
CITATION REPORT List of articles citing

DOI: 10.1016/0147-6513(91)90074-y Ecotoxicology and Environmental Safety, 1991, 21, 348-64.

Source: https://exaly.com/paper-pdf/22090895/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
419	The English Wabigoon River System: IV. Interaction between Mercury and Selenium Accumulated from Waterborne and Dietary Sources by Northern Pike (Esox lucius). 1983 , 40, 2241-2250		72
418	Effects of maternal dietary supplementation with selenite on the postnatal development of rat offspring exposed to methyl mercury in utero. 1993 , 72, 377-82		59
417	Toxic Metals in Pilot Whales (Globicephala melaena) from Standings in 1986 and 1990 on Cape Cod, Massachusetts. 1993 , 50, 2698-2706		32
416	Mercury and selenium in workers previously exposed to mercury vapour at a chloralkali plant. 1993 , 50, 745-52		5
415	Localization of mercury in CNS of the rat. An autometallographic study. 1994 , 75 Suppl 1, 1-41		16
414	Micronuclei induced by selenium, mercury, methylmercury and their mixtures in binucleated blocked fish erythrocyte cells. 1994 , 320, 157-63		44
413	Quantitative and qualitative distribution of mercury in organs from arctic sledgedogs: an atomic absorption spectrophotometric and histochemical study of tissue samples from natural long-termed high dietary organic mercury-exposed dogs from Thule, Greenland. 1995 , 77, 189-95		21
412	Urinary selenium excretion in workers with low exposure to mercury vapour. 1995 , 15, 33-6		7
411	Seabirds as monitors of mercury in the marine environment. Water, Air, and Soil Pollution, 1995, 80, 851-8	37 0	148
410	Common loons (Gavia immer) nesting on low ph lakes in northern Wisconsin have elevated blood mercury content. <i>Water, Air, and Soil Pollution</i> , 1995 , 80, 871-880	2.6	46
409	Metals and selenium in wild animals from Norwegian areas close to Russian nickel smelters. 1995 , 36, 251-70		8
408	An in vitro binucleated blocked hepatic cell technique for genotoxicity testing in fish. 1995 , 335, 109-20		22
407	An exploratory analysis of liver element relationships in a case series of common loons (Gavia immer). 1995 , 25, 37-49		6
406	Determination of blood mercury concentrations in Alzheimer's patients. 1995, 33, 243-7		14
405	Prophylaxis of antioxidants against the genotoxicity of methyl mercuric chloride and maleic hydrazide in Allium micronucleus assay. 1995 , 343, 75-84		14
404	Relationships between heavy metal and metallothionein concentrations in lesser black-backed gulls, Larus fuscus, and Cory's shearwater, Calonectris diomedea. 1996 , 30, 299-305		23
403	Heavy metal and selenium levels in Franklin's Gull (Larus pipixcan) parents and their eggs. 1996 , 30, 487-	91	37

402	Brain mercury in neurodegenerative disorders. 1997 , 35, 49-54		22
401	Toenail mercury concentration as a biomarker of methylmercury exposure. 1997 , 2, 233-8		15
400	Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. 1997 , 143, 274-80		121
399	Comparative effects of selenite and selenite on the glutathione-related enzymes activity in pig blood platelets. 1997 , 57, 259-69		6
398	Metal and Trace Element Burdens in Two Shorebird Species at Two Sympatric Wintering Sites in Southern California. 1998 , 50, 233-47		17
397	Binding sites for the (Hg-Se) complex on selenoprotein P. 1998 , 1429, 102-12		82
396	Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards. 1998 , 17, 139-145		116
395	Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. 1998 , 17, 161-166		111
394	Mercury and selenium accumulation in common loons (Gavia immer) and common mergansers (Mergus merganser) from Eastern Canada. 1998 , 17, 197-201		76
393	An epizootic of common loons in coastal waters of North Carolina: Concentrations of elemental contaminants and results of necropsies. 1998 , 17, 205-209		7
392	Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection. 1998 , 53, 899-909		34
391	Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. 1998 , 71, 159-62		181
390	Elemental contaminants in the livers and ingesta of four subpopulations of the American coot (Fulica americana): an herbivorous winter migrant in San Francisco Bay. 1998 , 101, 321-329		14
389	Effect of selenium on the uptake of methyl mercury across perfused gills of rainbow trout Oncorhynchus mykiss. 1998 , 40, 361-373		11
388	Heavy metals in dolphins stranded on the French Atlantic coast. <i>Science of the Total Environment</i> , 1998 , 217, 241-9	10.2	56
387	Influence of ecological factors on accumulation of metal mixtures. 1998, 351-386		9
386	Potential Relation Between Mercury Concentrations and Necropsy Findings in Cetaceans from sGerman Waters of the North and Baltic Seas. <i>Marine Pollution Bulletin</i> , 1999 , 38, 285-295	6.7	116
385	Heavy Metals, Organochlorines and Polycyclic Aromatic Hydrocarbons in Sperm Whales Stranded in the Southern North Sea During the 1994/1995 Winter. <i>Marine Pollution Bulletin</i> , 1999 , 38, 304-313	6.7	55

384	Concentrations of selenium, mercury, and lead in blood of emperor geese in western Alaska. 1999 , 18, 965-969	19
383	Retention of methyl mercury and inorganic mercury in rainbow trout Oncorhynchus mykiss (W): effect of dietary selenium. 1999 , 45, 171-180	37
382	Experimental neurotoxicity of mercury Autometallographic and stereologic studies on rat dorsal root ganglion and spinal cord. 2000 , 108, 5-32	3
381	The influence of nutrition on methyl mercury intoxication. 2000 , 108 Suppl 1, 29-56	102
380	Distribution of mercury in the organs and tissues of five toothed-whale species of the Mediterranean. 2000 , 108, 447-52	87
379	Heavy metal and other residues in feathers of laggar falcon Falco biarmicus jugger from six districts of Pakistan. 2000 , 109, 267-75	75
378	Essentiality of selenium in the human body: relationship with different diseases. <i>Science of the Total Environment</i> , 2000 , 249, 347-71	221
377	Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio ischaemic heart disease risk factor study. 2000 , 102, 2677-9	251
376	Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. 2000 , 148, 265-73	217
375	Metabolism of Selenium and its Interaction with Mercury: Mechanisms by a Speciation Study. 2001 , 171, 135-169	9
374	Dental amalgam and selenium in blood. 2001 , 87, 141-6	15
373	Mercury, cadmium, lead and selenium in ringed seals (Phoca hispida) from the Baltic Sea and from Svalbard. 2001 , 111, 493-501	33
372	Daily intake of Se by adult population of Mumbai, India. <i>Science of the Total Environment</i> , 2001 , 277, 217-261.2	20
371	Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. 2001 , 36, 489-99	103
370	Toxicology. 2001 , 471-520	11
369	Concentrations of cadmium, mercury and selenium in blood, liver and kidney of common eider ducks from the Canadian arctic. 2001 , 71, 255-67	44
368	Mercury and selenium concentrations in maternal and neonatal scalp hair: relationship to amalgam-based dental treatment received during pregnancy. 2001 , 81, 1-19	21
367	Concentrations and interactions of selected essential and non-essential elements in ringed seals and polar bears of arctic Alaska. 2001 , 37, 711-21	49

