CITATION REPORT List of articles citing

Equation of state for small, large, polydisperse, and associating molecules

DOI: 10.1021/ie00107a014 Industrial & Engineering Chemistry Research, 1990, 29, 2284-2294.

Source: https://exaly.com/paper-pdf/21831867/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1416	Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids.		
1415	SolidLiquidGas Equilibrium of MethanenAlkane Binary Mixtures.		
1414	Phase behavior of reservoir fluids V: SAFT model of CO2 and bitumen systems. 1991 , 70, 33-54		37
1413	Modeling phase equilibria using an equation of state incorporating association. 1992 , 75, 89-103		30
1412	Phase behavior of binary ethylene-propylene copolymer solutions in sub- and supercritical ethylene and propylene. 1993 , 83, 375-382		30
1411	Phase behavior of LCST and UCST solutions of branchy copolymers: experiment and SAFT modelling. 1993 , 83, 391-398		26
1410	Molecular modeling in the search of improved equation of state. 1993 , 82, 333-344		7
1409	Modeling polyethylene solutions in near and supercritical fluids using the sanchez-lacombe model. 1993 , 6, 193-203		54
1408	Vapor liquid equilibria in ternary mixtures of water-aloohol-non polar gases. 1993 , 83, 159-166		29
1407	Vapor-liquid equilibria for carbon dioxide and 1-methylnaphthalene: experiment and correlation. 1993 , 86, 211-223		11
1406	Theory and simulation for associating fluids with four bonding sites. 1993 , 79, 291-311		108
1405	Thermodynamic perturbation theory: Sticky chains and square-well chains. 1993, 48, 3760-3765		79
1404	Thermodynamic properties of hard-chain molecules. 1993 , 98, 5023-5027		8
1403	Local ordering in asymmetric chain fluids. 1993 , 98, 9782-9789		4
1402	Phase equilibria with supercritical components. 1993 , 65, 1003-1008		17
1401	Using pressure to improve polymer performance. 1993 , 75, 127-135		
1400	Intramolecular association in flexible hard chain molecules. 1994 , 101, 6880-6887		55

1399	Application of the GF-D equation of state to fluid phase equilibrium calculations: Pure fluids of low molecular weight compounds to polymer molecules. 1994 , 101, 3-26	3
1398	Phase behavior of reservoir fluids. 1994 , 93, 353-362	11
1397	Thermophysical properties: What have we learned recently, and what do we still need to know?. 1994 , 15, 1013-1035	7
1396	Calculation of vapor-liquid equilibria of polymer solutions using the SAFT equation of state. 1994 , 100, 103-119	18
1395	Lattice fluid hydrogen bonding model with a local segment density. 1994 , 99, 135-151	42
1394	Correlation of liquid-liquid phase equilibria using the SAFT equation of state. 1994 , 94, 149-165	27
1393	A new equation of state for hard chain molecules. 1994 , 100, 6633-6639	124
1392	High-Pressure, Molecular Weight-Dependent Behavior of (Co)polymer-Solvent Mixtures: Experiments and Modeling. 1994 , 27, 4652-4658	24
1391	Ion Hydration in Supercritical Water. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2819-28299	12
1390	High pressure VLE in alkanol + alkane mixtures. Experimental results for n-butane + ethanol, +1-propanol, +1-butanol systems and calculations with three EOS methods. 1995 , 107, 277-301	60
1389	Phase equilibria modeling by the quasilattice equation of state for binary and ternary systems composed of carbon dioxide, water and some organic components. 1995 , 110, 17-30	10
1388	Application of the new perturbation method to predict densities of single electrolyte aqueous solutions. 1995 , 107, 45-59	9
1387	An equation of state from a new coordination number model. 1995 , 111, 37-51	12
1386	Mixing rules for binary Lennard-Jones fluid structures. 1995 , 111, 161-174	11
1385	Competition between intermolecular and intramolecular association in flexible hard chain molecules. 1995 , 102, 2585-2592	57
1384	Bulk and surface properties of the highly non-ideal associated mixtures formed by methanol and propanal. 1995 , 91, 2779-2787	15
1383	An Equation of State for Associating Fluids. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 4310-4318	667
1382	Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 4727-4737	159

