesis from CO/H2 feedstocks. Studies in Surface Science and Catalysis, 1998, 119, 485-490.	1.5	3
38	Higher alcohol synthesis reaction study VI: effect of Cr replacement by Mn on the performance of Cs- and Cs, Pd-promoted Zn/Cr spinel catalysts. Applied Catalysis A: General, 1999, 183, 335-343.	4.3	17
39	Liquid/catalyst interactions in slurry reactors: methanol synthesis over zinc chromite. Applied Catalysis A: General, 1999, 183, 395-410.	4.3	12
40	Reaction and surface characterization study of higher-alcohol synthesis catalysts XII: K- and Pd-promoted Zn/Cr/Mn spinel. Catalysis Today, 1999, 52, 99-109.	4.4	12
41	Recent developments in isobutanol synthesis from synthesis gas. Applied Catalysis A: General, 1999, 186, 407-431.	4.3	50
42	Title is missing!. Catalysis Letters, 1999, 62, 169-173.	2.6	17
43	Reaction and surface characterization study of Zn/Cr-based higher-alcohol synthesis catalysts X: Effects of excess promoter loading on surface chemistry. Reaction Kinetics and Catalysis Letters, 1999, 67, 225-232.	0.6	4
44	Structural Requirements and Reaction Pathways in Condensation Reactions of Alcohols on MgyAlOx Catalysts. Journal of Catalysis, 2000, 190, 261-275.	6.2	280
45	Synthesis of Higher Alcohols from Syngas over Ultrafine Mo—Co—K Catalysts. Catalysis Letters, 2001, 76, 249-253.	2.6	29
46	Title is missing!. Catalysis Letters, 2002, 84, 193-199.	2.6	27
47	Higher Alcohol Synthesis over a K-Promoted Co2O3/CuO/ZnO/Al2O3 Catalyst. Catalysis Letters, 2003, 87, 187-194.	2.6	29
48	Synthesis of higher alcohols in a slurry reactor with cesium-promoted zinc chromite catalyst in decahydronaphthalene. Applied Catalysis A: General, 2003, 247, 133-142.	4.3	25
49	Adsorption and reaction of acrolein on titanium oxide single crystal surfaces: coupling versus condensation. Catalysis Today, 2003, 85, 321-331.	4.4	16
50	Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts. Molecules, 2003, 8, 13-30.	3.8	34
51	Development of sulfur tolerant catalysts for the synthesis of high quality transportation fuels. Catalysis Today, 2004, 89, 465-478.	4.4	67
52	Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas. Journal of Molecular Catalysis A, 2004, 221, 51-58.	4.8	73
53	Self-condensation of propanol over solid-base catalysts. Applied Catalysis A: General, 2004, 275, 103-110.	4.3	28
54	Reactivity of paraffins, olefins and alcohols during Fischer-Tropsch synthesis on a Co/Al2O3 catalyst. Studies in Surface Science and Catalysis, 2004, , 289-294.	1.5	6

