A HISTORY OF PHOTODYNAMIC THERAPY

ANZ Journal of Surgery 61, 340-348

DOI: 10.1111/j.1445-2197.1991.tb00230.x

Citation Report

#	Article	IF	CITATIONS
1	Sapphyrins and heterosapphyrins Tetrahedron, 1992, 48, 9661-9672.	1.0	83
2	Management of familial adenomatous polyposis. Bailliere's Clinical Gastroenterology, 1992, 6, 75-94.	0.9	3
3	Photodynamic Therapy in Dermatology: Recent Developments. Dermatologic Clinics, 1993, 11, 1-13.	1.0	76
4	Tissue Sensitizers. Gastrointestinal Endoscopy Clinics of North America, 1994, 4, 327-352.	0.6	5
5	EXTRACORPOREAL PHOTOPHERESIS. International Journal of Dermatology, 1994, 33, 407-411.	0.5	5
6	Photodynamic therapy of primary skin cancer: A review. Journal of Plastic, Reconstructive and Aesthetic Surgery, 1995, 48, 360-370.	1.1	74
7	Photodynamic therapy. Cancer Treatment Reviews, 1995, 21, 311-323.	3.4	70
8	Photodynamic Therapy in Veterinary Medicine: Current Status and Implications for Applications in Human Disease. Photomedicine and Laser Surgery, 1996, 14, 305-310.	1.1	13
9	Intraoperative Meso-Tetrahydroxyphenylchlorin-Based Photodynamic Therapy in Metastatic Gynecologic Cancer Tissue: Initial Results. Journal of Gynecologic Surgery, 1997, 13, 23-29.	0.0	15
10	CURRENT STATUS OF PHOTODYNAMIC THERAPY IN DERMATOLOGY. Dermatologic Clinics, 1997, 15, 507-519.	1.0	64
11	Photodynamic Action: From Paramecium to Photochemotherapy*. Photochemistry and Photobiology, 1997, 65, 142S.	1.3	26
12	Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies. Seminars in Cutaneous Medicine and Surgery, 1998, 17, 153-163.	1.6	51
13	The Emerging Role of Photodynamic Therapy in the Management of Barrett's Oesophagus. Scandinavian Journal of Gastroenterology, 1998, 33, 1121-1129.	0.6	7
14	Nonthermal Ablation of Malignant Esophageal Strictures: Photodynamic Therapy, Endoscopic Intratumoral Injections, and Novel Modalities. Gastrointestinal Endoscopy Clinics of North America, 1998, 8, 465-491.	0.6	15
15	Photodynamic therapy in dermatology. Journal of Dermatological Treatment, 1999, 10, 213-219.	1.1	10
16	Toxicology of a Boronated Porphyrin in Dogs. Photochemistry and Photobiology, 1999, 69, 587-594.	1.3	27
17	Photodynamic therapy and its applications in gynaecology. BJOG: an International Journal of Obstetrics and Gynaecology, 1999, 106, 1246-1254.	1.1	43
18	Veterinary photodynamic therapy. Journal of the American Veterinary Medical Association, 2000, 216, 1745-1751.	0.2	25

#	ARTICLE	IF	CITATIONS
19	The History of Photodetection and Photodynamic Therapy¶. Photochemistry and Photobiology, 2001, 74, 656.	1.3	529
20	Photodynamic therapy and the alimentary tract. Alimentary Pharmacology and Therapeutics, 2001, 15, 899-915.	1.9	14
21	Current status of phthalocyanines in the photodynamic therapy of cancer. Journal of Porphyrins and Phthalocyanines, 2001, 05, 161-169.	0.4	496
22	Extracorporeal photopheresis: a review. Blood Reviews, 2001, 15, 103-108.	2.8	68
23	Development of verteporfin therapy: A collaboration between pharmaceutical companies, device manufacturers and clinical investigators. Seminars in Ophthalmology, 2001, 16, 213-217.	0.8	6
24	Rapid Control of Wound Infections by Targeted Photodynamic Therapy Monitored by In Vivo Bioluminescence Imaging¶. Photochemistry and Photobiology, 2002, 75, 51.	1.3	203
25	The advantages of aminolevulinic acid photodynamic therapy in dermatology. Journal of Dermatological Treatment, 2002, 13, s3-s11.	1.1	46
26	Photodynamic therapy: unapproved uses, dosages, or indications. Clinics in Dermatology, 2002, 20, 571-581.	0.8	48
27	Photodynamic therapy for companion animals with cancer. Veterinary Clinics of North America - Small Animal Practice, 2002, 32, 693-702.	0.5	19
28	Ablation of Barrett's epithelium: the promise and the problems. Ecological Management and Restoration, 2002, 15, 30-38.	0.2	7
29	Synthesis of ether- and carbon-linked polycarboranyl porphyrin dimers for cancer therapies. Journal of Organometallic Chemistry, 2003, 680, 232-243.	0.8	46
30	Photodynamic therapy for cancer. Nature Reviews Cancer, 2003, 3, 380-387.	12.8	5,585
31	Effects of Water Flow on Dental Hard Tissue Ablation Using Er:YAG Laser. Photomedicine and Laser Surgery, 2003, 21, 139-144.	1.1	39
32	Metal Complexes for Photodynamic Therapy. , 2003, , 945-1003.		15
33	Optical Monitoring and Treatment of Potentially Lethal Wound Infections In Vivo. Journal of Infectious Diseases, 2003, 187, 1717-1726.	1.9	161
34	Synthesis and photocytotoxic activity of new \hat{l} ±-methylene- \hat{l} 3-butyrolactone-psoralen heterodimers. Bioorganic and Medicinal Chemistry, 2004, 12, 3619-3625.	1.4	13
35	Clinical PD/PDT in North America: An historical review. Photodiagnosis and Photodynamic Therapy, 2004, 1, 263-277.	1,3	135
36	Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy¶. Photochemistry and Photobiology, 2005, 81, 750.	1.3	49

