Heterogeneity in the distribution and morphology of m brain

Neuroscience 39, 151-170 DOI: 10.1016/0306-4522(90)90229-w

Citation Report

#	Article	IF	CITATIONS
1	Fibronectin and laminin regulate thein vitro differentiation of microglial cells. Neuroscience, 1991, 45, 513-527.	1.1	98
2	The kinetics and morphological characteristics of the macrophage-microglial response to kainic acid-induced neuronal degeneration. Neuroscience, 1991, 42, 201-214.	1.1	242
3	The CNS acute inflammatory response to excitotoxic neuronal cell death. Immunology Letters, 1991, 30, 177-181.	1.1	58
4	Characterisation of two new monoclonal antibodies directed against rat microglia. Journal of Comparative Neurology, 1991, 313, 409-430.	0.9	69
5	Intracerebral injection of proinflammatory cytokines or leukocyte chemotaxins induces minimal myelomonocytic cell recruitment to the parenchyma of the central nervous system Journal of Experimental Medicine, 1992, 176, 255-259.	4.2	155
6	The role of macrophages in models of neurological and psychiatric disorder. Psychological Medicine, 1992, 22, 551-555.	2.7	11
7	The acute inflammatory response to lipopolysaccharide in cns parenchyma differs from that in other body tissues. Neuroscience, 1992, 48, 169-186.	1.1	313
8	Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. Journal of Neuroimmunology, 1992, 40, 173-181.	1.1	86
9	Turnover of resident microglia in the normal adult mouse brain. Neuroscience, 1992, 48, 405-415.	1.1	609
10	Developmental Regulation of Sialoadhesin (Sheep Erythrocyte Receptor), a Macrophage-Cell Interaction Molecule Expressed in Lymphohemopoietic Tissues. Autoimmunity, 1992, 2, 7-17.	0.6	12
11	Eosinophil peroxidase deficiency: morphological and immunocytochemical studies of the eosinophil-specific granules. Blood, 1992, 80, 2903-2910.	0.6	29
12	MHC-positive, ramified macrophages in the normal and injured rat peripheral nervous system. Journal of Neurocytology, 1992, 21, 623-634.	1.6	105
13	Immunocytochemical Study of an Early Microglial Activation in Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 257-269.	2.4	289
14	Macrophages in tissues and in vitro. Current Opinion in Immunology, 1992, 4, 25-32.	2.4	75
15	The effects of pre-natal exposure to methylazoxymethanol acetate on microglia. Neuropathology and Applied Neurobiology, 1992, 18, 610-618.	1.8	9
16	The glial framework of central white matter tracts: Segmented rows of contiguous interfascicular oligodendrocytes and solitary astrocytes give rise to a continuous meshwork of transverse and longitudinal processes in the adult rat fimbria. Glia, 1992, 6, 222-235.	2.5	80
17	5′-Nucleotidase: A new marker for striosomal organization in the rat caudoputamen. Journal of Comparative Neurology, 1992, 322, 566-576.	0.9	20
18	Microglia progenitor cells: A subpopulation in cultures of mouse neopallial astroglia. Clia, 1993, 7, 25-33.	2.5	57

#	Article	IF	CITATIONS
19	Altered antigen expression of microglia in the aged rodent CNS. Glia, 1993, 7, 60-67.	2.5	336
20	Cytotoxicity of microglia. Glia, 1993, 7, 111-118.	2.5	1,016
21	Early and rapid de novo synthesis of Alzheimer βA4-Amyloid precursor protein (APP) in activated microglia. Glia, 1993, 9, 199-210.	2.5	119
22	Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain. Journal of Neuroscience Research, 1993, 34, 357-363.	1.3	139
23	Atypical localization of the oligodendrocytic isoform (PI) of glutathione-S-transferase in astrocytes during cuprizone intoxication. Journal of Neuroscience Research, 1993, 36, 183-190.	1.3	28
24	Lipocortin 1 immunoreactivity identifies microglia in adult rat brain. Journal of Neuroscience Research, 1993, 36, 491-500.	1.3	41
25	Immunocytochemical and electron-microscopic characterization of macrophage/microglia cells and expression of class II major histocompatibility complex in the pineal gland of the rat. Cell and Tissue Research, 1993, 272, 257-265.	1.5	50
26	Mitosis and apoptosis of microgliain vivo induced by an anti-CR3 antibody which crosses the blood-brain barrier. Neuroscience, 1993, 56, 529-533.	1.1	78
27	CSF-1 expression is upregulated in astrocyte cultures by IL-1 and TNF and affects microglial proliferation and morphology in organotypic cultures. International Journal of Developmental Neuroscience, 1993, 11, 189-198.	0.7	40
28	Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: An analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience, 1993, 57, 931-941.	1.1	126
29	Microglia and the developing olfactory bulb. Neuroscience, 1993, 52, 717-724.	1.1	38
30	Microglial responses to physiological change: Osmotic stress elevates DNA synthesis of neurohypophyseal microglia. Neuroscience, 1993, 56, 929-938.	1.1	28
31	Plasminogen promotes the development of rat mesencephalic dopaminergic neurons in vitro. Developmental Brain Research, 1993, 75, 31-37.	2.1	43
32	Ciliary neurotrophic factor (CNTF) promotes low-affinity nerve growth factor receptor and CD4 expression by rat CNS microglia. Journal of Neuroimmunology, 1993, 48, 177-187.	1.1	39
33	Activity of Perivascular Microglia in the Rat Neural Lobe. Annals of the New York Academy of Sciences, 1993, 689, 554-558.	1.8	3
34	Immunohistochemical and Lectin-Labelling Studies of the Distribution and Development of Microglia in the Spinal Cord of Postnatal Rats Archives of Histology and Cytology, 1993, 56, 475-484.	0.2	10
35	Surveillance, Intervention and Cytotoxicity: Is There a Protective Role of Microglia?. Developmental Neuroscience, 1994, 16, 114-127.	1.0	168
36	Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood, 1994, 83, 2737-2748.	0.6	165

#	Article	IF	CITATIONS
37	Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. Journal of Neurocytology, 1994, 23, 729-744.	1.6	78
38	Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1994, 38, 365-375.	1.3	192
39	Development of microglia in the quail optic tectum. Journal of Comparative Neurology, 1994, 348, 207-224.	0.9	44
40	Microglia in the avian retina: Immunocytochemical demonstration in the adult quail. Journal of Comparative Neurology, 1994, 350, 171-186.	0.9	35
41	GD3+ cells in the adult rat optic nerve are ramified microglia rather than 0-2Aadult progenitor cells. Glia, 1994, 10, 244-249.	2.5	38
42	Development of microglia in mouse neopallial cell cultures. Clia, 1994, 11, 11-17.	2.5	28
43	Microglial response to degeneration of serotonergic axon terminals. Clia, 1994, 11, 18-34.	2.5	60
44	A comparative Mac-1 immunocytochemical and lectin histochemical study of microglial cells in the normal and athymic mice. Glia, 1994, 12, 44-51.	2.5	28
45	Modulation of Intracellular Formation of Reactive Oxygen Intermediates in Peritoneal Macrophages and Microglia/Brain Macrophages by Propentofylline. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 145-149.	2.4	104
46	Further Studies on Motor and Sensory Nerve Regeneration in Mice With Delayed Wallerian Degeneration. European Journal of Neuroscience, 1994, 6, 420-428.	1.2	99
47	Characterization of the microglial response in murine scrapie. Neuropathology and Applied Neurobiology, 1994, 20, 47-55.	1.8	134
48	Microglia in the rat neurohypophysis increase expression of class I major histocompatibility antigens following central nervous system injury. Journal of Neuroimmunology, 1994, 50, 139-151.	1.1	29
49	Generation and characterization of mouse microglial cell lines. Journal of Neuroimmunology, 1994, 52, 153-164.	1.1	35
50	The pathogenesis of demyelinating disease. Progress in Neurobiology, 1994, 43, 143-173.	2.8	53
51	Differential regulation of IL-11± and TNF1± release from immortalized murine microglia (BV-2). Life Sciences, 1994, 55, 661-668.	2.0	20
53	Neuropeptide tyrosine is expressed in ensheathing cells around the olfactory nerves in the rat olfactory bulb. Neuroscience, 1994, 60, 709-726.	1.1	70
54	Microglia as a unique cellular target in the treatment of stroke: Potential neurotoxic mediators produced by activated microglia. Neurological Research, 1995, 17, 242-248.	0.6	155
55	Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. Journal of Neuroscience Research, 1995, 41, 222-237.	1.3	119

#	Article	IF	CITATIONS
56	The macrophage. BioEssays, 1995, 17, 977-986.	1.2	192
57	Strongly GD3+ cells in the developing and adult rat cerebellum belong to the microglial lineage rather than to the oligodendrocyte lineage. Glia, 1995, 13, 13-26.	2.5	47
58	Human retinal microglia: Expression of immune markers and relationship to theGlia limitans. Glia, 1995, 14, 243-256.	2.5	81
59	Ontogeny and cellular expression of MHC and leucocyte antigens in human retina. Glia, 1995, 15, 458-470.	2.5	38
60	Morphology and distribution of microglial cells in the young and adult mouse cerebellum. Journal of Comparative Neurology, 1995, 361, 602-616.	0.9	74
61	Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature, 1995, 377, 340-344.	13.7	651
62	Radiation-induced Reductions in Macrophage Recruitment Have Only Slight Effects on Myelin Degeneration in Sectioned Peripheral Nerves of Mice. European Journal of Neuroscience, 1995, 7, 271-280.	1.2	103
63	Lines of Murine Oligodendroglial Precursor Cells Immortalized by an ActivatedneuTyrosine Kinase Show Distinct Degrees of Interaction with AxonsIn VitroandIn Vivo. European Journal of Neuroscience, 1995, 7, 1245-1265.	1.2	233
64	The Unique Characteristics of Inflammatory Responses in Mouse Brain are Acquired During Postnatal Development. European Journal of Neuroscience, 1995, 7, 1584-1595.	1.2	62
65	Immunophenotypic evidence for distinct populations of microglia in the rat hypothalamo-neurohypophysial system. Cell and Tissue Research, 1995, 280, 665-673.	1.5	28
66	Microglial cell reaction in the gray and white matter in spinal cords from jimpy mice. An enzyme histochemical study at the light and electron microscope level. Brain Research, 1995, 694, 287-298.	1.1	19
67	Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Research, 1995, 704, 112-116.	1.1	181
68	Microglia: Intrinsic immuneffector cell of the brain. Brain Research Reviews, 1995, 20, 269-287.	9.1	984
70	Modulatory effects of [Met5]-enkephalin on interleukin-1Î ² secretion from microglia in mixed brain cell cultures. Journal of Neuroimmunology, 1995, 62, 9-17.	1.1	41
71	Colony-stimulating factors regulate programmed cell death of rat microglia/brain macrophages in vitro. Journal of Neuroimmunology, 1995, 63, 55-61.	1.1	31
72	The hematopoietic cytokine, colony-stimulating factor 1, is also a growth factor in the CNS: Congenital absence of CSF-1 in mice results in abnormal microglial response and increased neuron vulnerability to injury. International Journal of Developmental Neuroscience, 1995, 13, 285-299.	0.7	89
73	Age-related changes in basic fibroblast growth factor-immunoreactive cells of rat substantia nigra. Mechanisms of Ageing and Development, 1995, 82, 73-89.	2.2	3
74	The microglial cell. A historical review. Journal of the Neurological Sciences, 1995, 134, 57-68.	0.3	277

#	Article	IF	CITATIONS
75	Microglia: The effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplantation, 1995, 4, 385-392.	1.2	147
76	Myocyte-specific enhancer binding factor 2C expression in gerbil brain following global cerebral ischemia. Neuroscience, 1996, 70, 67-77.	1.1	17
77	Unusual aspects of inflammation in the nervous system: Wallerian degeneration. Neurobiology of Aging, 1996, 17, 745-751.	1.5	29
78	Differential activation of microglia and astrocytes following trimethyl tin-induced neurodegeneration. Neuroscience, 1996, 72, 273-281.	1.1	103
79	Antioxidant treatment protects striatal neurons against excitotoxic insults. Neuroscience, 1996, 73, 185-200.	1.1	88
80	The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience, 1996, 74, 599-608.	1.1	223
81	EVIDENCE FOR AN EARLY INFLAMMATORY RESPONSE IN THE CENTRAL NERVOUS SYSTEM OF MICE WITH SCRAPIE. Neuroscience, 1996, 74, 1-5.	1.1	188
82	Microglia: a sensor to threats in the nervous system?. Research in Virology, 1996, 147, 79-88.	0.7	55
83	Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases. Journal of Neuroimmunology, 1996, 69, 141-149.	1.1	73
84	INHIBITION OF MICROGLIAL SUPEROXIDE ANION PRODUCTION BY ISOPROTERENOL AND DEXAMETHASONE**This is one of eight original papers on the subject "microgliaâ€. Dr Peter Gebicke-Haerter (Dept. Psychiatry, University of Freiburg, Germany) acted as organiser and executive editor in the refereeing of these articles Neurochemistry International. 1996. 29. 43-53.	1.9	59
85	Microglia A Pictorial. Progress in Histochemistry and Cytochemistry, 1996, 31, XII-89.	5.1	5
86	Macrophage Membrane Molecules: Markers of Tissue Differentiation and Heterogeneity. Immunobiology, 1996, 195, 407-416.	0.8	63
87	Major Histocompatibility Class II Molecules in the CNS: Increased Microglial Expression at the Onset of Narcolepsy in a Canine Model. Journal of Neuroscience, 1996, 16, 4588-4595.	1.7	62
88	Chapter 14 Neurotoxic and Neuroprotective Roles of Nitric Oxide in Cerebral Ischaemia. International Review of Neurobiology, 1996, 40, 319-336.	0.9	29
89	A spontaneously immortalized mouse microglial cell line expressing CD4. Developmental Brain Research, 1996, 95, 140-143.	2.1	34
90	Distribution of bismuth in the brain after intraperitoneal dosing of bismuth subnitrate in mice: Implications for routes of entry of xenobiotic metals into the brain. Brain Research, 1996, 725, 137-154.	1.1	53
91	β-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Research, 1996, 720, 93-100.	1.1	173
92	The role of macrophage subpopulations in autoimmune disease of the central nervous system. The Histochemical Journal, 1996, 28, 83-97.	0.6	42

#	ARTICLE	IF	CITATIONS
93	A comparison of leucocyte responses to heatâ€killed bacillus Calmetteâ€Guérin in different CNS compartments. Neuropathology and Applied Neurobiology, 1996, 22, 44-53.	1.8	38
94	Microglia-derived macrophages in early multiple sclerosis plaques. Neuropathology and Applied Neurobiology, 1996, 22, 207-215.	1.8	88
95	Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Research, 1996, 739, 215-234.	1.1	24
96	Cliosis in the LP-BM5 murine leukemia virus-infected mouse: an animal model of retrovirus-induced dementia. Brain Research, 1996, 742, 271-282.	1.1	24
97	The macrophage cell surface glycoprotein F4/80 is a highly glycosylated proteoglycan. European Journal of Immunology, 1996, 26, 1139-1146.	1.6	36
98	Activation and Proliferation of Murine Microglia are Insensitive to Clucocorticoids in Wallerian Degeneration. European Journal of Neuroscience, 1996, 8, 581-588.	1.2	31
99	Microglia in the nerve fiber layer of the cat retina: Detection of postnatal changes by a new monoclonal antibody. Visual Neuroscience, 1996, 13, 671-682.	0.5	6
100	Unique tissue distribution of a mouse macrophage C-type lectin. Glycobiology, 1997, 7, 137-146.	1.3	45
101	Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4080-4085.	3.3	970
102	Heterogeneity of antigen expression and lectin labeling on microglial cells in the olfactory bulb of adult rats. Neuroscience Research, 1997, 28, 67-75.	1.0	25
103	PrP Deposition, Microglial Activation, and Neuronal Apoptosis in Murine Scrapie. Experimental Neurology, 1997, 144, 433-438.	2.0	178
104	Microglial development is altered in immature spinal cord by exposure to radiation. International Journal of Developmental Neuroscience, 1997, 15, 1-14.	0.7	5
105	Enriched immune-environment of blood–brain barrier deficient areas of normal adult rats. Journal of Neuroimmunology, 1997, 76, 117-131.	1.1	43
106	Migration activity of microglia and macrophages into rat brain. Neuroscience Letters, 1997, 237, 49-52.	1.0	39
107	An Extracellular Proteolytic Cascade Promotes Neuronal Degeneration in the Mouse Hippocampus. Journal of Neuroscience, 1997, 17, 543-552.	1.7	410
108	Adhesion Molecules Involved in Macrophage Responses to Wallerian Degeneration in the Murine Peripheral Nervous System. European Journal of Neuroscience, 1997, 9, 2057-2063.	1.2	22
109	Lymphocyte Recruitment Following Spinal Cord Injury in Mice is Altered by Prior Viral Exposure. European Journal of Neuroscience, 1997, 9, 1000-1007.	1.2	45
110	Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathology and Applied Neurobiology, 1997, 23, 406-415.	1.8	233

		CITATION R	Report	
#	Article		IF	CITATIONS
111	The Phagocyte in Human Gliomas. Annals of the New York Academy of Sciences, 1997, 832	2, 405-425.	1.8	6
112	Induction of metallothionein in astrocytes and microglia in the spinal cord from the myelin- jimpy mouse. Brain Research, 1997, 767, 345-355.	deficient	1.1	32
113	Microglial cells of the rat brain in postnatal period (comparative immunocytochemical anal Neurophysiology, 1997, 29, 145-152.	ysis).	0.2	0
114	Distribution of microglia and astrocytes in different regions of the normal adult rat brain. Neurophysiology, 1997, 29, 343-351.		0.2	31
115	Ramification of microglia, monocytes and macrophages in vitro: influences of various epith mesenchymal cells and their conditioned media *. Cell and Tissue Research, 1997, 287, 447	elial and 7-458.	1.5	77
116	Clinical implications of the involvement of tPA in neuronal cell death. Journal of Molecular Medicine, 1997, 75, 341-347.		1.7	67
117	On the mechanisms by which transforming growth factor-β2 alters antigen-presenting abil macrophages on T cell activation. European Journal of Immunology, 1997, 27, 1648-1656.	ities of	1.6	128
118	Microglia development in the quail cerebellum. Journal of Comparative Neurology, 1997, 38	89, 390-401.	0.9	36
119	Albumin enhances superoxide production in cultured microglia. , 1997, 21, 413-418.			40
120	Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. , 199 299-312.	7, 48,		175
121	The monoclonal antibody HB1 recognizes an adhesion molecule for macrophages in the bra of Neurocytology, 1998, 27, 867-876.	ain. Journal	1.6	4
122	Reduced number and altered morphology of microglial cells in colony stimulating factor-1-consteopetrotic op/op mice. Brain Research, 1998, 804, 135-139.	leficient	1.1	110
123	Microglial activation induced by factor(s) contained in sera from Alzheimer-related ApoE ge Journal of Neuroscience Research, 1998, 54, 539-553.	notypes.	1.3	33
124	Regulation of MSCF receptors on microglia in the normal and injured mouse central nervol A quantitative immunofluorescence study using confocal laser microscopy. , 1998, 395, 34	s system: -2-358.		103
125	Expression of purine metabolism-related enzymes by microglial cells in the developing rat b 398, 333-346.	rain. , 1998,		35
126	Development of microglia in the postnatal rat hippocampus. , 1998, 8, 458-474.			110
127	The importance of ion channels for macrophage and microglial activation in vitro. , 1998, 2	2, 94-97.		17
128	Differential adhesion of macrophages to white and grey matter in an in vitro assay. , 1998,	23, 361-373.		12

#	Article	IF	CITATIONS
129	Elevated complement C5a receptor expression on neurons and glia in astrocyte-targeted interleukin-3 transgenic mice. , 1998, 24, 338-345.		19
130	Cellular Dynamics of Macrophages and Microglial Cells in Reaction to Stab Wounds in Rat Cerebral Cortex. Acta Neurochirurgica, 1998, 140, 275-279.	0.9	59
131	Microglia in ontogeny and brain pathology. Neurophysiology, 1998, 30, 107-119.	0.2	1
132	The influence of plasma proteins on the distribution of leucocytes within the brain parenchyma in a murine model of stroke. Neuropathology and Applied Neurobiology, 1998, 24, 177-186.	1.8	5
133	Stereological estimation of total microglia number in mouse hippocampus. Journal of Neuroscience Methods, 1998, 84, 101-108.	1.3	79
134	Inflammation in the CNS: balance between immunological privilege and immune responses. Progress in Neurobiology, 1998, 56, 19-35.	2.8	113
135	The origin and differentiation of microglial cells during development. Progress in Neurobiology, 1998, 56, 173-189.	2.8	265
136	Bacillus Calmette–Guérin sequestered in the brain parenchyma escapes immune recognition. Journal of Neuroimmunology, 1998, 82, 73-80.	1.1	43
137	5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma. Journal of Neuroimmunology, 1998, 85, 69-77.	1.1	26
138	Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS. Journal of Neuroimmunology, 1998, 87, 62-72.	1.1	179
139	A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. Journal of Neuroimmunology, 1998, 90, 113-121.	1.1	262
140	Microglia-specific localisation of a novel calcium binding protein, Iba1. Molecular Brain Research, 1998, 57, 1-9.	2.5	1,228
141	Metabolic and cellular characterization of immortalized human microglial cells under heat stress. Neurochemistry International, 1998, 33, 61-73.	1.9	28
142	Stereological analysis of astrocyte and microglia in aging mouse hippocampus. Neurobiology of Aging, 1998, 19, 497-503.	1.5	150
143	Microglia in Cell Culture and in Transplantation Therapy for Central Nervous System Disease. Methods, 1998, 16, 320-344.	1.9	59
144	Production, regulation and role of nitric oxide in glial cells. Mediators of Inflammation, 1998, 7, 239-255.	1.4	38
145	Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. Journal of Leukocyte Biology, 1998, 63, 740-745.	1.5	142
146	Experimental Destruction of Substantia Nigra Initiated by Parkinson Disease Immunoglobulins. Archives of Neurology, 1998, 55, 1075.	4.9	111

#	Article	IF	CITATIONS
147	A Kv1.5 to Kv1.3 Switch in Endogenous Hippocampal Microglia and a Role in Proliferation. Journal of Neuroscience, 1999, 19, 10680-10693.	1.7	158
148	The Effects of Hormone Replacement Therapy on Hypothalamic Neuropeptide Gene Expression in a Primate Model of Menopause ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2111-2118.	1.8	81
149	Cerebrospinal Fluid and Serum Nitric Oxide Levels in Asphyxiated Newborns. Neonatology, 1999, 76, 200-206.	0.9	14
150	Cytokine Expression in the Brain in Human Cerebral Malaria. Journal of Infectious Diseases, 1999, 180, 1742-1746.	1.9	161
151	A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13496-13500.	3.3	984
152	Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. European Journal of Neuroscience, 1999, 11, 3648-3658.	1.2	361
153	The acute inflammatory response in CNS following injection of prion brain homogenate or normal brain homogenate. Neuropathology and Applied Neurobiology, 1999, 25, 19-27.	1.8	50
154	Inflammatory response and retinal ganglion cell degeneration following intraocular injection of ME7. Neuropathology and Applied Neurobiology, 1999, 25, 196-206.	1.8	23
155	Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathology and Applied Neurobiology, 1999, 25, 331-340.	1.8	233
156	Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Developmental Brain Research, 1999, 117, 145-152.	2.1	663
157	Separate precursor cells for macrophages and microglia in mouse brain: immunophenotypic and immunoregulatory properties of the progeny. Journal of Neuroimmunology, 1999, 94, 127-133.	1.1	30
158	Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation1This work was supported by National Institute of Health Grant (RO1 NS33070-03) and The Brain Tumor Society.1. Journal of Neuroimmunology, 1999, 101, 111-127.	1.1	135
159	Microglia activation in a model of sleep disorder: an immunohistochemical study in the rat brain during Trypanosoma brucei infection. Brain Research, 1999, 832, 54-62.	1.1	35
160	Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood–brain barrier without inducing reactive gliosis. Brain Research, 1999, 832, 84-96.	1.1	89
161	Vacuolation in murine prion disease: an informative artifact. Current Biology, 1999, 9, R677-R679.	1.8	19
162	Estrogen and microglia: A regulatory system that affects the brain. , 1999, 40, 484-496.		135
163	Serial analysis of gene expression in a microglial cell line. , 1999, 28, 265-271.		46
164	Interleukin-1β, inducible nitric oxide synthase, and nuclear factor-κB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-γ injection. Journal of Neuroscience Research, 1999, 57, 388-398.	1.3	76

#	Article	IF	CITATIONS
165	Microglial-neuronal interactions in synaptic damage and recovery. Journal of Neuroscience Research, 1999, 58, 191-201.	1.3	153
166	Mannose receptor is present in a functional state in rat microglial cells. Journal of Neuroscience Research, 1999, 58, 387-395.	1.3	54
167	Site-specific immune regulation in the brain: Differential modulation of major histocompatibility complex (MHC) proteins in brainstem vs. hippocampus. , 1999, 405, 322-333.		40
168	Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat. Neuroscience, 1999, 92, 1475-1490.	1.1	65
169	The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience, 1999, 95, 425-432.	1.1	284
170	Innate and adaptive immune responses can be beneficial for CNS repair. Trends in Neurosciences, 1999, 22, 295-299.	4.2	326
171	The role of microglia and macrophages in the pathophysiology of the CNS. Progress in Neurobiology, 1999, 58, 233-247.	2.8	640
172	Differential expression of inflammatory mediators in rat microglia cultured from different brain regions. Molecular Brain Research, 1999, 65, 198-205.	2.5	86
173	Expression of ?2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. Journal of Neuroscience Research, 2000, 60, 401-411.	1.3	83
174	Microglial cells in the retina ofCarassius auratus: Effects of optic nerve crush. , 2000, 417, 431-447.		52
175	Biochemical analysis of proteasomes from mouse microglia: Induction of immunoproteasomes by interferon-? and lipopolysaccharide. Glia, 2000, 29, 355-365.	2.5	71
176	Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Clia, 2000, 30, 92-104.	2.5	178
177	Migration of phagocytotic cells and development of the murine intraretinal microglial network: An in vivo study using fluorescent dyes. Glia, 2000, 32, 91-101.	2.5	58
178	Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. European Journal of Neuroscience, 2000, 12, 2049-2058.	1.2	139
179	Heterogenous immunohistochemical expression of microglia-specific ionized calcium binding adaptor protein (Iba1) in the mouse olfactory bulb. Brain Research, 2000, 877, 85-90.	1.1	24
180	Regional Difference in Susceptibility to Lipopolysaccharide-Induced Neurotoxicity in the Rat Brain: Role of Microglia. Journal of Neuroscience, 2000, 20, 6309-6316.	1.7	801
181	Abundant Defective Viral Particles Budding from Microglia in the Course of Retroviral Spongiform Encephalopathy. Journal of Virology, 2000, 74, 1775-1780.	1.5	11
182	Entry, dispersion and differentiation of microglia in the developing central nervous system. Anais Da Academia Brasileira De Ciencias, 2000, 72, 91-102.	0.3	54