(2004-2002)

366	Using Raccoons as an Indicator Species for Metal Accumulation across Trophic Levels: A Stable Isotope Approach. 2002 , 66, 811		34
365	Mercury, fish oils, and the risk of myocardial infarction. 2002 , 347, 1747-54		545
364	Ecotoxicology Of Mercury. 2002 ,		29
363	Ecotoxicology Of Selenium. 2002,		3
362	Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctatus. 2002 , 132, 247-59		28
361	Current levels of DDT, PCB and trace elements in the Baltic ringed seals (Phoca hispida baltica) and grey seals (Halichoerus grypus). 2002 , 119, 399-412		57
360	Mercury exposure and elimination rates in captive bottlenose dolphins. <i>Marine Pollution Bulletin</i> , 2002 , 44, 1071-5	6.7	22
359	Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. 2002 , 11, 213-31		136
358	Dental amalgam affects urinary selenium excretion. 2002 , 85, 137-47		7
357	Common loon eggs as indicators of methylmercury availability in North America. 2003 , 12, 69-81		121
356	Profile of nonprotein thiols, lipid peroxidation and delta-aminolevulinate dehydratase activity in mouse kidney and liver in response to acute exposure to mercuric chloride and sodium selenite. 2003 , 184, 179-87		60
355	Environmental exposure to mercury and its toxicopathologic implications for public health. 2003 , 18, 149-75		1005
354	Mechanisms of the inhibitory effects of selenium and mercury on the activity of delta-aminolevulinate dehydratase from mouse liver, kidney and brain. 2003 , 139, 55-66		46
353	Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific). 2003 , 124, 263-71		60
352	Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. <i>Ecotoxicology and Environmental Safety</i> , 2003 , 56, 110-21	7	102
351	Chapter 18 Fish as bioindicators. 2003 , 6, 639-676		35
350	Die toxische Wirkung von Schwermetallen auf Fische Beitrge zur Festlegung von Immissionsbereichen fil Kupfer, Cadmium, Quecksilber, Chrom, Nickel, Blei und Zink aus fischbiologischer Sicht. 2004 , 1-167		
349	The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. 2004 , 17, 261-74		130

348	Contaminants in molting long-tailed ducks and nesting common eiders in the Beaufort Sea. <i>Marine Pollution Bulletin</i> , 2004 , 48, 504-13	6.7	20
347	An Assessment of the Potential for Selenium to Impair Reproduction in Bull Trout, Salvelinus confluentus, from an Area of Active Coal Mining. 2004 , 70, 169-174		12
346	A preliminary risk assessment of trace elements accumulated in fish to the Indo-Pacific Humpback dolphin (Sousa chinensis) in the northwestern waters of Hong Kong. <i>Chemosphere</i> , 2004 , 56, 643-51	8.4	37
345	Exposure assessment and initial intervention regarding fish consumption of tribal members of the Upper Great Lakes Region in the United States. 2004 , 95, 325-40		51
344	Renal and hepatic ALA-D activity and selected oxidative stress parameters of rats exposed to inorganic mercury and organoselenium compounds. 2004 , 42, 17-28		78
343	Influences of different selenium species on the uptake and assimilation of Hg(II) and methylmercury by diatoms and green mussels. 2004 , 68, 39-50		32
342	Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. 2005 , 103, 17-35		79
341	Assessing trace-metal exposure to american dippers in mountain streams of southwestern British Columbia, Canada. 2005 , 24, 836-45		41
340	Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. 2005 , 25, 228-33		234
339	Study of mercuryBelenium interaction in chicken liver by size exclusion chromatography inductively coupled plasma mass spectrometry. 2005 , 20, 847		17
338	Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. 2005 , 134, 503-14		75
337	Simultaneous administration of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. 2005 , 155, 97-102		21
336	The effect of selenium on mercury assimilation by freshwater organisms. 2006 , 63, 1-10		124
335	Analysis of the health risk of exposure to breast milk mercury in infants in Taiwan. <i>Chemosphere</i> , 2006 , 64, 79-85	8.4	32
334	Fish intake and serum fatty acid profiles from freshwater fish. 2006, 84, 1299-307		59
333	Effects of Dietary Selenium and Mercury on House Crickets (Acheta domesticus L.): Implications of Environmental Co-exposures. 2006 , 1, 98-109		13
332	Induction of metallothionein-like proteins by mercury and distribution of mercury and selenium in the cells of hepatopancreas and gill tissues in mussel Mytilus galloprovincialis. 2006 , 111, 121-35		6
331	Methylmercury, total mercury and total selenium in four common freshwater fish species from Ya-Er Lake, China. 2006 , 28, 401-7		43

(2008-2006)

330	seal (Cystophora cristata) caught in the Greenland Sea area. <i>Science of the Total Environment</i> , 2006 , 10.2 366, 784-98	15
329	New insights from age determination on toxic element accumulation in striped and bottlenose dolphins from Atlantic and Mediterranean waters. <i>Marine Pollution Bulletin</i> , 2006 , 52, 1219-30	43
328	Reproduction, embryonic development, and maternal transfer of contaminants in the amphibian Gastrophryne carolinensis. 2006 , 114, 661-6	93
327	Dependence of blood indices of selenium and mercury on estimated fish intake in a national survey of British adults. 2007 , 10, 508-17	27
326	Protective effects of selenium on mercury-induced DNA damage in mussel haemocytes. 2007 , 84, 11-8	69
325	Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. 2007 , 150, 373-80	125
324	Biological effects of anthropogenic contaminants in the San Francisco Estuary. 2007, 105, 156-74	36
323	Biological and ecological factors related to trace element levels in harbour porpoises (Phocoena phocoena) from European waters. 2007 , 64, 247-66	33
322	Mercury in seafood: mechanisms of accumulation and consequences for consumer health. 2007 , 22, 91-113	39
321	Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. 2007 , 169, 121-8	34
320	Role of selenium in mercury intoxication in mice. 2007 , 45, 388-95	32
319	Interaction of methylmercury and selenium on the bioaccumulation and histopathology in medaka (Oryzias latipes). 2007 , 22, 69-77	17
318	Mercury Concentrations in Tissues of Osprey From the Carolinas, USA. 2007 , 71, 1819-1829	31
317	Effect of selenium pretreatment in chronic mercury intoxication in rats. 2007 , 79, 306-10	22
316	Selenium and mercury in pelagic fish in the central north pacific near Hawaii. 2007, 119, 242-54	183
315	Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. 2007 , 119, 255-68	137
314	Nail as a biomarker of selenium and methyl mercury in a rat model. 2008 , 276, 59-64	3
313	Selenium and mercury in native and introduced fish species of patagonian lakes, Argentina. 2008 , 122, 42-63	30