#	Article	IF	Citations
38	Photodynamic Therapy. Advances in Dermatology, 2006, 22, 219-258.	2.0	46
39	The future of photodynamic therapy in oncology. Future Oncology, 2006, 2, 53-71.	1.1	92
40	Laser-mediated photodynamic therapy. Clinics in Dermatology, 2006, 24, 16-25.	0.8	150
41	Photosensitization of skin fibroblasts and HeLa cells by three chlorin derivatives: Role of chemical structure and delivery vehicle. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 583-596.	1.4	20
42	Terapêutica no carcinoma de células escamosas cutâneo em gatos. Ciencia Rural, 2006, 36, 1027-1033.	0.3	7
43	Technology Insight: photodynamic therapy for cholangiocarcinoma. Nature Reviews Gastroenterology & Hepatology, 2006, 3, 459-467.	1.7	31
44	Photodynamic Therapy for Pancreatic Cancer. Pancreas, 2007, 34, 385-389.	0.5	51
45	Aminolevulinic Acid Photodynamic Therapy for Skin Cancers. Dermatologic Clinics, 2007, 25, 5-14.	1.0	64
46	Derivatives of 5-Aminolevulinic Acid for Photodynamic Therapy. Perspectives in Medicinal Chemistry, 2007, 1, 1177391X0700100.	4.6	11
47	Influence of solution viscosity and injection protocol on distribution patterns of jet injectors: Application to photodynamic tumour targeting. Journal of Photochemistry and Photobiology B: Biology, 2007, 89, 98-109.	1.7	22
48	Drug Delivery of Aminolevulinic Acid from Topical Formulations Intended for Photodynamic Therapy (sup) $\hat{A}\P$ (sup). Photochemistry and Photobiology, 2005, 81, 750-767.	1.3	6
49	The History of Photodetection and Photodynamic Therapy¶. Photochemistry and Photobiology, 2001, 74, 656-669.	1.3	50
50	Rapid Control of Wound Infections by Targeted Photodynamic Therapy Monitored by In Vivo Bioluminescence Imaging $\hat{A}\P$. Photochemistry and Photobiology, 2002, 75, 51-57.	1.3	9
51	Irradiation at 634Ânm releases nitric oxide from human monocytes. Lasers in Medical Science, 2007, 22, 30-36.	1.0	33
52	Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23, 217-228.	1.0	1,950
53	Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. Journal of Controlled Release, 2008, 129, 154-162.	4.8	151
54	Photodynamic Therapy in Dermatology: An Update on Applications and Outcomes. Seminars in Cutaneous Medicine and Surgery, 2008, 27, 52-62.	1.6	79
55	A terapia fotodinâmica com ácido 5-aminolevulÃnico como modalidade de tratamento para neoplasias cutâneas não-melanoma. Anais Brasileiros De Dermatologia, 2008, 83, 309-316.	0.5	6