#	Article	IF	Citations
183	Bacterial Endotoxin Induces Changes in the Organization and Expression of Actin and Modulation of the Cell Membrane of Microglia. Medical Principles and Practice, 2000, 9, 81-90.	1.1	2
184	Local Neurochemicals and Site-Specific Immune Regulation in the CNS. Journal of Neuropathology and Experimental Neurology, 2000, 59, 177-187.	0.9	35
185	Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Progress in Brain Research, 2000, 128, 43-58.	0.9	103
186	Brain Infection by Neuroinvasive but Avirulent Murine Oncornaviruses. Journal of Virology, 2000, 74, 465-473.	1.5	20
187	The Single Intranigral Injection of LPS as a New Model for Studying the Selective Effects of Inflammatory Reactions on Dopaminergic System. Neurobiology of Disease, 2000, 7, 429-447.	2.1	373
188	Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats. Neuroscience, 2000, 97, 285-291.	1.1	79
189	Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience, 2000, 96, 195-203.	1.1	143
190	Microglial activation in the developing rat olfactory bulb. Neuroscience, 2000, 96, 807-815.	1.1	47
191	Monoclonal antibodies against porcine macrophages. Veterinary Immunology and Immunopathology, 2000, 74, 163-177.	0.5	15
192	Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer's disease. Neuroscience Letters, 2000, 285, 165-168.	1.0	89
193	Corneal macrophage infiltrates following ocular herpes simplex virus type 1 challenge vary in BALB/c mice vaccinated with different vaccines. Vaccine, 2000, 19, 1266-1273.	1.7	16
194	Microglia dysfunction in schizophrenia: an integrative theory. Medical Hypotheses, 2000, 54, 198-202.	0.8	46
195	Histamine production by cultured microglial cells of the mouse. Neuroscience Letters, 2001, 305, 181-184.	1.0	68
196	Microglial Activation and Dopaminergic Cell Injury: An <i>In Vitro</i> Model Relevant to Parkinson's Disease. Journal of Neuroscience, 2001, 21, 8447-8455.	1.7	241
197	The role of glial cells in Parkinson's disease. Current Opinion in Neurology, 2001, 14, 483-489.	1.8	303
198	Genetic determinants of neurovirulence of murine oncornaviruses. Advances in Virus Research, 2001, 56, 3-38.	0.9	14
199	Bone Marrow Chimeric Rats Reveal the Unique Distribution of Resident and Recruited Macrophages in the Contused Rat Spinal Cord. Journal of Neuropathology and Experimental Neurology, 2001, 60, 676-685.	0.9	133
200	Enhanced Expression of Iba1, Ionized Calcium-Binding Adapter Molecule 1, After Transient Focal Cerebral Ischemia In Rat Brain. Stroke, 2001, 32, 1208-1215.	1.0	515

#	Article	IF	CITATIONS
201	Activated microglia: The silent executioner in neurodegenerative disease?. Current Neurology and Neuroscience Reports, 2001, 1, 303-305.	2.0	17
202	Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathologica, 2001, 101, 249-255.	3.9	377
203	From theory to therapy: Implications from an in vitro model of ramified microglia. Microscopy Research and Technique, 2001, 54, 18-25.	1.2	33
204	Activation of microglia cells is dispensable for the induction of rat retroviral spongiform encephalopathy. Journal of NeuroVirology, 2001, 7, 501-510.	1.0	10
205	Local immune regulation in the central nervous system by substance P vs. glutamate. Journal of Neuroimmunology, 2001, 116, 136-146.	1.1	49
206	Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Research, 2001, 909, 187-193.	1.1	317
207	Use of serial analysis of gene expression (SAGE) technology. Journal of Immunological Methods, 2001, 250, 45-66.	0.6	168
208	Expression and Function of Lysophosphatidic Acid Receptors in Cultured Rodent Microglial Cells. Journal of Biological Chemistry, 2001, 276, 25946-25952.	1.6	99
209	Developmental plasticity of CNS microglia. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6295-6300.	3.3	289
210	Early origin and colonization of the developing central nervous system by microglial precursors. Progress in Brain Research, 2001, 132, 51-59.	0.9	38
211	Tenascin-R as a regulator of CNS glial cell function. Progress in Brain Research, 2001, 132, 103-114.	0.9	11
212	Time Course of Proliferation and Elimination of Microglia/Macrophages in Different Neurodegenerative Conditions. Journal of Neurotrauma, 2002, 19, 1503-1520.	1.7	38
213	Immunostimulatory CpG-DNA Activates Murine Microglia. Journal of Immunology, 2002, 168, 4854-4863.	0.4	141
214	Inflammation and Parkinsons Disease. Inflammation and Allergy: Drug Targets, 2002, 1, 221-242.	3.1	41
215	Colony-Stimulating Factor 1 Regulation of Neuroendocrine Pathways that Control Gonadal Function in Mice. Endocrinology, 2002, 143, 1413-1422.	1.4	57
216	Air Pollution and Brain Damage. Toxicologic Pathology, 2002, 30, 373-389.	0.9	404
217	Migration and Proliferation of Motile Immature Glial Cells in the Developing Cerebral Cortex of Infantile Rat Acta Histochemica Et Cytochemica, 2002, 35, 407-416.	0.8	1
218	Behavior, neurochemistry and histology after intranigral lipopolysaccharide injection. NeuroReport, 2002, 13, 277-280.	0.6	35

#	Article	IF	CITATIONS
219	TGF-β1-conditioned glial cell-derived dendritic cells inhibit expansion of MBP-reactive T cells in vitro. NeuroReport, 2002, 13, 35-39.	0.6	6
220	The Neuropathological and Behavioral Consequences of Intraspinal Microglial/Macrophage Activation. Journal of Neuropathology and Experimental Neurology, 2002, 61, 623-633.	0.9	269
221	Reciprocal Interactions Between Microglia and Neurons: From Survival to Neuropathology. Reviews in the Neurosciences, 2002, 13, 221-42.	1.4	188
222	An inflammatory review of Parkinson's disease. Progress in Neurobiology, 2002, 68, 325-340.	2.8	297
223	Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats. Molecular Brain Research, 2002, 103, 116-129.	2.5	42
224	Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience, 2002, 114, 1081-1090.	1.1	155
225	Microglial Chemokines and Chemokine Receptors. , 2002, , 289-299.		3
226	Tissue Plasminogen Activator Mediates Microglial Activation via Its Finger Domain through Annexin II. Journal of Neuroscience, 2002, 22, 3352-3358.	1.7	192
227	Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2002, 22, 782-790.	1.7	408
228	Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation?. Journal of Physiology (Paris), 2002, 96, 289-299.	2.1	72
229	Microglia activation and cell death in response to diethyl-dithiocarbamate acute administration. Journal of Comparative Neurology, 2002, 446, 135-150.	0.9	13
230	Histamine Infusion Induces a Selective Dopaminergic Neuronal Death Along with an Inflammatory Reaction in Rat Substantia Nigra. Journal of Neurochemistry, 2002, 75, 540-552.	2.1	68
231	Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. Journal of Neurochemistry, 2002, 81, 1285-1297.	2.1	614
232	Protective action of the peroxisome proliferator-activated receptor-Î ³ agonist pioglitazone in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2002, 82, 615-624.	2.1	347
233	Microglia enhance Î ² -amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. Journal of Neurochemistry, 2002, 83, 973-983.	2.1	284
234	Time Course Changes in the Dopaminergic Nigrostriatal System Following Transection of the Medial Forebrain Bundle: Detection of Oxidatively Modified Proteins in Substantia Nigra. Journal of Neurochemistry, 1997, 68, 2458-2468.	2.1	41
235	Lipopolysaccharide Intranigral Injection Induces Inflammatory Reaction and Damage in Nigrostriatal Dopaminergic System. Journal of Neurochemistry, 1998, 70, 1584-1592.	2.1	360
236	Hippocampal neurons and glia in epileptic EL mice. Journal of Neurocytology, 2002, 31, 681-692.	1.6	58

CITATION REPORT					
	C 1-	T A T I	0.11	DEDC	DT
			ON	KFP(ו או

#	Article	IF	CITATIONS
237	Glial Cell Response: A Pathogenic Factor in Parkinson's Disease. Journal of NeuroVirology, 2002, 8, 551-558.	1.0	37
238	Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell and Tissue Research, 2003, 313, 259-269.	1.5	133
239	Microglia density decreases with age in a mouse model of Huntington's disease. Glia, 2003, 43, 274-280.	2.5	57
240	Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles. Glia, 2003, 44, 129-139.	2.5	38
241	Pathogenic role of glial cells in Parkinson's disease. Movement Disorders, 2003, 18, 121-129.	2.2	246
242	PET visualization of microglia in multiple sclerosis patients using [11 C]PK11195. European Journal of Neurology, 2003, 10, 257-264.	1.7	195
243	Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. European Journal of Neuroscience, 2003, 18, 2731-2742.	1.2	214
244	Role of Microglia in Inflammation-Mediated Neurodegenerative Diseases: Mechanisms and Strategies for Therapeutic Intervention. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1-7.	1.3	1,019
245	Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation Environmental Health Perspectives, 2003, 111, 1065-1073.	2.8	240
246	Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Experimental Neurology, 2003, 184, 659-668.	2.0	62
247	Selective microglial activation in the rat rotenone model of Parkinson's disease. Neuroscience Letters, 2003, 341, 87-90.	1.0	283
248	Microglia in the olfactory bulb of rats during postnatal development and olfactory nerve injury with zinc sulfate: a lectin labeling and ultrastrucutural study. Neuroscience Research, 2003, 45, 325-333.	1.0	15
249	Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 2003, 117, 531-539.	1.1	212
250	Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience, 2003, 121, 659-666.	1.1	96
251	Novel anti-inflammatory therapy for Parkinson's disease. Trends in Pharmacological Sciences, 2003, 24, 395-401.	4.0	303
252	Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiology of Disease, 2003, 12, 35-45.	2.1	172
253	Cytoarchitectonics of non-neuronal cells in the central nervous system. Advances in Molecular and Cell Biology, 2003, 31, 1-51.	0.1	5
254	Vasoactive intestinal peptide prevents activated microgliaâ€induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB Journal, 2003, 17, 1-17.	0.2	105

#	Article	IF	CITATIONS
255	Estrogen receptor-Â mediates the brain antiinflammatory activity of estradiol. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9614-9619.	3.3	352
256	Pathogenic role of glial cells in Parkinson's disease. Advances in Molecular and Cell Biology, 2003, 31, 967-982.	0.1	7
257	Critical Role for Microglial NADPH Oxidase in Rotenone-Induced Degeneration of Dopaminergic Neurons. Journal of Neuroscience, 2003, 23, 6181-6187.	1.7	314
258	Cell Type-Specific Roles for Tissue Plasminogen Activator Released by Neurons or Microglia after Excitotoxic Injury. Journal of Neuroscience, 2003, 23, 3234-3242.	1.7	120
259	Flavonoids Influence Monocytic GTPase Activity and Are Protective in Experimental Allergic Encephalitis. Journal of Experimental Medicine, 2004, 200, 1667-1672.	4.2	166
260	Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase. FASEB Journal, 2004, 18, 589-591.	0.2	181
261	Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. American Journal of Physiology - Cell Physiology, 2004, 286, C129-C137.	2.1	244
262	Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3557-3562.	3.3	150
263	THE EFFECT OF STIMULATED MICROGLIA CONDITIONED MEDIA ON BDNF GENE EXPRESSION OF STRIATAL ASTROCYTES: QUANTIFICATION BY REAL-TIME PCR. International Journal of Neuroscience, 2004, 114, 1601-1612.	0.8	15
264	Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. Journal of Neurochemistry, 2004, 89, 822-833.	2.1	183
265	Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. Journal of Neurochemistry, 2004, 90, 89-101.	2.1	146
266	In vivo expression of aquaporin-4 by reactive microglia. Journal of Neurochemistry, 2004, 91, 891-899.	2.1	62
267	Macrophage colony stimulatory factor and interferon-gamma trigger distinct mechanisms for augmentation of beta-amyloid-induced microglia-mediated neurotoxicity. Journal of Neurochemistry, 2004, 91, 623-633.	2.1	41
268	Functional Expression and Localization of P-glycoprotein in the Central Nervous System: Relevance to the Pathogenesis and Treatment of Neurological Disorders. Pharmaceutical Research, 2004, 21, 1313-1330.	1.7	100
269	New Therapeutic Strategies and Drug Candidates for Neurodegenerative Diseases: p53 and TNF-Â Inhibitors, and GLP-1 Receptor Agonists. Annals of the New York Academy of Sciences, 2004, 1035, 290-315.	1.8	91
270	Cellular pathology of Parkinson?s disease: astrocytes, microglia and inflammation. Cell and Tissue Research, 2004, 318, 149-161.	1.5	327
271	Towards a transcriptome definition of microglial cells. Neurogenetics, 2004, 5, 95-108.	0.7	55
272	The Significance of Vasoactive Intestinal Peptide in Immunomodulation. Pharmacological Reviews, 2004, 56, 249-290.	7.1	375

	Стато	n Report	
#	Article	IF	Citations
273	Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. Journal of Leukocyte Biology, 2004, 75, 388-397.	1.5	446
274	Genetic contributions to Parkinson's disease. Brain Research Reviews, 2004, 46, 44-70.	9.1	83
275	Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiology of Disease, 2004, 16, 190-201.	2.1	187
276	Estrogen increases proteasome activity in murine microglial cells. Neuroscience Letters, 2004, 367, 60-65.	1.0	23
277	Cellular Components of Nervous Tissue. , 2004, , 1-29.		2
278	Role of Formyl Peptide Receptor–Like 1 (FPRL1/FPR2) in Mononuclear Phagocyte Responses in Alzheimer Disease. Immunologic Research, 2005, 31, 165-176.	1.3	88
279	Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Journal of Neurochemistry, 2005, 95, 1755-1765.	2.1	104
280	Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection?. Neuropathology and Applied Neurobiology, 2005, 31, 325-338.	1.8	59
281	Alcohol Brain Damage and Neuroinflammation: Is There a Connection?. Alcoholism: Clinical and Experimental Research, 2005, 29, 1080-1089.	1.4	10
282	Peripheral lipopolysaccharide induces apoptosis in the murine olfactory bulb. Brain Research, 2005, 1039, 116-129.	1.1	14
283	Involvement of proinflammatory factors, apoptosis, caspase-3 activation and Ca2+ disturbance in microglia activation-mediated dopaminergic cell degeneration. Mechanisms of Ageing and Development, 2005, 126, 1241-1254.	2.2	77
284	Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats. Neurobiology of Disease, 2005, 20, 360-371.	2.1	147
285	A pro- and an anti-inflammatory cytokine are synthetised in distinct brain macrophage cells during innate activation. Journal of Neuroimmunology, 2005, 170, 21-30.	1.1	11
286	Microglia in health and disease. Journal of Neuroscience Research, 2005, 81, 302-313.	1.3	601
287	Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. Journal of Neural Transmission, 2005, 112, 111-119.	1.4	95
288	Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons. Journal of Neural Transmission, 2005, 112, 331-347.	1.4	119
289	Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. Immunity and Ageing, 2005, 2, 11.	1.8	18
290	Distribution of microglial cells in the cerebral hemispheres of embryonic and neonatal chicks. Brazilian Journal of Medical and Biological Research, 2005, 38, 1615-1621.	0.7	8

#	Article	IF	CITATIONS
291	Transendothelial Migration of Monocytes: The Underlying Molecular Mechanisms and Consequences of HIV-1 Infection. Current HIV Research, 2005, 3, 303-317.	0.2	76
292	Microglia in the Cerebral Wall of the Human Telencephalon at Second Trimester. Cerebral Cortex, 2005, 15, 938-949.	1.6	101
293	Dopamineâ€dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB Journal, 2005, 19, 1-22.	0.2	35
294	Manganese Potentiates In Vitro Production of Proinflammatory Cytokines and Nitric Oxide by Microglia Through a Nuclear Factor kappa B-Dependent Mechanism. Toxicological Sciences, 2005, 84, 139-148.	1.4	137
295	MICROGLIAL RESPONSE TO UNILATERAL SPINAL CORD COMPRESSION IN RABBITS. Journal of Musculoskeletal Research, 2005, 09, 173-182.	0.1	7
296	Influence of Polychlorinated Biphenyls and Turning Preference on Striatal Dopamine Metabolism. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 167-183.	1.1	3
297	Amyloid β Protein Deposition in Osteopetrotic (op/op) Mice Is Reduced by Injections of Macrophage Colony Stimulating Factor. Journal of International Medical Research, 2005, 33, 654-660.	0.4	9
298	The Other Transmissible Spongiform Encephalopathies. Reviews in the Neurosciences, 2005, 16, 159-79.	1.4	2
299	α-Synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease. Brain, 2005, 128, 2654-2664.	3.7	187
300	Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiology of Disease, 2005, 18, 441-449.	2.1	96
301	Microglial cell population dynamics in the injured adult central nervous system. Brain Research Reviews, 2005, 48, 196-206.	9.1	289
302	Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience, 2005, 135, 1155-1166.	1.1	41
303	Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. Handbook of Chemical Neuroanatomy, 2005, , 1-107.	0.3	59
304	Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTPâ€induced neurotoxicity: role of TNFâ€i± 1. FASEB Journal, 2006, 20, 670-682.	0.2	213
305	Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS Journal, 2006, 8, E606-E621.	2.2	95
306	Expression mapping of tetracycline-responsive prion protein promoter: Digital atlasing for generating cell-specific disease models. NeuroImage, 2006, 33, 449-462.	2.1	26
307	Novel neuroprotection by caffeine and adenosine A2A receptor antagonists in animal models of Parkinson's disease. Journal of the Neurological Sciences, 2006, 248, 9-15.	0.3	126
308	Possibility of inducing anterior chamber-associated immune deviation by TGF-β2 treatment of monocytes isolated from Behcet's patients. Experimental Eye Research, 2006, 83, 981-988.	1.2	4

#	Article	IF	CITATIONS
309	A behavioural characterization of neonatal infection-facilitated memory impairment in adult rats. Behavioural Brain Research, 2006, 169, 39-47.	1.2	93
310	An artificial three-dimensional matrix promotes ramification in the microglial cell-line, BV-2. Neuroscience Letters, 2006, 410, 137-140.	1.0	21
311	Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 1523-1528.	2.5	62
312	Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons. Physiological Genomics, 2006, 24, 276-289.	1.0	15
313	Distribution of PK11195 binding sites in porcine brain studied by autoradiography in vitro and by positron emission tomography. Synapse, 2006, 59, 418-426.	0.6	18
314	Human Brain Parenchymal Microglia Express CD14 and CD45 and are Productively Infected by HIVâ€1 in HIVâ€1 Encephalitis. Brain Pathology, 2002, 12, 442-455.	2.1	208
315	Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. Journal of Neurochemistry, 2006, 96, 706-718.	2.1	238
316	Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. Journal of Neurochemistry, 2006, 98, 760-772.	2.1	52
317	Differential microglial regulation in the human spinal cord under normal and pathological conditions. Neuropathology and Applied Neurobiology, 2006, 32, 650-661.	1.8	13
318	Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. British Journal of Pharmacology, 2006, 148, 314-325.	2.7	114
319	Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: Immunophenotypic and functional characteristics. Journal of Neuroscience Methods, 2006, 151, 121-130.	1.3	149
320	Reactive Macrophages Increase Oxidative Stress and Alpha-Synuclein Nitration During Death of Dopaminergic Neuronal Cells in Co-Culture: Relevance to Parkinson's Disease. Neurochemical Research, 2006, 31, 85-94.	1.6	72
321	Purinoceptors in microglia and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2006, 452, 645-652.	1.3	72
322	Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease. Clinical Neuroscience Research, 2006, 6, 261-281.	0.8	305
323	Ascending neuropathology in the CNS of a mutant SOD1 mouse model of amyotrophic lateral sclerosis. Brain Research, 2006, 1096, 180-195.	1.1	23
324	Development of microglia in the cerebral white matter of the human fetus and infant. Journal of Comparative Neurology, 2006, 497, 199-208.	0.9	169
325	Pathological dynamics of activated microglia following medial forebrain bundle transection. Glia, 2006, 53, 92-102.	2.5	101
326	Characterization of human monocyte-derived microglia-like cells. Clia, 2006, 54, 183-192.	2.5	58

#	Article	IF	CITATIONS
327	Microglial morphology and its transformation after challenge by extracellular ATP in vitro. Journal of Neuroscience Research, 2006, 83, 91-101.	1.3	43
328	Microglia in the Aging Brain. Journal of Neuropathology and Experimental Neurology, 2006, 65, 199-203.	0.9	294
329	New Strategies in Evaluation of Therapeutic Efficacy in Fibromyalgia Syndrome. Current Pharmaceutical Design, 2006, 12, 67-71.	0.9	11
330	An Inflammatory Pathomechanism for Parkinsons Disease?. Current Medicinal Chemistry, 2006, 13, 591-602.	1.2	60
331	PPAR-γ Agonists as Regulators of Microglial Activation and Brain Inflammation. Current Pharmaceutical Design, 2006, 12, 93-109.	0.9	191
332	Up-regulation of Microglial CD11b Expression by Nitric Oxide. Journal of Biological Chemistry, 2006, 281, 14971-14980.	1.6	180
333	Multidrug Resistance-Associated Proteins: Expression and Function in the Central Nervous System. Pharmacological Reviews, 2006, 58, 140-161.	7.1	275
334	Urocortin Modulates Inflammatory Response and Neurotoxicity Induced by Microglial Activation. Journal of Immunology, 2007, 179, 6204-6214.	0.4	53
335	Actin-binding Proteins Coronin-1a and IBA-1 are Effective Microglial Markers for Immunohistochemistry. Journal of Histochemistry and Cytochemistry, 2007, 55, 687-700.	1.3	214
336	HIV-1 Vpr Causes Neuronal Apoptosis and In Vivo Neurodegeneration. Journal of Neuroscience, 2007, 27, 3703-3711.	1.7	126
337	TNF-α Inhibition as a Treatment Strategy for Neurodegenerative Disorders: New Drug Candidates and Targets. Current Alzheimer Research, 2007, 4, 378-385.	0.7	178
338	Effect of Allopurinol Supplementation on Nitric Oxide Levels in Asphyxiated Newborns. Pediatric Neurology, 2007, 36, 17-24.	1.0	69
339	Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiology of Aging, 2007, 28, 894-906.	1.5	119
340	Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology, 2007, 53, 496-504.	2.0	90
341	Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology, 2007, 53, 832-841.	2.0	38
342	TRPM7 and TRPM2—Candidate susceptibility genes for Western Pacific ALS and PD?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 822-835.	1.8	77
343	Non-steroidal anti-inflammatory drugs in Parkinson's disease. Experimental Neurology, 2007, 205, 295-312.	2.0	212
344	The opioid receptor antagonist, naloxone, protects spinal motor neurons in a murine model of alphavirus encephalomyelitis. Experimental Neurology, 2007, 205, 461-470.	2.0	22

#	Article	IF	CITATIONS
345	Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology, 2007, 208, 1-25.	2.0	491
346	Parkinson disease IgG and C5a-induced synergistic dopaminergic neurotoxicity: Role of microglia. Neurochemistry International, 2007, 50, 39-50.	1.9	52
347	Increased catechol-O-methyltransferase activity and protein expression in OX-42-positive cells in the substantia nigra after lipopolysaccharide microinfusion. Neurochemistry International, 2007, 51, 412-423.	1.9	20
348	The Immune System of the Brain. NeuroImmune Biology, 2007, , 127-144.	0.2	2
349	Neuroinflammation and Parkinson's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 83, 535-551.	1.0	63
350	Redox-reactive autoantibodies in Alzheimer's patients' cerebrospinal fluids: Preliminary studies. Autoimmunity, 2007, 40, 390-396.	1.2	11
351	Exacerbation of Dopaminergic Terminal Damage in a Mouse Model of Parkinson's Disease by the G-Protein-Coupled Receptor Protease-Activated Receptor 1. Molecular Pharmacology, 2007, 72, 653-664.	1.0	46
352	Manganese chloride stimulates rat microglia to release hydrogen peroxide. Toxicology Letters, 2007, 173, 88-100.	0.4	66
353	Osteopetrotic (op/op) mice have reduced microglia, no Aβ deposition, and no changes in dopaminergic neurons. Journal of Neuroinflammation, 2007, 4, 31.	3.1	28
354	Death in the substantia nigra: a motor tragedy. Expert Review of Neurotherapeutics, 2007, 7, 677-697.	1.4	54
355	Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007, 55, 453-462.	2.5	1,778
356	Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Clia, 2007, 55, 1334-1347.	2.5	78
357	Optimized isolation enables <i>ex vivo</i> analysis of microglia from various central nervous system regions. Glia, 2007, 55, 1374-1384.	2.5	69
358	Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. Journal of Neuroscience Research, 2007, 85, 1010-1017.	1.3	202
359	Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. Journal of Neuroscience Research, 2007, 85, 1694-1703.	1.3	66
360	Microglia used as vehicles for both inducible thymidine kinase gene therapy and MRI contrast agents for glioma therapy. Cancer Gene Therapy, 2007, 14, 724-737.	2.2	37
361	Neuroprotective Effect of Exogenous Microglia in Global Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 488-500.	2.4	187
362	Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Reviews Neuroscience, 2007, 8, 57-69.	4.9	3,477

ARTICLE IF CITATIONS Microglial activation in white matter lesions and nonlesional white matter of ageing brains. 363 1.8 114 Neuropathology and Applied Neurobiology, 2007, 33, 670-683. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the 364 2.1 nigrostriatal system. Journal of Neurochemistry, 2007, 100, 1375-1386. Rotenone-induced neurotoxicity of THP-1 cells requires production of reactive oxygen species and 365 1.1 12 activation of phosphatidylinositol 3-kinase. Brain Research, 2007, 1153, 12-19. Cytotoxicity of paraquat in microglial cells: Involvement of PKCÎ'- and ERK1/2-dependent NADPH oxidase. 1.1 366 Brain Research, 2007, 1167, 129-139. Induction of microglial reactive oxygen species production by the organochlorinated pesticide 367 1.1 40 dieldrin. Brain Research, 2007, 1186, 267-274. Neuroimmunopathology in a murine model of neuropsychiatric lupus. Brain Research Reviews, 2007, 368 9.1 54, 67-79. 369 Do glial cells control pain?. Neuron Glia Biology, 2007, 3, 255-268. 2.0 183 Divergent Roles for Tumor Necrosis Factor-α in the Brain. Journal of NeuroImmune Pharmacology, 370 2.1 196 2007, 2, 140-153. CD200–CD200R Regulation of Microglia Activation in the Pathogenesis of Parkinson's Disease. Journal 371 2.1 59 of NeuroImmune Pharmacology, 2007, 2, 259-264. A Rose by Any Other Name? The Potential Consequences of Microglial Heterogeneity During CNS 2.1 104 Health and Disease. Neurotherapeutics, 2007, 4, 571-579. Phosphorylation of Extracellular Signal-Regulated Kinases 1/2 Predominantly Enhanced in the Microglia of the Rat Spinal Cord Following Lipopolysaccharide Injection. Cellular and Molecular 373 1.7 1 Neurobiology, 2008, 28, 867-874. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: 374 implications for Parkinson's disease. Acta Neuropathologica, 2008, 116, 47-55. Increased number of microglia in the brain of severe combined immunodeficient (SCID) mice. 375 0.8 9 Histochemistry and Cell Biology, 2008, 130, 693-697. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced 1.3 291 by neuroinflammation. Journal of Neuroscience Research, 2008, 86, 403-410. Embryonic and postnatal development of microglial cells in the mouse retina. Journal of Comparative 377 0.9 166 Neurology, 2008, 506, 224-239. Regionâ€specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia, 2008, 378 56, 888-894. Differential neutrophil infiltration contributes to regional differences in brain inflammation in the 379 2.567 substantia nigra pars compacta and cortex. Glia, 2008, 56, 1039-1047. Lipopolysaccharideâ€induced downâ€regulation of Ca²⁺ releaseâ€activated Ca²⁺ currents (<i>I</i>_{CRAC}) but not Ca²⁺â€activated TRPM4â€like currents 1.3 (<i>1</i>_{CAN}) in cultured mouse microglial cells. Journal of Physiology, 2008, 586, 427-439.

