Numerical simulations of three-dimensional thermal contemporature-dependent viscosity

Journal of Fluid Mechanics 233, 299-328 DOI: 10.1017/s0022112091000496

Citation Report

#	Article	IF	CITATIONS
1	On the equipartition of kinetic energy in plate tectonics. Geophysical Research Letters, 1991, 18, 1751-1754.	1.5	44
2	Convection planforms in a fluid with a temperatureâ€dependent viscosity beneath a stressâ€free upper boundary. Geophysical Research Letters, 1991, 18, 2035-2038.	1.5	32
3	Onset and twoâ€dimensional patterns of convection with strongly temperatureâ€dependent viscosity. Physics of Fluids A, Fluid Dynamics, 1992, 4, 655-663.	1.6	12
4	Numerical Models of Mantle Convection. Annual Review of Fluid Mechanics, 1992, 24, 359-394.	10.8	83
5	Coldspots and hotspots: Global tectonics and mantle dynamics of Venus. Journal of Geophysical Research, 1992, 97, 13495-13532.	3.3	158
6	Linear and weakly nonlinear variable viscosity convection in spherical shells. Theoretical and Computational Fluid Dynamics, 1993, 4, 241-253.	0.9	12
7	Steady, threeâ€dimensional, internally heated convection. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1928-1932.	1.6	16
8	Thermal convection in lava lakes. Geophysical Research Letters, 1993, 20, 1827-1830.	1.5	62
9	Effects of strongly temperatureâ€dependent viscosity on timeâ€dependent, threeâ€dimensional models of mantle convection. Geophysical Research Letters, 1993, 20, 2187-2190.	1.5	171
10	Transient high-Rayleigh-number thermal convection with large viscosity variations. Journal of Fluid Mechanics, 1993, 253, 141.	1.4	336
11	3D convection at infinite Prandtl number in Cartesian geometry — a benchmark comparison. Geophysical and Astrophysical Fluid Dynamics, 1994, 75, 39-59.	0.4	99
12	Chapter 13 Aspects of Magma Generation and Ascent in Continental Lithosphere. International Geophysics, 1994, , 291-317.	0.6	34
13	Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity. Acta Mechanica, 1994, 107, 53-64.	1.1	32
14	Self-lubricated mantle convection: Two-dimensional models. Geophysical Research Letters, 1994, 21, 1707-1710.	1.5	47
15	Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. Journal of Geophysical Research, 1994, 99, 19853-19866.	3.3	207
16	Subduction dynamics: From the trench to the coreâ€mantle boundary. Reviews of Geophysics, 1995, 33, 401-412.	9.0	5
17	Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity. Continuum Mechanics and Thermodynamics, 1995, 7, 297-309.	1.4	16
18	A preliminary study of the effects of some flow parameters in the generation of poloidal and toroidal encer energies within a 3-D spherical thermal-convective system with variable viscosity. Pure and Applied Geophysics, 1995, 145, 487-503.	0.8	4

#	Article	IF	CITATIONS
19	Scaling of temperature―and stressâ€dependent viscosity convection. Physics of Fluids, 1995, 7, 266-274.	1.6	534
20	Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids, 1995, 7, 2154-2162.	1.6	439
21	Penetration of plates and plumes through the mantle transition zone. Earth and Planetary Science Letters, 1995, 133, 507-516.	1.8	151
22	Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity. Geophysical Research Letters, 1995, 22, 477-480.	1.5	37
23	Three-dimensional variable viscosity convection of an infinite Prandtl Number Boussinesq fluid in a spherical shell. Geophysical Research Letters, 1995, 22, 2227-2230.	1.5	37
24	On the effect of continents on mantle convection. Journal of Geophysical Research, 1995, 100, 24217-24238.	3.3	115
25	Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus. Journal of Geophysical Research, 1995, 100, 16949.	3.3	25
26	Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication. Earth and Planetary Science Letters, 1996, 144, 41-51.	1.8	64
27	Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. Journal of Geophysical Research, 1996, 101, 3311-3332.	3.3	208
28	Stagnant lid convection on Venus. Journal of Geophysical Research, 1996, 101, 4737-4753.	3.3	223
29	The relative importance of plate-driven and buoyancy-driven flow at mid-ocean ridges. Journal of Geophysical Research, 1996, 101, 16177-16193.	3.3	19
30	Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent viscosity. Journal of Geophysical Research, 1996, 101, 25473-25484.	3.3	60
31	Three-Dimensional Infinite Prandtl Number Convection in a Spherical Shell with Temperature-Dependent Viscosity Journal of Geomagnetism and Geoelectricity, 1996, 48, 1499-1514.	0.8	17
32	High rayleigh number convection at infinite prandtl number with weakly temperature-dependent viscosity. Geophysical and Astrophysical Fluid Dynamics, 1996, 83, 79-117.	0.4	10
33	Effects of temperature-dependent viscosity on thermal convection in a spherical shell. Physica D: Nonlinear Phenomena, 1996, 97, 242-252.	1.3	36
34	Near-surface thermal/chemical boundary layer convection at infinite Prandtl number: two-dimensional numerical experiments. Geophysical Journal International, 1996, 126, 689-711.	1.0	43
35	Comparison between tomographic structures and models of convection in the upper mantle. Geophysical Journal International, 1996, 124, 45-56.	1.0	21
36	The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity. Geophysical and Astrophysical Fluid Dynamics, 1996, 83, 261-291.	0.4	67