1381	Effects of Compressed Carbon Dioxide on the Phase Equilibrium and Molecular Order of a Lyotropic Polyamide Solution. 1996 , 29, 4904-4909	2
1380	PolymerBolvent Phase Behavior near the Solvent Vapor Pressure. <i>Industrial & Description in the Solvent Vapor Pressure in the Solvent Vapor Pressure in the Solvent Vapor Pressure in the Solvent Vapor Pressure. Industrial & Description in the Solvent Vapo</i>	38
1379	Copolymer SAFT Equation of State. Thermodynamic Perturbation Theory Extended to Heterobonded Chains. 1996 , 29, 6481-6486	84
1378	Cosolvent Effect on the Phase Behavior of Poly(ethylene-co-acrylic acid) B utane Mixtures. 1996 , 29, 1349-1358	21
1377	Predictive Models for Interfacial Properties of Associating Systems. A Statistical Thermodynamic Approach. 1996 , 12, 6151-6163	14
1376	Poly(ethylene-co-butyl acrylate). Phase Behavior in Ethylene Compared to the Poly(ethylene-co-methyl acrylate) Ethylene System and Aspects of Copolymerization Kinetics at High Pressures. 1996 , 29, 1625-1632	47
1375	Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures of n-Alkanes, 1-Alkanols, and Water. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 4738-4746 ^{3.9}	115
1374	Predicting the High-Pressure Phase Equilibria of Water +n-Alkanes Using a Simplified SAFT Theory with Transferable Intermolecular Interaction Parameters. 1996 , 100, 6781-6792	131
1373	Generalized Flory theory for hard alkane fluids. 1996 , 87, 1285-1297	3
1372	Systematic investigation of the global phase behavior of associating binary fluid mixtures: I. mixtures containing one self-associating substance. 1996 , 100, 1318-1327	13
1371	Equations of state for hydrogen bonding systems. 1996 , 116, 518-529	37
1370	Phase behavior and modeling of the systems CO2-acetonitrile and CO2-acrylic acid. 1996 , 115, 179-192	41
1369	Molecular modeling in engineering design and materials development. 1996 , 116, 225-236	5
1368	A group contribution equation of state for associating mixtures. 1996 , 116, 537-544	117
1367	Equations of state for monomers and polymers. 1996 , 117, 1-10	25
1366	Application of the GFD EOS on VLE calculations of polymer solutions. 1996 , 117, 26-32	3
1365	Calculating copolymer solution behavior with statistical associating fluid theory. 1996 , 117, 61-68	23
1364	Phase equilibria of saturated and unsaturated polyisoprene in sub- and supercritical ethane, ethylene, propane, propylene, and dimethyl ether. 1996 , 117, 84-91	39

1363	Suppercritical toluene-petroleum pitch mixtures: liquid-liquid equilibria and SAFT modeling. 1996 , 117, 273-280	10
1362	Phase equilibria of poly(ethylene-co-vinyl acetate) copolymers in subcritical and supercritical ethylene and ethylene?vinyl acetate mixtures. 1996 , 120, 11-37	44
1361	A new model for lattice systems. 1996 , 105, 7059-7063	43
1360	Thermodynamic behaviour of homonuclear and heteronuclear Lennard-Jones chains with association sites from simulation and theory. 1997 , 92, 135-150	184
1359	Predicting the Phase Equilibria of Mixtures of Hydrogen Fluoride with Water, Difluoromethane (HFC-32), and 1,1,1,2-Tetrafluoroethane (HFC-134a) Using a Simplified SAFT Approach. 1997 , 101, 2082-2091	76
1358	Liquid Liquid Liquid Equilibrium Modeling of Ternary Hydrocarbon + Water + Alkanol Systems Industrial & Amp; Engineering Chemistry Research, 1997, 36, 4391-4396	17
1357	Solubility of Block Copolymer Surfactants in Compressed CO2 Using a Lattice Fluid Hydrogen-Bonding Model. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 2821-2833	22
1356	How the Solute Polydispersity Affects the Cloud-Point and Coexistence Pressures in Propylene and Ethylene Solutions of Alternating Poly(ethylene-co-propylene). <i>Industrial & amp; Engineering</i> 3.9 <i>Chemistry Research</i> , 1997 , 36, 5520-5525	20
1355	Accurate Simulations of the VaporDiquid Equilibrium of Important Organic Solvents and Other Diatomics. 1997 , 101, 6763-6771	25
1354	Statistical associating fluid theory for chain molecules with attractive potentials of variable range. 1997 , 106, 4168-4186	864
1353	Using Molecular Orbital Calculations To Describe the Phase Behavior of Hydrogen-Bonding Fluids Industrial & I	63
1352	A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS). <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 5507-5515	125
1351	Associating models and mixing rules in equations of state for water/hydrocarbon mixtures. 1997 , 52, 511-525	122
1350	Finite and infinite dilution activity coefficients in polycarbonate systems. 1997 , 139, 391-403	46
1349	The replacement of CFCS in refrigeration equipment by environmentally benign alternatives. 1997 , 17, 955-972	8
1348	A general approach to association using cluster partition functions. 1997 , 87, 1287-1306	18
1347	The use of molecular orbital calculations to describe the phase behavior of hydrogen-bonding mixtures. 1997 , 18, 1001-1016	9
1346	Correlation of liquid-liquid equilibria for alcoholhydrocarbon mixtures using the CPA equation of state. 1997 , 132, 61-75	60