#	Article	IF	CITATIONS
55	Kinetics of CO hydrogenation on modified Cu/ZnO catalyst in a slurry reactor. Chemical Engineering and Processing: Process Intensification, 2005, 44, 383-391.	3.6	14
56	Activation Studies of the Cs-Doped Cu/ZnO Catalyst for the Higher Alcohol Synthesis. , 2005, , 365-375.		0
57	Carbon nanotube-promoted Co–Cu catalyst for highly efficient synthesis of higher alcohols from syngas. Chemical Communications, 2005, , 5094.	4.1	71
58	Two Generalizable Routes to Terminal Carbido Complexes. Journal of the American Chemical Society, 2005, 127, 16750-16751.	13.7	83
59	6 New liquid hydrocarbon fuels. , 0, , 414-482.		2
60	Co-Mo-K Sulfide-Based Catalyst Promoted by Multiwalled Carbon Nanotubes for Higher Alcohol Synthesis from Syngas. Chinese Journal of Catalysis, 2006, 27, 1019-1027.	14.0	36
61	LaCo1â^'xCuxO3â^'δ perovskite catalysts for higher alcohol synthesis. Applied Catalysis A: General, 2006, 311, 204-212.	4.3	127
62	Co-decorated carbon nanotube-supported Co–Mo–K sulfide catalyst for higher alcohol synthesis. Catalysis Letters, 2006, 111, 141-151.	2.6	26
63	Technoeconomic Analysis of a Lignocellulosic Biomass Indirect Gasification Process To Make Ethanol via Mixed Alcohols Synthesis. Industrial & Engineering Chemistry Research, 2007, 46, 8887-8897.	3.7	112
64	Terminal Carbido Complexes of Osmium:  Synthesis, Structure, and Reactivity Comparison to the Ruthenium Analogues. Organometallics, 2007, 26, 5102-5110.	2.3	67
65	Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chemical Society Reviews, 2007, 36, 1514.	38.1	572
66	Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors. Applied Catalysis A: General, 2007, 326, 152-163.	4.3	73
67	Effect of alkali additives over nanocrystalline Co–Cu-based perovskites as catalysts for higher-alcohol synthesis. Journal of Catalysis, 2007, 245, 348-357.	6.2	141
68	Methanol to Long-chain Oxygenates Over Mg/Al Mixed Oxides Supported Cu Catalysts. Catalysis Letters, 2007, 119, 72-78.	2.6	8
69	Characterization and reactivity of nanoscale La(Co,Cu)O3 perovskite catalyst precursors for CO hydrogenation. Journal of Solid State Chemistry, 2008, 181, 2006-2019.	2.9	75
70	Co-decorated carbon nanotubes as a promoter of Co–Mo–K oxide catalyst for synthesis of higher alcohols from syngas. Applied Catalysis A: General, 2008, 340, 87-97.	4.3	61
71	A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy & Fuels, 2008, 22, 814-839.	5.1	635
72	Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods. Journal of Natural Gas Chemistry, 2008, 17, 397-402.	1.8	19

#	Article	IF	CITATIONS
73	CO hydrogenation to mixed alcohols over co-precipitated Cu–Fe catalysts. Catalysis Communications, 2008, 9, 1869-1873.	3.3	71
74	Accessing Metalâ^'Carbide Chemistry. A Computational Analysis of Thermodynamic Considerations. Organometallics, 2008, 27, 814-826.	2.3	21
76	La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: Effect on adsorption and reaction. Journal of Catalysis, 2009, 267, 167-176.	6.2	92
77	Multi-Walled Carbon Nanotubes as a Novel Promoter of Catalysts for CO/CO2 Hydrogenation to Alcohols. Catalysis Surveys From Asia, 2009, 13, 41-58.	2.6	55
78	Preparation and characterization of carbon nanotube-promoted Co–Cu catalyst for higher alcohol synthesis from syngas. Catalysis Today, 2009, 147, 158-165.	4.4	86
79	Role of promoters on Rh/SiO2 in CO hydrogenation: A comparison using DRIFTS. Catalysis Today, 2009, 147, 139-149.	4.4	40
80	A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147, 133-138.	4.4	311
81	Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes. Applied Catalysis A: General, 2009, 365, 243-251.	4.3	85
82	Bases and Basic Materials in Industrial and Environmental Chemistry: A Review of Commercial Processes. Industrial & Engineering Chemistry Research, 2009, 48, 6486-6511.	3.7	59
84	MWCNT-Supported Ni–Mo–K Catalyst for Higher Alcohol Synthesis from Syngas. Catalysis Letters, 2010, 137, 171-179.	2.6	35
86	Selective synthesis of mixed alcohols from syngas over catalyst Fe2O3/Al2O3 in slurry reactor. Fuel Processing Technology, 2010, 91, 379-382.	7.2	26
87	Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Applied Catalysis A: General, 2010, 385, 153-162.	4.3	53
88	Ni-decorated carbon nanotube-promoted Ni–Mo–K catalyst for highly efficient synthesis of higher alcohols from syngas. Applied Catalysis B: Environmental, 2010, 100, 245-253.	20.2	61
89	Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation. Catalysis Today, 2010, 149, 91-97.	4.4	50
90	Chapter 6. Bioderived Syngas to Alcohols. RSC Energy and Environment Series, 2010, , 125-145.	0.5	1
91	Bases and Basic Materials in Chemical and Environmental Processes. Liquid versus Solid Basicity. Chemical Reviews, 2010, 110, 2217-2249.	47.7	182
92	Effects of Feed Composition and Feed Impurities in the Catalytic Conversion of Syngas to Higher Alcohols over Alkali-Promoted Cobalt–Molybdenum Sulfide. Industrial & Engineering Chemistry Research, 2011, 50, 7949-7963.	3.7	44
93	EXAFS and FT-IR Characterization of Mn and Li Promoted Titania-Supported Rh Catalysts for CO Hydrogenation. ACS Catalysis, 2011, 1, 1298-1306.	11.2	50