#	Article	IF	CITATIONS
37	A high-order finite-difference method applied to large Rayleigh number mantle convection. Geophysical and Astrophysical Fluid Dynamics, 1997, 84, 53-83.	0.4	19
38	Transitions in thermal convection with strongly variable viscosity. Physics of the Earth and Planetary Interiors, 1997, 102, 201-212.	0.7	83
39	Thermal and dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research, 1997, 102, 12295-12315.	3.3	225
40	Three-dimensional structure of asthenospheric flow beneath the Southeast Indian Ridge. Journal of Geophysical Research, 1997, 102, 7783-7802.	3.3	26
41	Mantle plume heads and the initiation of plate tectonic reorganizations. Earth and Planetary Science Letters, 1998, 156, 195-207.	1.8	21
42	Heat flow and thickness of the lithosphere in the Canadian Shield. Journal of Geophysical Research, 1998, 103, 15269-15286.	3.3	167
43	Two- and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. Journal of Geophysical Research, 1998, 103, 24045-24065.	3.3	61
44	Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. Journal of Geophysical Research, 1998, 103, 18171-18181.	3.3	179
45	Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus. Journal of Geophysical Research, 1998, 103, 13643-13657.	3.3	114
46	On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity. Physics of Fluids, 1998, 10, 351-360.	1.6	66
48	Non-Newtonian Stagnant Lid Convection and Magmatic Resur facing on Venus. Icarus, 1999, 139, 67-80.	1.1	141
49	Stagnant lid convection in a spherical shell. Physics of the Earth and Planetary Interiors, 1999, 116, 1-7.	0.7	45
50	Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology. Journal of Geophysical Research, 1999, 104, 12759-12777.	3.3	129
51	The Relation between mantle dynamics and plate tectonics: A Primer. Geophysical Monograph Series, 2000, , 5-46.	0.1	89
52	The Quest for self-consistent generation of plate tectonics in mantle convection models. Geophysical Monograph Series, 2000, , 47-72.	0.1	52
53	Inhomogeneous viscosity fluid flow in a wide-gap Couette apparatus: Shear-induced migration in suspensions. Physics of Fluids, 2000, 12, 3100-3111.	1.6	4
54	A Local Mesh Refinement Multigrid Method for 3-D Convection Problems with Strongly Variable Viscosity. Journal of Computational Physics, 2000, 160, 126-150.	1.9	79
55	Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity. Geophysical Journal International, 2000, 143, 204-218.	1.0	51