1345	Vapor-liquid equilibria for systems using the CPA Equation of state. 1997 , 130, 31-47		112
1344	Molecular thermodynamic theory for polymer systems III. Equation of state for chain-fluid mixtures. 1997 , 138, 69-85		20
1343	Modeling of thermodynamically difficult systems. 1997 , 136, 15-29		10
1342	A perturbed hard-sphere-chain equation of state for normal fluids and polymers using the square-well potential of variable width. 1997 , 138, 105-130		57
1341	Mixing rules for hardsphere chain mixtures and their extension to heteronuclear hardsphere polyatomic fluids and mixtures. 1997 , 140, 37-51		2
1340	High pressure phase behaviour of {x1CF4+x2NaCl+(1№1№2)H2O)}. 1997 , 29, 385-393		4
1339	Effect of pressure on the catalytic activity of subtilisin Carlsberg suspended in compressed gases. 1998 , 1383, 165-74		26
1338	Hydrogen-bond cooperativity in 1-alkanol + n-alkane binary mixtures. 1998 , 44, 207-213		73
1337	Molecular dynamic simulation and equation of state of Lennard-Jones chain fluids. 1998 , 15, 544-551		8
1336	Die Schallgeschwindigkeit als thermodynamische Zustandsgr 2. 1998, 64, 47-54		4
1335	Application of perturbation theory to chain and polar fluids: Pure alkanes, alkanols and water. 1998 , 142, 55-66		14
1334	Phase behavior of poly(1,1-dihydroperfluorooctylacrylate) in supercritical carbon dioxide. 1998 , 146, 325-337		49
1333	A square-well based equation of state taking into account the connectivity in chain molecules. 1998 , 149, 75-89		22
1332	Equation of State for Systems Containing Chainlike Molecules. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 1998 , 37, 3058-3066	3.9	39
1331	Nonprimitive Model of Mean Spherical Approximation Applied to Aqueous Electrolyte Solutions. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4183-4189	3.9	10
1330	Short Chain Branching Effect on the Cloud-Point Pressures of Ethylene Copolymers in Subcritical and Supercritical Propane. 1998 , 31, 2533-2538		29
1329	An Examination of the Cloud Curves of Liquid Liquid Immiscibility in Aqueous Solutions of Alkyl Polyoxyethylene Surfactants Using the SAFT-HS Approach with Transferable Parameters. 1998 , 120, 4191-4199		71
1328	1. Comparison of 12 Equations of State with Respect to Gas-Extraction Processes: Reproduction of Pure-Component Properties When Enforcing the Correct Critical Temperature and Pressure. <i>Industrial & District Composition Chemistry Research</i> , 1998 , 37, 2957-2965	3.9	22