ARTICLE IF CITATIONS Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol 1.8 47 synthesis. Journal of Natural Gas Chemistry, 2011, 20, 48-52. Reactivity and in situ X-ray absorption spectroscopy of Rb-promoted Mo2C/MgO catalysts for higher 6.2 49 alcohol synthesis. Journal of Catalysis, 2011, 282, 83-93. Alcohols as alternative fuels: An overview. Applied Catalysis A: General, 2011, , . 4.3 67 Synthesis of alcohols from CO and H2 on iron catalysts containing carbon fiber. Solid Fuel Chemistry, 2011, 45, 322-326. Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst. Chinese Journal of Chemical 7 1.3Physics, 2011, 24, 77-84. Highly Efficient Synthesis of Clean Biofuels from Biomass Using FeCuZnAlK Catalyst. Chinese Journal 1.3 of Chemical Physics, 2011, 24, 745-752. A Review of Molybdenum Catalysts for Synthesis Gas Conversion to Alcohols: Catalysts, Mechanisms 12.9 221 and Kinetics. Catalysis Reviews - Science and Engineering, 2012, 54, 41-132. Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale, 2012, 5.6 4, 1123-1129. Bench scale demonstration of the Supermethanol concept: The synthesis of methanol from glycerol 12.7 24 derived syngas. Chemical Engineering Journal, 2012, 207-208, 245-253. Biomethanol from Glycerol., 0,,. Influence of Passivation on the Reactivity of Unpromoted and Rb-Promoted Mo₂C 11.2 36 Nanoparticles for CO Hydrogenation. AĆS Catalysis, 2012, 2, 1408-1416. Characterization of Modified Fischer–Tropsch Catalysts Promoted with Alkaline Metals for Higher Alcohol Synthesis. Catalysis Letters, 2012, 142, 368-377. 2.6 Correlation patterns and effect of syngas conversion level for product selectivity to alcohols and hydrocarbons over molybdenum sulfide based catalysts. Applied Catalysis A: General, 2012, 417-418, 4.3 29 119-128. Effect of component interaction on the activity of Co/CuZnO for CO hydrogenation. Journal of 6.2 Catalysis, 2012, 285, 208-215. Structure and catalytic performance of alumina-supported copper–cobalt catalysts for carbon 6.2 186 monoxide hydrogenation. Journal of Catalysis, 2012, 286, 51-61. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis. Journal of 68 Molecular Catalysis A, 2013, 378, 319-325. Catalytic Processes for Activation of CO2., 2013, , 1-26. 6

CITATION REPORT

112	CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: a comparative study. Catalysis Science and Technology, 2013, 3, 1591.	4.1	118
-----	--	-----	-----