#	Article	IF	Citations
56	Seasonal Affective Disorder. Perspectives in Psychiatric Care, 1994, 30, 21-25.	0.9	4
57	Influence of formulation factors on PpIX production and photodynamic action of novel ALAâ€loaded microparticles. Biopharmaceutics and Drug Disposition, 2009, 30, 55-70.	1.1	4
58	Photodynamic therapy in dermatology: a review. Lasers in Medical Science, 2009, 24, 971-980.	1.0	131
59	Hematoporphyrinâ€based photodynamic therapy for cutaneous squamous cell carcinoma in cats. Veterinary Dermatology, 2009, 20, 174-178.	0.4	13
60	Microneedle Arrays Permit Enhanced Intradermal Delivery of a Preformed Photosensitizer. Photochemistry and Photobiology, 2009, 85, 195-204.	1.3	79
61	Long-term follow-up of topical 5-aminolaevulinic acid photodynamic therapy diode laser single session for non-melanoma skin cancer. Photodiagnosis and Photodynamic Therapy, 2009, 6, 207-213.	1.3	51
62	Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Medicinal Chemistry, 2009, 1, 667-691.	1.1	163
63	Photodynamic therapy inhibits p-glycoprotein mediated multidrug resistance via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Molecular Cancer, 2009, 8, 56.	7.9	62
64	UV-induced immunosuppressive and anti-inflammatory actions: mechanisms and clinical applications. Immunotherapy, 2009, 1, 205-210.	1.0	11
66	Photodynamic therapy of cancer: Search for ideal photosensitizer. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 95-103.	0.2	47
67	Novel patch-based systems for the localised delivery of ALA-esters. Journal of Photochemistry and Photobiology B: Biology, 2010, 101, 59-69.	1.7	20
68	Comparative DFT study for molecular geometries and spectra of methyl pheophorbides-a: test of M06-2X and two other functionals. Journal of Porphyrins and Phthalocyanines, 2010, 14, 592-604.	0.4	20
69	Photo-activated pheophorbide-a, an active component of Scutellaria barbata, enhances apoptosis via the suppression of ERK-mediated autophagy in the estrogen receptor-negative human breast adenocarcinoma cells MDA-MB-231. Journal of Ethnopharmacology, 2010, 131, 95-103.	2.0	59
70	Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Review of Anticancer Therapy, 2010, 10, 1797-1809.	1.1	129
71	Microneedle-mediated intradermal nanoparticle delivery: Potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis and Photodynamic Therapy, 2010, 7, 222-231.	1.3	77
72	<i>In vitro</i> photo-induced cytotoxic activity of <i>Citrus bergamia</i> and <i>C. medica</i> L. cv. Diamante peel essential oils and identified active coumarins. Pharmaceutical Biology, 2010, 48, 1059-1065.	1.3	32
73	Pheophorbide a-Mediated Photodynamic Therapy Triggers HLA Class I-Restricted Antigen Presentation in Human Hepatocellular Carcinoma. Translational Oncology, 2010, 3, 114-122.	1.7	22
74	Development of an irradiation system for photodynamic therapy with dosimetric control. , $2011, \ldots$		0

#	Article	IF	CITATIONS
75	Photodynamic therapy (PDT) for lung cancer. Photodiagnosis and Photodynamic Therapy, 2011, 8, 231-239.	1.3	109
76	Nanoparticles for Photodynamic Therapy. , 2011, , 1-28.		6
77	PDT-Lung. Medical Radiology, 2011, , 371-380.	0.0	0
78	Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 46-67.	5.6	457
79	Photodynamic Therapy for Other Uses. , 2011, , 123-138.		0
81	Analysis of the combined effect of lasers of different wavelengths for PDT outcome using 600, 630, and 660 nm. Laser Physics Letters, 2011, 8, 386-392.	0.6	47
82	New topical photodynamic therapy for management of primary axillary hyperhidrosis. Journal of the Egyptian Women's Dermatologic Society, 2011, 8, 36-42.	0.2	5
83	Nonsurgical Treatment Options for Basal Cell Carcinoma. Journal of Skin Cancer, 2011, 2011, 1-6.	0.5	28
84	Antimicrobial photodynamic therapy: An overview. Journal of Indian Society of Periodontology, 2011, 15, 323.	0.3	172
85	Einstein's "Splendid Light― , 2011, , 1-11.		0
86	Physically facilitating drug-delivery systems. Therapeutic Delivery, 2012, 3, 125-139.	1.2	25
87	Editorial [Hot Topic: Diagnostic and Therapeutic Optical Imaging Techniques]. Current Medical Imaging, 2012, 8, 155-156.	0.4	0
88	Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors, 2012, 12, 2414-2435.	2.1	249
89	From patient to discoverer—Niels Ryberg Finsen (1860–1904)—the founder of phototherapy in dermatology. Clinics in Dermatology, 2012, 30, 451-455.	0.8	64
90	Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics, 2012, 2, 905-915.	4.6	126
91	Combined Therapy For Squamous Carcinoma Cells: Application of Porphyrin-Alkaloid Modified Gold Nanoparticles. , 2012, , .		0
92	Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. Journal of Photochemistry and Photobiology B: Biology, 2013, 121, 67-74.	1.7	38
93	Photodynamic therapy for the treatment of induced mammary tumor in rats. Lasers in Medical Science, 2013, 28, 571-577.	1.0	7