#	Article	IF	CITATIONS
381	Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Molecular Psychiatry, 2008, 13, 1043-1053.	4.1	14
382	Microglial activation is not prevented by tacrolimus but dopamine neuron damage is reduced in a rat model of Parkinson's disease progression. Brain Research, 2008, 1216, 78-86.	1.1	12
383	Prenatal inflammatory effects on nigrostriatal development in organotypic cultures. Brain Research, 2008, 1233, 160-167.	1.1	14
384	Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. Journal of Neuroimmunology, 2008, 195, 1-6.	1.1	35
385	Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. Journal of Neuroimmunology, 2008, 200, 90-99.	1.1	104
386	Neuroinflammation in Early Stages of Alzheimer's Disease and Parkinson's Disease. , 2008, , 113-121.		0
387	The Inflammatory Component of Neurodegenerative Diseases. , 2008, , 395-406.		0
388	Particulate matter, oxidative stress and neurotoxicity. NeuroToxicology, 2008, 29, 479-488.	1.4	164
389	From bone marrow to microglia: barriers and avenues. Trends in Immunology, 2008, 29, 227-234.	2.9	147
390	Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nuclear Medicine and Biology, 2008, 35, 327-334.	0.3	25
391	Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 1243-1250.	2.5	161
392	Gazing into the future: Parkinson's disease gene therapeutics to modify natural history. Experimental Neurology, 2008, 209, 101-113.	2.0	9
393	Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain, Behavior, and Immunity, 2008, 22, 301-311.	2.0	349
394	The Complex Role of Nitric Oxide in the Pathophysiology of Focal Cerebral Ischemia. Brain Pathology, 1994, 4, 49-57.	2.1	161
395	Dual Role of CD38 in Microglial Activation and Activation-Induced Cell Death. Journal of Immunology, 2008, 181, 92-103.	0.4	85
396	Neuroinflammation and Oxidation/Nitration of α-Synuclein Linked to Dopaminergic Neurodegeneration. Journal of Neuroscience, 2008, 28, 7687-7698.	1.7	385
397	Neuroprotective Effects of Naloxone against Light-Induced Photoreceptor Degeneration through Inhibiting Retinal Microglial Activation. , 2008, 49, 2589.		73
398	Ly6c+ "inflammatory monocytes―are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. Journal of Experimental Medicine, 2008, 205, 2319-2337.	4.2	289

#	Article	IF	CITATIONS
399	Phosphoinositides Regulate P2X ₄ ATP-Gated Channels through Direct Interactions. Journal of Neuroscience, 2008, 28, 12938-12945.	1.7	78
400	The Inflammatory Response in Alzheimer's Disease. Journal of Periodontology, 2008, 79, 1535-1543.	1.7	76
402	Regulator of G-Protein Signaling 10 Promotes Dopaminergic Neuron Survival via Regulation of the Microglial Inflammatory Response. Journal of Neuroscience, 2008, 28, 8517-8528.	1.7	87
403	Neuroinflammation and Peripheral Immune Infiltration in Parkinson's Disease: An Autoimmune Hypothesis. Cell Transplantation, 2008, 17, 363-372.	1.2	104
404	Can we prevent parkinson's disease?. Frontiers in Bioscience - Landmark, 2009, Volume, 1642.	3.0	4
405	Developmental Exposure to Manganese Increases Adult Susceptibility to Inflammatory Activation of Glia and Neuronal Protein Nitration. Toxicological Sciences, 2009, 112, 405-415.	1.4	52
406	Innate and Adaptive Immunity for the Pathobiology of Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2151-2166.	2.5	114
407	Kinetics of Microglial Activation and Degeneration of Dopamine-Containing Neurons in a Rat Model of Parkinson Disease Induced by 6-Hydroxydopamine. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1092-1102.	0.9	33
408	Are Circulating Monocytes as Microglia Orthologues Appropriate Biomarker Targets for Neuronal Diseases? (Supplementry Table). Central Nervous System Agents in Medicinal Chemistry, 2009, 9, 307-330.	0.5	36
409	Positron Emission Tomography Imaging of Neuroinflammation. Journal of Child Neurology, 2009, 24, 1190-1199.	0.7	31
410	CD4 microglial expression correlates with spontaneous clinical improvement in the acute Lewis rat EAE model. Journal of Neuroimmunology, 2009, 209, 65-80.	1.1	45
411	Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-1². Journal of Neuroimmunology, 2009, 210, 3-12.	1.1	339
412	Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system. Virology, 2009, 387, 117-126.	1.1	31
413	Neuroprotective function in brain microglia. Current Anaesthesia and Critical Care, 2009, 20, 142-147.	0.3	9
414	Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. Journal of Neuroscience Research, 2009, 87, 1913-1921.	1.3	76
415	Selective reduction in microglia density and function in the white matter of colonyâ€stimulating factorâ€1–deficient mice. Journal of Neuroscience Research, 2009, 87, 2686-2695.	1.3	57
416	The Multifaceted Profile of Activated Microglia. Molecular Neurobiology, 2009, 40, 139-156.	1.9	279
417	Circulating interleukin-10 and interleukin-12 in Parkinson's disease. Acta Neurologica Scandinavica, 2009, 119, 332-337.	1.0	91

#	Article	IF	CITATIONS
418	Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X‣inked Adrenoleukodystrophy. Brain Pathology, 2010, 20, 857-862.	2.1	116
419	Attenuation of iNOS and COX2 by blueberry polyphenols is mediated through the suppression of NF-κB activation. Journal of Functional Foods, 2009, 1, 274-283.	1.6	57
420	Rapid isolation and culture of primary microglia from adult mouse spinal cord. Journal of Neuroscience Methods, 2009, 183, 223-237.	1.3	36
421	Preferential sensitivity of human dopaminergic neurons to gp120-induced oxidative damage. Journal of NeuroVirology, 2009, 15, 401-410.	1.0	31
423	Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: Role of free radical generation. Experimental Neurology, 2009, 217, 219-230.	2.0	63
424	Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV2 microglia via the MAP kinase and NF-I®B pathways. Food and Chemical Toxicology, 2009, 47, 410-417.	1.8	104
425	IL-1/IL-1ra balance in the brain revisited – Evidence from transgenic mouse models. Brain, Behavior, and Immunity, 2009, 23, 573-579.	2.0	66
426	Microglial responses to dopamine in a cell culture model of Parkinson's disease. Neurobiology of Aging, 2009, 30, 1805-1817.	1.5	90
427	Distinct domanial and lamellar distribution of clustered lipofuscin granules in microglia in the main olfactory bulb of young mice. Neuroscience Research, 2009, 65, 286-295.	1.0	6
428	Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. NeuroToxicology, 2009, 30, 785-793.	1.4	88
429	Microglia: gatekeepers of central nervous system immunology. Journal of Leukocyte Biology, 2009, 85, 352-370.	1.5	275
430	Microglial Physiology: Unique Stimuli, Specialized Responses. Annual Review of Immunology, 2009, 27, 119-145.	9.5	1,562
431	The Neuroimmunological Basis of Behavior and Mental Disorders. , 2009, , .		15
432	White Matter Structure. , 2009, , 74-103.		9
433	Effects of chronic low dose rotenone treatment on human microglial cells. Molecular Neurodegeneration, 2009, 4, 55.	4.4	36
434	Brain Inflammation and the Neuronal Fate: from Neurogenesis to Neurodegeneration. , 2009, , 319-344.		0
435	Microglia: biology and pathology. Acta Neuropathologica, 2010, 119, 89-105.	3.9	625
436	The role of microglia in amyloid clearance from the AD brain. Journal of Neural Transmission, 2010, 117, 949-960.	1.4	507

ARTICLE IF CITATIONS # Applications of Positron Emission Tomography in the Newborn Nursery. Seminars in Perinatology, 437 1.1 26 2010, 34, 39-45. Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity. Journal of Neuroimmunology, 2010, 225, 43-51. 1.1 Regional topographical differences of canine microglial immunophenotype and function in the 439 17 1.1 healthy spinal cord. Journal of Neuroimmunology, 2010, 227, 144-152. Neuroinflammation in Parkinson's disease: Its role in neuronal death and implications for therapeutic 440 879 intervention. Neurobiology of Disease, 2010, 37, 510-518. Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in 441 1.3 263 mice. Molecular Brain, 2010, 3, 12. Microglia dynamics and function in the CNS. Current Opinion in Neurobiology, 2010, 20, 595-600. Systemic administration of lipopolysaccharide induces molecular and morphological alterations in 443 1.1 56 the hippocampus. Brain Research, 2010, 1356, 85-94. Nanoparticle phagocytosis and cellular stress: involvement in cellular imaging and in gene therapy 1.6 against glioma. NMR in Biomedicine, 2010, 23, 88-96. 446 Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics, 2010, 7, 354-365. 2.1 747 The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic Pain. Pain 447 284 Practice, 2010, 10, 167-184. Agingâ€dependent changes of microglial cells and their relevance for neurodegenerative disorders. 448 211 2.1 Journal of Neurochemistry, 2010, 112, 1099-1114. The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. Journal of Neurochemistry, 2.1 88 2010, 112, 1368-1385. Tollâ€like receptor 4 in CNS pathologies. Journal of Neurochemistry, 2010, 114, 13-27. 450 2.1 279 Microglia., 0, , 15-26. CD8+ T cell-mediated autoimmune diseases of the CNS., 0, , 87-96. 453 0 Annexin A1: A Central Player in the Anti-Inflammatory and Neuroprotective Role of Microglia. Journal 173 of Immunology, 2010, 185, 6317-6328. GLIAL TRANSCRIPTS AND IMMUNE-CHALLENGED GLIA IN THE SUPRACHIASMATIC NUCLEUS OF YOUNG AND 457 0.9 26 AGED MICE. Chronobiology International, 2010, 27, 742-767. Assessing Activation States in Microglia. CNS and Neurological Disorders - Drug Targets, 2010, 9, 458 347 174-191.

#	Article	IF	CITATIONS
459	Adeno-associated Virus Gene Therapy With Cholesterol 24-Hydroxylase Reduces the Amyloid Pathology Before or After the Onset of Amyloid Plaques in Mouse Models of Alzheimer's Disease. Molecular Therapy, 2010, 18, 44-53.	3.7	166
460	Microglia and Central Nervous System Immunity. Neurosurgery Clinics of North America, 2010, 21, 43-51.	0.8	54
461	Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells. Translational Oncology, 2010, 3, 380-388.	1.7	68
462	Modeling neuroinflammatory pathogenesis of Parkinson's disease. Progress in Brain Research, 2010, 184, 113-132.	0.9	83
463	Microglia in neurodegenerative disease. Nature Reviews Neurology, 2010, 6, 193-201.	4.9	1,354
464	Effects of Caffeine in Parkinson's Disease: From Neuroprotection to the Management of Motor and Non-Motor Symptoms. Journal of Alzheimer's Disease, 2010, 20, S205-S220.	1.2	128
465	The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience, 2010, 17, 6-10.	0.8	301
466	Leptin modulates cell morphology and cytokine release in microglia. Brain, Behavior, and Immunity, 2010, 24, 358-365.	2.0	102
467	Microglia and neuroprotection: From in vitro studies to therapeutic applications. Progress in Neurobiology, 2010, 92, 293-315.	2.8	226
468	Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. Neurobiology of Aging, 2010, 31, 937-952.	1.5	60
469	Neurotoxicity by microglia: Mechanisms and potential therapeutic strategy. Clinical and Experimental Neuroimmunology, 2010, 1, 12-21.	0.5	62
470	Nuclear Receptors, Inflammation, and Neurodegenerative Diseases. Advances in Immunology, 2010, 106, 21-59.	1.1	32
471	Conditional Deletion of Neuronal Cyclin-Dependent Kinase 5 in Developing Forebrain Results in Microglial Activation and Neurodegeneration. American Journal of Pathology, 2010, 176, 320-329.	1.9	41
472	Perspectives of Stem Cells. , 2010, , .		0
473	Immunity, Aging, and Geriatric Depression. Psychiatric Clinics of North America, 2011, 34, 437-449.	0.7	19
474	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102.	1.6	25
475	Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biology, 2011, 7, 99-108.	2.0	170
476	The Role of Microglia in the Healthy Brain: Figure 1 Journal of Neuroscience, 2011, 31, 16064-16069.	1.7	800

#	Article	IF	CITATIONS
477	Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: Differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain, Behavior, and Immunity, 2011, 25, 850-862.	2.0	61
478	Physiology of Microglia. Physiological Reviews, 2011, 91, 461-553.	13.1	2,990
479	Region-specific distribution of \hat{l}^2 -amyloid peptide and cytokine expression in TgCRND8 mice. Neuroscience Letters, 2011, 492, 5-10.	1.0	16
480	Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. NeuroToxicology, 2011, 32, 215-226.	1.4	74
481	Gene–environment interactions: Key to unraveling the mystery of Parkinson's disease. Progress in Neurobiology, 2011, 94, 1-19.	2.8	156
482	Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiology of Aging, 2011, 32, 85-102.	1.5	128
483	Microglia in development: linking brain wiring to brain environment. Neuron Glia Biology, 2011, 7, 77-83.	2.0	104
484	Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor \hat{l}_{\pm} in the nigrostriatal dopaminergic circuit of adult mice. Experimental Neurology, 2011, 227, 237-251.	2.0	57
485	Microglia in the normally aged hippocampus. Laboratory Animal Research, 2011, 27, 181.	1.1	22
486	Neuroinflammation and cell therapy for Parkinson s disease. Frontiers in Bioscience - Scholar, 2011, S3, 1407-1420.	0.8	0
487	Lipopolysaccharide Animal Models for Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-7.	0.6	117
488	Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission. PLoS ONE, 2011, 6, e15973.	1.1	278
489	Lack of cuprizone-induced demyelination in the murine spinal cord despite oligodendroglial alterations substantiates the concept of site-specific susceptibilities of the central nervous system. Neuropathology and Applied Neurobiology, 2011, 37, 676-684.	1.8	32
490	Microglial cell origin and phenotypes in health and disease. Nature Reviews Immunology, 2011, 11, 775-787.	10.6	897
491	Prenatal LPS increases Inflammation in the Substantia Nigra of <i>Gdnf</i> Heterozygous Mice. Brain Pathology, 2011, 21, 330-348.	2.1	16
492	Regional difference in inflammatory response to LPS-injection in the brain: Role of microglia cell density. Journal of Neuroimmunology, 2011, 238, 44-51.	1.1	24
493	Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease. , 2011, 132, 280-299.		170
494	A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus. Experimental Neurology, 2011, 232, 318-328.	2.0	26

#	Article	IF	CITATIONS
495	Impaired CD200–CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: Roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radical Biology and Medicine, 2011, 50, 1094-1106.	1.3	85
496	Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathologica, 2011, 121, 675-693.	3.9	164
497	Role of glial cells in neurotoxin-induced animal models of Parkinson's disease. Neurological Sciences, 2011, 32, 1-7.	0.9	50
498	Chronic Dichlorvos Exposure: Microglial Activation, Proinflammatory Cytokines and Damage to Nigrostriatal Dopaminergic System. NeuroMolecular Medicine, 2011, 13, 251-265.	1.8	32
499	啿,细胞和é~įå°"èŒ ^{··} æµ·é»~ç— Neuroscience Bulletin, 2011, 27, 115-122.	1.5	44
500	Immunomodulatory Properties of Kappa Opioids and Synthetic Cannabinoids in HIV-1 Neuropathogenesis. Journal of NeuroImmune Pharmacology, 2011, 6, 528-539.	2.1	18
501	Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. Journal of Neuroinflammation, 2011, 8, 129.	3.1	90
502	Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. Journal of Neuroinflammation, 2011, 8, 44.	3.1	86
503	Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. Journal of Neuroinflammation, 2011, 8, 72.	3.1	49
504	Clia: Initiators and progressors of pathology in Parkinson's disease. Movement Disorders, 2011, 26, 6-17.	2.2	383
505	F4/80 and the related adhesionâ€GPCRs. European Journal of Immunology, 2011, 41, 2472-2476.	1.6	132
506	Central nervous system cytokine gene expression: Modulation by lead. Journal of Biochemical and Molecular Toxicology, 2011, 25, 41-54.	1.4	56
507	Inflammatory Animal Model for Parkinson's Disease: The Intranigral Injection of LPS Induced the Inflammatory Process along with the Selective Degeneration of Nigrostriatal Dopaminergic Neurons. ISRN Neurology, 2011, 2011, 1-16.	1.5	36
508	Microglia Phenotype Diversity. CNS and Neurological Disorders - Drug Targets, 2011, 10, 108-118.	0.8	209
509	Neonatal rat microglia derived from different brain regions have distinct activation responses. Neuron Glia Biology, 2011, 7, 5-16.	2.0	33
510	Microglia. Toxicologic Pathology, 2011, 39, 103-114.	0.9	86
511	Gene Deletion of nos2 Protects Against Manganese-Induced Neurological Dysfunction in Juvenile Mice. Toxicological Sciences, 2012, 126, 183-192.	1.4	34
512	Neonatal Bone Marrow Transplantation in MPS IIIA Mice. JIMD Reports, 2012, 8, 121-132.	0.7	20

#	Article	IF	CITATIONS
513	Inflammation and Adaptive Immunity in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009381-a009381.	2.9	221
514	Innate Inflammation in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009373-a009373.	2.9	97
515	Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Review of Neurotherapeutics, 2012, 12, 409-420.	1.4	8
516	Naloxone Inhibition of Lipopolysaccharide-Induced Activation of Retinal Microglia is Partly Mediated via the p38 Mitogen Activated Protein Kinase Signalling Pathway. Journal of International Medical Research, 2012, 40, 1438-1448.	0.4	15
517	Microglia Modulate Hippocampal Neural Precursor Activity in Response to Exercise and Aging. Journal of Neuroscience, 2012, 32, 6435-6443.	1.7	186
518	The Involvement of Microglial Cells in Japanese Encephalitis Infections. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	46
519	Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Current Neuropharmacology, 2012, 10, 303-310.	1.4	28
520	Microglial Activation – Tuning and Pruning Adult Neurogenesis. Frontiers in Pharmacology, 2012, 3, 41.	1.6	178
521	Imaging of microglia in patients with neurodegenerative disorders. Frontiers in Pharmacology, 2012, 3, 96.	1.6	98
522	Microglial activation in the injured and healthy brain: What are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience, 2012, 225, 162-171.	1.1	144
523	Inflammation in Parkinson's Disease. Advances in Protein Chemistry and Structural Biology, 2012, 88, 69-132.	1.0	154
524	1.124 DISTRIBUTION OF MICROGLIA IN THE POSTNATAL MURINE NIGROSTRIATAL SYSTEM. Parkinsonism and Related Disorders, 2012, 18, S41.	1.1	0
525	Brain dendritic cells: biology and pathology. Acta Neuropathologica, 2012, 124, 599-614.	3.9	147
526	Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Experimental Neurology, 2012, 237, 318-334.	2.0	194
527	Microglia-inhibiting activity of Parkinson's disease drug amantadine. Neurobiology of Aging, 2012, 33, 2145-2159.	1.5	48
528	Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience, 2012, 216, 133-142.	1.1	117
529	Involvement of dopaminergic neuronal cystatin C in neuronal injuryâ€induced microglial activation and neurotoxicity. Journal of Neurochemistry, 2012, 122, 752-763.	2.1	36
530	AGEs–RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells. Neurochemistry International, 2012, 60, 640-651.	1.9	32

#	Article	IF	CITATIONS
531	Differential plasticity of microglial cells in the rostrocaudal neuraxis of the accessory olfactory bulb of female mice following mating and stud male exposure. Neuroscience Letters, 2012, 514, 116-121.	1.0	1
532	Microglia in the developing brain: A potential target with lifetime effects. NeuroToxicology, 2012, 33, 191-206.	1.4	204
533	Central metabolite changes and activation of microglia after peripheral interleukin-2 challenge. Brain, Behavior, and Immunity, 2012, 26, 277-283.	2.0	19
534	Age related changes in microglial phenotype vary between CNS regions: Grey versus white matter differences. Brain, Behavior, and Immunity, 2012, 26, 754-765.	2.0	194
535	Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson's disease. Behavioural Brain Research, 2012, 226, 386-396.	1.2	86
536	Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation?. Behavioural Brain Research, 2012, 231, 130-137.	1.2	136
537	Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 2012, 87, 10-20.	1.4	760
538	Neuroimmune mechanisms in fetal alcohol spectrum disorder. Developmental Neurobiology, 2012, 72, 1302-1316.	1.5	31
539	Tollâ€like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Clia, 2012, 60, 1930-1943.	2.5	85
540	Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11C-[R]-PK11195 PET. Journal of Neuroinflammation, 2012, 9, 232.	3.1	77
541	Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. Journal of Neuroinflammation, 2012, 9, 247.	3.1	141
542	Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer's disease-like amyloid pathology. Journal of Neuroinflammation, 2012, 9, 62.	3.1	89
543	The changing phenotype of microglia from homeostasis to disease. Translational Neurodegeneration, 2012, 1, 9.	3.6	168
544	The NeuroImmune System in Alzheimer's Disease: The Glass is Half Full. Journal of Alzheimer's Disease, 2012, 33, S295-S302.	1.2	23
545	An Automated Method to Quantify Microglia Morphology and Application to Monitor Activation State Longitudinally In Vivo. PLoS ONE, 2012, 7, e31814.	1.1	205
546	Modelling Neuroinflammation In Vitro: A Tool to Test the Potential Neuroprotective Effect of Anti-Inflammatory Agents. PLoS ONE, 2012, 7, e45227.	1.1	98
547	Current Understanding of the Glial Response to Disorders of the Aging CNS. Frontiers in Pharmacology, 2012, 3, 95.	1.6	4
548	Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study. Parkinson's Disease, 2012, 2012, 1-16.	0.6	51

#	Article	IF	CITATIONS
549	Quercetin and Sesamin Protect Dopaminergic Cells from MPP ⁺ -Induced Neuroinflammation in a Microglial (N9)-Neuronal (PC12) Coculture System. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-11.	1.9	112
550	Aluminum Induced Immunoexcitotoxicity in Neurodevelopmental and Neurodegenerative Disorders. Current Inorganic Chemistry, 2012, 2, 46-53.	0.2	37
551	Assessing the Influence of Neuroinflammation on Neurogenesis: In Vitro Models Using Neural Stem Cells and Microglia as Valuable Research Tools. , 0, , .		0
552	Cerebral inflammation after traumatic injury: regulation of secondary damage, repair or both?. , 0, , 155-168.		2
554	Role of glial cells in manganese neurotoxicity. Journal of Applied Toxicology, 2012, 32, 310-317.	1.4	52
555	Decreased microglial activation in MS patients treated with glatiramer acetate. Journal of Neurology, 2012, 259, 1199-1205.	1.8	76
556	Dysregulated neuronal–microglial cross-talk during aging, stress and inflammation. Experimental Neurology, 2012, 233, 40-48.	2.0	138
557	ATP receptors gate microglia signaling in neuropathic pain. Experimental Neurology, 2012, 234, 354-361.	2.0	123
558	Commentary on Landry et al.: "Propentofylline, a CNS glial modulator, does not decrease pain in post-herpetic neuralgia patients: In vitro evidence for differential responses in human and rodent microglia and macrophages― Experimental Neurology, 2012, 234, 351-353.	2.0	19
559	Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson's disease. Journal of Neuroimmunology, 2012, 246, 43-50.	1.1	36
560	Olfaction in Parkinson's disease and related disorders. Neurobiology of Disease, 2012, 46, 527-552.	2.1	351
561	Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiology of Disease, 2012, 47, 407-415.	2.1	136
562	An optimized protocol for the acute isolation of human microglia from autopsy brain samples. Glia, 2012, 60, 96-111.	2.5	56
563	Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia, 2012, 60, 541-558.	2.5	278
564	Role of Secondary Mediators in Caffeine-Mediated Neuroprotection in Maneb- and Paraquat-Induced Parkinson's Disease Phenotype in the Mouse. Neurochemical Research, 2012, 37, 875-884.	1.6	56
565	Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids, 2012, 42, 207-219.	1.2	44
566	Microglia as modulators of cognition and neuropsychiatric disorders. Glia, 2013, 61, 62-70.	2.5	152
567	Development and homeostasis of "resident―myeloid cells: The case of the microglia. Clia, 2013, 61, 112-120.	2.5	151