#

95

97

98

99

100

101

103

104

105

107

109

#	Article	IF	CITATIONS
113	Effect of CO 2 in the synthesis of mixed alcohols from syngas over a K/Ni/MoS 2 catalyst. Fuel, 2013, 107, 715-723.	6.4	15
114	Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catalysis Communications, 2013, 40, 154-157.	3.3	52
115	Advances in bifunctional catalysis for higher alcohol synthesis from syngas. Chinese Journal of Catalysis, 2013, 34, 116-129.	14.0	111
116	Fischer–Tropsch Synthesis Catalyzed by Solid Nanoparticles at the Water/Oil Interface in an Emulsion System. Energy & Fuels, 2013, 27, 6118-6124.	5.1	24
117	CO Dissociation Mechanism on Cu-Doped Fe(100) Surfaces. Journal of Physical Chemistry C, 2013, 117, 24920-24931.	3.1	38
118	Mixed Alcohol Synthesis over a K Promoted Cu/ZnO/Al ₂ O ₃ Catalyst in Supercritical Hexanes. Industrial & Engineering Chemistry Research, 2013, 52, 14514-14524.	3.7	20
120	Use of infrared spectroscopy and density functional theory to study the influence of rubidium on alumina-supported molybdenum carbide catalyst for higher alcohol synthesis from syngas. Journal of Catalysis, 2013, 299, 150-161.	6.2	22
121	Synthesis, characterization, and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis. Catalysis Today, 2013, 207, 65-73.	4.4	56
122	Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous and Mesoporous Materials, 2013, 170, 141-149.	4.4	24
123	Plant design aspects of catalytic biosyngas conversion to higher alcohols. Biomass and Bioenergy, 2013, 53, 54-64.	5.7	29
124	Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C2+OH. Journal of Energy Chemistry, 2013, 22, 107-113.	12.9	35
125	Insights into CC Coupling in CO ₂ Electroreduction on Copper Electrodes. ChemCatChem, 2013, 5, 737-742.	3.7	339
126	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	47.7	553
127	Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols. Applied Catalysis A: General, 2013, 455, 145-154.	4.3	85
128	Novel Ni-Co-Mo-K Catalysts Supported on Multiwalled Carbon Nanotubes for Higher Alcohols Synthesis. Journal of Catalysts, 2013, 2013, 1-7.	0.5	2
129	Effect of reaction conditions on supercritical hexanes mediated higher alcohol synthesis over a CuCoZn catalyst. AICHE Journal, 2014, 60, 1786-1796.	3.6	8
130	Kinetic study of higher alcohol synthesis directly from syngas over CoCu/SiO ₂ catalysts. AICHE Journal, 2014, 60, 1797-1809.	3.6	53
131	Effects of Metal Promotion on the Performance of CuZnAl Catalysts for Alcohol Synthesis. ChemCatChem, 2014, 6, 1788-1793.	3.7	50