#	Article	IF	CITATIONS
95	The electromagnetic spectrum: current and future applications in oncology. Future Oncology, 2013, 9, 657-667.	1.1	9
96	A Pilot Randomized Clinical Study of the Additive Treatment Effect of Photodynamic Therapy in Breast Cancer Patients with Chest Wall Recurrence. Journal of Breast Cancer, 2014, 17, 161.	0.8	18
97	Overview on Topical 5-ALA Photodynamic Therapy Use for Non Melanoma Skin Cancers. International Journal of Photoenergy, 2014, 2014, 1-7.	1.4	17
98	An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy. Journal of Luminescence, 2014, 152, 103-107.	1.5	40
99	Supramolecular drug delivery platforms in photodynamic therapy., 2015,, 465-485.		3
100	Theranostics. , 2016, , 197-215.		16
101	Synthesis and Characterization of Star-Shaped Porphyrin-cored Poly(Glutamic Acid) Conjugates as Highly Efficient Photosensitizers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 823-829.	0.1	5
102	Photonics immunotherapy — A novel strategy for cancer treatment. Journal of Innovative Optical Health Sciences, 2016, 09, 1630001.	0.5	22
103	Multimodal theranostic assemblies: double encapsulation of protoporphyrine-IX/Gd3+in niosomes. RSC Advances, 2016, 6, 30217-30225.	1.7	21
104	Einstein's "Splendid Light― , 2016, , 1-11.		1
105	Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. Journal of Periodontal Research, 2017, 52, 162-175.	1.4	25
106	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	7.8	483
107	Lightâ€driven photosensitizer uptake increases <i>Candida albicans</i> photodynamic inactivation. Journal of Biophotonics, 2017, 10, 1538-1546.	1.1	21
108	Stimulation by Light. , 2017, , 1-32.		0
109	An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection. Journal of Porphyrins and Phthalocyanines, 2017, 21, 205-210.	0.4	10
110	Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem, 2017, 12, 1908-1916.	1.6	13
111	Photodynamic Diagnosis and Therapy for Oral Potentially Malignant Disorders and Cancers. , 2017, , 147-175.		5
112	Photosensitization mechanism of Cu(<scp>ii</scp>) porphyrins. Physical Chemistry Chemical Physics, 2017, 19, 20533-20540.	1.3	9

#	Article	IF	CITATIONS
113	Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution. Photochemical and Photobiological Sciences, 2017, 16, 1415-1423.	1.6	15
114	Photodynamic therapy and diagnosis: Principles and comparative aspects. Veterinary Journal, 2018, 233, 8-18.	0.6	93
115	Advanced smart-photosensitizers for more effective cancer treatment. Biomaterials Science, 2018, 6, 79-90.	2.6	82
116	Gold-chlorophyll a-hybrid nanoparticles and chlorophyll a/cetyltrimethylammonium chloride self-assembled-suprastructures as novel carriers for chlorophyll a delivery in water medium: Photoactivity and photostability. Colloids and Surfaces B: Biointerfaces, 2018, 161, 555-562.	2.5	17
117	Antimicrobial Photodynamic Therapy: An Effective Alternative Approach to Control Bacterial Infections. Journal of Lasers in Medical Sciences, 2018, 9, 154-160.	0.4	86
118	Clinical development of photodynamic agents and therapeutic applications. Biomaterials Research, 2018, 22, 25.	3.2	354
119	Newly Synthesized Lipid–Porphyrin Conjugates: Evaluation of Their Selfâ€Assembling Properties, Their Miscibility with Phospholipids and Their Photodynamic Activity In Vitro. Chemistry - A European Journal, 2018, 24, 19179-19194.	1.7	26
120	Confocal fluorescence imaging to evaluate the effect of antimicrobial photodynamic therapy depth on P. gingivalis and T. denticola biofilms. Photodiagnosis and Photodynamic Therapy, 2018, 23, 18-24.	1.3	14
121	Gold Nanoparticle-Based Technologies in Photothermal/Photodynamic Treatment., 2018, , 151-173.		3
122	Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled <i>In Situ</i>	4.6	57
123	Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update. Lasers in Medical Science, 2018, 33, 1431-1439.	1.0	74
125	Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Progress in Retinal and Eye Research, 2019, 73, 100770.	7.3	276
126	Influence of Undopedâ€AlGaN Final Barrier of MQWs on the Performance of Lateralâ€Type UVB LEDs. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900185.	0.8	25
127	Photodynamic therapy for skin cancer: How to enhance drug penetration?. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111544.	1.7	70
128	13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. Journal of Materials Chemistry C, 2019, 7, 143-152.	2.7	84
129	5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. Journal of Neuro-Oncology, 2019, 141, 595-607.	1.4	184
131	Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjugate Chemistry, 2019, 30, 1297-1303.	1.8	26
132	Synthesis and in vitro evaluation of the antitumoral phototherapeutic potential of squaraine cyanine dyes derived from indolenine. Dyes and Pigments, 2019, 167, 98-108.	2.0	34