312	Selenium health benefit values as seafood safety criteria. 2008 , 5, 442-55	108
311	Mercury toxicity and the mitigating role of selenium. 2008, 5, 456-9	105
310	Diphenyl diselenide protects against hematological and immunological alterations induced by mercury in mice. 2008 , 22, 311-9	20
309	Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. 2008 , 606, 135-50	528
308	Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California. <i>Marine Pollution Bulletin</i> , 2008 , 56, 27-41	39
307	Environmental contaminants and redox status of coenzyme Q10 and vitamin E in Inuit from Nunavik. 2008 , 57, 927-33	25
306	Dietary and tissue selenium in relation to methylmercury toxicity. 2008 , 29, 802-11	241
305	Selenomethionine reduces visual deficits due to developmental methylmercury exposures. 2008 , 93, 250-60	51
304	Is selenium affecting body condition and reproduction in boreal breeding scaup, scoters, and ring-necked ducks?. 2008 , 152, 116-22	19
303	Selenium as a potential protective factor against mercury developmental neurotoxicity. 2008, 107, 45-52	89
302	The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicology and Environmental Safety, 2008, 70, 483-9	72
301	Chemical@nvironment interactions affecting the risk of impacts on aquatic organisms: A review with a Canadian perspective Interactions affecting exposure. 2008 , 16, 1-17	18
300	Selenium and mercury in organisms: Interactions and mechanisms. 2008, 16, 71-92	212
299	High-fish consumption and risk prevention: assessment of exposure to methylmercury in Portugal. 2008 , 71, 1279-88	22
298	Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. 2008 , 283, 11913-23	363
297	Inorganic nutrients and contaminants in subsistence species of Alaska: linking wildlife and human health. 2009 , 68, 53-74	25
296	Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. International Journal of Environmental Research and Public Health, 2009, 6, 1894-916 4.6	137
295	Are Lake Trout (Salvelinus namaycush) From Flathead Lake, Montana, USA BafelTo Eat? An Integrated Mercury Risk Evaluation Study*View all notes. 2009 , 4, 303-317	5

(2010-2009)

294	Selenium and Mercury Interactions with Emphasis on Fish Tissue. 2009 , 4, 318-334	89
293	Influence of cadmium, zinc and selenite ions on protein synthesis in mouse liver. 2009 , 55, 18-23	1
292	Influence of selenium dose on mercury distribution and retention in suckling rats. 2009, 29, 585-9	13
291	Low levels of methylmercury induce DNA damage in rats: protective effects of selenium. 2009 , 83, 249-54	60
290	Selenium's importance in regulatory issues regarding mercury. 2009 , 90, 1333-1338	42
289	Reversible dissolution of glutathione-mediated HgSe(x)S(1-x) nanoparticles and possible significance in Hg-Se antagonism. 2009 , 22, 1827-32	22
288	The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity. 2009, 23, 378-85	30
287	Selenium Bioaccumulation in Freshwater Organisms and Antagonistic Effect against Mercury Assimilation. 2009 , 4, 203-221	29
286	Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children. 2009 , 5, 44	43
285	Synthesis, characterization and structures of methylmercury complexes with selenoamino acids. 2009 , 5766-72	22
284	Dietary selenium's protective effects against methylmercury toxicity. 2010 , 278, 112-23	332
283	In vivo formation and binding of SeHg complexes to the erythrocyte surface. 2010 , 136, 197-203	6
282	Omega-3 fatty acids, mercury, and selenium in fish and the risk of cardiovascular diseases. 2010 , 12, 414-22	36
281	Selenium detected in fish otoliths: a novel tracer for a polluted lake?. 2010 , 89, 433-440	13
280	Developmental selenomethionine and methylmercury exposures affect zebrafish learning. 2010 , 32, 246-55	53
279	Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes. <i>Science of the Total Environment</i> , 2010 , 408, 1676-83	35
278	Bioaccumulation and maternal transfer of mercury and selenium in amphibians. 2010, 29, 989-97	52
277	Evaluation of comparative effect of pre- and posttreatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. 2010 , 24, 123-35	18

276	Threats of environmental mercury to birds: knowledge gaps and priorities for future research. 2010 , 20, 112-123	49
275	Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. 2010 , 285, 18134-8	134
274	Selenium incorporation in fish otoliths: effects of selenium and mercury from the water. 2010 , 67, 1388-1397	14
273	The role of selenium-dependent glutathione peroxidase (Se-GPx) against oxidative and genotoxic effects of mercury in haemocytes of mussel Mytilus galloprovincialis (Lmk.). 2010 , 24, 1363-72	51
272	On the chalcogenophilicity of mercury: evidence for a strong Hg-Se bond in [Tm(Bu(t))]HgSePh and its relevance to the toxicity of mercury. 2010 , 132, 647-55	69
271	DNA Double-Strand Breakage as an Endpoint to Examine Metal and Radionuclide Exposure Effects to Water Snakes on a Nuclear Industrial Site. 2010 , 16, 282-300	9
270	Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. 2010 , 135, 2700-5	59
269	Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. <i>Environmental Science & Environmental Scien</i>	85
268	Evidence for sex differences in mercury dynamics in double-crested cormorants. <i>Environmental Science & Environmental Science </i>	22
267	Influence of Cu supplementation on toxic and essential trace element status in intensive reared beef cattle. 2011 , 49, 3358-66	8
266	Synthesis and structural characterization of tris(2-mercapto-1-adamantylimidazolyl)hydroborato complexes: a sterically demanding tripodal [S3] donor ligand. 2011 , 50, 12284-95	26
265	Selenium. 2011 , 31, 327-374	32
264	Dietary selenium reduces retention of methyl mercury in freshwater fish. <i>Environmental Science & Environmental Science</i> 20.3	68
263	Fish oil, selenium and mercury in relation to incidence of hypertension: a 20-year follow-up study. 2011 , 270, 175-86	51
262	Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. 2011 , 13, 621-7	231
261	Low concentrations of selenium in stream food webs of eastern Canada. <i>Science of the Total Environment</i> , 2011 , 409, 785-91	11
260	Evidences of non-reactive mercury-selenium compounds generated from cultures of Pseudomonas fluorescens. <i>Science of the Total Environment</i> , 2011 , 409, 1697-703	18
259	Why are hatching and emergence success low? Mercury and selenium concentrations in nesting leatherback sea turtles (Dermochelys coriacea) and their young in Florida. <i>Marine Pollution Bulletin</i> , 6.7 2011 , 62, 1671-82	46