#		IF	CITATIONS
132	Higher Alcohol Synthesis Using K-Doped CoRhMoS2/MWCNT Catalysts: Influence of Pelletization, Particle Size and Incorporation of Binders. Topics in Catalysis, 2014, 57, 538-549.	2.8	21
133	Higher Alcohols through CO Hydrogenation over CoCu Catalysts: Influence of Precursor Activation. ACS Catalysis, 2014, 4, 2792-2800.	11.2	114
134	Synthesis of green fuels from biogenic waste through thermochemical route – The role of heterogeneous catalyst: A review. Renewable and Sustainable Energy Reviews, 2014, 38, 131-153.	16.4	56
135	Nano―and Microscale Engineering of the Molybdenum Disulfideâ€Based Catalysts for Syngas to Ethanol Conversion. ChemCatChem, 2014, 6, 2394-2402.	3.7	33
136	Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 2014, 313, 149-158.	6.2	39
137	Ethanol Synthesis from Syngas on Transition Metal-Doped Rh(111) Surfaces: A Density Functional Kinetic Monte Carlo Study. Topics in Catalysis, 2014, 57, 125-134.	2.8	30
138	Effect of the Addition of Ethanol to Synthesis Gas on the Production of Higher Alcohols over Cs and Ru Modified Cu/ZnO Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 1452-1463.	3.7	11
139	Multi-walled carbon nanotubes as novel promoter of catalysts for certain hydrogenation and dehydrogenation reactions. Science China Chemistry, 2015, 58, 47-59.	8.2	7
140	Computational Identification of Descriptors for Selectivity in Syngas Reactions on a Mo ₂ C Catalyst. ACS Catalysis, 2015, 5, 5174-5185.	11.2	24
141	Effect of elemental molar ratio on the synthesis of higher alcohols over Co-promoted alkali-modified Mo2C catalysts supported on CNTs. Journal of Energy Chemistry, 2015, 24, 278-284.	12.9	15
142	Selective Synthesis of Methanol and Higher Alcohols over Cs/Cu/ZnO/Al ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 7841-7851.	3.7	42
143	Elucidation of reaction network of higher alcohol synthesis over modified FT catalysts by probe molecule experiments. Catalysis Science and Technology, 2015, 5, 4224-4232.	4.1	23
144	One-step production of C1–C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2. Chinese Journal of Catalysis, 2015, 36, 355-361.	14.0	34
145	Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catalysis Science and Technology, 2015, 5, 3876-3902.	4.1	223
146	Cation distribution in Zn–Cr spinel structure and its effects on synthesis of isobutanol from syngas: Structure–activity relationship. Journal of Molecular Catalysis A, 2015, 404-405, 139-147.	4.8	40
147	Synthesis of higher alcohols by the Fischer–Tropsch reaction over activated carbon supported CoCuMn catalysts. RSC Advances, 2015, 5, 76330-76336.	3.6	16
148	First-Principles Study of C ₂ Oxygenates Synthesis Directly from Syngas over CoCu Bimetallic Catalysts. Journal of Physical Chemistry C, 2015, 119, 216-227.	3.1	47
149	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	16.4	134

#	Article	IF	CITATIONS
150	Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation. Chinese Journal of Chemical Physics, 2016, 29, 671-680.	1.3	8
151	Stability of a Csâ€promoted Coâ€Mo/Al ₂ O ₃ catalyst during synthesis gas conversion. Canadian Journal of Chemical Engineering, 2016, 94, 655-661.	1.7	8
152	Cobalt–copper based catalysts for higher terminal alcohols synthesis via Fischer–Tropsch reaction. Journal of Energy Chemistry, 2016, 25, 895-906.	12.9	19
153	Co-decorated Cu alloy catalyst for C ₂ oxygenate and ethanol formation from syngas on Cu-based catalyst: insight into the role of Co and Cu as well as the improved selectivity. Catalysis Science and Technology, 2016, 6, 8036-8054.	4.1	39
154	Promotional Effects of Cesium Promoter on Higher Alcohol Synthesis from Syngas over Cesium-Promoted Cu/ZnO/Al ₂ O ₃ Catalysts. ACS Catalysis, 2016, 6, 5771-5785.	11.2	79
155	Remarkable enhancement of the catalytic performance of molybdenum sulfide catalysts via an in situ decomposition method for higher alcohol synthesis from syngas. RSC Advances, 2016, 6, 112356-112362.	3.6	8
156	The role of potassium promoter in isobutanol synthesis over Zn–Cr based catalysts. Catalysis Science and Technology, 2016, 6, 4105-4115.	4.1	37
157	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	3.7	205
158	Synthesis and conversion of alcohols over modified transition metal sulphides. Comptes Rendus Chimie, 2016, 19, 1184-1193.	0.5	15
159	Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. Applied Surface Science, 2016, 364, 388-399.	6.1	40
160	Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 2016, 25, 10-25.	12.9	641
161	Bimetallic CuCo nanoparticles derived from hydrotalcite supported on carbon fibers for higher alcohols synthesis from syngas. Applied Surface Science, 2016, 360, 77-85.	6.1	36
162	Transition metal promoted K/Mo ₂ C as efficient catalysts for CO hydrogenation to higher alcohols. Catalysis Science and Technology, 2016, 6, 1106-1119.	4.1	33
163	Synthesis of higher alcohols over highly dispersed Cu–Fe based catalysts derived from layered double hydroxides. Journal of Colloid and Interface Science, 2016, 470, 162-171.	9.4	40
164	On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts. Catalysis Science and Technology, 2017, 7, 988-999.	4.1	31
165	The role of different state ZnO over non-stoichiometric Zn–Cr spinel catalysts for isobutanol synthesis from syngas. Applied Catalysis A: General, 2017, 536, 57-66.	4.3	38
166	Role of Caesium in Higher Alcohol Synthesis over Modified Copper–Cobalt Nanocomposites under Mild Conditions. ChemCatChem, 2017, 9, 1845-1853.	3.7	10
167	For Better Industrial Cu/ZnO/Al2O3 Methanol Synthesis Catalyst: A Compositional Study. Catalysis Letters, 2017, 147, 1581-1591.	2.6	16