#	Article	IF	CITATIONS
568	Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. Journal of Neuroinflammation, 2013, 10, 86.	3.1	78
569	A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. Journal of Neuroinflammation, 2013, 10, 4.	3.1	399
570	Microglial Phenotype and Adaptation. Journal of NeuroImmune Pharmacology, 2013, 8, 807-823.	2.1	144
571	β-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-α in BV2 microglial cells via suppression of the NF-κB and MAPK pathway. Toxicology in Vitro, 2013, 27, 782-787.	1.1	41
572	Microglia. Methods in Molecular Biology, 2013, , .	0.4	3
573	From development to dysfunction: Microglia and the complement cascade in CNS homeostasis. Ageing Research Reviews, 2013, 12, 749-756.	5.0	82
574	Microglia: actively surveying and shaping neuronal circuit structure and function. Trends in Neurosciences, 2013, 36, 209-217.	4.2	403
575	Brain Edema XV. Acta Neurochirurgica Supplementum, 2013, , .	0.5	2
576	Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiology of Learning and Memory, 2013, 105, 40-53.	1.0	209
577	Differential distribution and activation of microglia in the brain of male C57BL/6J mice. Brain Structure and Function, 2013, 218, 1051-1060.	1.2	75
578	Distribution of microglia in the postnatal murine nigrostriatal system. Cell and Tissue Research, 2013, 351, 373-382.	1.5	47
579	Impact of Prenatal Immune System Disturbances on Brain Development. Journal of NeuroImmune Pharmacology, 2013, 8, 79-86.	2.1	10
580	Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 2013, 32, 70-85.	2.0	529
582	Distinct activation profiles in microglia of different ages: A systematic study in isolated embryonic to aged microglial cultures. Neuroscience, 2013, 254, 185-195.	1.1	44
583	The microglial sensome revealed by direct RNA sequencing. Nature Neuroscience, 2013, 16, 1896-1905.	7.1	1,244
584	Complex II of the Mitochondrial Respiratory Chain Is the Key Mediator of Divalent Manganese-Induced Hydrogen Peroxide Production in Microglia. Toxicological Sciences, 2013, 132, 298-306.	1.4	48
585	Neutrophils Express Oncomodulin and Promote Optic Nerve Regeneration. Journal of Neuroscience, 2013, 33, 14816-14824.	1.7	166
586	Down-regulation of microglial activity attenuates axotomized nigral dopaminergic neuronal cell loss. BMC Neuroscience, 2013, 14, 112.	0.8	8

#	Article	IF	CITATIONS
587	Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. Journal of Neuroinflammation, 2013, 10, 114.	3.1	108
588	Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity. Journal of Neuroinflammation, 2013, 10, 108.	3.1	54
589	Central nervous system damage due to acute paraquat poisoning: An experimental study with rat model. NeuroToxicology, 2013, 35, 62-70.	1.4	33
590	Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death and Differentiation, 2013, 20, 1546-1557.	5.0	88
591	The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain, Behavior, and Immunity, 2013, 31, 105-114.	2.0	465
592	Inflammation and α-Synuclein's Prion-like Behavior in Parkinson's Disease—Is There a Link?. Molecular Neurobiology, 2013, 47, 561-574.	1.9	186
593	Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitology Research, 2013, 112, 207-214.	0.6	22
594	Pesticides, Microglial NOX2, and Parkinson's Disease. Journal of Biochemical and Molecular Toxicology, 2013, 27, 137-149.	1.4	50
595	Microglia: New Roles for the Synaptic Stripper. Neuron, 2013, 77, 10-18.	3.8	949
596	Review: Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathology and Applied Neurobiology, 2013, 39, 19-34.	1.8	613
597	Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease. Neurochemistry International, 2013, 62, 803-819.	1.9	250
598	Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nature Communications, 2013, 4, 1770.	5.8	73
599	Classical and unconventional pathways of vesicular release in microglia. Glia, 2013, 61, 1003-1017.	2.5	72
600	SPARC Regulates Microgliosis and Functional Recovery following Cortical Ischemia. Journal of Neuroscience, 2013, 33, 4468-4481.	1.7	59
601	Oligodendroglial Alterations and the Role of Microglia in White Matter Injury: Relevance to Schizophrenia. Developmental Neuroscience, 2013, 35, 102-129.	1.0	122
602	Microglia during development and aging. , 2013, 139, 313-326.		376
603	Psoriasis is associated with an increased risk of parkinsonism: A population-based 5-year follow-up study. Journal of the American Academy of Dermatology, 2013, 68, 992-999.	0.6	33
604	Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Seminars in Immunopathology, 2013, 35, 601-612.	2.8	447

#	Article	IF	CITATIONS
605	Cellular and Molecular Mediators of Neuroinflammation in the Pathogenesis of Parkinson's Disease. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	207
606	Factors regulating microglia activation. Frontiers in Cellular Neuroscience, 2013, 7, 44.	1.8	286
607	Functional diversity of microglia – how heterogeneous are they to begin with?. Frontiers in Cellular Neuroscience, 2013, 7, 65.	1.8	174
608	Neurotransmitter signaling in the pathophysiology of microglia. Frontiers in Cellular Neuroscience, 2013, 7, 49.	1.8	127
609	Origin and differentiation of microglia. Frontiers in Cellular Neuroscience, 2013, 7, 45.	1.8	667
610	Establishment and Characterization of Primary Adult Microglial Culture in Mice. Acta Neurochirurgica Supplementum, 2013, 118, 49-54.	0.5	4
611	Omegaâ€3 fatty acid eicospentaenoic acid attenuates <scp>MPP</scp> ⁺ â€induced neurodegeneration in fully differentiated human <scp>SH</scp> â€ <scp>SY</scp> 5Y and primary mesencephalic cells. Journal of Neurochemistry, 2013, 124, 855-868.	2.1	31
612	Roles of glial cells in neuroinflammation and neurodegeneration. Clinical and Experimental Neuroimmunology, 2013, 4, 2-16.	0.5	22
613	Photoperiodic Variation in CD45-Positive Cells and Cell Proliferation in the Mediobasal Hypothalamus of the Soay Sheep. Chronobiology International, 2013, 30, 548-558.	0.9	36
614	Contributions of Microglia to Structural Synaptic Plasticity. Journal of Experimental Neuroscience, 2013, 7, JEN.S11269.	2.3	18
615	tPA in the Central Nervous System: Relations Between tPA and Cell Surface LRPs. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2013, 7, 65-76.	0.7	15
616	Extravascular CX3CR1 ⁺ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen. Microscopy and Microanalysis, 2013, 19, 778-790.	0.2	32
617	Microglia and Glutamate. Advances in Neuroimmune Biology, 2013, 4, 77-83.	0.7	2
618	Differential Modulation of TREM2 Protein during Postnatal Brain Development in Mice. PLoS ONE, 2013, 8, e72083.	1.1	40
619	The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514.	1.5	249
620	Acute and Chronic Stress-Induced Disturbances of Microglial Plasticity, Phenotype and Function. Current Drug Targets, 2013, 14, 1262-1276.	1.0	248
622	A Specialized Microvascular Domain in the Mouse Neural Stem Cell Niche. PLoS ONE, 2013, 8, e53546.	1.1	38
623	Absence of TLR4 Reduces Neurovascular Unit and Secondary Inflammatory Process after Traumatic Brain Injury in Mice. PLoS ONE, 2013, 8, e57208.	1.1	109

ARTICLE IF CITATIONS Autophagic Impairment Contributes to Systemic Inflammation-Induced Dopaminergic Neuron Loss in 624 1.1 30 the Midbrain. PLoS ONE, 2013, 8, e70472. CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120. PLoS 1.1 ONE, 2013, 8, e77577. Quantitating the subtleties of microglial morphology with fractal analysis. Frontiers in Cellular 626 395 1.8 Neuroscience, 2013, 7, 3. Modulation of adult-born neurons in the inflamed hippocampus. Frontiers in Cellular Neuroscience, 1.8 54 2013, 7, 145. Glutamate Receptors in Microglia. CNS and Neurological Disorders - Drug Targets, 2013, 12, 773-784. 628 0.8 59 Metal Dyshomeostasis and Inflammation in Alzheimer's and Parkinson's Diseases: Possible Impact of 629 99 Environmental Exposures. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-19. Microglial Ion Channels as Potential Targets for Neuroprotection in Parkinson's Disease. Neural 630 1.0 24 Plasticity, 2013, 2013, 1-7. Enhanced Prostacyclin Synthesis by Adenoviral Gene Transfer Reduced Glial Activation and Ameliorated Dopaminergic Dysfunction in Hemiparkinsonian Rats. Oxidative Medicine and Cellular 1.9 14 Longevity, 2013, 2013, 1-11. Neuroinflammation and Copper in Alzheimer's Disease. International Journal of Alzheimer's Disease, 632 1.1 47 2013, 2013, 1-12. Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain. Neural Plasticity, 2013, 2013, 1-10. 1.0 152 Inflammatory mechanisms in chronic neurodegenerative disease: the impact of microglia priming., 0,, 634 0 172-180. Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System. Current Pharmaceutical Design, 2014, 20, 69 4707-4722. Rod Microglia: A Morphological Definition. PLoS ONE, 2014, 9, e97096. 636 1.1 121 Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of 1.1 34 Activation of Spinal Astrocytes and Microglia in Rats. PLoS ONE, 2014, 9, e97436. Dietary Polyphenols and Their Effects on Cell Biochemistry and Pathophysiology 2013. Oxidative 638 1.9 37 Medicine and Cellular Longevity, 2014, 2014, 1-3. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Frontiers 1.8 293 in Cellular Neuroscience, 2014, 8, 73. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. 640 1.8 49 Frontiers in Cellular Neuroscience, 2014, 8, 138. miR-7 and miR-153 protect neurons against MPP+-induced cell death via upregulation of mTOR pathway. 641 1.8 Frontiers in Cellular Neuroscience, 2014, 8, 182.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
642	Gap junctions and hemichannels composed of connexins: potential therapeutic targets neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2014, 8, 189.	for	1.8	108
643	Opposite Effects of Bone Marrow-Derived Cells Transplantation in MPTP-rat Model of P Disease: A Comparison Study of Mononuclear and Mesenchymal Stem Cells. Internatio Medical Sciences, 2014, 11, 1049-1064.		1.1	31
644	Microglia. , 2014, , 3-5.			0
645	Quantitative assessment of microglial morphology and density reveals remarkable cons distribution and morphology of cells within the healthy prefrontal cortex of the rat. Jou Neuroinflammation, 2014, 11, 182.	sistency in the rnal of	3.1	89
646	Stress as Necessary Component of Realistic Recovery in Animal Models of Experimenta Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 208-214.	l Stroke.	2.4	11
647	Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macroph 2014, 6, 723-740.	ages. Cancers,	1.7	29
648	Therapeutically Targeting Neuroinflammation and Microglia after Acute Ischemic Strok Research International, 2014, 2014, 1-9.	e. BioMed	0.9	103
649	Isolation of Cortical Microglia with Preserved Immunophenotype and Functionality From Neonates. Journal of Visualized Experiments, 2014, , e51005.	m Murine	0.2	14
650	Fetal Alcohol Spectrum Disorders and Neuroimmune Changes. International Review of 2014, 118, 41-80.	Neurobiology,	0.9	68
651	Distribution of glial cells in the auditory brainstem: Normal development and effects of lesion. Neuroscience, 2014, 278, 237-252.	unilateral	1.1	27
652	Time course of dopamine neuron loss and glial response in the 6â€< scp>OHDA model of <scp>P</scp> arkinson's disease. European Journal of Neuroscience, 2014, 39	striatal mouse 9, 1042-1056.	1.2	101
653	Proteome of brain glia: The molecular basis of diverse glial phenotypes. Proteomics, 20	14, 14, 378-398.	1.3	16
654	Macrophages and CNS remyelination. Journal of Neurochemistry, 2014, 130, 165-171.		2.1	160
655	Manganese and Neuroinflammation. Issues in Toxicology, 2014, , 297-321.		0.2	0
656	Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunologic 2014, 262, 36-55.	cal Reviews,	2.8	575
657	Heterogeneous induction of microglia M2a phenotype by central administration of inte Journal of Neuroinflammation, 2014, 11, 211.	erleukin-4.	3.1	62
658	Role of Microglia in Regulation of Ethanol Neurotoxic Action. International Review of N 2014, 118, 81-103.	eurobiology,	0.9	81
659	Adenosine A2A receptor antagonism reverses inflammation-induced impairment of mic extension in a model of Parkinson's disease. Neurobiology of Disease, 2014, 67, 191-20		2.1	94

#	Article	IF	CITATIONS
660	Morphine increases hippocampal viral load and suppresses frontal lobe CCL5 expression in the LP-BM5 AIDS model. Journal of Neuroimmunology, 2014, 269, 44-51.	1.1	8
661	In Vivo Molecular Markers for Pro-inflammatory Cytokine M1 Stage and Resident Microglia in Trimethyltin-Induced Hippocampal Injury. Neurotoxicity Research, 2014, 25, 45-56.	1.3	33
662	Lipopolysaccharides Upregulate Hepcidin in Neuron via Microglia and the IL-6/STAT3 Signaling Pathway. Molecular Neurobiology, 2014, 50, 811-820.	1.9	70
663	Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nature Neuroscience, 2014, 17, 513-521.	7.1	274
664	Microglial priming in neurodegenerative disease. Nature Reviews Neurology, 2014, 10, 217-224.	4.9	827
665	Reactive Changes in the Microglia in the Neocortex and Hippocampus in Rats after Acute Prenatal Hypoxia. Neuroscience and Behavioral Physiology, 2014, 44, 249-252.	0.2	0
666	Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cellular and Molecular Life Sciences, 2014, 71, 999-1015.	2.4	89
667	Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Current Opinion in Neurobiology, 2014, 27, 8-15.	2.0	43
668	Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology, 2014, 8, 885-893.	1.6	75
669	Cannabidiol enhances microglial phagocytosis via transient receptor potential (<scp>TRP</scp>) channel activation. British Journal of Pharmacology, 2014, 171, 2426-2439.	2.7	110
670	Peripheral tumors alter neuroinflammatory responses to lipopolysaccharide in female rats. Brain Research, 2014, 1552, 55-63.	1.1	27
671	Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance. Antioxidants and Redox Signaling, 2014, 21, 1766-1801.	2.5	261
672	Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release. Glia, 2014, 62, 1313-1327.	2.5	35
673	Dynamic structural remodelling of microglia in health and disease: A review of the models, the signals and the mechanisms. Brain, Behavior, and Immunity, 2014, 37, 1-14.	2.0	193
674	Anti-TNF Therapy: 20 Years from Our First Therapeutic Adventure. , 2014, , 215-244.		1
675	Cytokine Frontiers. , 2014, , .		25
676	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
677	β-arrestin protects neurons by mediating endogenous opioid arrest of inflammatory microglia. Cell Death and Differentiation, 2014, 21, 397-406.	5.0	31

#	Article	IF	CITATIONS
678	Neurodegeneration by Activation of the Microglial Complement-Phagosome Pathway. Journal of Neuroscience, 2014, 34, 8546-8556.	1.7	192
679	Increased tyrosine hydroxylase expression accompanied by glial changes within the non-lesioned hemisphere in the 6-hydroxydopamine model of Parkinson's disease. Restorative Neurology and Neuroscience, 2014, 32, 447-462.	0.4	17
680	Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain, Behavior, and Immunity, 2014, 41, 239-250.	2.0	68
681	Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130593.	1.8	56
682	Neuroinflammation and Neurodegeneration. , 2014, , .		11
683	High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1Î ² , an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain, Behavior, and Immunity, 2014, 42, 22-32.	2.0	127
684	Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 2014, 14, 463-477.	10.6	1,053
685	The role of microglia in human disease: therapeutic tool or target?. Acta Neuropathologica, 2014, 128, 363-380.	3.9	120
686	CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathologica, 2014, 128, 347-362.	3.9	129
687	Translocator Protein 18 kDa Negatively Regulates Inflammation in Microglia. Journal of NeuroImmune Pharmacology, 2014, 9, 424-437.	2.1	90
688	Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. Journal of Neuroinflammation, 2014, 11, 34.	3.1	157
689	Microglia in Health and Disease. , 2014, , .		19
691	The systemic response to CNS injury. Experimental Neurology, 2014, 258, 105-111.	2.0	96
692	Elevated C-reactive protein levels may be a predictor of persistent unfavourable symptoms in patients with mild traumatic brain injury: A preliminary study. Brain, Behavior, and Immunity, 2014, 38, 111-117.	2.0	69
693	Omega-3 deficiency and neurodegeneration in the substantia nigra: Involvement of increased nitric oxide production and reduced BDNF expression. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1902-1912.	1.1	43
694	Role of peripheral immune response in microglia activation and regulation of brain chemokine and proinflammatory cytokine responses induced during VSV encephalitis. Journal of Neuroimmunology, 2014, 267, 50-60.	1.1	15
695	A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. Journal of Neuroscience Methods, 2014, 229, 44-52.	1.3	18
696	Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death. Experimental Eye Research, 2014, 121, 42-57.	1.2	23

ARTICLE IF CITATIONS Remote effects on the striatal dopamine system after fluid percussion injury. Behavioural Brain 697 1.2 23 Research, 2014, 267, 156-172. White Matter Structure., 2014, , 127-153. 699 The Biology of Brain Metastasis. Cancer Journal (Sudbury, Mass), 2015, 21, 284-293. 1.0 152 Fc^î³RIIB mediates the inhibitory effect of aggregated α-synuclein on microglial phagocytosis. 700 64 Neurobiology of Disease, 2015, 83, 90-99. Effects of Microglia on Neurogenesis. Glia, 2015, 63, 1394-1405. 701 2.5 144 Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clinical Science, 2015, 129, 757-767. 1.8 Visualisation of Microglia with the use of Immunohistochemical Double Staining Method for CD-68 703 and Iba-1 of Cerebral Tissue Samples in Cases of Brain Contusions. Prilozi - Makedonska Akademija Na 0.2 13 Naukite I Umetnostite Oddelenie Za Medicinski Nauki, 2015, 36, 141-145. <scp>TGF</scp>²1 inhibits <scp>IFN</scp>³â€mediated microglia activation and protects <scp>mDA</scp> 704 2.1 neurons from kscp>IFN kscp>l3a€driven neurotoxicity. Journal of Neurochemistry, 2015, 134, 125-134. Microglia processes associate with diffusely injured axons following mild traumatic brain injury in 705 3.1 90 the micro pig. Journal of Neuroinflammation, 2015, 12, 186. Pathological differences between white and grey matter multiple sclerosis lesions. Annals of the New 1.8 58 York Academy of Sciences, 2015, 1351, 99-113 Oxidative stress and Parkinson's disease. Frontiers in Neuroanatomy, 2015, 9, 91. 707 0.9 639 Fractal, Multifractal, and Lacunarity Analysis of Microglia in Tissue Engineering. Frontiers in 2.0 Bioengineering and Biotechnology, 2015, 3, 51. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the 709 1.8 23 Neuroendocrine and Immune Systems. Biomolecules, 2015, 5, 2073-2100. Impact of age-related neuroglial cell responses on hippocampal deterioration. Frontiers in Aging 1.7 Neuroscience, 2015, 7, 57. Brain region-specific gene expression profiles in freshly isolated rat microglia. Frontiers in Cellular 711 1.8 85 Neuroscience, 2015, 9, 84. Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Frontiers in 1.8 36 Cellular Neuroscience, 2015, 9, 312. The Role of Stefin B in Neuro-inflammation. Frontiers in Cellular Neuroscience, 2015, 9, 458. 713 1.8 21 Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular 714 Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of 1.8 Demyelination. Frontiers in Cellular Neuroscience, 2015, 9, 492.

#	Article	IF	CITATIONS
715	Immunosuppressive Mechanisms of Malignant Gliomas: Parallels at Non-CNS Sites. Frontiers in Oncology, 2015, 5, 153.	1.3	129
716	Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Frontiers in Physiology, 2015, 6, 350.	1.3	15
717	Microglial P2 Purinergic Receptor and Immunomodulatory Gene Transcripts Vary By Region, Sex, and Age in the Healthy Mouse CNS. Transcriptomics: Open Access, 2015, 03, .	0.2	31
718	The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 2015, 300, 141-154.	1.1	496
719	The choreography of neuroinflammation in Huntington's disease. Trends in Immunology, 2015, 36, 364-373.	2.9	209
720	In Vivo Dynamics of Retinal Microglial Activation During Neurodegeneration: Confocal Ophthalmoscopic Imaging and Cell Morphometry in Mouse Glaucoma. Journal of Visualized Experiments, 2015, , e52731.	0.2	26
721	Characterization of the lipopolysaccharide induced model of Parkinson's disease: Role of oxidative stress and neuroinflammation. Neurochemistry International, 2015, 87, 92-105.	1.9	96
722	Neurodegeneration severity can be predicted from early microglia alterations monitored <i>in vivo</i> in a mouse model of chronic glaucoma. DMM Disease Models and Mechanisms, 2015, 8, 443-455.	1.2	114
723	M1 and M2 immune activation in Parkinson's Disease: Foe and ally?. Neuroscience, 2015, 302, 59-73.	1.1	151
724	Novel Para-Phenyl Substituted Diindolylmethanes Protect Against MPTP Neurotoxicity and Suppress Glial Activation in a Mouse Model of Parkinson's Disease. Toxicological Sciences, 2015, 143, 360-373.	1.4	43
725	Role of Immunity and Inflammation in the Pathophysiology of Neurodegenerative Diseases. Neurodegenerative Diseases, 2015, 15, 63-69.	0.8	89
726	The Evolving Biology of Microglia in Alzheimer's Disease. Neurotherapeutics, 2015, 12, 81-93.	2.1	63
727	Axon Initial Segment–Associated Microglia. Journal of Neuroscience, 2015, 35, 2283-2292.	1.7	107
728	Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson's disease models are mediated by GPR109A-dependent mechanisms. Journal of Neuroinflammation, 2015, 12, 9.	3.1	192
729	Methionine Sulfoxide Reductase A Negatively Controls Microglia-Mediated Neuroinflammation <i>via</i> Inhibiting ROS/MAPKs/NF-κB Signaling Pathways Through a Catalytic Antioxidant Function. Antioxidants and Redox Signaling, 2015, 22, 832-847.	2.5	61
730	MANF silencing, immunity induction or autophagy trigger an unusual cell type in metamorphosing Drosophila brain. Cellular and Molecular Life Sciences, 2015, 72, 1989-2004.	2.4	27
731	Shape descriptors of the "never resting―microglia in three different acute brain injury models in mice. Intensive Care Medicine Experimental, 2015, 3, 39.	0.9	117
732	Microglia Versus Myeloid Cell Nomenclature during Brain Inflammation. Frontiers in Immunology, 2015, 6, 249.	2.2	236

#	Article	IF	CITATIONS
733	Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes. ACS Nano, 2015, 9, 7815-7830.	7.3	86
734	Activation and function of murine primary microglia in the absence of the prion protein. Journal of Neuroimmunology, 2015, 286, 25-32.	1.1	10
735	Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease. ACS Chemical Neuroscience, 2015, 6, 1708-1714.	1.7	22
736	miR-155 Is Essential for Inflammation-Induced Hippocampal Neurogenic Dysfunction. Journal of Neuroscience, 2015, 35, 9764-9781.	1.7	83
737	Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020537.	2.3	298
738	Effects of acoustic trauma on the auditory system of the rat: The role of microglia. Neuroscience, 2015, 303, 299-311.	1.1	48
739	Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain. Frontiers in Pediatrics, 2014, 2, 144.	0.9	88
740	The up-regulation of spinal Toll-like receptor 4 in rats with inflammatory pain induced by complete Freund's adjuvant. Brain Research Bulletin, 2015, 111, 97-103.	1.4	35
741	Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [11C]CB184 and [11C]CB190, as a PET tracer for 18ÂkDa translocator protein: direct comparison with [11C](R)-PK11195. Annals of Nuclear Medicine, 2015, 29, 325-335.	1.2	17
742	Microglia in Glia–Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity. Cellular and Molecular Neurobiology, 2015, 35, 961-975.	1.7	7
743	Neuroinflammation in the normal aging hippocampus. Neuroscience, 2015, 309, 84-99.	1.1	269
744	Manganese Is Essential for Neuronal Health. Annual Review of Nutrition, 2015, 35, 71-108.	4.3	392
745	Receptors, Ion Channels, and Signaling Mechanisms Underlying Microglial Dynamics. Journal of Biological Chemistry, 2015, 290, 12443-12450.	1.6	77
747	Oxidative Stress in Parkinson's Disease: Role in Neurodegeneration and Targets for Therapeutics. ACS Symposium Series, 2015, , 147-176.	0.5	3
748	β-amyloid, microglia, and the inflammasome in Alzheimer's disease. Seminars in Immunopathology, 2015, 37, 607-611.	2.8	162
749	Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends in Immunology, 2015, 36, 614-624.	2.9	136
750	Expression of Nogo receptor 1 in microglia during development and following traumatic brain injury. Brain Research, 2015, 1627, 41-51.	1.1	11
751	Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. Journal of Ethnopharmacology, 2015, 175, 86-92.	2.0	21

#	Article	IF	CITATIONS
753	A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. Journal of Neuroscience, 2015, 35, 11848-11861.	1.7	179
754	Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radical Biology and Medicine, 2015, 88, 253-267.	1.3	262
755	Macrophage and microglial plasticity in the injured spinal cord. Neuroscience, 2015, 307, 311-318.	1.1	108
756	Agrochemicals-Induced Dopaminergic Neurotoxicity: Role of Mitochondria-Mediated Oxidative Stress and Protein Clearance Mechanisms. Current Topics in Neurotoxicity, 2015, , 171-204.	0.4	Ο
757	Biodistribution of inÂvitro–derived microglia applied intranasally and intravenously to mice: effects of aging. Cytotherapy, 2015, 17, 1617-1626.	0.3	13
758	Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury. Journal of Neuroimmunology, 2015, 289, 143-151.	1.1	28
759	Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Medicine Experimental, 2015, 3, 30.	0.9	40
760	Microglial Dynamics and Role in the Healthy and Diseased Brain. Neuroscientist, 2015, 21, 169-184.	2.6	275
761	A Starring Role for Microglia in Brain Sex Differences. Neuroscientist, 2015, 21, 306-321.	2.6	237
762	The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience, 2015, 302, 74-88.	1.1	110
763	The role of the immune system in neurodegenerative disorders: Adaptive or maladaptive?. Brain Research, 2015, 1617, 155-173.	1.1	78
764	How dependent is synaptic plasticity on microglial phenotype?. Neuropharmacology, 2015, 96, 3-10.	2.0	20
765	Is Chronic Systemic Inflammation a Determinant Factor in Developing Parkinson's Disease?. , 2016, , .		0
766	Determinants of Selective Vulnerability of Dopamine Neurons in Parkinson's Disease. Handbook of Behavioral Neuroscience, 2016, 24, 821-837.	0.7	0
767	Etiology and Progression of Parkinson's Disease: Cross-Talk Between Environmental Factors and Genetic Vulnerability. Handbook of Behavioral Neuroscience, 2016, 24, 803-819.	0.7	1
768	Neuron–Microglia Interactions in Mental Health Disorders: "For Better, and For Worse― Frontiers in Immunology, 2016, 7, 544.	2.2	132
769	Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 65.	1.7	39
770	Linking Activation of Microglia and Peripheral Monocytic Cells to the Pathophysiology of Psychiatric Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 144.	1.8	45