258	Blood dynamics of mercury and selenium in northern elephant seals during the lactation period. 2011 , 159, 2523-9	30
257	Species- and age-related variation in metal exposure and accumulation of two passerine bird species. 2011 , 159, 2368-74	83
256	Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus). <i>Chemosphere</i> , 2011 , 82, 1649-61	42
255	Chalcogenophilicity of mercury. 2011 , 50, 3791-8	24
254	Mercury and other heavy metals in free-ranging mink of the lower Great Lakes basin, Canada, 1998-2006. 2011 , 20, 1701-12	18
253	Metal concentrations in monkfish, Lophius americanus, from the northeastern USA. 2011 , 177, 385-97	4
252	Mercury and selenium content in Otolithes ruber and Psettodes erumei from Khuzestan Shore, Iran. 2011 , 86, 511-4	10
251	Elemental contaminants in livers of mute swans on lakes Erie and St. Clair. 2011, 61, 677-87	22
250	Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico. 2011 , 144, 550-9	49
249	Bioaccumulation of mercury in muscle tissue of yellowfin tuna, Thunnus albacares, of the eastern Pacific Ocean. 2011 , 144, 606-20	49
248	Selenoneine, total selenium, and total mercury content in the muscle of fishes. 2011 , 77, 679-686	47
247	A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. 2011 , 7, 50-74	44
246	Diphenyl diselenide potentiates nephrotoxicity induced by mercuric chloride in mice. 2011 , 31, 773-82	10
245	Mercury, selenium, PCBs and fatty acids in fresh and canned fish available on the Slovenian market. 2011 , 124, 711-720	49
244	Recent Advances in Analytical Chemistry and Mass Spectrometry for Organic Selenium and Tellurium Compounds. 2011 ,	
243	Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: implications for treatment of mercury poisoning. 2011 , 25, 370-81	90
242	Stranded cetaceans as indicators of mercury pollution in the Mediterranean Sea. 2012, 79, 151-160	20
241	Environmental Contaminants in Nestling Bald Eagles Produced in Montana and Wyoming. 2012 , 46, 274-28	2 3

240	Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). <i>Environmental Science & Environmental</i> 10.3	101
239	Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. 2012 , 109, 185-93	39
238	Mercury exposure and mechanism of response in large game using the Almadli mercury mining area (Spain) as a case study. 2012 , 112, 58-66	31
237	Cd, Cu, Zn, Se, and metallothioneins in two amphibians, Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia, Anura). 2012 , 150, 178-94	9
236	Biomagnification of mercury and its antagonistic interaction with selenium in yellowfin tuna Thunnus albacares in the trophic web of Baja California Sur, Mexico. <i>Ecotoxicology and Finvironmental Safety</i> , 2012 , 86, 182-7	28
235	Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. 2012 , 26, 117-22	18
234	Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. 2012 , 403, 2237-53	47
233	A comparison of the teratogenicity of methylmercury and selenomethionine injected into bird eggs. 2012 , 62, 519-28	21
232	Hepatic concentrations of inorganic contaminants and their relationships with nutrient reserves in autumn-migrant common loons at Lake Erie. 2012 , 62, 704-13	7
231	Interactions between methylmercury and selenomethionine injected into mallard eggs. 2012 , 31, 579-84	12
230	Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico. 2012 , 88, 129-34	45
229	Comparison of S, Se, and 210Po accumulation patterns in common squid Todarodes pacificus from the Yellow Sea and East/Japan Sea. 2013 , 48, 215-224	5
228	Mercury, methylmercury, and selenium in blood of bird species from Do ll na National Park (Southwestern Spain) after a mining accident. 2013 , 20, 5361-72	27
227	Toxicology (Pb, Hg, Cd, As, Al, Cr, and Others). 2013 , 51-63	
226	Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. 2013 , 120, 7-17	111
225	Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758). 2013 , 60, 205-12	17
224	Analytical and bioanalytical approaches to unravel the selenium-mercury antagonism: a review. 2013 , 801, 1-13	26
223	Methylmercury and trace elements in the marine fish from coasts of East China. 2013 , 48, 1491-501	14

(2014-2013)

222	Identification and determination of selenoneine, 2-selenyl-N $\frac{1}{2}$ N $\frac{1}{2}$ N $\frac{1}{2}$ Trimethyl-L-histidine, as the major organic selenium in blood cells in a fish-eating population on remote Japanese Islands. 2013 , 156, 36-44		44
221	Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat. <i>Science of the Total Environment</i> , 2013 , 454-455, 170-80	(0.2	22
220	Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. <i>Science of the Total Environment</i> , 2013 , 443, 278-86	(O .2	53
219	Trace elements in tissues of sperm whales stranded along the Italian coast. 2013 , 29, 404-414		2
218	Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. <i>Science of the Total Environment</i> , 2013 , 449, 373	84 ²	21
217	The interactive effects of selenomethionine and methylmercury on their absorption, disposition, and elimination in juvenile white sturgeon. 2013 , 126, 274-82		21
216	Mercury and selenium in subantarctic Commerson's dolphins (Cephalorhynchus c. commersonii). 2013 , 151, 195-208		19
215	2-Seleno-1-alkylbenzimidazoles and their Diselenides: Synthesis and Structural Characterization of a 2-Seleno-1-methylbenzimidazole Complex of Mercury. 2013 , 52, 658-668		18
214	Selenium and mercury in widely consumed seafood from South Atlantic Ocean. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 93, 156-62	7	34
213	Children's health risk and benefits of fish consumption: risk indices based on a diet diary follow-up of two weeks. 2014 , 77, 103-14		21
212	Hepatic and nephric mercury and selenium concentrations in common mergansers, Mergus merganser, from Baltic Region, Europe. 2014 , 33, 421-30		8
211	Stripping voltammetric determination of mercury(II) based on SWCNT-PhSH modified gold electrode. 2014 , 190, 968-974		51
210	An assessment of contaminant concentrations in toothed whale species of the NW Iberian Peninsula: part II. Trace element concentrations. <i>Science of the Total Environment</i> , 2014 , 484, 206-17	(O .2	28
209	Complex patterns in fish Bediment mercury concentrations in a contaminated estuary: The influence of selenium co-contamination?. 2014 , 137, 14-22		17
208	Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian. 2014 , 66, 78-85		9
207	Mercury and selenium in the muscle of piscivorous common mergansers (Mergus merganser) from a selenium-deficient European country. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 101, 107-15	7	20
206	N-acetyl cysteine and selenium protects mercuric chloride-induced oxidative stress and antioxidant defense system in liver and kidney of rats: a histopathological approach. 2014 , 28, 218-226		45
205	Mercury in aquatic forage of large herbivores: impact of environmental conditions, assessment of health threats, and implications for transfer across ecosystem compartments. <i>Science of the Total Environment</i> , 2014 , 479-480, 66-76	[O .2	9