#	Article	IF	CITATIONS
133	Improved external quantum efficiency of 293 nm AlGaN UVB LED grown on an AlN template. Japanese Journal of Applied Physics, 2019, 58, SAAF01.	0.8	27
134	Upconversion-based photodynamic cancer therapy. Coordination Chemistry Reviews, 2019, 379, 82-98.	9.5	249
135	Nanocarriers in photodynamic therapyâ€"in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1509.	3.3	46
136	Overcoming the current injection issue in the 310Ânm band AlGaN UVB light-emitting diode. Japanese Journal of Applied Physics, 2020, 59, SAAD01.	0.8	19
137	Comparison of different modes of photo-activated disinfection against Porphyromonas gingivalis: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2020, 32, 101951.	1.3	7
138	Antimicrobial photodynamic therapy fighting polymicrobial infections $\hat{a}\in$ a journey from in vitro to in vivo. Photochemical and Photobiological Sciences, 2020, 19, 1332-1343.	1.6	20
139	Editorial: Dosimetry Study in Photodynamic Therapy for Diagnosis, Precision Treatment and Treatment Evaluation. Frontiers in Physics, 2020, 8, .	1.0	2
140	Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy. Molecules, 2020, 25, 5239.	1.7	93
141	Daylight Photodynamic Therapy: An Update. Molecules, 2020, 25, 5195.	1.7	64
142	Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 2020, 17, 657-674.	12.5	1,622
143	Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. Nanomaterials, 2020, 10, 1771.	1.9	12
144	Superlattice period dependence on nonradiative recombination centers in the n-AlGaN layer of UV-B region revealed by below-gap excitation light. AIP Advances, 2020, 10, 035224.	0.6	1
145	Imaging and therapy with upconversion nanoparticles. , 2020, , 177-204.		1
146	Aspects of Photodynamic Inactivation of Bacteria., 0,,.		7
147	A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. Journal of the American Chemical Society, 2020, 142, 4639-4647.	6.6	84
148	Photodynamic therapy with smart nanomedicine. Archives of Pharmacal Research, 2020, 43, 22-31.	2.7	49
149	Ablative therapies for hepatic and biliary tumors: endohepatology coming of age. Translational Gastroenterology and Hepatology, 2020, 5, 14-14.	1.5	11
150	Nanoscale Metalâ€Organic Frameworks: Synthesis, Biocompatibility, Imaging Applications, and Thermal and Dynamic Therapy of Tumors. Advanced Functional Materials, 2020, 30, 1908924.	7.8	108

#	Article	IF	Citations
151	Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies. Cancers, 2020, 12, 335.	1.7	9
152	Photodynamic Therapy for Chorioretinal Diseases: A Practical Approach. Ophthalmology and Therapy, 2020, 9, 329-342.	1.0	35
153	Temperature dependence of nonradiative recombination processes in UV-B AlGaN quantum well revealed by below-gap excitation light. Optical Materials, 2020, 105, 109878.	1.7	2
154	Metal–Organic Frameworks for Photodynamic Therapy: Emerging Synergistic Cancer Therapy. Biotechnology Journal, 2021, 16, e1900382.	1.8	42
155	5-Aminolevulinic acid radiodynamic therapy for treatment of high-grade gliomas: A systematic review. Clinical Neurology and Neurosurgery, 2021, 201, 106430.	0.6	13
156	<i>In vivo</i> phototoxic effects of a tetraethyleneglycol-substituted Zn phthalocyanine in tumor bearing rats at an enzymatic level. Journal of Porphyrins and Phthalocyanines, 2021, 25, 120-127.	0.4	3
157	Efficacy of antimicrobial photodynamic therapy (aPDT) for nonsurgical treatment of periodontal disease: a systematic review. Lasers in Medical Science, 2021, 36, 1573-1590.	1.0	25
158	Porphyrinoids for Photodynamic Therapy. RSC Smart Materials, 2021, , 252-291.	0.1	4
159	Initial investigations of a novel bioluminescence method for imaging dental demineralization. Clinical and Experimental Dental Research, 2021, 7, 786-794.	0.8	10
160	Photodynamic Therapy Using Hippo Pathway Inhibitor Verteporfin: A Potential Dual Mechanistic Approach in Treatment of Soft Tissue Sarcomas. Cancers, 2021, 13, 675.	1.7	4
161	Potential of Photodynamic Therapy Based on Sugar-Conjugated Photosensitizers. Journal of Clinical Medicine, 2021, 10, 841.	1.0	21
162	Revisiting Tetra-p-Sulphonated Porphyrin as Antimicrobial Photodynamic Therapy Agent. Coatings, 2021, 11, 393.	1.2	2
163	Photodynamic Therapy Using Cerenkov and Radioluminescence Light. Frontiers in Physics, 2021, 9, .	1.0	18
164	Clinical Application of Gold Nanoparticles for Diagnosis and Treatment. Medical Lasers, 2021, 10, 60-67.	0.2	0
165	Photodynamic Therapy and Hyperthermia in Combination Treatmentâ€"Neglected Forces in the Fight against Cancer. Pharmaceutics, 2021, 13, 1147.	2.0	18
166	Ultrafast Dynamics in Carbon Dots as Photosensitizers: A Review. ACS Applied Nano Materials, 2021, 4, 7587-7606.	2.4	17
167	From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy. International Journal of Pharmaceutics, 2021, 604, 120763.	2.6	24
168	Investigation of the therapeutic effect of 5-aminolevulinic acid based photodynamic therapy on hepatocellular carcinoma. Lasers in Medical Science, 2022, 37, 1325-1332.	1.0	1