#	Article	IF	CITATIONS
168	Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 2017, 61, 189-248.	31.2	483
169	The role of non-stoichiometric spinel for iso-butanol formation from biomass syngas over Zn–Cr based catalysts. RSC Advances, 2017, 7, 20135-20145.	3.6	10
170	Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews, 2017, 46, 1358-1426.	38.1	513
171	Formation of C ₂ oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst: insight into the role of Fe as a promoter. Physical Chemistry Chemical Physics, 2017, 19, 30883-30894.	2.8	21
172	DFT study of key elementary steps for C2+ alcohol synthesis on bimetallic sites of Cu-Co shell-core structure from syngas. Molecular Catalysis, 2017, 443, 165-174.	2.0	6
173	Ga-promoted CO insertion and C–C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas. Journal of Catalysis, 2017, 356, 157-164.	6.2	53
174	Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 13552-13565.	3.7	5
175	Ironâ€Based Fischerâ€Tropsch Catalysts for Higher Alcohol Synthesis. Chemie-Ingenieur-Technik, 2018, 90, 713-720.	0.8	5
176	Higher Alcohols Synthesis over Carbon Nanohorn-Supported KCoRhMo Catalyst: Pelletization and Kinetic Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 5517-5528.	3.7	7
177	Characterization of CoCu- and CoMn-Based Catalysts for the Fischer–Tropsch Reaction Toward Chain-Lengthened Oxygenates. Topics in Catalysis, 2018, 61, 1016-1023.	2.8	10
178	Enhanced catalytic performance and promotional effect of molybdenum sulfide cluster-derived catalysts for higher alcohols synthesis from syngas. Catalysis Today, 2018, 316, 177-184.	4.4	9
179	Oxygenate formation over K/β-Mo ₂ C catalysts in the Fischer–Tropsch synthesis. Catalysis Science and Technology, 2018, 8, 3806-3817.	4.1	12
180	Structure Evolution of Co–CoO _{<i>x</i>} Interface for Higher Alcohol Synthesis from Syngas over Co/CeO ₂ Catalysts. ACS Catalysis, 2018, 8, 8606-8617.	11.2	90
181	Potential methanol-ethanol synthesis from Hungarian sub-bituminous coal via plasma gasification and Fischer-Tropsch synthesis. International Journal of Oil, Gas and Coal Technology, 2018, 18, 55.	0.2	1
182	Active Centers of Catalysts for Higher Alcohol Synthesis from Syngas: A Review. ACS Catalysis, 2018, 8, 7025-7050.	11.2	206
183	Continuous production of higher alcohols from synthesis gas and ethanol using Cs-modified CuO/ZnO/Al2O3 catalysts. Applied Catalysis A: General, 2019, 585, 117150.	4.3	8
184	Higher alcohol synthesis from syngas over xerogel-derived Co-Cu-Al2O3 catalyst with an enhanced metal proximity. Molecular Catalysis, 2019, 475, 110481.	2.0	5
185	The Complex Way to Sustainability: Petroleum-Based Processes versus Biosynthetic Pathways in the Formation of C4 Chemicals from Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 15863-15871.	3.7	5