204	Selenium and mercury have a synergistic negative effect on fish reproduction. 2014, 149, 16-24		55
203	The role of metallothionein and selenium in metal detoxification in the liver of deep-sea fish from the NW Mediterranean Sea. <i>Science of the Total Environment</i> , 2014 , 466-467, 898-905	10.2	40
202	Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 100, 87-92	7	49
201	Antagonistic interaction of selenomethionine enantiomers on methylmercury toxicity in the microalgae Chlorella sorokiniana. 2014 , 6, 347-55		14
200	Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland. <i>Marine Pollution Bulletin</i> , 2014 , 87, 381-387	6.7	69
199	Spatial ecotoxicology: migratory Arctic seabirds are exposed to mercury contamination while overwintering in the northwest Atlantic. <i>Environmental Science & Environmental Sc</i>	10.3	57
198	Hair toxic element content in adult men and women in relation to body mass index. 2014 , 161, 13-9		40
197	Dietary selenium protect against redox-mediated immune suppression induced by methylmercury exposure. 2014 , 72, 169-77		25
196	The Manx shearwater (Puffinus puffinus) as a candidate sentinel of Atlantic Ocean health. 2014 , 10, 6		11
195	Use of elemental and molecular-mass spectrometry to assess the toxicological effects of inorganic mercury in the mouse Mus musculus. 2014 , 406, 5853-65		17
194	Elements levels in dogs from "triangle of death" and different areas of Campania region (Italy). <i>Chemosphere</i> , 2014 , 108, 62-9	8.4	14
193	Mercury (Hg) and oxidative stress status in healthy mothers and its effect on birth anthropometric measures. 2014 , 217, 567-85		28
192	Trophic transfer and accumulation of mercury in ray species in coastal waters affected by historic mercury mining (Gulf of Trieste, northern Adriatic Sea). 2014 , 21, 4163-76		32
191	Selenium and mercury concentrations in harbor seals (Phoca vitulina) from central California: health implications in an urbanized estuary. <i>Marine Pollution Bulletin</i> , 2014 , 83, 48-57	6.7	27
190	Mercury and selenium ingestion rates of Atlantic leatherback sea turtles (Dermochelys coriacea): a cause for concern in this species?. 2014 , 99, 160-9		17
189	New insights into traditional health risk assessments of mercury exposure: implications of selenium. <i>Environmental Science & Environmental Science & </i>	10.3	80
188	Influence of in ovo mercury exposure, lake acidity, and other factors on common loon egg and chick quality in Wisconsin. 2015 , 34, 1870-80		10
187	A highly sensitive and reversible chemosensor for Hg(2+) detection based on porphyrin-thymine conjugates. 2015 , 28, 293-8		9

(2016-2015)

186	Mercury Exposure and Antinuclear Antibodies among Females of Reproductive Age in the United States: NHANES. 2015 , 123, 792-8		50
185	Mercury and Neurodegeneration. 2015 , 237-244		1
184	Assessment of selenium and mercury in biological samples of normal and night blindness children of age groups (3-7) and (8-12) years. 2015 , 187, 82		10
183	Biological interactions between mercury and selenium in distribution and detoxification processes in mice under controlled exposure. Effects on selenoprotein. 2015 , 229, 82-90		30
182	Mercury levels assessment in hair of riverside inhabitants of the Tapaj River, Par State, Amazon, Brazil: fish consumption as a possible route of exposure. 2015 , 30, 66-76		38
181	Mercury and selenium status of bottlenose dolphins (Tursiops truncatus): A study in stranded animals on the Canary Islands. <i>Science of the Total Environment</i> , 2015 , 536, 489-498	10.2	21
180	The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution. 2015 , 205, 365-77		25
179	A regenerative electrochemical biosensor for mercury(II) by using the insertion approach and dual-hairpin-based amplification. 2015 , 295, 63-9		16
178	Protolytic cleavage of Hg-C bonds induced by 1-methyl-1,3-dihydro-2H-benzimidazole-2-selone: synthesis and structural characterization of mercury complexes. 2015 , 137, 4503-16		28
177	Selenium and mercury molar ratios in commercial fish from the Baltic Sea: Additional risk assessment criterion for mercury exposure. 2015 , 50, 881-888		31
176	Use of histopathology and elemental accumulation in different organs of two benthophagous fish species as indicators of river pollution. 2015 , 30, 1153-61		22
175	Effectiveness of (PhSe)2 in protect against the HgCl2 toxicity. 2015 , 29, 255-62		15
174	Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. 2015 , 218, 66-90		44
173	Impact of dietary selenium on methylmercury toxicity in juvenile Atlantic cod: a transcriptional survey. <i>Chemosphere</i> , 2015 , 120, 199-205	8.4	11
172	The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum. 2016 , 6, 20480		4
171	Mercury Hazard Assessment for Piscivorous Wildlife in Glacier National Park. 2016 , 90, 450-469		1
170	Selenium and mercury levels in rat liver slices co-treated with diphenyl diselenide and methylmercury. 2016 , 29, 543-50		7
169	Hepatic and renal metallothionein concentrations in Commerson's dolphins (Cephalorhynchus commersonii) from Tierra del Fuego, South Atlantic Ocean. <i>Marine Pollution Bulletin</i> , 2016 , 108, 263-7	6.7	2

168	Absence of selenium protection against methylmercury toxicity in harbour seal leucocytes in vitro. <i>Marine Pollution Bulletin</i> , 2016 , 108, 70-6	6.7	10
167	Dual detection of nitrate and mercury in water using disposable electrochemical sensors. 2016 , 85, 280-	-286	69
166	A low level of dietary selenium has both beneficial and toxic effects and is protective against Cd-toxicity in the least killifish Heterandria formosa. <i>Chemosphere</i> , 2016 , 161, 358-364	8.4	23
165	Antagonistic Growth Effects of Mercury and Selenium in Caenorhabditis elegans Are Chemical-Species-Dependent and Do Not Depend on Internal Hg/Se Ratios. <i>Environmental Science & Environmental Science</i>	10.3	18
164	Critical perspectives on mercury toxicity reference values for protection of fish. 2016 , 35, 529-49		13
163	Mercuric chloride induced hepatotoxic and hematologic changes in rats: The protective effects of sodium selenite and vitamin E. 2016 , 32, 1651-62		26
162	Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment. <i>Chemosphere</i> , 2016 , 144, 1582-8	8.4	8
161	Phenylselenolate Mercury Alkyl Compounds, PhSeHgMe and PhSeHgEt: Molecular Structures, Protolytic Hg-C Bond Cleavage and Phenylselenolate Exchange. 2016 , 103, 307-314		4
160	Metals and trace elements in feathers: A geochemical approach to avoid misinterpretation of analytical responses. <i>Science of the Total Environment</i> , 2016 , 544, 476-94	10.2	43
159	Discrimination for inorganic and organic mercury species by cloud point extraction of polyethylene glycol. 2016 , 4, 1862-1868		12
158	Tracking pan-continental trends in environmental contamination using sentinel raptors-what types of samples should we use?. 2016 , 25, 777-801		102
157	High feather mercury concentrations in the wandering albatross are related to sex, breeding status and trophic ecology with no demographic consequences. 2016 , 144, 1-10		49
156	Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013. 2016 , 70, 75-95		22
155	Selenium (Se) improves drought tolerance in crop plantsa myth or fact?. 2016 , 96, 372-80		45
154	Spatial differences in trace element bioaccumulation in turtles exposed to a partially remediated coal fly ash spill. 2017 , 36, 201-211		8
153	Synergistic effects of dietary vitamin E and selenomethionine on growth performance and tissue methylmercury accumulation on mercury-induced toxicity in juvenile olive flounder, Paralichthys olivaceus (Temminck et Schlegel). <i>Aquaculture Research</i> , 2017 , 48, 570-580	1.9	8
152	From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.). 2017 , 228, 464-473		32
151	High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. 2017 , 102, 200-206		36