#	Article	IF	CITATIONS
169	Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Frontiers in Chemistry, 2021, 9, 686303.	1.8	172
170	Effect of 850 nm near-infrared light emitting diode irradiation on the production of 5-aminolevulinic acid in <i>Rhodobacter sphaeroides</i>). Journal of Applied Biological Chemistry, 2021, 64, 217-223.	0.2	0
171	In vivo optical coherence tomography-guided photodynamic therapy for skin pre-cancer and cancer. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102520.	1.3	5
172	Stimulation by Light. Reference Series in Biomedical Engineering, 2021, , 273-303.	0.1	0
173	Nanosystems Comprising Biocompatible Polymers for the Delivery of Photoactive Compounds in Biomedical Applications. Nanomedicine and Nanotoxicology, 2021, , 253-287.	0.1	0
174	Porphyrin- and Expanded Porphyrin-Based Diagnostic and Therapeutic Agents. Perspectives in Supramolecular Chemistry, 0, , 245-294.	0.1	7
176	Stimulation by Light., 2017, , 1-32.		1
177	History of Photodynamic Therapy., 2014, , 3-22.		167
178	Photodynamic Therapy in Skin Cancer., 2011,, 497-507.		1
179	Photodynamic Therapy of Psoriasis Using Photosensitizers of Vegetable Origin. Current Pharmaceutical Design, 2019, 25, 2279-2291.	0.9	11
180	Investigation into the Effect of Photodynamic Therapy and Cisplatin on the Cervical Cancer Cell Line		
	(A278Ŏ). Journal of Lasers in Medical Sciences, 2020, 11, S85-\$91.	0.4	5
182		0.4	2
182 183	(A278Ŏ). Journal of Lasers in Medical Sciences, 202O, 11, S85-S91. IONTOPHORESIS-ENHANCED CUTANEOUS ABSORPTION OF 5-AMINOLEVULINIC ACID SHORTENS THE		
	(A278Ŏ). Journal of Lasers in Medical Sciences, 202O, 11, S85-S91. IONTOPHORESIS-ENHANCED CUTANEOUS ABSORPTION OF 5-AMINOLEVULINIC ACID SHORTENS THE INCUBATION PERIOD IN PHOTODYNAMIC THERAPY. Laser Therapy, 2009, 18, 143-149. Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and	0.8	2
183	(A278Ŏ). Journal of Lasers in Medical Sciences, 202O, 11, S85-S91. IONTOPHORESIS-ENHANCED CUTANEOUS ABSORPTION OF 5-AMINOLEVULINIC ACID SHORTENS THE INCUBATION PERIOD IN PHOTODYNAMIC THERAPY. Laser Therapy, 2009, 18, 143-149. Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Current Oncology, 2021, 28, 4067-4079. Photodynamic therapy using topically applied 5-aminolevulinic acid for treatment of cervical cancer.	0.8	5
183	(A278Ŏ). Journal of Lasers in Medical Sciences, 202O, 11, S85-S91. IONTOPHORESIS-ENHANCED CUTANEOUS ABSORPTION OF 5-AMINOLEVULINIC ACID SHORTENS THE INCUBATION PERIOD IN PHOTODYNAMIC THERAPY. Laser Therapy, 2009, 18, 143-149. Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Current Oncology, 2021, 28, 4067-4079. Photodynamic therapy using topically applied 5-aminolevulinic acid for treatment of cervical cancer. Korean Journal of Obstetrics and Gynecology, 2010, 53, 1092. Clinical Application of Nanotechnology. Korean Journal of Otorhinolaryngology-Head and Neck	0.8 0.9	5
183 185 186	(A2780). Journal of Lasers in Medical Sciences, 2020, 11, S85-S91. IONTOPHORESIS-ENHANCED CUTANEOUS ABSORPTION OF 5-AMINOLEVULLINIC ACID SHORTENS THE INCUBATION PERIOD IN PHOTODYNAMIC THERAPY. Laser Therapy, 2009, 18, 143-149. Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Current Oncology, 2021, 28, 4067-4079. Photodynamic therapy using topically applied 5-aminolevulinic acid for treatment of cervical cancer. Korean Journal of Obstetrics and Gynecology, 2010, 53, 1092. Clinical Application of Nanotechnology. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2011, 54, 185.	0.8 0.9 0.1	2 5 0