#	Article	IF	CITATIONS
771	Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions. Frontiers in Neuroscience, 2016, 10, 81.	1.4	40
772	Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2016, 9, 7.	1.4	49
773	Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Frontiers in Molecular Neuroscience, 2016, 9, 86.	1.4	46
774	Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson's Disease. Brain Sciences, 2016, 6, 41.	1.1	18
775	Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron. European Journal of Neuroscience, 2016, 43, 1523-1534.	1.2	25
776	Retinal Microglia in Glaucoma. Journal of Glaucoma, 2016, 25, 459-465.	0.8	52
777	Microglia activation states and cannabinoid system: Therapeutic implications. , 2016, 166, 40-55.		127
778	Regulatory Tâ€cell neutralization in mice during filariasis helps in parasite clearance by enhancing T helper type 17â€mediated proâ€inflammatory response. Immunology, 2016, 147, 190-203.	2.0	11
779	Microglial activation induces neuronal death in Chandipura virus infection. Scientific Reports, 2016, 6, 22544.	1.6	27
780	Inflammation, Aging, and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , .	0.4	9
781	Modeling Neuroinflammatory Effects After Chemical Exposures in a Scalable, Three-Dimensional Cell Culture System. Applied in Vitro Toxicology, 2016, 2, 223-234.	0.6	5
782	Anti-neuroinflammatory effects of citreohybridonol involving TLR4-MyD88-mediated inhibition of NF-ĐºB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 cells. Neurochemistry International, 2016, 95, 55-62.	1.9	45
783	Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway. Toxicology and Applied Pharmacology, 2016, 303, 79-89.	1.3	70
784	Estrogens, Neuroinflammation, and Neurodegeneration. Endocrine Reviews, 2016, 37, 372-402.	8.9	254
785	Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice. European Journal of Pharmacology, 2016, 783, 85-91.	1.7	17
786	Effect of axotomy and 17β-estradiol on P2X7 receptor expression pattern in the hypoglossal nucleus of ovariectomized mice. Neuroscience, 2016, 319, 107-115.	1.1	4
787	Brain heterogeneity leads to differential innate immune responses and modulates pathogenesis of viral infections. Cytokine and Growth Factor Reviews, 2016, 30, 95-101.	3.2	17
788	Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. Journal of Molecular Neuroscience, 2016, 60, 390-404.	1.1	12

#	ARTICLE	IF	CITATIONS
789	Microglia energy metabolism in metabolic disorder. Molecular and Cellular Endocrinology, 2016, 438, 27-35.	1.6	53
790	Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience, 2016, 339, 85-99.	1.1	59
791	Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics, 2016, 13, 702-718.	2.1	105
792	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	2.1	106
793	Microglia mediate diesel exhaust particle-induced cerebellar neuronal toxicity through neuroinflammatory mechanisms. NeuroToxicology, 2016, 56, 204-214.	1.4	71
794	Phenotypic clustering: a novel method for microglial morphology analysis. Journal of Neuroinflammation, 2016, 13, 153.	3.1	100
795	Characterizing primary human microglia: A comparative study with myeloid subsets and culture models. Glia, 2016, 64, 1857-1868.	2.5	77
796	Transcriptome sequencing reveals that LPS-triggered transcriptional responses in established microglia BV2 cell lines are poorly representative of primary microglia. Journal of Neuroinflammation, 2016, 13, 182.	3.1	104
797	Preparation of Primary Mixed Clial Cultures from Adult Mouse Spinal Cord Tissue. Journal of Visualized Experiments, 2016, , .	0.2	2
798	Do Microglia Default on Network Maintenance in Alzheimer's Disease?. Journal of Alzheimer's Disease, 2016, 51, 657-669.	1.2	17
799	Transient Receptor Potential Channels in Microglia: Roles in Physiology and Disease. Neurotoxicity Research, 2016, 30, 467-478.	1.3	32
800	Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain. Brain, Behavior, and Immunity, 2016, 58, 107-117.	2.0	51
801	High-resolution transcriptome analysis reveals neuropathic pain gene-expression signatures in spinal microglia after nerve injury. Pain, 2016, 157, 964-976.	2.0	64
802	Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats. Autonomic Neuroscience: Basic and Clinical, 2016, 198, 10-18.	1.4	8
803	Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets. BMC Immunology, 2016, 17, 7.	0.9	53
804	Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. Journal of Neuroinflammation, 2016, 13, 124.	3.1	66
805	Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain, Behavior, and Immunity, 2016, 53, 207-222.	2.0	132
806	Microglial brain regionâ~'dependent diversity and selective regional sensitivities to aging. Nature Neuroscience, 2016, 19, 504-516.	7.1	919

#	Article	IF	CITATIONS
807	TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice. Brain, Behavior, and Immunity, 2016, 55, 17-24.	2.0	62
808	MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. Journal of Immunology, 2016, 196, 3375-3384.	0.4	128
809	Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiology of Aging, 2016, 42, 132-141.	1.5	89
810	The Cellular Phase of Alzheimer's Disease. Cell, 2016, 164, 603-615.	13.5	1,346
811	Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure. Toxicological Sciences, 2016, 150, 347-368.	1.4	19
812	Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology, 2016, 233, 1637-1650.	1.5	476
813	Rho-Associated Kinase Inhibitors Promote Microglial Uptake Via the ERK Signaling Pathway. Neuroscience Bulletin, 2016, 32, 83-91.	1.5	11
814	Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicology and Applied Pharmacology, 2016, 298, 19-30.	1.3	72
815	Defining the Microglia Response during the Time Course of Chronic Neurodegeneration. Journal of Virology, 2016, 90, 3003-3017.	1.5	71
816	Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotoxicity Research, 2016, 29, 447-459.	1.3	125
817	Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathologica, 2016, 131, 347-363.	3.9	217
818	Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respiratory Physiology and Neurobiology, 2016, 226, 51-62.	0.7	29
819	Changing paradigm to target microglia in neurodegenerative diseases: from anti-inflammatory strategy to active immunomodulation. Expert Opinion on Therapeutic Targets, 2016, 20, 627-640.	1.5	53
820	Fluoride-Induced Neuron Apoptosis and Expressions of Inflammatory Factors by Activating Microglia in Rat Brain. Molecular Neurobiology, 2016, 53, 4449-4460.	1.9	69
821	Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8–B4 microglia. Neurochemistry International, 2016, 95, 46-54.	1.9	44
822	Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model. Molecular Neurobiology, 2016, 53, 3326-3337.	1.9	33
823	Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience, 2016, 323, 96-109.	1.1	169
824	Microglial <scp>M1/M2</scp> polarization and metabolic states. British Journal of Pharmacology, 2016, 173, 649-665.	2.7	1,308

#	ARTICLE	IF	CITATIONS
825	Metabolic and Inflammatory Adaptation of Reactive Astrocytes: Role of PPARs. Molecular Neurobiology, 2017, 54, 2518-2538.	1.9	114
826	The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 2017, 157, 247-272.	2.8	529
827	Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Progress in Neurobiology, 2017, 155, 120-148.	2.8	130
828	Microglial phenotypes in Parkinson's disease and animal models of the disease. Progress in Neurobiology, 2017, 155, 57-75.	2.8	202
829	Dynamic cross-talk between microglia and peripheral monocytes underlies stress-induced neuroinflammation and behavioral consequences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 40-48.	2.5	101
830	Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 3-14.	2.5	90
831	Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Reports, 2017, 18, 391-405.	2.9	503
832	TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. Journal of Neuroscience, 2017, 37, 1772-1784.	1.7	242
833	Microglia-derived neuregulin expression in psychiatric disorders. Brain, Behavior, and Immunity, 2017, 61, 375-385.	2.0	28
834	Hippocampus, Spatial Memory and Neuroimmunomodulation. , 2017, , 69-79.		1
834 835	Hippocampus, Spatial Memory and Neuroimmunomodulation. , 2017, , 69-79. Microglial Biology and Physiology. , 2017, , 167-199.		1
		4.4	
835	Microglial Biology and Physiology. , 2017, , 167-199. Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system	4.4	0
835 837	 Microglial Biology and Physiology. , 2017, , 167-199. Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice. Molecular Neurodegeneration, 2017, 12, 17. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. Journal 		0 49
835 837 838	 Microglial Biology and Physiology., 2017, , 167-199. Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice. Molecular Neurodegeneration, 2017, 12, 17. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. Journal of Leukocyte Biology, 2017, 101, 1103-1108. Neuroprotective erythropoietin attenuates microglial activation, including morphological changes, 	1.5	0 49 91
835 837 838 839	 Microglial Biology and Physiology. , 2017, , 167-199. Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice. Molecular Neurodegeneration, 2017, 12, 17. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. Journal of Leukocyte Biology, 2017, 101, 1103-1108. Neuroprotective erythropoietin attenuates microglial activation, including morphological changes, phagocytosis, and cytokine production. Brain Research, 2017, 1662, 65-74. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. Journal of 	1.5	0 49 91 25
835 837 838 839 840	 Microglial Biology and Physiology. , 2017, , 167-199. Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice. Molecular Neurodegeneration, 2017, 12, 17. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. Journal of Leukocyte Biology, 2017, 101, 1103-1108. Neuroprotective erythropoietin attenuates microglial activation, including morphological changes, phagocytosis, and cytokine production. Brain Research, 2017, 1662, 65-74. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia. Journal of Neurophysiology, 2017, 117, 1625-1635. 	1.5	0 49 91 25 35

#	Article	IF	CITATIONS
844	The effects of aging in the hippocampus and cognitive decline. Neuroscience and Biobehavioral Reviews, 2017, 79, 66-86.	2.9	385
845	Inhibition of semicarbazideâ€sensitive amine oxidase/vascular adhesion proteinâ€1 reduces lipopolysaccharideâ€induced neuroinflammation. British Journal of Pharmacology, 2017, 174, 2302-2317.	2.7	24
846	The etiopathogenesis of diffuse low-grade gliomas. Critical Reviews in Oncology/Hematology, 2017, 109, 51-62.	2.0	17
847	Live imaging of the innate immune response in neonates reveals differential TLR2 dependent activation patterns in sterile inflammation and infection. Brain, Behavior, and Immunity, 2017, 65, 312-327.	2.0	26
848	Monitoring in vivo function of cortical microglia. Cell Calcium, 2017, 64, 109-117.	1.1	27
849	Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Experimental Neurology, 2017, 287, 34-43.	2.0	11
850	Microglia: origins, homeostasis, and roles in myelin repair. Current Opinion in Neurobiology, 2017, 47, 113-120.	2.0	60
851	The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia, 2017, 65, 1744-1761.	2.5	59
852	Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiology of Disease, 2017, 108, 115-127.	2.1	47
853	Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. Advances in Neurobiology, 2017, 18, 159-181.	1.3	92
854	Glial and neuroinflammatory targets for treating substance use disorders. Drug and Alcohol Dependence, 2017, 180, 156-170.	1.6	79
855	Coâ€Culture of Neurons and Microglia. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 74, 11.24.1-11.24.17.	1.1	34
856	Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Scientific Reports, 2017, 7, 13211.	1.6	199
857	Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron, 2017, 95, 341-356.e6.	3.8	325
858	Tissue macrophages: heterogeneity and functions. BMC Biology, 2017, 15, 53.	1.7	448
859	The protein-tyrosine phosphatase DEP-1 promotes migration and phagocytic activity of microglial cells in part through negative regulation of fyn tyrosine kinase. Glia, 2017, 65, 416-428.	2.5	20
860	<scp>l</scp> â€DOPAâ€induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role?. European Journal of Neuroscience, 2017, 45, 73-91.	1.2	56
861	Hippocampal adult neurogenesis: Does the immune system matter?. Journal of the Neurological Sciences, 2017, 372, 482-495.	0.3	82

#	Article	IF	CITATIONS
862	Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150, 7-15.	2.0	130
863	Neuroinflammatory challenges compromise neuronal function in the aging brain: Postoperative cognitive delirium and Alzheimer's disease. Behavioural Brain Research, 2017, 322, 269-279.	1.2	55
864	α-Synuclein-carrying extracellular vesicles in Parkinson's disease: deadly transmitters. Acta Neurologica Belgica, 2017, 117, 43-51.	0.5	54
865	Fasudil Enhances Therapeutic Efficacy of Neural Stem Cells in the Mouse Model of MPTP-Induced Parkinson's Disease. Molecular Neurobiology, 2017, 54, 5400-5413.	1.9	18
866	Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochemical Research, 2017, 42, 1772-1786.	1.6	15
867	Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Developmental Neurobiology, 2017, 77, 753-766.	1.5	22
868	Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology, 2017, 42, 156-177.	2.8	207
869	Inflammation-Mediated Neurodegeneration: Models, Mechanisms, and Therapeutic Interventions for Neurodegenerative Diseases. , 2017, , 1255-1278.		Ο
870	Knockdown of miR-155 protects microglia against LPS-induced inflammatory injury via targeting RACK1: a novel research for intracranial infection. Journal of Inflammation, 2017, 14, 17.	1.5	36
871	Microglia immunophenotyping in gliomas. Oncology Letters, 2018, 15, 998-1006.	0.8	35
872	Microglial Activation and Cannabis Exposure. , 2017, , 401-412.		9
872 873	Microglial Activation and Cannabis Exposure. , 2017, , 401-412. Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198.	2.2	9 121
	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in	2.2 1.7	
873	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration.		121
873 874	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 128. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and	1.7	121 54
873 874 875	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 128. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 129. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging	1.7 1.7	121 54 172
873 874 875 876	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 128. Brain Renin-Anglotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Frontiers in Aging Neuroscience, 2017, 9, 129. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2017, 9, 175.	1.7 1.7 1.7	121 54 172 37

	CHATION R	EPORT	
# 880	ARTICLE Microglial Activation in Traumatic Brain Injury. Frontiers in Aging Neuroscience, 2017, 9, 208.	IF 1.7	Citations 307
881	New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Frontiers in Cellular Neuroscience, 2017, 11, 90.	1.8	17
882	Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis. Frontiers in Cellular Neuroscience, 2017, 11, 235.	1.8	277
883	The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Frontiers in Molecular Neuroscience, 2017, 10, 191.	1.4	188
884	Impairment of Hepcidin Upregulation by Lipopolysaccharide in the Interleukin-6 Knockout Mouse Brain. Frontiers in Molecular Neuroscience, 2017, 10, 367.	1.4	22
885	What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Frontiers in Synaptic Neuroscience, 2017, 9, 11.	1.3	16
886	The Effect of Osteopontin on Microglia. BioMed Research International, 2017, 2017, 1-6.	0.9	47
887	Dynamic Changes in the Nigrostriatal Pathway in the MPTP Mouse Model of Parkinson's Disease. Parkinson's Disease, 2017, 2017, 1-7.	0.6	47
888	Microglia-glioma cross-talk a two way approach to new strategies against glioma. Frontiers in Bioscience - Landmark, 2017, 22, 268-309.	3.0	45
889	Neuroinflammation asÂaÂPotential Mechanism Underlying Parkinsons Disease. , 2017, , 245-279.		4
890	The α7 nicotinic acetylcholine receptor positive allosteric modulator attenuates lipopolysaccharide-induced activation of hippocampal <i>llºB</i> and <i>CD11b</i> gene expression in mice. Drug Discoveries and Therapeutics, 2017, 11, 206-211.	0.6	22
891	A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model. , 2017, 8, 31.		13
892	Selective proliferative response of microglia to alternative polarization signals. Journal of Neuroinflammation, 2017, 14, 236.	3.1	39
893	NADPH oxidases in Parkinson's disease: a systematic review. Molecular Neurodegeneration, 2017, 12, 84.	4.4	111
894	Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. International Journal of Molecular Sciences, 2017, 18, 802.	1.8	101
895	Microglia in Alzheimer's disease. Journal of Clinical Investigation, 2017, 127, 3240-3249.	3.9	622
896	Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain. Psychiatry and Clinical Neurosciences, 2018, 72, 409-422.	1.0	5
897	Nicotinic Acetylcholine Receptor Signaling in Neuroprotection. , 2018, , .		10

#	Article	IF	CITATIONS
898	Effect of in vivo exposure to ambient fine particles (PM 2.5) on the density of dopamine D 2 -like receptors and dopamine-induced [35 S]-GTPγS binding in rat prefrontal cortex and striatum membranes. Environmental Toxicology and Pharmacology, 2018, 60, 58-65.	2.0	12
899	Intrathecal Administration of CXCL1 Enhances Potassium Currents in Microglial Cells. Pharmacology, 2018, 101, 262-268.	0.9	6
900	Interleukin 4 modulates microglia homeostasis and attenuates the early slowly progressive phase of amyotrophic lateral sclerosis. Cell Death and Disease, 2018, 9, 250.	2.7	52
901	Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death and Disease, 2018, 9, 120.	2.7	79
902	Versatility of microglial bioenergetic machinery under starving conditions. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 201-214.	0.5	28
903	Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure. Neurobiology of Disease, 2018, 111, 153-162.	2.1	32
904	Recent advances in the understanding of microglial development and homeostasis. Cellular Immunology, 2018, 330, 68-78.	1.4	39
905	Cerebellar microglia are dynamically unique and survey Purkinje neurons <i>in vivo</i> . Developmental Neurobiology, 2018, 78, 627-644.	1.5	90
906	Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: a model of Gulf War illness. Journal of Neuroinflammation, 2018, 15, 86.	3.1	47
907	Involvement of acute neuroinflammation in postoperative delirium-like cognitive deficits in rats. Journal of Anesthesia, 2018, 32, 506-517.	0.7	29
908	Morphine-potentiated cognitive deficits correlate to suppressed hippocampal iNOS RNA expression and an absent type 1 interferon response in LP-BM5 murine AIDS. Journal of Neuroimmunology, 2018, 319, 117-129.	1.1	6
909	The MRL Model: A Valuable Tool in Studies of Autoimmunity-Brain Interactions. Methods in Molecular Biology, 2018, 1781, 259-285.	0.4	4
910	Regional brain volume changes following chronic antipsychotic administration are mediated by the dopamine D2 receptor. NeuroImage, 2018, 176, 226-238.	2.1	29
912	Stereological Analysis of Microglia in Aged Male and Female Fischer 344 Rats in Socially Relevant Brain Regions. Neuroscience, 2018, 377, 40-52.	1.1	33
913	Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo. Brain, 2018, 141, 1753-1769.	3.7	106
914	Distinct origins, gene expression and function of microglia and monocyte-derived macrophages in CNS myelin injury and regeneration. Clinical Immunology, 2018, 189, 57-62.	1.4	17
915	The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiology of Disease, 2018, 109, 226-248.	2.1	214
916	Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxidants and Redox Signaling, 2018, 28, 1626-1651.	2.5	62

ARTICLE IF CITATIONS # Redox Signaling in Neurotransmission and Cognition During Aging. Antioxidants and Redox Signaling, 917 2.5 68 2018, 28, 1724-1745. A story of birth and death: Insights into the formation and dynamics of the microglial population. 918 34 Brain, Behavior, and Immunity, 2018, 69, 9-17. Innate immunity in Alzheimer's disease: the relevance of animal models?. Journal of Neural 919 1.4 16 Transmission, 2018, 125, 827-846. The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 154-165. Natural Phytoestrogens., 2018,, 9-61. 921 5 Modeling neuro-immune interactions during Zika virus infection. Human Molecular Genetics, 2018, 27, 922 1.4 41-52. Kallikrein 6 secreted by oligodendrocytes regulates the progression of experimental autoimmune 923 2.5 35 encephalomyelitis. Glia, 2018, 66, 359-378. Hippocampal interleukin-1 mediates stress-enhanced fear learning: A potential role for 2.0 48 astrocyte-derived interleukin-11². Brain, Behavior, and Immunity, 2018, 67, 355-363. Repeated Ironâ€"Soot Exposure and Nose-to-brain Transport of Inhaled Ultrafine Particles. Toxicologic 925 0.9 50 Pathology, 2018, 46, 75-84. Anti-neuroinflammatory effect of 6,8,1â€²-tri- O -methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated 1.9 microglia. Neurochemistry International, 2018, 113, 8-22 Lipopolysaccharide-Induced Microglia Activation Promotes the Survival of Midbrain Dopaminergic 927 1.3 9 Neurons In Vitro. Neurotoxicity Research, 2018, 33, 856-867. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance 285 to Pharmacology. Pharmacological Reviews, 2018, 70, 12-38. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal 929 1.1 142 microglial activation in mice. Brain Research, 2018, 1680, 13-38. Microglial-specific transcriptome changes following chronic alcohol consumption. Neuropharmacology, 2018, 128, 416-424. Nutrition and Nutraceuticals in Neuroinflammatory and Brain Metabolic Stress: Implications for 931 0.8 24 Neurodegenerative Disorders. CNS and Neurological Disorders - Drug Targets, 2018, 17, 680-688. Gender Differences in Frontotemporal Lobar Degeneration (FTLD) Support an Estrogenic Model of Delayed Onset., 2018,,. 933 3.Neuropathologie und molekulare Mechanismen., 2018, 35-122. 1 934 Cell Densities in the Mouse Brain: A Systematic Review. Frontiers in Neuroanatomy, 2018, 12, 83.

		CITATION RE	PORT	
#	Article		IF	Citations
935	A Cell Atlas for the Mouse Brain. Frontiers in Neuroinformatics, 2018, 12, 84.		1.3	212
936	Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory I Frontiers in Cellular Neuroscience, 2018, 12, 488.	Response.	1.8	482
937	The Multifarious Role of Microglia in Brain Metastasis. Frontiers in Cellular Neuroscience, 20 414.)18, 12,	1.8	25
938	Different Patterns of Neurodegeneration and Glia Activation in CA1 and CA3 Hippocampal TgCRND8 Mice. Frontiers in Aging Neuroscience, 2018, 10, 372.	Regions of	1.7	33
939	Anti-inflammatory agents reduce microglial response, demyelinating process and neuronal uptake in a model of encephalopathy produced by Shiga Toxin 2. International Journal of M Microbiology, 2018, 308, 1036-1042.	toxin edical	1.5	9
940	Differential response of pineal microglia to surgical versus pharmacological stimuli. Journal Comparative Neurology, 2018, 526, 2462-2481.	of	0.9	6
941	Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Inter Journal of Molecular Medicine, 2018, 41, 1817-1825.	national	1.8	163
942	2,3,5,4 <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:m /><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:m </mml:math> -Tetrahy Reverses Stress-Induced Depression via Inflammatory and Oxidative Stress Pathways. Oxida Medicine and Cellular Longevity. 2018, 2018, 1-13.	droxystilbene-2-O-bet	a-D-glucos	sidg ₇
943	Microglia in neurodegeneration. Nature Neuroscience, 2018, 21, 1359-1369.		7.1	1,034
944	Impaired Autophagy of GABAergic Interneurons in Neuropathic Pain. Pain Research and Ma 2018, 2018, 1-8.	nagement,	0.7	26
945	Blast-induced brain injury in rats leads to transient vestibulomotor deficits and persistent o pain. Brain Injury, 2018, 32, 1866-1878.	rofacial	0.6	17
946	Microglia in Alzheimer's Disease: A Role for Ion Channels. Frontiers in Neuroscience, 2018,	12, 676.	1.4	31
947	Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB Journal, 20 5766-5777.)18, 32,	0.2	30
948	Unique microglia recovery population revealed by single-cell RNAseq following neurodegen Acta Neuropathologica Communications, 2018, 6, 87.	eration.	2.4	72
949	Bidirectional Microglia–Neuron Communication in Health and Disease. Frontiers in Cellul Neuroscience, 2018, 12, 323.	ar	1.8	329
950	Astaxanthin is neuroprotective in an aged mouse model of Parkinson's disease. Oncota 10388-10401.	rget, 2018, 9,	0.8	45
951	Microglial signatures and their role in health and disease. Nature Reviews Neuroscience, 20 622-635.	18, 19,	4.9	599
952	Effects of alpha-7 nicotinic allosteric modulator PNU 120596 on depressive-like behavior af lipopolysaccharide administration in mice. Progress in Neuro-Psychopharmacology and Biol Psychiatry, 2018, 86, 218-228.	ter ogical	2.5	29

#	Article	IF	CITATIONS
953	Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. European Journal of Neuroscience, 2018, 47, 1414-1428.	1.2	67
954	Isolation and Phenotyping of Adult Mouse Microglial Cells. Methods in Molecular Biology, 2018, 1784, 77-86.	0.4	42
955	Acute Neuroinflammatory Response in the Substantia Nigra Pars Compacta of Rats after a Local Injection of Lipopolysaccharide. Journal of Immunology Research, 2018, 2018, 1-19.	0.9	35
956	Specialized functions of resident macrophages in brain and heart. Journal of Leukocyte Biology, 2018, 104, 743-756.	1.5	24
957	TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nature Communications, 2018, 9, 2450.	5.8	58
958	The mysterious origins of microglia. Nature Neuroscience, 2018, 21, 897-899.	7.1	60
959	The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Frontiers in Cellular Neuroscience, 2018, 12, 172.	1.8	92
960	Microglia changes associated to Alzheimer's disease pathology in aged chimpanzees. Journal of Comparative Neurology, 2018, 526, 2921-2936.	0.9	30
961	Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa. Frontiers in Immunology, 2017, 8, 1930.	2.2	34
962	[125 I]IodoDPA-713 Binding to 18 kDa Translocator Protein (TSPO) in a Mouse Model of Intracerebral Hemorrhage: Implications for Neuroimaging. Frontiers in Neuroscience, 2018, 12, 66.	1.4	4
963	Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Frontiers in Molecular Neuroscience, 2017, 10, 421.	1.4	151
964	Microglial Lectins in Health and Neurological Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 158.	1.4	43
965	Viral RNA load and histological changes in tissues following experimental infection with an arterivirus of possums (wobbly possum disease virus). Virology, 2018, 522, 73-80.	1.1	6
966	Brain Inflammation and Endoplasmic Reticulum Stress. , 2018, , 75-108.		Ο
967	<scp>HIV</scp> â€l <scp>T</scp> at regulation of dopamine transmission and microglial reactivity is brain region specific. Glia, 2018, 66, 1915-1928.	2.5	13
968	The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2018, 19, 831.	1.8	132
969	Microglia heterogeneity along a spatio–temporal axis: More questions than answers. Glia, 2018, 66, 2045-2057.	2.5	66
970	Microglia Response During Parkinson's Disease: Alpha-Synuclein Intervention. Frontiers in Cellular Neuroscience, 2018, 12, 247.	1.8	152