#	Article	IF	CITATIONS
187	Mixed oxides of La-Ga-O modified Co/ZrO2 for higher alcohols synthesis from syngas. Catalysis Today, 2019, 330, 46-53.	4.4	13
188	Effect of Promoter Nature on Synthesis Gas Conversion to Alcohols over (K)MeMoS ₂ /Al ₂ O ₃ Catalysts. ChemCatChem, 2020, 12, 1443-1452.	3.7	12
189	MoSe2: a promising non-noble metal catalyst for direct ethanol synthesis from syngas. Fuel, 2020, 281, 118760.	6.4	8
190	Insights into mesoporous nitrogen-rich carbon induced synergy for the selective synthesis of ethanol. Carbon, 2020, 168, 337-353.	10.3	7
191	Ultra-small and highly-dispersed MoP particles for remarkable enhanced catalytic performance in higher alcohols synthesis. Catalysis Communications, 2020, 137, 105945.	3.3	7
192	Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chemistry, 2021, 23, 8361-8405.	9.0	31
194	Toward alcohol synthesis from CO hydrogenation on Cu(111)-supported MoS2 – predictions from DFT+KMC. Journal of Chemical Physics, 2021, 154, 174701.	3.0	3
195	Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Applied Catalysis B: Environmental, 2021, 291, 120073.	20.2	90
196	Production routes of advanced renewable <scp>C1</scp> to <scp>C4</scp> alcohols as biofuel components – a review. Biofuels, Bioproducts and Biorefining, 2020, 14, 845-878.	3.7	41
197	Efficient Oneâ€Pot Synthesis of Higher Alcohols from Syngas Catalyzed by Iron Nitrides. ChemCatChem, 2020, 12, 1939-1943.	3.7	5
198	Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste. Applied Chemistry for Engineering, 2016, 27, 171-178.	0.2	4
202	Biomass Conversion Processes For Energy Recovery. Mechanical Engineering Series, 2007, , 22-1-22-68.	0.1	2
205	Advances in Catalytic Conversion of Syngas to Ethanol and Higher Alcohols. Advances in Chemical and Materials Engineering Book Series, 2016, , 177-215.	0.3	0
206	9 Natural and Synthetic Gas for Productions of Liquid Fuels and Their Additives. , 2017, , 543-612.		Ο
207	Renewable Butanol Production via Catalytic Routes. International Journal of Environmental Research and Public Health, 2021, 18, 11749.	2.6	18
208	Structure-performance interplay of rhodium-based catalysts for syngas conversion to ethanol. Materials Chemistry Frontiers, 2022, 6, 663-679.	5.9	4
209	Synthesis of Higher Alcohols from Syngas over a K-Modified CoMoS Catalyst Supported on Novel Powder and Fiber Commercial Activated Carbons. ACS Omega, 2022, 7, 21346-21356.	3.5	6
210	Supported nanosized metal catalysts for thermocatalytic CO2 reduction to hydrocarbons and alcohols. , 2022, , .		0

#	Article	IF	CITATIONS
211	Cuâ€Co/ZnAl ₂ O ₄ Catalysts for CO Conversion to Higher Alcohols Synthesized from Coâ€Precipitated Hydrotalcite Precursors. Chemie-Ingenieur-Technik, 2022, 94, 1784-1797.	0.8	0
212	Mixed higher alcohols production from syngas. , 2023, , 173-197.		Ο
213	The conversion mechanism of syngas CO and H2 under Au and Au-CCo-doping catalysts. Chemical Physics Letters, 2023, 832, 140892.	2.6	0
214	Edge-rich molybdenum disulfide tailors carbon-chain growth for selective hydrogenation of carbon monoxide to higher alcohols. Nature Communications, 2023, 14, .	12.8	2
215	Bio-Butanol Production on Heterogeneous Catalysts: A Review. Journal of the Taiwan Institute of Chemical Engineers, 2024, 157, 105421.	5.3	0