150	Selenium: Mercury Molar Ratios in Freshwater Fish in the Columbia River Basin: Potential Applications for Specific Fish Consumption Advisories. 2017 , 178, 136-146		19
149	Assessing trace elements in striped dolphins from the Strait of Gibraltar: Clues to link the bioaccumulation in the westernmost Mediterranean Sea area and nearest Atlantic Ocean. Chemosphere, 2017, 170, 41-50	8.4	5
148	Retrospective biomonitoring of mercury and other elements in museum feathers of common kestrel Falco tinnunculus using instrumental neutron activation analysis (INAA). 2017 , 24, 25986-26005		13
147	Potential effects of brevetoxins and toxic elements on various health variables in Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles after a red tide bloom event. <i>Science of the Total Environment</i> , 2017 , 605-606, 967-979	10.2	26
146	Concentration of 12 Metals and Metalloids in the Blood of White Stork (Ciconia ciconia): Basal Values and Influence of Age and Gender. 2017 , 73, 522-532		6
145	Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. 2017 , 24, 1347-1362		18
144	Toenail mercury and dyslipidemia: Interaction with selenium. 2017, 39, 43-49		21
143	Toxicity reference values for methylmercury effects on avian reproduction: Critical review and analysis. 2017 , 36, 294-319		42
142	Mercury and selenium in the food web of Lake Nahuel Huapi, Patagonia, Argentina. <i>Chemosphere</i> , 2017 , 166, 163-173	8.4	24
141	Mercury Exposure and Heart Diseases. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	136
140	Concentrations of mercury (Hg) and selenium (Se) in afterbirth and their relations with various factors. 2018 , 40, 1683-1695		11
139	Bioaccumulation of mercury and other metal contaminants in invasive lionfish (Pterois volitans/miles) from Curallo. <i>Marine Pollution Bulletin</i> , 2018 , 131, 38-44	6.7	9
138	Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. 2018 , 21, 61-82		42
137	High status of mercury and selenium in false killer whales (Pseudorca crassidens, Owen 1846) stranded on Southern South America: A possible toxicological concern?. <i>Chemosphere</i> , 2018 , 199, 637-64	&4 64	19
136	Modulators of mercury risk to wildlife and humans in the context of rapid global change. 2018, 47, 170-1	97	168
135	Synthesis and characterization of carbon nanotubes/asymmetric novel tetradentate ligand forming complexes on PIGE modified electrode for simultaneous determination of Pb(II) and Hg(II) in sea water, Lake water and well water using anodic stripping voltammetry. 2018 , 810, 176-184		13
134	Retention and distribution of methylmercury administered in the food in marine invertebrates: Effect of dietary selenium. 2018 , 138, 76-83		5
133	The role of selenium in mercury toxicity ©urrent analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. 2018 , 104, 95-109		14

132	Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. 2018 , 56, 313-326	85
131	Evaluation of Arsenic, Cadmium, Lead and Mercury Contamination in Over-the-Counter Available Dry Dog Foods With Different Animal Ingredients (Red Meat, Poultry, and Fish). 2018 , 5, 264	21
130	Nutritional Value and Food Safety of Bivalve Molluscan Shellfish. 2018 , 37, 695-708	22
129	Selenium Interactions with Other Trace Elements, with Nutrients (and Drugs) in Humans. 2018 , 413-447	2
128	Methylmercury and diphenyl diselenide interactions in Drosophila melanogaster: effects on development, behavior, and Hg levels. 2018 , 25, 21568-21576	10
127	Mercury, Polychlorinated Biphenyls, Selenium, and Fatty Acids in Tribal Fish Harvests of the Upper Great Lakes. 2018 , 38, 2029-2040	10
126	Effects of soft electrophiles on selenium physiology. 2018 , 127, 134-144	18
125	Mercury Concentrations and Se:Hg Molar Ratios in Flyingfish (Exocoetus volitans) and Squid (Uroteuthis chinensis). 2018 , 101, 42-48	9
124	Selenium and Mercury Interactions in Apex Predators from the Gulf of Trieste (Northern Adriatic Sea). 2018 , 10,	2
123	Metal and Isotope Analysis of Bird Feathers in a Contaminated Estuary Reveals Bioaccumulation, Biomagnification, and Potential Toxic Effects. 2018 , 75, 96-110	23
122	Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. 2018 , 1862, 2405-2416	68
121	Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: tissue distribution and As speciation. 2018 , 25, 19499-19509	14
120	Impact of selenium co-administration on methylmercury exposed eleutheroembryos and adult zebrafish (Danio rerio): Changes in bioaccumulation and gene expression. <i>Chemosphere</i> , 2019 , 236, 124295	7
119	Exploring the applicability of nano-selenium for capture of mercury vapor: Paper based sorbent and a chemical modifier in graphite furnace atomic absorption spectrometry. 2019 , 1085, 29-38	11
118	Wintering in the Western Subarctic Pacific Increases Mercury Contamination of Red-Legged Kittiwakes. <i>Environmental Science & Environmental Science & </i>	8
117	Hg and Se in Organs of Three Cetacean Species from the Murcia Coastline (Mediterranean Sea). 2019 , 103, 521-527	8
116	Mercury and selenium distribution in key tissues and early life stages of Yellow Perch (Perca flavescens). 2019 , 254, 112963	8
115	Localization, ligand environment, bioavailability and toxicity of mercury in Boletus spp. and Scutiger pes-caprae mushrooms. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109623	22

(2020-2019)