#	ARTICLE	IF	CITATIONS
971	Regional microglia are transcriptionally distinct but similarly exacerbate neurodegeneration in a culture model of Parkinson's disease. Journal of Neuroinflammation, 2018, 15, 139.	3.1	17
972	Microglial Implication in Parkinson's Disease: Loss of Beneficial Physiological Roles or Gain of Inflammatory Functions?. Frontiers in Cellular Neuroscience, 2018, 12, 282.	1.8	114
973	Optic tract injury after closed head traumatic brain injury in mice: A model of indirect traumatic optic neuropathy. PLoS ONE, 2018, 13, e0197346.	1.1	45
974	Human-specific features of spatial gene expression and regulation in eight brain regions. Genome Research, 2018, 28, 1097-1110.	2.4	66
975	Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. Molecular Neurobiology, 2019, 56, 1421-1436.	1.9	25
976	Mitral cells and the glucagonâ€like peptide 1 receptor: The sweet smell of success?. European Journal of Neuroscience, 2019, 49, 422-439.	1.2	2
977	Microglia in Neurodegenerative Disorders. Methods in Molecular Biology, 2019, 2034, 57-67.	0.4	39
978	Insights From Dynamic Neuro-Immune Imaging on Murine Immune Responses to CNS Damage. Frontiers in Neuroscience, 2019, 13, 737.	1.4	5
979	Deletion of the RNA regulator HuR in tumorâ€associated microglia and macrophages stimulates antiâ€ŧumor immunity and attenuates glioma growth. Glia, 2019, 67, 2424-2439.	2.5	26
980	Analysis of Signaling Mechanisms Regulating Microglial Process Movement. Methods in Molecular Biology, 2019, 2034, 191-205.	0.4	5
981	Morphology of Microglia Across Contexts of Health and Disease. Methods in Molecular Biology, 2019, 2034, 13-26.	0.4	106
982	Microglia. Methods in Molecular Biology, 2019, , .	0.4	1
983	Microglial subtypes: diversity within the microglial community. EMBO Journal, 2019, 38, e101997.	3.5	345
984	CSF-1 controls cerebellar microglia and is required for motor function and social interaction. Journal of Experimental Medicine, 2019, 216, 2265-2281.	4.2	138
985	Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacological Research, 2019, 147, 104349.	3.1	74
986	Motor Neuron Susceptibility in ALS/FTD. Frontiers in Neuroscience, 2019, 13, 532.	1.4	140
987	Neuroinflammation and Glial Phenotypic Changes in Alpha-Synucleinopathies. Frontiers in Cellular Neuroscience, 2019, 13, 263.	1.8	54
988	Combined Cyclosporin A and Hypothermia Treatment Inhibits Activation of BV-2 Microglia but Induces an Inflammatory Response in an Ischemia/Reperfusion Hippocampal Slice Culture Model. Frontiers in Cellular Neuroscience, 2019, 13, 273.	1.8	5

#	Article	IF	CITATIONS
989	Differential transcriptional profiles identify microglial- and macrophage-specific gene markers expressed during virus-induced neuroinflammation. Journal of Neuroinflammation, 2019, 16, 152.	3.1	93
990	Regional transcriptional architecture of Parkinson's disease pathogenesis and network spread. Brain, 2019, 142, 3072-3085.	3.7	32
991	The pro-remyelination properties of microglia in the central nervous system. Nature Reviews Neurology, 2019, 15, 447-458.	4.9	230
992	Immunofluorescence Staining Using IBA1 and TMEM119 for Microglial Density, Morphology and Peripheral Myeloid Cell Infiltration Analysis in Mouse Brain. Journal of Visualized Experiments, 2019, , .	0.2	31
993	A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Advanced Healthcare Materials, 2019, 8, e1900558.	3.9	58
994	Transplantation of bone marrow derived macrophages reduces markers of neuropathology in an APP/PS1 mouse model. Translational Neurodegeneration, 2019, 8, 33.	3.6	8
995	What Do Microglia Really Do in Healthy Adult Brain?. Cells, 2019, 8, 1293.	1.8	91
996	Long-Term Microgliosis Driven by Acute Systemic Inflammation. Journal of Immunology, 2019, 203, 2979-2989.	0.4	28
997	Somatostatin Receptor Subtype-4 Regulates mRNA Expression of Amyloid-Beta Degrading Enzymes and Microglia Mediators of Phagocytosis in Brains of 3xTg-AD Mice. Neurochemical Research, 2019, 44, 2670-2680.	1.6	15
998	The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 2019, 10, 1893.	2.2	59
999	Oral Silica Nanoparticles Lack of Neurotoxic Effects in a Parkinson's Disease Model: A Possible Nanocarrier?. IEEE Transactions on Nanobioscience, 2019, 18, 535-541.	2.2	5
1000	Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson's disease. Nature Communications, 2019, 10, 3945.	5.8	127
1001	Oleanolic Acid Mitigates 6-Hydroxydopamine Neurotoxicity by Attenuating Intracellular ROS in PC12 Cells and Striatal Microglial Activation in Rat Brains. Frontiers in Physiology, 2019, 10, 1059.	1.3	19
1002	Microglial response patterns following damage to the zebrafish olfactory bulb. IBRO Reports, 2019, 7, 70-79.	0.3	5
1003	Glucocorticoid-Driven NLRP3 Inflammasome Activation in Hippocampal Microglia Mediates Chronic Stress-Induced Depressive-Like Behaviors. Frontiers in Molecular Neuroscience, 2019, 12, 210.	1.4	107
1004	Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants. Journal of Alzheimer's Disease, 2019, 72, 301-318.	1.2	19
1005	Microglia of the Brain: Origin, Structure, Functions. Journal of Evolutionary Biochemistry and Physiology, 2019, 55, 257-268.	0.2	14
1006	Central Nervous System Remyelination: Roles of Glia and Innate Immune Cells. Frontiers in Molecular Neuroscience, 2019, 12, 225.	1.4	49

	Сітаті	on Report	
# 1007	ARTICLE Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, , .	lF 0.8	Citations
1008	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	13.5	772
1009	Role of Microglia in Ataxias. Journal of Molecular Biology, 2019, 431, 1792-1804.	2.0	32
1010	lon Channels and Receptors as Determinants of Microglial Function. Trends in Neurosciences, 2019, 42, 278-292.	4.2	69
1011	Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies. Pharmacology Biochemistry and Behavior, 2019, 179, 34-42.	1.3	102
1012	Inflammatory mechanisms in neurodegeneration. Journal of Neurochemistry, 2019, 149, 562-581.	2.1	85
1013	Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche. Neuroscience, 2019, 405, 77-91.	1.1	16
1014	A Neuron–Glial Perspective forÂComputational Neuroscience. Springer Series in Computational Neuroscience, 2019, , 3-35.	0.3	9
1015	An introduction to innate immunity in the central nervous system. Advances in Neurotoxicology, 2019, 3, 1-34.	0.7	1
1016	Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Structure and Function, 2019, 224, 1301-1314.	1.2	55
1017	Loss of Par1b/MARK2 primes microglia during brain development and enhances their sensitivity to injury. Journal of Neuroinflammation, 2019, 16, 11.	3.1	15
1018	Lipid Analysis of 30â€ ⁻ 000 Individual Rodent Cerebellar Cells Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2019, 91, 7871-7878.	3.2	46
1019	Shared microglial mechanisms underpinning depression and chronic fatigue syndrome and their comorbidities. Behavioural Brain Research, 2019, 372, 111975.	1.2	26
1020	Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN- \hat{I}^3 and IL-4. Cells, 2019, 8, 580.	1.8	15
1021	Neurotoxicity to dopamine neurons after the serial exposure to alcohol and methamphetamine: Protection by COX-2 antagonism. Brain, Behavior, and Immunity, 2019, 81, 317-328.	2.0	14
1022	Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Frontiers in Pharmacology, 2019, 10, 506.	1.6	55
1023	Towards developing meaningful MRI biomarkers of neuroinflammation. Journal of Neuroscience Research, 2019, 97, 643-644.	1.3	0
1024	Role of microglial activation and neuroinflammation in neurotoxicity of acrylamide in vivo and in vitro. Archives of Toxicology, 2019, 93, 2007-2019.	1.9	42

#	Article	IF	CITATIONS
1025	Early tollâ€like receptor 4 blockade reduces ROS and inflammation triggered by microglial proâ€inflammatory phenotype in rodent and human brain ischaemia models. British Journal of Pharmacology, 2019, 176, 2764-2779.	2.7	44
1026	The Behavioral Sequelae of Social Defeat Require Microglia and Are Driven by Oxidative Stress in Mice. Journal of Neuroscience, 2019, 39, 5594-5605.	1.7	85
1027	Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia, 2019, 67, 2125-2141.	2.5	71
1028	Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacological Research, 2019, 145, 104253.	3.1	71
1029	Neuroinflammation During RNA Viral Infections. Annual Review of Immunology, 2019, 37, 73-95.	9.5	107
1030	Alpha-7 nicotinic receptor allosteric modulator PNU120596 prevents lipopolysaccharide-induced anxiety, cognitive deficit and depression-like behaviors in mice. Behavioural Brain Research, 2019, 366, 19-28.	1.2	55
1031	Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice. Molecular Neurodegeneration, 2019, 14, 12.	4.4	53
1032	Inflammation, Infectious Triggers, and Parkinson's Disease. Frontiers in Neurology, 2019, 10, 122.	1.1	139
1033	Rod microglia and their role in neurological diseases. Seminars in Cell and Developmental Biology, 2019, 94, 96-103.	2.3	44
1034	Matured Hop Bitter Acids in Beer Improve Lipopolysaccharide-Induced Depression-Like Behavior. Frontiers in Neuroscience, 2019, 13, 41.	1.4	15
1035	Microglia lacking a peroxisomal \hat{l}^2 -oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. Journal of Neuroinflammation, 2019, 16, 61.	3.1	20
1036	Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration. Immunity, 2019, 50, 723-737.e7.	6.6	235
1037	Effect of naturally occurring α-synuclein-antibodies on toxic α-synuclein-fragments. Neuroscience Letters, 2019, 704, 181-188.	1.0	8
1038	<p>Activation of hippocampal microglia in a murine model of cancer-induced pain</p> . Journal of Pain Research, 2019, Volume 12, 1003-1016.	0.8	9
1039	A core transcriptional signature of human microglia: Derivation and utility in describing regionâ€dependent alterations associated with Alzheimer's disease. Glia, 2019, 67, 1240-1253.	2.5	67
1040	Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Current Topics in Behavioral Neurosciences, 2019, 44, 9-34.	0.8	26
1041	A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Frontiers in Neural Circuits, 2019, 13, 11.	1.4	34
1042	Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Structure and Function, 2019, 224, 1417-1428.	1.2	12

#	Article	IF	CITATIONS
1043	Effect Of Shear Stress On Microgilia (BV2) Single Cell In A Microfluidic Platform-3D Modeling Under Fluid Flow Stimulation. , 2019, , .		0
1044	Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Frontiers in Aging Neuroscience, 2019, 11, 302.	1.7	53
1045	Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sciences, 2019, 9, 318.	1.1	49
1046	Overview of peripheral and central inflammatory responses and their contribution to neurotoxicity. Advances in Neurotoxicology, 2019, 3, 169-193.	0.7	5
1047	Sexually dimorphic microglia and ischemic stroke. CNS Neuroscience and Therapeutics, 2019, 25, 1308-1317.	1.9	70
1048	Effects of cannabidivarin (CBDV) on brain excitation and inhibition systems in adults with and without Autism Spectrum Disorder (ASD): a single dose trial during magnetic resonance spectroscopy. Translational Psychiatry, 2019, 9, 313.	2.4	36
1049	Connexins-Based Hemichannels/Channels and Their Relationship with Inflammation, Seizures and Epilepsy. International Journal of Molecular Sciences, 2019, 20, 5976.	1.8	30
1050	Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Frontiers in Cellular Neuroscience, 2019, 13, 514.	1.8	94
1051	Friend, Foe or Both? Immune Activity in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2019, 11, 337.	1.7	63
1052	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	13.5	292
1053	From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. International Review of Neurobiology, 2019, 148, 231-303.	0.9	14
1054	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
1055	Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron, 2019, 101, 207-223.e10.	3.8	695
1056	Clinical and experimental aspects of breathing modulation by inflammation. Autonomic Neuroscience: Basic and Clinical, 2019, 216, 72-86.	1.4	12
1057	Sexual differentiation of microglia. Frontiers in Neuroendocrinology, 2019, 52, 156-164.	2.5	97
1058	The involvement of microglia in Alzheimer's disease: a new dog in the fight. British Journal of Pharmacology, 2019, 176, 3533-3543.	2.7	27
1059	Unique role for dentate gyrus microglia in neuroblast survival and in VEGFâ€induced activation. Glia, 2019, 67, 594-618.	2.5	55
1060	Regionâ€specific control of microglia by adenosine A _{2A} receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia, 2019, 67, 182-192.	2.5	29

#	Article	IF	Citations
1061	Microglia: Neuroimmune-sensors of stress. Seminars in Cell and Developmental Biology, 2019, 94, 176-185.	2.3	86
1062	Age-Induced Spatial Memory Deficits in Rats Are Correlated with Specific Brain Region Alterations in Microglial Morphology and Gene Expression. Journal of NeuroImmune Pharmacology, 2019, 14, 251-262.	2.1	13
1063	The Role of Neuroinflammation in Neurodegenerative Disorders. , 2019, , 241-267.		7
1064	Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiology of Learning and Memory, 2019, 165, 106962.	1.0	9
1065	Glial mechanisms underlying substance use disorders. European Journal of Neuroscience, 2019, 50, 2574-2589.	1.2	43
1066	Region-Specific Phenotypes of Microglia: The Role of Local Regulatory Cues. Neuroscientist, 2019, 25, 314-333.	2.6	40
1067	Microglial Pruning of Synapses in the Prefrontal Cortex During Adolescence. Cerebral Cortex, 2019, 29, 1634-1643.	1.6	92
1068	Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View. Neuroscience, 2019, 405, 3-13.	1.1	17
1069	The role of catecholamines in HIV neuropathogenesis. Brain Research, 2019, 1702, 54-73.	1.1	40
1070	Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. Journal of NeuroImmune Pharmacology, 2020, 15, 114-164.	2.1	149
1071	Study of Microglial and Astroglial Alterations Induced by Acute 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Treatment in Mouse Brain. Proceedings of the Zoological Society, 2020, 73, 32-39.	0.4	0
1072	Glia-specific autophagy dysfunction in ALS. Seminars in Cell and Developmental Biology, 2020, 99, 172-182.	2.3	39
1073	Microglia, autonomic nervous system, immunity and hypertension: Is there a link?. Pharmacological Research, 2020, 155, 104451.	3.1	26
1074	Differences in Diurnal Variation of Immune Responses in Microglia and Macrophages: Review and Perspectives. Cellular and Molecular Neurobiology, 2020, 40, 301-309.	1.7	15
1075	Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain, Behavior, and Immunity, 2020, 83, 200-213.	2.0	31
1076	In Situ Temporospatial Characterization of the Glial Response to Prion Infection. Veterinary Pathology, 2020, 57, 90-107.	0.8	3
1077	Development and sensory experience dependent regulation of microglia in barrel cortex. Journal of Comparative Neurology, 2020, 528, 559-573.	0.9	12
1078	Transcriptional profiling of microglia; current state of the art and future perspectives. Clia, 2020, 68, 740-755.	2.5	90

#	Article	IF	CITATIONS
1079	Risk of Parkinson's disease among patients with herpes zoster: a nationwide longitudinal study. CNS Spectrums, 2020, 25, 797-802.	0.7	9
1080	NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotoxicity Research, 2020, 37, 491-507.	1.3	121
1081	Microglial regional heterogeneity and its role in the brain. Molecular Psychiatry, 2020, 25, 351-367.	4.1	292
1082	Microglial cellâ€derived interleukinâ€6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia, 2020, 68, 999-1016.	2.5	23
1083	Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain, Behavior, and Immunity, 2020, 84, 180-199.	2.0	54
1084	Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. Journal of Neuroscience, 2020, 40, 9103-9120.	1.7	23
1085	Microglia in Alzheimer's Disease in the Context of Tau Pathology. Biomolecules, 2020, 10, 1439.	1.8	56
1086	Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs, 2020, 34, 1229-1251.	2.7	26
1087	Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime?. Trends in Immunology, 2020, 41, 820-835.	2.9	146
1088	Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends in Neurosciences, 2020, 43, 854-869.	4.2	110
1089	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	1.1	19
1090	Microglia in the human infant brain and factors that affect expression. Brain, Behavior, & Immunity - Health, 2020, 7, 100117.	1.3	7
1091	Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 10, 11376-11403.	4.6	88
1092	Microglia and Their Promising Role in Ischemic Brain Injuries: An Update. Frontiers in Cellular Neuroscience, 2020, 14, 211.	1.8	22
1093	Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Frontiers in Neurology, 2020, 11, 575.	1.1	31
1094	Two phenotypically and functionally distinct microglial populations in adult zebrafish. Science Advances, 2020, 6, .	4.7	48
1095	Substantia nigra Smad3 signaling deficiency: relevance to aging and Parkinson's disease and roles of microglia, proinflammatory factors, and MAPK. Journal of Neuroinflammation, 2020, 17, 342.	3.1	8
1096	Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational Neurodegeneration, 2020, 9, 42.	3.6	883

#	Article	IF	CITATIONS
1097	Intranigral Administration of β-Sitosterol-β-D-Glucoside Elicits Neurotoxic A1 Astrocyte Reactivity and Chronic Neuroinflammation in the Rat Substantia Nigra. Journal of Immunology Research, 2020, 2020, 1-19.	0.9	10
1098	Glia in Neurodegeneration: The Housekeeper, the Defender and the Perpetrator. International Journal of Molecular Sciences, 2020, 21, 9188.	1.8	31
1099	Microglia Diversity in Health and Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 588021.	2.2	44
1100	High-Resolution Transcriptomic and Proteomic Profiling of Heterogeneity of Brain-Derived Microglia in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2020, 13, 583811.	1.4	18
1101	Moesin is involved in microglial activation accompanying morphological changes and reorganization of the actin cytoskeleton. Journal of Physiological Sciences, 2020, 70, 52.	0.9	7
1102	Nanoparticleâ€microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioengineering and Translational Medicine, 2020, 5, e10175.	3.9	16
1103	ATP Signaling Controlling Dyskinesia Through P2X7 Receptors. Frontiers in Molecular Neuroscience, 2020, 13, 111.	1.4	12
1104	Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Frontiers in Cellular Neuroscience, 2020, 14, 198.	1.8	476
1105	Estrogen receptor α phosphorylated at Ser216 confers inflammatory function to mouse microglia. Cell Communication and Signaling, 2020, 18, 117.	2.7	12
1106	The Role of TGFÎ ² Signaling in Microglia Maturation and Activation. Trends in Immunology, 2020, 41, 836-848.	2.9	60
1107	Gas6 Induces Myelination through Anti-Inflammatory IL-10 and TGF-Î ² Upregulation in White Matter and Glia. Cells, 2020, 9, 1779.	1.8	23
1108	Sex- and Region-Specific Differences in the Transcriptomes of Rat Microglia from the Brainstem and Cervical Spinal Cord. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 210-222.	1.3	11
1109	Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain, Behavior, and Immunity, 2020, 89, 400-413.	2.0	16
1110	Microglia Gone Awry: Linking Immunometabolism to Neurodegeneration. Frontiers in Cellular Neuroscience, 2020, 14, 246.	1.8	30
1111	Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells, 2020, 9, 2350.	1.8	24
1112	Sex- and region-biased depletion of microglia/macrophages attenuates CLN1 disease in mice. Journal of Neuroinflammation, 2020, 17, 323.	3.1	20
1113	Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases?. Frontiers in Cellular Neuroscience, 2020, 14, 250.	1.8	20
1114	Emerging Developments in Human Induced Pluripotent Stem Cell-Derived Microglia: Implications for Modelling Psychiatric Disorders With a Neurodevelopmental Origin. Frontiers in Psychiatry, 2020, 11, 789	1.3	14

#	Article	IF	CITATIONS
1115	The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer's Disease. Frontiers in Neurology, 2020, 11, 570711.	1.1	120
1116	Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Frontiers in Molecular Neuroscience, 2020, 13, 151.	1.4	11
1117	Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology, 2020, 45, 2162-2169.	2.8	15
1118	The Role of Microglia in Perioperative Neurocognitive Disorders. Frontiers in Cellular Neuroscience, 2020, 14, 261.	1.8	21
1119	Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Scientific Reports, 2020, 10, 15209.	1.6	57
1120	Region-Specific Characterization of <i>N</i> -Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain. Analytical Chemistry, 2020, 92, 12842-12851.	3.2	24
1121	The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. Progress in Brain Research, 2020, 252, 131-168.	0.9	21
1122	Microglial and Astrocytic Function in Physiological and Pathological Conditions: Estrogenic Modulation. International Journal of Molecular Sciences, 2020, 21, 3219.	1.8	34
1123	Lipid and Lipoprotein Metabolism in Microglia. Frontiers in Physiology, 2020, 11, 393.	1.3	122
1124	A Fatal Alliance between Microglia, Inflammasomes, and Central Pain. International Journal of Molecular Sciences, 2020, 21, 3764.	1.8	17
1125	Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology, 2020, 175, 108179.	2.0	24
1126	Neuroprotective Properties and Therapeutic Potential of Bone Marrow–Derived Microglia in Alzheimer's Disease. American Journal of Alzheimer's Disease and Other Dementias, 2020, 35, 153331752092716.	0.9	11
1127	Microglia. , 2020, , 995-1020.		3
1128	Biophysical basis for Kv1.3 regulation of membrane potential changes induced by <scp>P2X4</scp> â€mediated calcium entry in microglia. Glia, 2020, 68, 2377-2394.	2.5	43
1129	How microbiota shape microglial phenotypes and epigenetics. Clia, 2020, 68, 1655-1672.	2.5	44
1130	Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Frontiers in Cellular Neuroscience, 2020, 14, 42.	1.8	23
1131	Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathogens, 2020, 16, e1008296.	2.1	24
1132	Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Frontiers in Immunology, 2020, 11, 493.	2.2	152

#	Article	IF	CITATIONS
1133	[18F]-DPA-714 PET as a specific in vivo marker of early microglial activation in a rat model of progressive dopaminergic degeneration. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2602-2612.	3.3	20
1134	Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sciences, 2020, 10, 159.	1.1	48
1135	Early Neonatal Pain—A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Frontiers in Pediatrics, 2020, 8, 30.	0.9	113
1136	Glutamine Cooperatively Upregulates Lipopolysaccharide-Induced Nitric Oxide Production in BV2 Microglial Cells through the ERK and Nrf-2/HO-1 Signaling Pathway. Antioxidants, 2020, 9, 536.	2.2	2
1137	The contribution of glial cells to Huntington's disease pathogenesis. Neurobiology of Disease, 2020, 143, 104963.	2.1	56
1138	Automated Quantitative Analysis of Microglia in Bright-Field Images of Zebrafish. , 2020, , .		0
1139	Phoenixin-20 Ameliorates Lipopolysaccharide-Induced Activation of Microglial NLRP3 Inflammasome. Neurotoxicity Research, 2020, 38, 785-792.	1.3	23
1140	Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1â€derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Longâ€Evans rats. Journal of Neuroscience Research, 2021, 99, 1922-1939.	1.3	12
1141	Brain-derived neurotrophic factor fused with a collagen-binding domain inhibits neuroinflammation and promotes neurological recovery of traumatic brain injury mice via TrkB signalling. Journal of Pharmacy and Pharmacology, 2020, 72, 539-550.	1.2	23
1142	A Robust Image Registration Interface for Large Volume Brain Atlas. Scientific Reports, 2020, 10, 2139.	1.6	38
1143	CD200 maintains the regionâ€specific phenotype of microglia in the midbrain and its role in Parkinson's disease. Glia, 2020, 68, 1874-1890.	2.5	9
1144	Location of neonatal microglia drives small extracellular vesicles content and biological functions in vitro. Journal of Extracellular Vesicles, 2020, 9, 1727637.	5.5	20
1145	microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Molecular Cancer, 2020, 19, 29.	7.9	53
1146	Immunotherapy for Parkinson's disease. Neurobiology of Disease, 2020, 137, 104760.	2.1	57
1147	Automated Quantification of Immunohistochemical Staining of Large Animal Brain Tissue Using QuPath Software. Neuroscience, 2020, 429, 235-244.	1.1	24
1148	Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson's Disease. Molecules, 2020, 25, 453.	1.7	30
1149	Microglia Heterogeneity in the Single-Cell Era. Cell Reports, 2020, 30, 1271-1281.	2.9	421
1150	Microglia and Parkinson's disease: footprints to pathology. Journal of Neural Transmission, 2020, 127, 149-158.	1.4	37

#	Article	IF	CITATIONS
1151	Transcriptomic profiling of microglia and astrocytes throughout aging. Journal of Neuroinflammation, 2020, 17, 97.	3.1	99
1152	The combination of acyclovir and dexamethasone protects against Alzheimer's disease-related cognitive impairments in mice. Psychopharmacology, 2020, 237, 1851-1860.	1.5	26
1153	Brain morphometric differences in youth with and without perinatally-acquired HIV: A cross-sectional study. NeuroImage: Clinical, 2020, 26, 102246.	1.4	5
1154	Sex-Dependent Mechanisms of Chronic Pain: A Focus on Microglia and P2X4R. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 202-209.	1.3	36
1155	Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. International Immunopharmacology, 2020, 84, 106479.	1.7	73
1156	Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discovery Today, 2020, 25, 1074-1085.	3.2	18
1157	Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. Journal of Neuroscience, 2020, 40, 4622-4643.	1.7	60
1158	Assessment of TREM2 rs75932628 variant's association with Parkinson's disease in a Greek population and Meta-analysis of current data. International Journal of Neuroscience, 2021, 131, 544-548.	0.8	12
1159	Review: Microglia in motor neuron disease. Neuropathology and Applied Neurobiology, 2021, 47, 179-197.	1.8	20
1160	Cypermethrin Induces the Activation of Rat Primary Microglia and Expression of Inflammatory Proteins. Journal of Molecular Neuroscience, 2021, 71, 1275-1283.	1.1	3
1161	The role of the M1/M2 microglia in the process from cancer pain to morphine tolerance. Tissue and Cell, 2021, 68, 101438.	1.0	29
1162	Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. Science of the Total Environment, 2021, 760, 143376.	3.9	29
1163	A Binary Cre Transgenic Approach Dissects Microglia and CNS Border-Associated Macrophages. Immunity, 2021, 54, 176-190.e7.	6.6	99
1164	Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochemistry International, 2021, 143, 104944.	1.9	35
1165	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	2.3	36
1166	Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology, 2021, 46, 98-115.	2.8	70
1167	Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 1093.	1.8	40
1168	Microglia in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 270.	1.6	59

ARTICLE IF CITATIONS The Role of Microglia in the Developing Hypothalamus. Masterclass in Neuroendocrinology, 2021, 0.1 1169 1 3-28. Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules, 2021, 11, 99. 1170 1.8 Rodent Models to Analyze the Glioma Microenvironment. ASN Neuro, 2021, 13, 175909142110050. 1171 1.5 10 Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and 34 polarization. Mólecular Pain, 2021, 17, 174480692199652. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. 1174 3.1 56 Journal of Neuroinflammation, 2021, 18, 7. The Multifaceted Roles of Hypothalamic Astrocytes and Microglial Cells in Neuroendocrine and Autonomic Regulation in Health and Disease. Masterclass in Neuroendocrinology, 2021, 105-123. 0.1 miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology. ASN Neuro, 2021, 13, 1176 1.5 12 175909142098118. Inflammation and Depression: Is Immunometabolism the Missing Link?., 2021, , 259-287. Microglial periâ€somatic abutments classify two novel types of GABAergic neuron in the inferior 1178 1.2 5 colliculus. European Journal of Neuroscience, 2021, 54, 5815-5833. 1179 Implications of Glycosylation in Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 625348. 1.4 Poly I:C Activated Microglia Disrupt Perineuronal Nets and Modulate Synaptic Balance in Primary 1180 1.3 14 Hippocampal Neurons in vitro. Frontiers in Synaptic Neuroscience, 2021, 13, 637549. Neuroinflammation in Alzheimer's disease and beneficial action of luteolin. BioFactors, 2021, 47, 1181 2.6 207-217. Activated microglia drive demyelination via <scp>CSF1R</scp> signaling. Glia, 2021, 69, 1583-1604. 1182 2.5 74 Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Frontiers in Immunology, 2021, 12, 640937. 2.2 Targeting Microglia-Synapse Interactions in Alzheimer's Disease. International Journal of Molecular 1184 1.8 36 Sciences, 2021, 22, 2342. Cellular and molecular pathophysiology in the progression of Parkinson's disease. Metabolic Brain Disease, 2021, 36, 815-827. Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating 1187 macrophages after ischemic stroke and reperfusion in male and female mice?. Journal of 3.129 Neuroinflammation, 2021, 18, 58. Microglia and astrocytes show limited, acute alterations in morphology and protein expression following a single developmental alcohol exposure. Journal of Neuroscience Research, 2021, 99, 1.3 2008-2025.