#	Article	IF	CITATIONS
56	3D thermal convection with variable viscosity: can transient cooling be described by a quasi-static scaling law?. Physics of the Earth and Planetary Interiors, 2000, 119, 321-336.	0.7	74
57	Transitions in thermal convection with strongly temperature-dependent viscosity in a wide box. Earth and Planetary Science Letters, 2000, 180, 355-367.	1.8	41
58	Coupled magmatism–mantle convection system with variable viscosity. Tectonophysics, 2000, 322, 1-18.	0.9	11
59	Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. Journal of Geophysical Research, 2000, 105, 21795-21817.	3.3	296
60	Eulerian mean flow from an instability of convective plumes. Chaos, 2000, 10, 28-38.	1.0	8
61	Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth. Journal of Geophysical Research, 2000, 105, 6997-7012.	3.3	21
62	Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	1.0	147
63	Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	1.0	81
64	Boundary-layer thickness and instabilities in Bénard convection of a liquid with a temperature-dependent viscosity. Physics of Fluids, 2001, 13, 802-805.	1.6	35
65	Thermal convection in the outer shell of large icy satellites. Journal of Geophysical Research, 2001, 106, 5107-5121.	3.3	81
66	Dynamic interaction of cold anomalies with the mid-ocean ridge flow field and its implications for the Australian–Antarctic Discordance. Earth and Planetary Science Letters, 2002, 203, 925-935.	1.8	11
67	Survival of impact-induced thermal anomalies in the Martian mantle. Journal of Geophysical Research, 2002, 107, 12-1.	3.3	41
68	The influence of interior mantle temperature on the structure of plumes: Heads for Venus, Tails for the Earth. Geophysical Research Letters, 2002, 29, 27-1.	1.5	79
69	Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlinear Processes in Geophysics, 2002, 9, 311-323.	0.6	41
70	Eigendecomposition of the two-point correlation tensor for optimal characterization of mantle convection. Geophysical Journal International, 2002, 132, 111-127.	1.0	2
71	Controls on sublithospheric small-scale convection. Journal of Geophysical Research, 2003, 108, .	3.3	99
72	Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity. Journal of Geophysical Research, 2003, 108, .	3.3	51
73	ENCLOSED BUOYANT CONVECTION OF A VARIABLE-VISCOSITY FLUID UNDER TIME-PERIODIC THERMAL FORCING. Numerical Heat Transfer; Part A: Applications, 2003, 43, 137-154.	1.2	6

#	Article	IF	CITATIONS
74	Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth, Planets and Space, 2004, 56, 1019-1033.	0.9	9
75	Effects of sub-lithospheric small-scale convection with a Newtonian rheology on the seafloor topography and heat flux. Science Bulletin, 2004, 49, 2311.	1.7	1
76	Natural convection heat transfer in enclosures with microemulsion phase change material slurry. Heat and Mass Transfer, 2004, 40, 179-189.	1.2	14
77	The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	7
78	Initiation of subduction by small-scale convection. Journal of Geophysical Research, 2004, 109, .	3.3	48
79	LINKS BETWEEN LONG-LIVED HOT SPOTS, MANTLE PLUMES, D″, AND PLATE TECTONICS. Reviews of Geophysics, 2004, 42, .	9.0	159
80	The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Physics of the Earth and Planetary Interiors, 2004, 142, 225-255.	0.7	143
81	Possible effects of lateral viscosity variations induced by plate-tectonic mechanism on geoid inferred from numerical models of mantle convection. Physics of the Earth and Planetary Interiors, 2004, 147, 67-85.	0.7	6
82	The Convective Instability in a Microemulsion Phase-Change-Material Slurry Layer. JSME International Journal Series B, 2004, 47, 126-137.	0.3	3
83	Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity. Journal of Computational Physics, 2005, 206, 162-181.	1.9	38
84	CORRELATION METHODS OF RAYLEIGH-BÉNARD CONVECTION IN A FLUID LAYER WITH PHASE CHANGE MATERIAL PARTICLES. Modern Physics Letters B, 2005, 19, 1707-1710.	1.0	0
85	Scaling laws for time-dependent stagnant lid convection in a spherical shell. Physics of the Earth and Planetary Interiors, 2005, 149, 361-370.	0.7	38
86	Deformation of a partially molten D′′layer by small-scale convection and the resulting seismic anisotropy and ultralow velocity zone. Physics of the Earth and Planetary Interiors, 2005, 153, 32-48.	0.7	5
87	Numerical and laboratory studies of mantle convection: Philosophy, accomplishments, and thermochemical structure and evolution. Geophysical Monograph Series, 2005, , 83-99.	0.1	25
88	A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle. Physics of the Earth and Planetary Interiors, 2006, 157, 223-249.	0.7	66
89	On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophysical Journal International, 2006, 167, 943-957.	1.0	136
90	Thermal convection with a water ice I rheology: Implications for icy satellite evolution. Icarus, 2006, 180, 251-264.	1.1	14
91	Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto. Planetary and Space Science, 2006, 54, 2-14.	0.9	11