#	Article	IF	CITATIONS
190	History of Therapeutic UV Radiation. , 1997, , 13-19.		1
191	Formulation of Delivery Systems for Photosensitisers Used in Oral Cavity Photodynamic Therapy. Advances in Delivery Science and Technology, 2015, , 207-223.	0.4	O
192	Diş Hekimliğinde Güvenli Lazer Kullanımı: Derleme. Süleyman Demirel Üniversitesi Tıp Fakültesi 2018, 25, 481-486.	Dergisi, 0.0	0
193	Emerging Role of Aminolevulinic Acid and Gold Nanoparticles Combination in Theranostic Applications. , 2019, , 337-361.		0
194	Photodynamic Therapy Against Bacterial Biofilm: Role of Reactive Oxygen Species., 2019,, 477-488.		1
195	Phosphorogenic dipyrrinato-iridium(III) complexes as photosensitizers for photodynamic therapy. Dyes and Pigments, 2022, 197, 109886.	2.0	3
196	Phototherapy and optical waveguides for the treatment of infection. Advanced Drug Delivery Reviews, 2021, 179, 114036.	6.6	26
197	Metal-organic Nanopharmaceuticals. Pharmaceutical Nanotechnology, 2020, 8, 163-190.	0.6	2
198	Derivatives of 5-aminolevulinic Acid for photodynamic therapy. Perspectives in Medicinal Chemistry, 2007, 1, 49-63.	4.6	12
199	Antimicrobial Effect of Phytochemicals from Edible Plants. Processes, 2021, 9, 2089.	1.3	22
200	Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics, 2021, 13, 1995.	2.0	59
201	Amphiphilic Fullereneâ€BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem, 2022, 17, .	1.6	21
202	Application of upconversion-luminescent materials in photodynamic therapy., 2022,, 375-390.		1
203	Engineering Cellular Membrane for Dual Mode Therapy Using NIR Responsive Photosensitizer and Reversible Topoisomerase Inhibition Activity. ACS Applied Bio Materials, 2022, 5, 570-582.	2.3	5
204	Therapeutic Options for Recurrent Glioblastoma—Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics, 2022, 14, 353.	2.0	12
205	Targeted photoimmunotherapy for cancer. Biomolecular Concepts, 2022, 13, 126-147.	1.0	6
206	Targeted Antimicrobial Photodynamic Therapy of Biofilm-Embedded and Intracellular Staphylococci with a Phage Endolysin's Cell Binding Domain. Microbiology Spectrum, 2022, 10, e0146621.	1.2	7
207	Appraisal of Recent Developments in Combined Photodynamic Treatment (PDT)/Photobiomodulation (PBM) for Dermal Wound Healing. Medical Lasers, 2022, 11, 8-14.	0.2	O