#	Article	IF	CITATIONS
1189	Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. Stem Cell Reports, 2021, 16, 281-294.	2.3	23
1190	Single-Cell Transcriptomics and In Situ Morphological Analyses Reveal Microglia Heterogeneity Across the Nigrostriatal Pathway. Frontiers in Immunology, 2021, 12, 639613.	2.2	30
1191	Roles of Microglial Ion Channel in Neurodegenerative Diseases. Journal of Clinical Medicine, 2021, 10, 1239.	1.0	10
1192	Palmitoylethanolamide Modulation of Microglia Activation: Characterization of Mechanisms of Action and Implication for Its Neuroprotective Effects. International Journal of Molecular Sciences, 2021, 22, 3054.	1.8	26
1193	Microglia Diversity in Healthy and Diseased Brain: Insights from Single-Cell Omics. International Journal of Molecular Sciences, 2021, 22, 3027.	1.8	33
1194	Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS ONE, 2021, 16, e0247901.	1.1	8
1195	The P2X7 Receptor in Microglial Cells Modulates the Endolysosomal Axis, Autophagy, and Phagocytosis. Frontiers in Cellular Neuroscience, 2021, 15, 645244.	1.8	38
1196	Tissue-resident macrophage inflammaging aggravates homeostasis dysregulation in age-related diseases. Cellular Immunology, 2021, 361, 104278.	1.4	11
1197	Microglia in Health and Disease: The Strength to Be Diverse and Reactive. Frontiers in Cellular Neuroscience, 2021, 15, 660523.	1.8	27
1198	Impact of ovariectomy and CO2 inhalation on microglia morphology in select brainstem and hypothalamic areas regulating breathing in female rats. Brain Research, 2021, 1756, 147276.	1.1	6
1199	Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of earlyâ€life stress and consequences for adult fear response. Journal of Neuroendocrinology, 2021, 33, e12969.	1.2	5
1200	T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. Journal of Parkinson's Disease, 2021, 11, 585-603.	1.5	14
1201	Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sciences, 2021, 11, 466.	1.1	23
1202	Transcriptome of microglia reveals a speciesâ€specific expression profile in bovines with conserved and new signature genes. Clia, 2021, 69, 1932-1949.	2.5	3
1203	The impact of chronic exposure to air pollution over oxidative stress parameters and brain histology. Environmental Science and Pollution Research, 2021, 28, 47407-47417.	2.7	7
1204	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	9.5	228
1207	The Potential Neuroprotective Role of Free and Encapsulated Quercetin Mediated by miRNA against Neurological Diseases. Nutrients, 2021, 13, 1318.	1.7	38
1209	Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4956.	1.8	40

#	Article	IF	Citations
1210	Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology, 2021, 456, 152785.	2.0	13
1211	Region-specific vulnerability in neurodegeneration: lessons from normal ageing. Ageing Research Reviews, 2021, 67, 101311.	5.0	27
1212	Glutathione in the Brain. International Journal of Molecular Sciences, 2021, 22, 5010.	1.8	144
1213	An emerging role for microglia in stressâ€effects on memory. European Journal of Neuroscience, 2022, 55, 2491-2518.	1.2	23
1214	An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. International Journal of Molecular Sciences, 2021, 22, 5948.	1.8	11
1215	Iron activates microglia and directly stimulates indoleamine-2,3-dioxygenase activity in the N171-82Q mouse model of Huntington's disease. PLoS ONE, 2021, 16, e0250606.	1.1	13
1216	An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. European Journal of Neuroscience, 2021, 53, 3525-3547.	1.2	16
1217	Macrophages and Stem Cells—Two to Tango for Tissue Repair?. Biomolecules, 2021, 11, 697.	1.8	14
1218	Harnessing the immune system for the treatment of Parkinson's disease. Brain Research, 2021, 1758, 147308.	1.1	10
1219	Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS Journal, 2022, 289, 1801-1822.	2.2	6
1220	Reduced microglia activity in patients with long-term immunosuppressive therapy after liver transplantation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, , 1.	3.3	2
1221	Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain. ACS Chemical Neuroscience, 2021, 12, 1811-1823.	1.7	17
1222	Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules, 2021, 11, 770.	1.8	31
1223	Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochemistry International, 2021, 145, 104987.	1.9	44
1224	Evolving Models and Tools for Microglial Studies in the Central Nervous System. Neuroscience Bulletin, 2021, 37, 1218-1233.	1.5	12
1225	Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. American Journal of Hypertension, 2021, 34, 1014-1030.	1.0	13
1226	PGC-1α-siRNA suppresses inflammation in substantia nigra of PD mice by inhibiting microglia. International Journal of Neuroscience, 2023, 133, 269-277.	0.8	6
1227	Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Current Neuropharmacology, 2021, 19, 908-924.	1.4	29

#	Article	IF	CITATIONS
1228	Diacylglycerol Lipase-Î ² Knockout Mice Display a Sex-Dependent Attenuation of Traumatic Brain Injury-Induced Mortality with No Impact on Memory or Other Functional Consequences. Cannabis and Cannabinoid Research, 2021, 6, 508-521.	1.5	3
1229	Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Frontiers in Immunology, 2021, 12, 683026.	2.2	12
1230	Thickening of the walls of deep brain abscesses is associated with macrophage infiltration. Experimental and Therapeutic Medicine, 2021, 22, 1080.	0.8	3
1231	Immunohistochemical evaluation of immune cell infiltration in canine gliomas. Veterinary Pathology, 2021, 58, 952-963.	0.8	13
1232	Intranasal HSP70 administration protects against dopaminergic denervation and modulates neuroinflammatory response in the 6-OHDA rat model. Brain, Behavior, & Immunity - Health, 2021, 14, 100253.	1.3	7
1233	Plasma concentrations of granulocyte colony-stimulating factor (G-CSF) in patients with substance use disorders and comorbid major depressive disorder. Scientific Reports, 2021, 11, 13629.	1.6	5
1234	Hispidin inhibits LPS‑induced nitric oxide production in BV‑2 microglial cells via ROS‑dependent MAPK signaling. Experimental and Therapeutic Medicine, 2021, 22, 970.	0.8	9
1235	Duzhong Fang Attenuates the POMC-Derived Neuroinflammation in Parkinsonian Mice. Journal of Inflammation Research, 2021, Volume 14, 3261-3276.	1.6	2
1236	Little cells of the little brain: microglia in cerebellar development and function. Trends in Neurosciences, 2021, 44, 564-578.	4.2	23
1237	The potential roles of m6A modification in regulating the inflammatory response in microglia. Journal of Neuroinflammation, 2021, 18, 149.	3.1	26
1239	Single-Cell RNA Sequencing of Retina:New Looks for Gene Marker and Old Diseases. Frontiers in Molecular Biosciences, 2021, 8, 699906.	1.6	7
1240	The old guard: Age-related changes in microglia and their consequences. Mechanisms of Ageing and Development, 2021, 197, 111512.	2.2	32
1241	Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Frontiers in Pharmacology, 2021, 12, 694476.	1.6	5
1242	Effects of Microglial Activation and Polarization on Brain Injury After Stroke. Frontiers in Neurology, 2021, 12, 620948.	1.1	48
1243	Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nature Methods, 2021, 18, 953-958.	9.0	32
1244	Mild Microglial Responses in the Cortex and Perivascular Macrophage Infiltration in Subcortical White Matter in Dogs with Age-Related Dementia Modelling Prodromal Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, 575-592.	1.2	3
1245	Neuroinflammation and Microglial Activation at Rostral Ventrolateral Medulla Underpin Cadmium-Induced Cardiovascular Dysregulation in Rats. Journal of Inflammation Research, 2021, Volume 14, 3863-3877.	1.6	7
1246	Large Animal Studies to Reduce the Foreign Body Reaction in Brain–Computer Interfaces: A Systematic Review. Biosensors, 2021, 11, 275.	2.3	4

#	Article	IF	CITATIONS
1247	Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Frontiers in Cellular Neuroscience, 2021, 15, 718324.	1.8	22
1248	Palmitic Acid Lipotoxicity in Microglia Cells Is Ameliorated by Unsaturated Fatty Acids. International Journal of Molecular Sciences, 2021, 22, 9093.	1.8	20
1249	Beyond Activation: Characterizing Microglial Functional Phenotypes. Cells, 2021, 10, 2236.	1.8	75
1251	New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Frontiers in Cellular Neuroscience, 2021, 15, 727899.	1.8	32
1252	Transcriptional profiling of macaque microglia reveals an evolutionary preserved gene expression program. Brain, Behavior, & Immunity - Health, 2021, 15, 100265.	1.3	5
1253	Generation of an Iba1-EGFP Transgenic Rat for the Study of Microglia in an Outbred Rodent Strain. ENeuro, 2021, 8, ENEURO.0026-21.2021.	0.9	6
1254	HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells, 2021, 10, 2158.	1.8	18
1255	Microglial heterogeneity in chronic pain. Brain, Behavior, and Immunity, 2021, 96, 279-289.	2.0	24
1256	Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells, 2021, 10, 2066.	1.8	25
1257	Low molecular weight polysialic acid prevents lipopolysaccharideâ€induced inflammatory dopaminergic neurodegeneration in humanized <scp><i>SIGLEC11</i></scp> transgenic mice. Glia, 2021, 69, 2845-2862.	2.5	12
1258	Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain, Behavior, and Immunity, 2021, 96, 168-186.	2.0	14
1259	Saponins isolated from Radix polygalae extent lifespan by modulating complement C3 and gut microbiota. Pharmacological Research, 2021, 170, 105697.	3.1	11
1260	Anti-inflammatory Activity of a Polypeptide Fraction From Achyranthes bidentate in Amyloid β Oligomers Induced Model of Alzheimer's Disease. Frontiers in Pharmacology, 2021, 12, 716177.	1.6	7
1262	Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 2021, 28, 2153-2166.e6.	5.2	98
1263	Chronic Alcoholism and HHV-6 Infection Synergistically Promote Neuroinflammatory Microglial Phenotypes in the Substantia Nigra of the Adult Human Brain. Biomedicines, 2021, 9, 1216.	1.4	3
1264	Electrified microglia: Impact of direct current stimulation on diverse properties of the most versatile brain cell. Brain Stimulation, 2021, 14, 1248-1258.	0.7	17
1265	Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications. International Journal of Legal Medicine, 2021, 135, 2315-2322.	1.2	8
1266	Microglia Mediate the Occurrence and Development of Alzheimer's Disease Through Ligand-Receptor Axis Communication. Frontiers in Aging Neuroscience, 2021, 13, 731180.	1.7	15

#	Article	IF	Citations
1267	Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9734.	1.8	9
1268	Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochemistry International, 2021, 148, 105094.	1.9	20
1269	Long-term in vivo two-photon imaging of the neuroinflammatory response to intracortical implants and micro-vessel disruptions in awake mice. Biomaterials, 2021, 276, 121060.	5.7	13
1270	Mitochondrial dysfunction in adult midbrain dopamine neurons triggers an early immune response. PLoS Genetics, 2021, 17, e1009822.	1.5	8
1271	Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination. Nature Communications, 2021, 12, 5219.	5.8	49
1272	LED-Induced Microglial Activation and Rise in Caspase3 Suggest a Reorganization in the Retina. International Journal of Molecular Sciences, 2021, 22, 10418.	1.8	2
1273	Plasticity of microglia. Biological Reviews, 2022, 97, 217-250.	4.7	44
1274	Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochemical Research, 2022, 47, 218-233.	1.6	3
1275	Imaging the dynamics of individual processes of microglia in the living retina in vivo. Biomedical Optics Express, 2021, 12, 6157.	1.5	15
1276	Roles of microglia in Alzheimer's disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochemical Pharmacology, 2021, 192, 114754.	2.0	24
1277	Pubertal LPS treatment selectively alters PSD-95 expression in male CD-1 mice. Brain Research Bulletin, 2021, 175, 186-195.	1.4	5
1278	The emerging tale of microglia in psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 131, 1-29.	2.9	53
1279	The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 620348.	2.2	19
1280	Microglial Turnover in Ageing-Related Neurodegeneration: Therapeutic Avenue to Intervene in Disease Progression. Cells, 2021, 10, 150.	1.8	23
1281	Microglia: A Critical Cell for Neurodevelopment. , 2021, , 1-20.		0
1282	Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. , 2021, 1, .		10
1283	Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends in Molecular Medicine, 2021, 27, 47-59.	3.5	18
1284	Alterations in Chromatin Structure and Function in the Microglia. Frontiers in Cell and Developmental Biology, 2020, 8, 626541.	1.8	7

# 1285	ARTICLE Changing Functional Signatures of Microglia along the Axis of Brain Aging. International Journal of Molecular Sciences, 2021, 22, 1091.	IF 1.8	Citations
1286	Activated Microglia Persist in the Substantia Nigra of a Chronic MPTP Mouse Model of Parkinson's Disease. , 2005, , 341-347.		7
1287	14 N-Acetylaspartate and N-Acetylaspartylglutamate. , 2007, , 305-346.		12
1288	GDNF: a Key Player in Neuron-Glia Crosstalk and Survival of Nigrostriatal Dopaminergic Neurons. , 2007, , 173-192.		3
1289	Neurotoxins and Neuronal Death. , 1999, , 221-245.		5
1290	Neuroimmune Mechanisms of Glia and Their Interplay with Alcohol Exposure Across the Lifespan. , 2013, , 359-386.		6
1291	Neuron-Glial Interactions. , 2020, , 1-30.		4
1292	Effects of Contralateral Lesions and Aging on the Neuronal and Glial Population of the Cerebral Cortex of the Rat. , 1998, , 297-317.		5
1293	Influences of Activated Microglia/Brain Macrophages on Spinal Cord Injury and Regeneration. , 2002, , 209-226.		5
1294	Roles of Microglia in the Developing Avian Visual System. , 2002, , 15-35.		3
1295	Paracrine and Autocrine Signalling in Regulation of Microglia Survival. , 1993, , 247-261.		15
1298	Activated and Phagocytic Microglia. , 1999, , 251-269.		2
1299	Aging Microglia: Relevance to Cognition and Neural Plasticity. Methods in Molecular Biology, 2012, 934, 193-218.	0.4	23
1300	The MRL Model: An Invaluable Tool in Studies of Autoimmunity–Brain Interactions. Methods in Molecular Biology, 2012, 934, 277-299.	0.4	14
1301	Understanding Microglia–Neuron Cross Talk: Relevance of the Microglia–Neuron Cocultures. Methods in Molecular Biology, 2013, 1041, 215-229.	0.4	14
1302	The role of microglia in ischemic brain injury. , 2001, , 89-99.		4
1303	"Good―and "Bad―Microglia in Parkinson's Disease: An Understanding of Homeostatic Mechanisms Immunomodulation. , 2014, , 105-126.	in	3
1304	Antigen Markers of Macrophage Differentiation in Murine Tissues. Current Topics in Microbiology and Immunology, 1992, 181, 1-37.	0.7	158

#	Article	IF	Citations
1305	Hierarchy of Immune Responses to Antigen in the Normal Brain. Current Topics in Microbiology and Immunology, 2002, 265, 1-22.	0.7	14
1306	Cerebrolysin® reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection. , 2000, 59, 281-292.		38
1307	The Origin of Microglia and the Development of the Brain. , 2010, , 171-189.		2
1309	Regulation by Nicotinic Acetylcholine Receptors of Microglial Glutamate Transporters: Role of Microglia in Neuroprotection. , 2018, , 73-88.		8
1310	Physiology of Microglia. Advances in Experimental Medicine and Biology, 2019, 1175, 129-148.	0.8	45
1311	Intranasal Administration of TAT-Conjugated Lipid Nanocarriers Loading GDNF for Parkinson's Disease. Molecular Neurobiology, 2018, 55, 145-155.	1.9	95
1312	Manipulating macrophages in nervous system repair. , 1993, , 193-199.		3
1314	Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model. Scientific Reports, 2020, 10, 2365.	1.6	20
1315	Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3269-3274.	3.3	158
1316	Cell-mediated delivery systems. , 2004, , 339-380.		10
1317	Microglial Cells. , 2013, , .		3
1318	Scrapie strains retain their distinctive characteristics following passages of homogenates from different brain regions and spleen Journal of General Virology, 1997, 78, 283-290.	1.3	26
1329	Relationship between Microglial Activation and Dopaminergic Neuronal Loss in 6-OHDA-induced Parkinsonian Animal Model. Korean Journal of Physical Anthropology, 2013, 26, 13.	0.2	1
1330	Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice Journal of Clinical Investigation, 1996, 97, 1512-1524.	3.9	101
1331	Microglia in steady state. Journal of Clinical Investigation, 2017, 127, 3201-3209.	3.9	212
1332	Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S49-S66.	2.4	41
1333	Shedding Light on the Dark Side of the Microglia. ASN Neuro, 2020, 12, 175909142092533.	1.5	39
1334	Role of Macrophages and Microglia in the Injured CNS. , 1998, , 79-95.		1

#	Article	IF	CITATIONS
1335	The blood-brain barrier regulates the expression of a macrophage sialic acid-binding receptor on microglia. Journal of Cell Science, 1992, 101, 201-208.	1.2	84
1336	Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. Journal of Cell Science, 1999, 112, 4007-4016.	1.2	127
1337	Regional Susceptibility to TNF-α Induction of Murine Brain Inflammation via Classical IKK/NF-κB Signalling. PLoS ONE, 2012, 7, e39049.	1.1	29
1338	IFN Regulatory Factor 8 Is a Key Constitutive Determinant of the Morphological and Molecular Properties of Microglia in the CNS. PLoS ONE, 2012, 7, e49851.	1.1	66
1339	Intranasal LPS-Mediated Parkinson's Model Challenges the Pathogenesis of Nasal Cavity and Environmental Toxins. PLoS ONE, 2013, 8, e78418.	1.1	57
1340	Characterization of Novel Src Family Kinase Inhibitors to Attenuate Microgliosis. PLoS ONE, 2015, 10, e0132604.	1.1	15
1341	Microglia: Roles of Microglia in Chronic Neurodegenerative Diseases. , 0, , 003-027.		4
1342	Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia. ENeuro, 2019, 6, ENEURO.0448-18.2019.	0.9	153
1343	Synergistic Dopaminergic Neurotoxicity of the Pesticide Rotenone and Inflammogen Lipopolysaccharide: Relevance to the Etiology of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 1228-1236.	1.7	220
1344	Morphinan Neuroprotection: New Insight into the Therapy of Neurodegeneration. Critical Reviews in Neurobiology, 2004, 16, 271-302.	3.3	10
1345	Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model. Aging, 2015, 7, 673-689.	1.4	28
1346	How do Glial Cells Contribute to Motor Control?. Current Pharmaceutical Design, 2013, 19, 4385-4399.	0.9	19
1347	Mitochondria: Prospective Targets for Neuroprotection in Parkinson's Disease. Current Pharmaceutical Design, 2014, 20, 5558-5573.	0.9	22
1348	Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Current Pharmaceutical Design, 2019, 25, 2375-2393.	0.9	16
1349	Neuroinflammation: Microglial Activation During Sepsis. Current Neurovascular Research, 2014, 11, 262-270.	0.4	55
1350	Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Current Neuropharmacology, 2012, 10, 303-310.	1.4	25
1351	Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Current Neuropharmacology, 2017, 15, 595-619.	1.4	10
1352	Microglia and Astrocytes in Alzheimer's Disease: Implications for Therapy. Current Neuropharmacology, 2018, 16, 508-518.	1.4	326

#	Article	IF	CITATIONS
1353	Microglia and Inflammation in Alzheimers Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 156-167.	0.8	346
1354	Targeting TNF-Alpha to Elucidate and Ameliorate Neuroinflammation in Neurodegenerative Diseases. CNS and Neurological Disorders - Drug Targets, 2011, 10, 391-403.	0.8	192
1355	Neuroinflammation in the pathogenesis of Alzheimerââ,¬â"¢s disease. A rational framework for the search of novel therapeutic approaches. Frontiers in Cellular Neuroscience, 2014, 8, 112.	1.8	394
1356	Healthy Brain Aging Modifies Microglial Calcium Signaling In Vivo. International Journal of Molecular Sciences, 2019, 20, 589.	1.8	48
1357	Cerebral Innate Immunity in Drosophila Melanogaster. AIMS Neuroscience, 2015, 2, 35-51.	1.0	2
1358	Risk of Parkinson's disease among patients with psoriasis: A systematic review and meta-analysis. Indian Journal of Dermatology, 2016, 61, 152.	0.1	17
1359	The Rho-associated kinase inhibitors Y27632 and fasudil promote microglial migration in the spinal cord via the ERK signaling pathway. Neural Regeneration Research, 2018, 13, 677.	1.6	16
1360	Acute drivers of neuroinflammation in traumatic brain injury. Neural Regeneration Research, 2019, 14, 1481.	1.6	59
1361	Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. , 2013, 4, 118.		21
1362	Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. , 2017, 8, 65.		50
1363	Blood-brain barrier function in cerebral malaria in Malawian children American Journal of Tropical Medicine and Hygiene, 2001, 64, 207-213.	0.6	143
1364	The role of neuroinflammation on the pathogenesis of Parkinson's disease. BMB Reports, 2010, 43, 225-232.	1.1	134
1365	Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. Journal of Stroke, 2020, 22, 29-46.	1.4	233
1366	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	2.8	49
1367	The development and physiological and pathophysiological functions of resident macrophages and glial cells. Advances in Immunology, 2021, 151, 1-47.	1.1	2
1368	Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery. Biomolecules, 2021, 11, 1508.	1.8	59
1369	Synapse development is regulated by microglial THIK-1 K ⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1370	Shaping of Regional Differences in Oligodendrocyte Dynamics by Regional Heterogeneity of the Pericellular Microenvironment. Frontiers in Cellular Neuroscience, 2021, 15, 721376.	1.8	10

	CHAHON R		
#	Article	IF	CITATIONS
1371	Macrophage Identification In Situ. Biomedicines, 2021, 9, 1393.	1.4	10
1372	In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules, 2021, 26, 6077.	1.7	12
1373	Activation of and in. Neuromethods, 2022, , 11-38.	0.2	0
1374	Chronic Intestinal Inflammation Suppresses Brain Activity by Inducing Neuroinflammation in Mice. American Journal of Pathology, 2022, 192, 72-86.	1.9	10
1375	The Health Hazards of Volcanoes: First Evidence of Neuroinflammation in the Hippocampus of Mice Exposed to Active Volcanic Surroundings. Mediators of Inflammation, 2021, 2021, 1-10.	1.4	3
1376	An Automated Approach to Improve the Quantification of Pericytes and Microglia in Whole Mouse Brain Sections. ENeuro, 2021, 8, ENEURO.0177-21.2021.	0.9	14
1377	Microglie : origine et développement. Bulletin De L'Academie Nationale De Medecine, 2001, 185, 337-347.	0.0	2
1378	Cellular Elements, Tissue Organization, Organogenesis. , 2002, , 3-29.		0
1379	Microglia. , 2003, , 137-140.		0
1380	Macrophages in the Central and Peripheral Nervous System. Handbook of Experimental Pharmacology, 2003, , 373-383.	0.9	0
1381	Signaling Mechanisms Underlying Toxicant-Induced Gliosis. , 2004, , 141-171.		1
1382	The CNS. , 2005, , 1-22.		1
1383	Nitric Oxide in Experimental Allergic Encephalomyelitis. , 2009, , 281-301.		0
1384	Immune Responses in HIV Infection, Alcoholism, and Aging: A Neuroimaging Perspective. , 2013, , 441-476.		0
1385	Role of Microglia in the Normal Brain. , 2013, , .		0
1386	Factors Controlling Microglial Activation. , 2013, , .		1
1387	Microglial Ontogeny and Functions in Shaping Brain Circuits. , 2014, , 183-215.		0
1388	Innate and Adaptive Immune-Mediated Neuroinflammation and Neurodegeneration in Parkinson's Disease. , 2014, , 119-142.		1