#	Article	IF	CITATIONS
92	Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method. Computational Mathematics and Mathematical Physics, 2006, 46, 2176-2186.	0.2	5
93	Numerical Methods for Mantle Convection. , 2007, , 227-252.		44
94	Laboratory Studies of Mantle Convection. , 2007, , 89-165.		9
95	Transient mantle convection on Venus: The paradoxical coexistence of highlands and coronae in the BAT region. Earth and Planetary Science Letters, 2007, 256, 100-119.	1.8	25
96	Conditions for the onset of plate tectonics on terrestrial planets and moons. Earth and Planetary Science Letters, 2007, 261, 20-32.	1.8	119
97	Temperatures, Heat and Energy in the Mantle of the Earth. , 2007, , 253-303.		77
98	Numerical Methods for Mantle Convection. , 2007, , 227-252.		20
99	Temperatures, Heat and Energy in the Mantle of the Earth. , 2007, , 253-303.		86
100	Mantle convection: A review. Fluid Dynamics Research, 2008, 40, 379-398.	0.6	31
101	Mantle convection models with temperature―and depthâ€dependent thermal expansivity. Journal of Geophysical Research, 2008, 113, .	3.3	16
102	Mantle convection and evolution with growing continents. Journal of Geophysical Research, 2008, 113, .	3.3	27
103	Searching for models of thermo-chemical convection that explain probabilistic tomography. Physics of the Earth and Planetary Interiors, 2008, 171, 357-373.	0.7	69
104	Multigrid-based simulation code for mantle convection in spherical shell using Yin–Yang grid. Physics of the Earth and Planetary Interiors, 2008, 171, 19-32.	0.7	33
105	Finite volume discretization for dynamic viscosities on Voronoi grids. Physics of the Earth and Planetary Interiors, 2008, 171, 137-146.	0.7	38
106	Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors, 2008, 171, 7-18.	0.7	289
107	Plate motions and the viscosity structure of the mantle — Insights from numerical modelling. Earth and Planetary Science Letters, 2008, 272, 29-40.	1.8	31
108	Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophysical Journal International, 2009, 179, 154-170.	1.0	55
109	Generation of plateâ€like behavior and mantle heterogeneity from a spherical, viscoplastic convection model. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	91

#	Article	IF	CITATIONS
110	Electromagnetic control of thermal convection of a fluid with strongly temperature-dependent material properties. Journal of Fluid Mechanics, 2009, 618, 135-154.	1.4	1
111	Effects of spatially varying roof cooling on thermal convection at high Rayleigh number in a fluid with a strongly temperature-dependent viscosity. Journal of Fluid Mechanics, 2009, 629, 109-137.	1.4	16
112	Convection in colloidal suspensions with particle-concentration-dependent viscosity. European Physical Journal E, 2010, 32, 265-272.	0.7	9
114	Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical study. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	102
115	At least three scales of convection in a mantle with strongly temperature-dependent viscosity. Physics of the Earth and Planetary Interiors, 2011, 188, 132-141.	0.7	23
116	Transient natural convection cooling of a high Prandtl number fluid in a cubical cavity. Meccanica, 2011, 46, 989-1006.	1.2	6
117	Convection in nanofluids with a particle-concentration-dependent thermal conductivity. Physical Review E, 2011, 83, 046315.	0.8	12
118	Impact of grain size on the convection of terrestrial planets. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	24
119	The initiation of subduction by crustal extension at a continental margin. Geophysical Journal International, 2012, 188, 779-797.	1.0	14
120	Thermal convection thinning of the North China Craton: Numerical simulation. Science China Earth Sciences, 2013, 56, 773-782.	2.3	5
121	Arrhenius rheology versus Frankâ€Kamenetskii rheology—Implications for mantle dynamics. Geochemistry, Geophysics, Geosystems, 2013, 14, 2757-2770.	1.0	13
122	Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. Journal of Fluid Mechanics, 2013, 735, 647-683.	1.4	32
123	A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell. Theoretical and Computational Fluid Dynamics, 2013, 27, 21-40.	0.9	18
124	Layered convection in Io: Implications for short-wavelength surface topography and heat flow. Icarus, 2013, 225, 15-27.	1.1	4
125	Bifurcations and dynamics in convection with temperature-dependent viscosity in the presence of the O(2) symmetry. Physical Review E, 2013, 88, 043005.	0.8	3
126	Influences of the depth-dependence of thermal conductivity and expansivity on thermal convection with temperature-dependent viscosity. Physics of the Earth and Planetary Interiors, 2013, 223, 86-95.	0.7	6
127	On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. Journal of Fluid Mechanics, 2013, 724, 175-202.	1.4	57
128	Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophysical Journal International, 2014, 199, 580-603.	1.0	32