114	High-precision isotopic analysis sheds new light on mercury metabolism in long-finned pilot whales (Globicephala melas). 2019 , 9, 7262		23	
113	Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) - A threat to the endangered freshwater cetacean. <i>Science of the Total Environment</i> , 2019 , 686, 797-804	10.2	8	
112	Determination of Hg in Farmed and Wild Atlantic Bluefin Tuna (L. Muscle. 2019 , 24,		23	
111	Determinants of selenoneine concentration in red blood cells of Inuit from Nunavik (Northern QuBec, Canada). 2019 , 127, 243-252		10	
110	Pollution Tolerance in Aquatic Animals: From Fundamental Biological Mechanisms to Ecological Consequences. 2019 , 33-91		2	
109	Anodic stripping voltammetric determination of Hg(II) using poly xylenol orange film modified electrode. 2019 , 25, 1387-1394		6	
108	Understanding the antagonism of Hg and Se in two shark species from Baja California South, Mico. <i>Science of the Total Environment</i> , 2019 , 650, 202-209	10.2	8	
107	Is blood a reliable indicator of trace metal concentrations in organs of small mammals?. <i>Chemosphere</i> , 2019 , 217, 320-328	8.4	6	
106	Mercury and selenium concentrations in Scyphozoan jellyfishes and pyrosomes from Monterey Bay National Marine Sanctuary. <i>Marine Pollution Bulletin</i> , 2019 , 138, 7-10	6.7	3	
105	Effects of Selenium on Mercury Bioaccumulation in a Terrestrial food Chain from an Abandoned Mercury Mining Region. 2019 , 102, 329-334		4	
104	Trace element analysis reveals bioaccumulation in the squid Gonatus fabricii from polar regions of the Atlantic Ocean. 2020 , 256, 113389		13	
103	Trace elements and persistent organic pollutants in chicks of 13 seabird species from Antarctica to the subtropics. 2020 , 134, 105225		28	
102	Trace elements in trophic webs from South Atlantic: The use of cetaceans as sentinels. <i>Marine Pollution Bulletin</i> , 2020 , 150, 110674	6.7	5	
101	Tin-113 and Selenium-75 radiotracer adsorption and desorption kinetics in contrasting estuarine salinity and turbidity conditions. 2020 , 213, 106133		1	
100	Mercury and selenium concentrations, and selenium:mercury molar ratios in small cetaceans taken off St. Vincent, West Indies. 2020 , 181, 108908		12	
99	Selenium and mercury in the hair of raccoons (Procyon lotor) and European wildcats (Felis s. silvestris) from Germany and Luxembourg. 2020 , 29, 1-12		6	
98	Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals?. 2020 , 136, 110978		4	
97	Monitoring spatially resolved trace elements in polar bear hair using single spot laser ablation ICP-MS. <i>Ecological Indicators</i> , 2020 , 119, 106822	5.8	4	

96	How to survive winter?. 2020 , 101-125	
95	Vertebrate viruses in polar ecosystems. 2020 , 126-148	
94	Life in extreme environments and the responses to change: the example of polar environments. 2020 , 149-296	
93	Life in the extreme environments of our planet under pressure. 2020 , 151-183	
92	Chemical ecology in the Southern Ocean. 2020 , 251-278	0
91	Life and habitability. 2020, 297-354	
90	Introduction. 2020 , 1-6	
89	Extreme environments: responses and adaptation to change. 2020 , 7-86	
88	Physiological traits of the Greenland shark Somniosus microcephalus obtained during the TUNU-Expeditions to Northeast Greenland. 2020 , 11-41	
87	Metazoan adaptation to deep-sea hydrothermal vents. 2020 , 42-67	1
86	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. 2020, 68-86	
85	Biodiversity, bioenergetic processes, and biotic and abiotic interactions. 2020 , 87-148	
84	Metazoan life in anoxic marine sediments. 2020 , 89-100	
83	The ecophysiology of responding to change in polar marine benthos. 2020 , 184-217	
82	The Southern Ocean: an extreme environment or just home of unique ecosystems?. 2020 , 218-233	Ο
81	Metabolic and taxonomic diversity in antarctic subglacial environments. 2020 , 279-296	2
80	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. 2020 , 301-318	1
79	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. 2020 , 319-342	

78 Life at the extremes. **2020**, 343-354

77	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. 2020 , 234-250	
76	Index. 2020 , 355-364	
75	Plate Section (PDF Only). 2020 , 365-380	
74	Differences in metal compositions and concentrations of sympatric predatory fish and squid from the South Atlantic Ocean. 2020 , 55, 278-291	О
73	The Effect of Dietary Exposure to Coal Ash Contaminants within Food Ration on Growth and Reproduction in Daphnia magna. 2020 , 39, 1998-2007	2
72	Mercury and selenium loading in mountaintop mining impacted alkaline streams and riparian food webs. 2020 , 150, 109-122	2
71	Trace elements in feathers of Cape Petrel (Daption capense) from Antarctica. 2020 , 43, 911-917	2
70	Do Two Wrongs Make a Right? Persistent Uncertainties Regarding Environmental Selenium-Mercury Interactions. <i>Environmental Science & Environmental Sci</i>	18
69	Trace elements' reference levels in blood of breeding black-browed albatrosses Thalassarche melanophris from the Falkland Islands. 2020 , 27, 39265-39273	1
68	Prenatal exposure to legacy contaminants and visual acuity in Canadian infants: a maternal-infant research on environmental chemicals study (MIREC-ID). 2020 , 19, 14	5
67	Temporal changes in metal concentrations in Andean condor feathers: a potential influence of volcanic activity. 2020 , 27, 25600-25611	2
66	Influence of sexual dimorphism on stable isotopes and trace element concentrations in the greater hooked squid Moroteuthopsis ingens from New Zealand waters. 2020 , 159, 104976	4
65	Mercury isotopes of key tissues document mercury metabolic processes in seabirds. <i>Chemosphere</i> , 2021 , 263, 127777	25
64	Electrochemical determination of mercury (II) using NaPb4-xCdx(PO4)3 (0 িk 🗅) modified graphite electrode: application in fish and seawater samples. 2021 , 101, 140-152	3
63	In Vivo Formation of HgSe Nanoparticles and Hg-Tetraselenolate Complex from Methylmercury in Seabirds-Implications for the Hg-Se Antagonism. <i>Environmental Science & Decimology</i> , 2021 , 55, 1515-132	26 ³⁰
62	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. 2021 , 8, 1437-1445	О
61	Selenium Utility in Mercury Toxicity: A Mini-Review. 2021 , 12, 124-137	O