ATION R

#	Article	IF	Citations
1390	Substantia Nigra Modulation by Essential Fatty Acids. , 2014, , 237-249.		0
1391	Proinflammatory Chemical Signaling: Cytokines. , 2014, , 145-173.		15
1392	Lessons from In Vivo Imaging. , 2014, , 81-114.		0
1393	Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters. Neural Regeneration Research, 2014, 9, 1863.	1.6	2
1394	Microglia: Neuroprotective and Neurodestructive Properties. , 2014, , 109-132.		2
1396	Role of the Innate and Adaptive Immune System in the Pathogenesis of PD. , 2014, , 75-103.		14
1397	Roles of Microglia in Spinal Cord Injury. , 2014, , 43-57.		0
1398	Possible Roles for Astroglia and Microglia in the Pathogenesis of Unconventional Slow Infections. , 1993, , 417-429.		1
1399	Expression of Microglial Markers in the Human CNS After Closed Head Injury. , 1996, , 87-95.		0
1400	Immunocompetent Cells in the Rat Pineal Gland with Special Reference to Macrophages and Dendritic Cells. , 1997, , 375-392.		0
1403	Microglia: Features of Polarization and Aging. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 47-66.	0.4	0
1404	Targeting Nanoparticles to Brain: Impact of N-Methyl d-Aspartate Receptors. , 2017, , 199-220.		0
1405	The Origins of Diffuse Low-Grade Gliomas. , 2017, , 703-727.		0
1407	Small-Molecule Ligands as Challenge for Positron Emission Tomography of Peptide Receptors in Neurons and Microglia of the Brain. World Journal of Neuroscience, 2019, 09, 294-327.	0.1	1
1409	Novel Somatostatin Receptor Subtypeâ€4 Agonist Mitigates Microglia Inflammatory Activation. FASEB Journal, 2019, 33, 501.3.	0.2	0
1410	Immune Response and CNS Injury. , 2019, , 43-61.		0
1411	Brain Cancer-Activated Microglia: A Potential Role for Sphingolipids. Current Medicinal Chemistry, 2020, 27, 4039-4061.	1.2	5
1413	Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11677.	1.8	54

#	Article	IF	CITATIONS
1416	Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathologica, 2022, 143, 55-73.	3.9	15
1417	Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Frontiers in Molecular Neuroscience, 2021, 14, 749737.	1.4	23
1418	Microglia Polarization in Alzheimer's Disease: Mechanisms and a Potential Therapeutic Target. Frontiers in Aging Neuroscience, 2021, 13, 772717.	1.7	43
1419	Transduction of inflammation from peripheral immune cells to the hippocampus induces neuronal hyperexcitability mediated by Caspase-1 activation. Neurobiology of Disease, 2021, 160, 105535.	2.1	8
1426	A quantitative and morphometric study of the transformation of amoeboid microglia into ramified microglia in the developing corpus callosum in rats. Journal of Anatomy, 1992, 181 (Pt 3), 423-30.	0.9	27
1427	A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. Journal of Anatomy, 1993, 182 (Pt 3), 403-13.	0.9	9
1428	Macrophage colony-stimulating factor mediates astrocyte-induced microglial ramification in human fetal central nervous system culture. American Journal of Pathology, 1994, 145, 48-53.	1.9	80
1429	Exosomes-associated neurodegeneration and progression of Parkinson's disease. American Journal of Neurodegenerative Disease, 2012, 1, 217-25.	0.1	55
1431	Microglia and ischemic stroke: a double-edged sword. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 73-90.	0.8	243
1432	Immunity and inflammation in neurodegenerative diseases. American Journal of Neurodegenerative Disease, 2013, 2, 89-107.	0.1	83
1434	Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. American Journal of Translational Research (discontinued), 2017, 9, 971-985.	0.0	59
1435	Microglia: The Brain's First Responders. Cerebrum: the Dana Forum on Brain Science, 2017, 2017, .	0.1	20
1436	Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. American Journal of Translational Research (discontinued), 2020, 12, 2353-2378.	0.0	12
1437	The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages. ImmunoHorizons, 2020, 4, 729-744.	0.8	2
1438	Melittin administration ameliorates motor function, prevents apoptotic cell death and protects Purkinje neurons in the rat model of cerebellar ataxia induced by 3-Acetylpyridine. Toxicon, 2022, 205, 57-66.	0.8	7
1439	Acute exposure to paraquat affects the phenotypic differentiation of substantia nigra microglia in rats. Environmental Science and Pollution Research, 2022, 29, 21339-21347.	2.7	2
1440	Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. Journal of Neuroinflammation, 2021, 18, 276.	3.1	36
1441	Quantitative modeling of regular retinal microglia distribution. Scientific Reports, 2021, 11, 22671.	1.6	7

#	Article	IF	CITATIONS
1442	Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Frontiers in Behavioral Neuroscience, 2021, 15, 786234.	1.0	12
1443	Evaluating microglial phenotypes using single-cell technologies. Trends in Neurosciences, 2022, 45, 133-144.	4.2	11
1445	Dysfunction of cerebellar microglia in <scp>Ataxiaâ€ŧelangiectasia</scp> . Glia, 2022, 70, 536-557.	2.5	12
1446	Ultrastructural analysis of the morphological phenotypes of microglia associated with neuroinflammatory cues. Journal of Comparative Neurology, 2022, 530, 1263-1275.	0.9	5
1447	Research Progress of Microglia Related Role in Alzheimer's Disease. Advances in Clinical Medicine, 2021, 11, 6079-6085.	0.0	1
1448	The Effects of Modified Curcumin Preparations on Glial Morphology in Aging and Neuroinflammation. Neurochemical Research, 2022, 47, 813-824.	1.6	8
1449	Cannabinoids in Chronic Pain: Therapeutic Potential Through Microglia Modulation. Frontiers in Neural Circuits, 2021, 15, 816747.	1.4	10
1450	The miR-183/96/182 Cluster Regulates the Functions of Corneal Resident Macrophages. ImmunoHorizons, 2020, 4, 729-744.	0.8	7
1451	A Unique Type of Highly-Activated Microglia Evoking Brain Inflammation via Mif/Cd74 Signaling Axis in Aged Mice. , 2021, 12, 2125.		25
1452	Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 1089.	1.8	4
1453	p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function. Molecular Neurobiology, 2022, 59, 1632-1648.	1.9	6
1454	Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. International Journal of Molecular Sciences, 2022, 23, 960.	1.8	9
1455	Role of exosomes in the pathogenesis of inflammation in Parkinson's disease. Neural Regeneration Research, 2022, 17, 1898.	1.6	32
1456	The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma—A Review. Cellular and Molecular Neurobiology, 2023, 43, 193-204.	1.7	1
1457	Microglia in Alzheimer's Disease: An Unprecedented Opportunity as Prospective Drug Target. Molecular Neurobiology, 2022, 59, 2678-2693.	1.9	17
1458	Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell, 2022, 29, 328-343.e5.	5.2	15
1459	Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex. Current Research in Neurobiology, 2022, 3, 100028.	1.1	6
1460	NaF-induced neurotoxicity via activation of the IL-1β/JNK signaling pathway. Toxicology, 2022, 469, 153132.	2.0	11

	C	CITATION REPORT	
#	Article	IF	Citations
1461	Defining Microglial States and Nomenclature: A Roadmap to 2030. SSRN Electronic Journal, 0, , .	0.4	21
1462	Immunotherapeutic interventions in Parkinson's disease: Focus on α-Synuclein. Advances in Protein Chemistry and Structural Biology, 2022, 129, 381-433.	1.0	3
1463	The roles of macrophages in mediating the homeostatic process. , 2022, , 419-446.		0
1464	Microglia form satellites with different neuronal subtypes in the adult murine central nervous system. Journal of Neuroscience Research, 2022, 100, 1105-1122.	1.3	2
1465	Lanthanum Impairs Learning and Memory by Activating Microglia in the Hippocampus of Mice. Biological Trace Element Research, 2022, 200, 1640-1649.	1.9	4
1466	Macrophage compartmentalization in the brain and cerebrospinal fluid system. Science Immunology 2022, 7, eabk0391.	[/] , 5.6	19
1467	The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 32.	2.5	19
1468	Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Frontiers in Aging Neuroscience, 2022, 14, 825086.	1.7	46
1469	Optimized Protocol for Proportionate CNS Cell Retrieval as a Versatile Platform for Cellular and Molecular Phenomapping in Aging and Neurodegeneration. International Journal of Molecular Sciences, 2022, 23, 3000.	1.8	1
1470	HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. Journal of Intensive Medicine, 2022, 2, 156-166.	0.8	6
1471	Assessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study. Molecular Neurobiology, 2022, 59, 3402-3413.	1.9	10
1472	Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. International Journal of Molecular Sciences, 2022, 23, 3579.	1.8	3
1473	Adolescence is a sensitive period for prefrontal microglia to act on cognitive development. Science Advances, 2022, 8, eabi6672.	4.7	40
1474	The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Molecular Neurodegeneration, 2022, 17, 22.	4.4	24
1475	The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. Journal of Oncology, 2022, 2022, 1-19.	0.6	4
1476	TGR5 Agonist INT-777 Alleviates Inflammatory Neurodegeneration in Parkinson's Disease Mouse by Modulating Mitochondrial Dynamics in Microglia. Neuroscience, 2022, 490, 100-119.	2 Model 1.1	13
1477	Minocycline reverses developmental arsenic exposure-induced microglia activation and functional alteration in BALB/c mice. Environmental Toxicology and Pharmacology, 2022, 92, 103858.	2.0	4
1478	Current Methods for the Isolation and Cultivation of Microglia (Review). Sovremennye Tehnologii V Medicine, 2021, 13, 89.	0.4	0

#	Article	IF	CITATIONS
1479	The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention. Antioxidants, 2022, 11, 8.	2.2	26
1480	Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids and Barriers of the CNS, 2021, 18, 59.	2.4	30
1481	Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain. International Journal of Molecular Sciences, 2021, 22, 13207.	1.8	5
1482	White matter microglia heterogeneity in the CNS. Acta Neuropathologica, 2022, 143, 125-141.	3.9	48
1483	Microglial depletion abolishes ischemic preconditioning in white matter. Glia, 2022, 70, 661-674.	2.5	8
1484	Mechanisms underlying microglial colonization of developing neural retina in zebrafish. ELife, 2021, 10, .	2.8	16
1485	STING regulates peripheral nerve regeneration and colony stimulating factor 1 receptor (CSF1R) processing in microglia. IScience, 2021, 24, 103434.	1.9	5
1488	Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum. Molecular Psychiatry, 2022, 27, 2803-2812.	4.1	10
1489	Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Frontiers in Cell and Developmental Biology, 2022, 10, 880544.	1.8	39
1490	Microglia Don't Treat All Neurons the Same: The Importance of Neuronal Subtype in Microglia-Neuron Interactions in the Developing Hypothalamus. Frontiers in Cellular Neuroscience, 2022, 16, 867217.	1.8	4
1491	Life and death of microglia: Mechanisms governing microglial states and fates. Immunology Letters, 2022, 245, 51-60.	1.1	14
1492	Cytology of the CNS. , 2006, , 15-39.		0
1509	Diversity and function of brain-associated macrophages. Current Opinion in Immunology, 2022, 76, 102181.	2.4	28
1510	Osteopontin/secreted phosphoproteinâ€1 harnesses glialâ€; immuneâ€; and neuronal cell ligandâ€receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunological Reviews, 2022, 311, 224-233.	2.8	40
1511	Macrophage populations and expressions of regulatory proinflammatory factors in the rat meninx under lipopolysaccharide treatment in vivo and in vitro. Histology and Histopathology, 2009, 24, 13-24.	0.5	14
1512	Histamine and Microglia. Current Topics in Behavioral Neurosciences, 2022, , 241-259.	0.8	3
1513	Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Frontiers in Psychiatry, 2022, 13, 863734.	1.3	13
1514	Microglia in brain development and regeneration. Development (Cambridge), 2022, 149, .	1.2	22

#	Article	IF	CITATIONS
1515	Pharmacological effects of cannabidiol by transient receptor potential channels. Life Sciences, 2022, 300, 120582.	2.0	25
1516	Behavioral consequences of prion disease targeted to the hippocampus in a mouse model of scrapie. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 63-71.	1.2	34
1517	Astragalin and Isoquercitrin Isolated from Aster scaber Suppress LPS-Induced Neuroinflammatory Responses in Microglia and Mice. Foods, 2022, 11, 1505.	1.9	17
1518	Inflammatory Animal Models of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S165-S182.	1.5	9
1520	Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells, 2022, 11, 1902.	1.8	10
1521	Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation, 2022, 19, .	3.1	119
1522	Host immune responses in the central nervous system during fungal infections. Immunological Reviews, 2022, 311, 50-74.	2.8	3
1523	Lipoxygenase Metabolism: Critical Pathways in Microglia-mediated Neuroinflammation and Neurodevelopmental Disorders. Neurochemical Research, 2022, 47, 3213-3220.	1.6	4
1524	Neuron-Glial Interactions. , 2022, , 2412-2440.		0
1525	Use of Imaging Mass Cytometry in Studies of the Tissue Microenvironment. , 2022, , 345-364.		1
1526	Microglia and border-associated macrophages in the central nervous system. , 2022, , 181-212.		1
1527	Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Frontiers in Immunology, 0, 13, .	2.2	16
1528	Roles of Fatty Acids in Microglial Polarization: Evidence from In Vitro and In Vivo Studies on Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 7300.	1.8	10
1529	The immunology of Parkinson's disease. Seminars in Immunopathology, 2022, 44, 659-672.	2.8	30
1530	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	1.8	76
1531	Possible Neuropathology of Sleep Disturbance Linking to Alzheimer's Disease: Astrocytic and Microglial Roles. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	9
1532	An overview on microglial origin, distribution, and phenotype in Alzheimer's disease. Journal of Cellular Physiology, 0, , .	2.0	3
1533	Oxytocin and microglia in the development of social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	7

#	Article	IF	CITATIONS
1534	The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110601.	2.5	10
1535	Organization of the ventricular zone of the cerebellum. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	0
1536	Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity, 2022, 55, 1466-1482.e9.	6.6	20
1537	Role of Vitamin E in Neonatal Neuroprotection: A Comprehensive Narrative Review. Life, 2022, 12, 1083.	1.1	2
1538	Daytime Light Deficiency Leads to Sex- and Brain Region-Specific Neuroinflammatory Responses in a Diurnal Rodent. Cellular and Molecular Neurobiology, 2023, 43, 1369-1384.	1.7	3
1539	Immune-Triggered Forms of Plasticity Across Brain Regions. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
1540	Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer's disease. International Immunopharmacology, 2022, 110, 109070.	1.7	10
1541	Miconazole exerts disease-modifying effects during epilepsy by suppressing neuroinflammation via NF-κB pathway and iNOS production. Neurobiology of Disease, 2022, 172, 105823.	2.1	7
1542	Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants, 2022, 11, 1482.	2.2	14
1543	Brain region- and sex-specific transcriptional profiles of microglia. Frontiers in Psychiatry, 0, 13, .	1.3	17
1544	Age-dependent effects of gut microbiota metabolites on brain resident macrophages. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	7
1545	Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
1546	Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature, 2022, 608, 750-756.	13.7	45
1547	Aß Pathology and Neuron–Glia Interactions: A Synaptocentric View. Neurochemical Research, 2023, 48, 1026-1046.	1.6	12
1548	Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomedicine and Pharmacotherapy, 2022, 153, 113500.	2.5	10
1550	Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. Journal of Neuroinflammation, 2022, 19, .	3.1	32
1551	Sexual dimorphism in immune cell responses following stroke. Neurobiology of Disease, 2022, 172, 105836.	2.1	10
1552	Microglia in antiviral immunity of the brain and spinal cord. Seminars in Immunology, 2022, 60, 101650.	2.7	1

#	Article	IF	CITATIONS
1554	Contribution of hyperglycemia-induced changes in microglia to Alzheimer's disease pathology. Pharmacological Reports, 2022, 74, 832-846.	1.5	1
1555	Microglial angiotensin type 2 receptors mediate sexâ€specific expression of inflammatory cytokines independently of circulating estrogen. Glia, 2022, 70, 2348-2360.	2.5	5
1556	Alzheimer's Disease and Inflammaging. Brain Sciences, 2022, 12, 1237.	1.1	26
1557	An Investigation of the Anti-Depressive Properties of Phenylpropanoids and Flavonoids in Hemerocallis citrina Baroni. Molecules, 2022, 27, 5809.	1.7	9
1558	p27kip1 Modulates the Morphology and Phagocytic Activity of Microglia. International Journal of Molecular Sciences, 2022, 23, 10432.	1.8	0
1559	The multiple faces of extracellular vesicles released by microglia: Where are we 10 years after?. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	13
1560	Defining the pig microglial transcriptome reveals its core signature, regional heterogeneity, and similarity with human and rodent microglia. Glia, 2023, 71, 334-349.	2.5	4
1561	Astroglial and microglial pathology in Down syndrome: Focus on Alzheimer's disease. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
1562	Microglial repopulation alleviates age-related decline of stable wakefulness in mice. Frontiers in Aging Neuroscience, 0, 14, .	1.7	0
1563	Characterization of microglia/macrophage phenotypes in the spinal cord following intervertebral disc herniation. Frontiers in Veterinary Science, 0, 9, .	0.9	2
1565	Microglia in Circumventricular Organs: The Pineal Gland Example. ASN Neuro, 2022, 14, 175909142211356.	1.5	3
1566	Endocannabinoid signaling in microglia. Glia, 2023, 71, 71-90.	2.5	9
1567	Microglia morphophysiological diversity and its implications for the CNS. Frontiers in Immunology, 0, 13, .	2.2	41
1568	Single-Cell Analysis to Better Understand the Mechanisms Involved in MS. International Journal of Molecular Sciences, 2022, 23, 12142.	1.8	2
1569	Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders. Cells, 2022, 11, 3364.	1.8	4
1571	Differential Glial Chitotriosidase 1 (CHIT1) and Chitinase 3-like protein 1 (CHI3L1) Expression in the Human Primary Visual Cortex and Cerebellum after Global Hypoxia-Ischemia. Neuroscience, 2022, , .	1.1	0
1572	Microglia states and nomenclature: A field at its crossroads. Neuron, 2022, 110, 3458-3483.	3.8	459
1573	The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochemical Research, 2023, 48, 1129-1166.	1.6	8

#	Article	IF	CITATIONS
1574	Microglia contribute to the autonomic function and participate in neurogenic hypertension: non-immune function of central immune cells. Scientia Sinica Vitae, 2022, 52, 1773-1784.	0.1	1
1575	Blueberry Extract Modulates Brain Enzymes Activities and Reduces Neuroinflammation: Promising Effect on Lipopolysaccharide-Induced Depressive-Like Behavior. Neurochemical Research, 2023, 48, 846-861.	1.6	2
1576	Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 13849.	1.8	2
1577	Sex differences in the inflammatory response to stroke. Seminars in Immunopathology, 2023, 45, 295-313.	2.8	9
1578	CNS and CNS diseases in relation to their immune system. Frontiers in Immunology, 0, 13, .	2.2	5
1579	Towards a multidimensional model of inflamed depression. Brain, Behavior, & Immunity - Health, 2022, 26, 100564.	1.3	2
1580	Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. , 2023, 14, 63.		5
1581	Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells, 2022, 11, 3768.	1.8	4
1582	FoxO1 Controls Redox Regulation and Cellular Physiology of BV-2 Microglial Cells. Inflammation, 2023, 46, 752-762.	1.7	1
1583	BK channels in microglia. Brain Science Advances, 2023, 9, 15-23.	0.3	2
1584	Movers and shakers: Microglial dynamics and modulation of neural networks. Glia, 2023, 71, 1575-1591.	2.5	13
1585	Castor1 overexpression regulates microglia M1/M2 polarization via inhibiting mTOR pathway. Metabolic Brain Disease, 2023, 38, 699-708.	1.4	2
1586	Transcriptome Analysis Unveils That Exosomes Derived from M1-Polarized Microglia Induce Ferroptosis of Neuronal Cells. Cells, 2022, 11, 3956.	1.8	1
1588	Microglial diversity along the hippocampal longitudinal axis impacts synaptic plasticity in adult male mice under homeostatic conditions. Journal of Neuroinflammation, 2022, 19, .	3.1	4
1589	Macrophage colony-stimulating factor in human fetal astrocytes and microglia. Differential regulation by cytokines and lipopolysaccharide, and modulation of class II MHC on microglia Journal of Immunology, 1993, 150, 594-604.	0.4	126
1590	TGF-β Promotes Immune Deviation by Altering Accessory Signals of Antigen-Presenting Cells. Journal of Immunology, 1998, 160, 1589-1597.	0.4	142
1591	A Monoclonal Antibody Directed Against the Murine Macrophage Surface Molecule F4/80 Modulates Natural Immune Response to <i>Listeria monocytogenes</i> . Journal of Immunology, 1999, 163, 3409-3416.	0.4	35
1592	Microglia: A Critical Cell for Neurodevelopment. , 2022, , 37-55.		0

ARTICLE IF CITATIONS Sex-Specific Microglial Responses to Glucocerebrosidase Inhibition: Relevance to GBA1-Linked 1593 1.8 2 Parkinson's Disease. Cells, 2023, 12, 343. Editorial: The role of microglia in the pathogenesis of neurodegenerative diseases. Frontiers in Aging 1594 1.7 Neuroscience, 0, 14, . Early approaches of YKL-40 as a biomarker and therapeutic target for Parkinson's disease. 1595 1.2 6 Neurodegenerative Disease Management, 2023, 13, 85-99. Microglial autophagy in Alzheimer's disease and Parkinson's disease. Frontiers in Aging Neuroscience, 1596 1.7 0, 14, . Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris 1597 1.2 1 water maze performance. Behavioural Brain Research, 2023, 442, 114294. Microglial depletion exacerbates motor impairment and dopaminergic neuron loss in a 6-OHDA model of Parkinson's disease. Journal of Neuroimmunology, 2023, 375, 578019. 1598 1.1 Immune regulation based on sex differences in ischemic stroke pathology. Frontiers in Immunology, 0, 1601 2.2 3 14, . Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiology of Disease, 2023, 1603 2.1 Does Drinking Coffee Reduce the Incidence of Parkinson's Disease?. Cureus, 2023, , . 0.2 1604 1 Single-nucleus Atlas of Sevoflurane-induced Hippocampal Cell Type– and Sex-specific Effects during 1.3 Development in Mice. Anesthesiology, 2023, 138, 477-495. The gut microbiome as a factor in the development of Parkinson's disease. Nevrologiya, 1606 0.2 1 Neiropsikhiatriya, Psikhosomatika, 2023, 15, 90-96. The effects of microglia-associated neuroinflammation on Alzheimer's disease. Frontiers in 2.2 Immunology, 0, 14, . Traumatic Brain Injury Induces Microglial and Caspase3 Activation in the Retina. International Journal 1608 1.8 2 of Molecular Sciences, 2023, 24, 4451. Voltage-Gated Proton Channel Hv1 Regulates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson's Disease Models. Antioxidants, 2023, 12, 582. 1609 2.2 LPS Triggers Acute Neuroinflammation and Parkinsonism Involving NLRP3 Inflammasome Pathway and 1610 1.8 4 Mitochondrial CI Dysfunction in the Rat. International Journal of Molecular Sciences, 2023, 24, 4628. Neonatal testosterone voids sexually differentiated microglia morphology and behavior. Frontiers in Endocrinology, 0, 14, . KDM4A, involved in the inflammatory and oxidative stress caused by traumatic brain 1612 injury-hemorrhagic shock, partly through the regulation of the microglia M1 polarization. BMC 0.8 2 Neuroscience, 2023, 24, . Social isolation produces a sex―and brain regionâ€specific alteration of microglia state. European 1.2 Journal of Neuroscience, 2023, 57, 1481-1497

IF ARTICLE CITATIONS The Cerebellar Neuroimmune System., 2023, , 305-312. 1614 0 Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. 1.7 Cellular and Molecular Neurobiology, 0, , . Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on 1616 1.7 3 myelination in the aged brain. Frontiers in Aging Neuroscience, 0, 15, . High-sensitivity C-reactive protein is a predictor of depression in patients with mild traumatic brain injury. Heliyon, 2023, 9, e14783. Microglia Mediated Neuroinflammation in Parkinson's Disease. Cells, 2023, 12, 1012. 1618 1.8 19 Positron emission tomography imaging of neuroinflammation. Advances in Magnetic Resonance Technology and Applications, 2023, , 193-257. 1619 Molecular and tissue basis of neuroinflammation in health and disease. Advances in Magnetic 1620 0.0 0 Resonance Technology and Applications, 2023, , 3-27. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. 3.1 Journal of Neuroinflammation, 2023, 20, . Microglia at the scene of the crime: what their transcriptomics reveal about brain health. Current 1622 1.8 4 Opinion in Neurology, 2023, 36, 207-213. 1624 Microglial physiology and function., 2023, , 347-408. Neuroimmunomodulatory properties of polysialic acid. Glycoconjugate Journal, 2023, 40, 277-294. 1635 0 1.4 The molecular pathology of neurodegenerative and psychiatric disorders., 2023, , 3-43. 1642 Combined Analysis of mRNA Expression and Open Chromatin in Microglia. Methods in Molecular 1656 0.4 1 Biology, 2024, , 543-571. Clial Cells Dysfunction and Chronic Pain. Advances in Bioinformatics and Biomedical Engineering 1686 0.2 Book Series, 2023, , 120-144. Parkinson's Disease Involving Glial Cell Dysfunction. Advances in Bioinformatics and Biomedical 1690 0.2 0 Engineering Book Series, 2023, , 164-188.