#	Article	IF	CITATIONS
129	The effects of variable viscosity on the decay of homogeneous isotropic turbulence. Physics of Fluids, 2014, 26, 035104.	1.6	10
130	Linear stability analysis on the influences of the spatial variations in thermal conductivity and expansivity on the flow patterns of thermal convection with strongly temperature-dependent viscosity. Journal of Earth Science (Wuhan, China), 2014, 25, 126-139.	1.1	6
131	Stagnant lid convection in 3D-Cartesian geometry: Scaling laws and applications to icy moons and dwarf planets. Physics of the Earth and Planetary Interiors, 2014, 229, 40-54.	0.7	15
132	The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yinâ€Yang overset gridâ€based control volume model. Journal of Geophysical Research: Solid Earth, 2015, 120, 5884-5910.	1.4	11
133	Thermal convection and the convective regime diagram in super-Earths. Journal of Geophysical Research E: Planets, 2015, 120, 1267-1278.	1.5	14
134	The Generation of Plate Tectonics from Mantle Dynamics. , 2015, , 271-318.		64
135	Temperatures, Heat, and Energy in the Mantle of the Earth. , 2015, , 223-270.		79
136	Physics of Mantle Convection. , 2015, , 23-71.		23
137	Laboratory Studies of Mantle Convection. , 2015, , 73-144.		22
138	Numerical Methods for Mantle Convection. , 2015, , 197-222.		13
139	A new approach to computing steady-state geotherms: The marginal stability condition. Tectonophysics, 2016, 693, 32-46.	0.9	2
140	Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution. Geochemistry, Geophysics, Geosystems, 2016, 17, 1885-1914.	1.0	73
141	Linear analysis on the onset of thermal convection of highly compressible fluids with variable physical properties: Implications for the mantle convection of super-Earths. Geophysical Journal International, 2016, 204, 1164-1178.	1.0	3
142	Variable inertia method: A novel numerical method for mantle convection simulation. New Astronomy, 2017, 50, 82-103.	0.8	4
143	Temperature and heat flux scaling laws for isoviscous, infinite Prandtl number mixed heating convection. Geophysical Journal International, 2018, 214, 265-281.	1.0	11
144	The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170409.	1.6	31
145	Venus Interior Structure and Dynamics. Space Science Reviews, 2018, 214, 1.	3.7	51
146	Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets. Astrobiology, 2018, 18, 873-896.	1.5	66

#	Article	IF	CITATIONS
148	Scaling laws of convection for cooling planets in a stagnant lid regime. Physics of the Earth and Planetary Interiors, 2019, 286, 138-153.	0.7	28
149	Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs). Geoscientific Model Development, 2020, 13, 955-976.	1.3	13
150	Tidally Heated Convection and the Occurrence of Melting in Icy Satellites: Application to Europa. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006248.	1.5	31
151	Fresh Outlook on Numerical Methods for Geodynamics. Part 1: Introduction and Modeling. , 2021, , 826-840.		1
152	Lithosphere Destabilization and Smallâ€Scale Convection Constrained From Geophysical Data and Analogical Models. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009462.	1.0	1
153	Scaling laws for stagnant-lid convection with a buoyant crust. Geophysical Journal International, 2021, 228, 631-663.	1.0	1
154	4.2.3.5 Planetary geology: Craters and chronology, Volcanism, Tectonics. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 345-433.	0.1	4
155	Geodynamics of Icy Satellites. Astrophysics and Space Science Library, 1998, , 525-550.	1.0	51
156	Numerical apporach to 3D forward modeling of slow viscous flow. , 2003, , 1169-1171.		0
157	Effect of the thermal boundary conditions and physical properties variation on transient natural convection of high Prandtl number fluids. , 2009, , 813-818.		0
158	Elucidating thermal history of the earth based on information of earth materials: retrospect and prospect. Ganseki Kobutsu Kagaku, 2013, 42, 136-155.	0.1	3
159	A Preliminary Study of the Effects of Some Flow Parameters in the Generation of Poloidal and Toroidal Energies Within a 3-D Spherical Thermal-convective System with Variable Viscosity. , 1995, , 487-503.		0
160	Studies of Mantle Convection in Japan Journal of Physics of the Earth, 1995, 43, 505-513.	1.4	1
161	Tectonic plates in 3D mantle convection model with stress-history-dependent rheology. Earth, Planets and Space, 2020, 72, .	0.9	2
162	Onset of convection in internally heated fluids with strongly temperature-dependent viscosity. Physics of Fluids, 2022, 34, .	1.6	5
163	Weakly Nonlinear Convective Structures for Ternary Fluid in a Horizontal Layer. Microgravity Science and Technology, 2022, 34, .	0.7	0
164	Early asymmetric growth of planetary stagnant lids. Journal of Fluid Mechanics, 2022, 952, .	1.4	2
165	Tectono-Convective Modes on Earth and Other Terrestrial Bodies. , 2023, , 159-180.		2

ARTICLE

IF CITATIONS