60	Trace elements in subantarctic false killer whale (Pseudorca crassidens) tissues, including the skin as an offshore bioindicator. 2021 , 28, 31746-31757		1
59	Trace element concentrations, including Cd and Hg, in long-finned pilot whales (Globicephala melas edwardii) mass stranded on the New Zealand coast. <i>Marine Pollution Bulletin</i> , 2021 , 165, 112084	6.7	2
58	Occurrence of trace elements (TEs) in seafood from the North Persian Gulf: Implications for human health. 2021 , 97, 103754		4
57	Elements of toxicological concern and the arsenolipids profile in the giant-red Mediterranean shrimp, Aristaeomorpha foliacea. 2021 , 97, 103786		2
56	Analysis of essential and non-essential trace elements in the organs of a mother-fetus pair of spotted seals (Phoca largha) from the Sea of Japan. 2021 , 28, 60622-60634		1
55	Bioaccumulation of mercury is equal between sexes but different by age in seabird (Sula leucogaster) population from southeast coast of Brazil. 2021 , 285, 117222		2
54	Blood Toxic Elements and Effects on Plasma Vitamins and Carotenoids in Two Wild Bird Species: and. 2021 , 9,		О
53	Lethal impacts of selenium counterbalance the potential reduction in mercury bioaccumulation for freshwater organisms. 2021 , 287, 117293		1
52	Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus). 2021 , 286, 117549		3
51	Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: The distribution and human health implications. <i>Marine Pollution Bulletin</i> , 2021 , 173, 112926	6.7	О
50	Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. 2021 , 28, 18407-18420		7
49	Seafood Selenium in Relation to Assessments of Methylmercury Exposure Risks. 2011 , 399-408		2
48	Redox State in Mediating Methylmercury Neurotoxicity. 2012 , 101-125		2
47	Bioaccumulation/Biomagnifications in Food Chains. 2013, 35-69		1
46	Interactions of Mercury and Selenium in Soil-Rice System. 2014 , 135-149		3
45	Advances in Research on the Mechanisms of SeleniumMercury Interactions and Health Risk Assessment. 2014 , 17-34		2
44	Biogeochemical Cycles of Selenium in Soil-Rice System. 2014 , 117-133		1
43	Seabirds as Monitors of Mercury in the Marine Environment. 1995 , 851-870		11

[1996-1995]

42	Common Loons (Gavia immer) Nesting on Low pH Lakes in Northern Wisconsin Have Elevated Blood Mercury Content. 1995 , 871-880	1
41	Trace elements levels in muscle and liver of a rarely investigated large pelagic fish: The Mediterranean spearfish Tetrapturus belone (Rafinesque, 1810). <i>Marine Pollution Bulletin</i> , 2020 , 6.7 151, 110878	3
40	Mercury: selenium interactions and health implications 2020 , 81, 294-299	7
39	Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. 1995 , 91, 645-55	369
38	What You Need to Know about Selenium. 2010 , 7-45	30
37	Bioaccumulation and Trophic Transfer of Selenium. 2010 , 93-139	48
36	Selenium Toxicity to Aquatic Organisms. 2010 , 141-231	99
35	Mercury-selenium relationships in liver of Guiana dolphin: the possible role of Kupffer cells in the detoxification process by tiemannite formation. 2012 , 7, e42162	73
34	Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species. 2020 , 18, 1468-1480	8
33	Elevated accumulation of the toxic metal mercury in the Critically Endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. 2020 , 43, 267-279	9
32	Overview of trace element trophic transfer in fish through the concept of assimilation efficiency. 2018 , 588, 243-254	18
31	Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. 2010, 1, 144-50	73
30	Encyclopedia of Sustainability Science and Technology. 2012 , 822-845	
29	Functional Toxicology. 2013, 475-487	
28	Nanoparticle. 2013 , 426-449	
27	Health Risk Assessment for Human Exposure of Mercury and Selenium Considering Selenium Mercury Interactions. 2014 , 173-186	
26	Research Background. 2014 , 3-16	
25	SELENIUM LEVELS IN LEAD EXPOSED WORKERS. 1996 , 208-210	

24 Synchrotron studies of selenium interactions with heavy elements. **2015**, 43-44

23	Life in Extreme Environments: Insights in Biological Capability. 2020 ,		
22	Selenium Levels in Lead Exposed Workers. 208-210		
21	Identification of mercury-containing nanoparticles in the liver and muscle of cetaceans. 2021 , 424, 127	759	2
20	New insights into the biomineralization of mercury selenide nanoparticles through stable isotope analysis in giant petrel tissues. 2021 , 425, 127922		3
19	Mercury Speciation in Scottish Raptors Reveals Potential Uptake or Formation of Mercury Selenide Nanoparticles in Scottish Golden Eagles (Aquila Chrysaetos). SSRN Electronic Journal,	1	
18	Heavy metal concentrations and dispersion in wild mussels along the Asturias coastline (North of Spain). <i>Ecological Indicators</i> , 2022 , 135, 108526	5.8	
17	Mercury, selenium and cadmium in juvenile blue (Prionace glauca) and smooth hammerhead (Sphyrna zygaena) sharks from the Northwest Mexican Pacific coast <i>Marine Pollution Bulletin</i> , 2022 , 175, 113311	6.7	1
16	Two cetacean species reveal different long-term trends for toxic trace elements in European Atlantic French waters <i>Chemosphere</i> , 2022 , 133676	8.4	
15	Quantitative meta-analysis reveals no association between mercury contamination and body condition in birds <i>Biological Reviews</i> , 2022 ,	13.5	2
14	Comparative effects of organic and mineral selenium on mercury chloride-induced oxidative stress and liver tissue damages in juvenile yellowfin seabream (Acanthopagrus latus). <i>Aquaculture Research</i> ,	1.9	
13	Linking trophic ecology with element concentrations in a coastal fish community of the Bijag Archipelago, West Africa <i>Marine Pollution Bulletin</i> , 2022 , 178, 113555	6.7	O
12	Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (Aquila chrysaetos): Potential occurrence of mercury selenide nanoparticles <i>Science of the Total Environment</i> , 2022 , 154557	10.2	О
11	A Bibliometric Analysis of Research on Selenium in Drinking Water during the 1990I021 Period: Treatment Options for Selenium Removal. <i>International Journal of Environmental Research and</i> Public Health, 2022 , 19, 5834	4.6	2
10	Inland Fisheries Management - Case Studies of Inland Fish. 2022, 343-354		
9	MercuryBelenium Accumulation Patterns in Muscle Tissue of Two Freshwater Fish Species, Eurasian Perch (Perca fluviatilis) and Vendace (Coregonus albula). <i>Water, Air, and Soil Pollution</i> , 2022 , 233,	2.6	
8	Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. <i>Environmental Science & Environmental Scienc</i>	10.3	2
7	Birds of different feeding habits as biomonitors for trace elements in a wetland of the Central Asian Flyway, Sri Lanka. <i>Chemosphere</i> , 2022 , 306, 135602	8.4	

CITATION REPORT

6	An Effective Selenium-Based Fluorescence Chemosensor for Selective Recognition of Hg2+ in Aqueous Medium: Experimental and Theoretical Studies.	1
5	Bioaccumulation of selected trace elements in some aquatic organisms from the proximity of Qeshm Island ecosystems: Human health perspective. 2022 , 182, 113966	0
4	Pollution⊡ights, plastics, oil, and contaminants. 2023 , 177-216	O
3	Metals in the Runion harrier - tissue concentrations and meaning for conservation.	O
	The importance of in-year seasonal fluctuations for biomonitoring of apex predators: A case study	
2	of 14 essential and non-essential elements in the liver of the common buzzard (Buteo buteo) in the United Kingdom. 2023 , 323, 121308	Ο