#	Article	IF	CITATIONS
208	Interaction of Cyanine-D112 with Binary Lipid Mixtures: Molecular Dynamics Simulation and Differential Scanning Calorimetry Study. ACS Omega, 2022, 7, 9765-9774.	1.6	1
209	Current Therapeutics and Future Perspectives to Ocular Melanocytic Neoplasms in Dogs and Cats. Bioengineering, 2021, 8, 225.	1.6	6
211	Phototherapy: The novel emerging treatment for cancer. , 2022, , 31-50.		2
212	Photodynamic therapy for cancer treatment. , 2022, , 89-114.		3
213	AIE molecular probes for biomedical applications. , 2022, , 449-488.		0
214	Fundamentals of photodynamic therapy. , 2022, , 51-88.		3
215	Photodynamic Therapy for Treatment of Disease in Childrenâ€"A Review of the Literature. Children, 2022, 9, 695.	0.6	3
216	Optical Characterization of Biological Tissues in Visible and Near-Infrared Spectra. , 2022, , .		O
217	Comparative randomized trial study about the efficacy of photobiomodulation and curcumin antimicrobial photodynamic therapy as a coadjuvant treatment of oral mucositis in oncologic patients: antimicrobial, analgesic, and degree alteration effect. Supportive Care in Cancer, 2022, 30, 7365-7371.	1.0	8
218	Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Materials Today Nano, 2022, 19, 100236.	2.3	6
219	The combinational application of photodynamic therapy and nanotechnology in skin cancer treatment: A review. Tissue and Cell, 2022, 77, 101856.	1.0	11
220	The application of photodynamic therapy in plastic and reconstructive surgery. Frontiers in Chemistry, 0, 10, .	1.8	1
221	Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. Journal of Nanobiotechnology, 2022, 20, .	4.2	42
222	The photosensitizer-based therapies enhance the repairing of skin wounds. Frontiers in Medicine, 0, 9, .	1.2	6
223	â€~Lights, squaraines, action!' – the role of squaraine dyes in photodynamic therapy. Future Medicinal Chemistry, 2022, 14, 1375-1402.	1.1	6
224	Photodynamische Therapie bei Bronchialtumoren. Springer Reference Medizin, 2022, , 1-5.	0.0	0
225	BODIPYs in PDT: A Journey through the Most Interesting Molecules Produced in the Last 10 Years. International Journal of Molecular Sciences, 2022, 23, 10198.	1.8	18
226	Photodynamic Therapy for Bladder Cancers, A Focused Review ^{â€} . Photochemistry and Photobiology, 2023, 99, 420-436.	1.3	9

#	Article	IF	CITATIONS
227	Combating Antibiotic Resistance in Bacteria: The Development of Novel Therapeutic Strategies. Journal of Pure and Applied Microbiology, 0, , .	0.3	1
228	Photodynamic therapy in breast cancer treatment. Journal of Applied Biomedicine, 2022, 20, 98-105.	0.6	12
229	Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals, 2022, 15, 1273.	1.7	3
230	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioactive Materials, 2023, 23, 471-507.	8.6	16
231	Improvement of the Chlorin e6-mediated Photodynamic Action with Photobiomodulation Therapy in Human Prostate Cancer Cells., 2022,,.		0
232	Oncological Applications of Photodynamic Therapy in Dogs and Cats. Applied Sciences (Switzerland), 2022, 12, 12276.	1.3	2
233	$5\hat{a}\in^2$ -Chalcogen-Substituted Nucleoside Pyrophosphate and Phosphate Monoester Analogues: Preparation and Hydrolysis Studies. International Journal of Molecular Sciences, 2022, 23, 15582.	1.8	1
234	A narrative history of photodynamic therapy. , 2023, , 1-39.		1
235	Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS Applied Bio Materials, 2023, 6, 349-364.	2.3	36
236	Review of Photoresponsive Plasmonic Nanoparticles That Produce Reactive Chemical Species for Photodynamic Therapy of Cancer and Bacterial Infections. ACS Applied Nano Materials, 2023, 6, 1508-1521.	2.4	19
237	A H ₂ O ₂ â€Supplied Supramolecular Material for Postâ€irradiated Infected Wound Treatment. Advanced Science, 2023, 10, .	5.6	10
238	Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy. Life, 2023, 13, 305.	1.1	11
239	Photodynamic Therapy of Cancer: Quality and Prospective of Therapy based on Photosensitizer. Current Cancer Therapy Reviews, 2023, 19, 223-236.	0.2	1
240	Solid lipid nanoparticles in photodynamic therapy. , 2023, , 227-260.		0
241	Cyclopentylmalononitrile dye as an efficient photosensitizer for combined photodynamic and water-dependent reversible photoacidity therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114701.	2.0	2
242	Recent Developments in Nanoparticleâ€Based Photoâ€Immunotherapy for Cancer Treatment. Small Methods, 2023, 7, .	4.6	4
243	Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals, 2023, 16, 613.	1.7	2
244	5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering, 2023, 10, 496.	1.6	5

#	ARTICLE	IF	CITATIONS
248	Photodynamic Therapy: A Viable Alternative Strategy to Control Microbial Invasions., 2023,, 215-248.		0
255	Utilization of Advanced Photosensitizers in the Progress of Antibacterial and Anticancer Photodynamic Therapy., 2024,, 119-136.		1
259	Photodynamic Therapy and Applications in Cancer. Recent Advances in Biotechnology, 2023, , 81-116.	0.1	0