1327	The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range. 1998 , 93, 241-252	195
1326	Measurement and Prediction of Reid Vapor Pressure of Gasoline in the Presence of Additives. 1998 , 43, 386-392	31
1325	An Analytical Free Energy and the Temperature P ressure Superposition Principle for Pure Polymeric Liquids. 1998 , 31, 6650-6661	32
1324	Copolymer SAFT Modeling of Phase Behavior in Hydrocarbon-Chain Solutions: Alkane Oligomers, Polyethylene, Poly(ethylene-co-olefin-1), Polystyrene, and Poly(ethylene-co-styrene). <i>Industrial</i> 3.9 & amp; Engineering Chemistry Research, 1998 , 37, 3169-3179	32
1323	Simulation of Vaporlliquid Equilibria for Alkane Mixtures. <i>Industrial & District Research</i> , 1998 , 37, 3195-3202	43
1322	2. Use of BACK To Modify SAFT in Order To Enable Density and Phase Equilibrium Calculations Connected to Gas-Extraction Processes. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2966-2976	28
1321	A two-fluid theory for chain fluid mixtures from thermodynamic perturbation theory. 1998 , 93, 287-293	2
1320	Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process: The Sanchez Tacombe, Statistical Associating Fluid Theory, and Polymer-Soave Redlich Ewong Equations of State. Industrial & Engineering Chemistry Research, 1998, 37, 4481-4491	43
1319	Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 660-674	219
1318	Calculation of Interfacial Properties of Demixed Fluids Using Density Gradient Theory. 1998 , 14, 4606-4614	72
1317	Molecular Simulation of Phase Equilibria for WaterMethane and WaterEthane Mixtures. 1998 , 102, 8865-8873	108
1316	Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State. <i>Industrial & Engineering Chemistry</i> 3.9 <i>Research</i> , 1998 , 37, 4175-4182	105
1315	Predicting the high-pressure phase equilibria of binary aqueous solutions of 1-butanol, n-butoxyethanol and n-decylpentaoxyethylene ether (C10E5) using the SAFT-HS approach. 1998 , 93, 57-72	27
1314	Analytic and Fast Numerical Solutions and Approximations for Cross-Association Models within Statistical Association Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4889-4892.9	16
1313	Intra- and Intermolecular Hydrogen Bonding of 2-Methoxyethanol and 2-Butoxyethanol in n-Hexane. <i>Industrial & Description of Chemistry Research</i> , 1998 , 37, 4823-4827	82
1312	Prototype of an Engineering Equation of State for Heterosegmented Polymers. <i>Industrial & amp;</i> Engineering Chemistry Research, 1998 , 37, 4453-4462	108
1311	Separations and Material Processing in Solutions with Dense Gases. <i>Industrial & Dense Gases</i> . <i>Industrial & Dense</i>	69
1310	Using Molecular Orbital Calculations To Describe the Phase Behavior of Cross-associating Mixtures. <i>Industrial & Describe the Phase Behavior of Cross-associating Mixtures.</i> 3.9	255

1309	Prediction of Phase Equilibria for Refrigerant Mixtures of Difluoromethane (HFC-32), 1,1,1,2-Tetrafluoroethane (HFC-134a), and Pentafluoroethane (HFC-125a) Using SAFT-VR. 1998 , 102, 7632-7639	71
1308	Simulation of phase equilibria for polymerEupercritical solvent mixtures. 1998, 108, 4647-4653	39
1307	Statistical Associating Fluid Theory Equation of State with Lennard-Jones Reference Applied to Pure and Binary n-Alkane Systems. 1998 , 102, 2427-2431	36
1306	Solvent effects on model telechelic polymers. 1999 , 96, 1063-1074	5
1305	Crossover behavior in dilute polymer solutions: Square-well chains. 1999 , 111, 5580-5592	5
1304	Global phase behavior of model mixtures of water and n-alkanols. 1999 , 158-160, 193-199	18
1303	A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory. 1999 , 158-160, 595-606	42
1302	Prediction of phase equilibria for binary systems of hydrogen chloride with ethane, propane and n-dodecane. 1999 , 158-160, 123-131	24
1301	High-pressure phase behavior of the systems polyethylene+ethylene and polybutene+1-butene. 1999 , 158-160, 835-846	39
1300	Prediction of phase equilibria in water/alcohol/alkane systems. 1999, 158-160, 151-163	84
1299	Square-well SAFT equation of state for homopolymeric and heteropolymeric fluids. 1999 , 158-160, 165-174	25
1298	SAFT prediction of vapour-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine. 1999 , 158-160, 175-181	78
1297	A study of square-well statistical associating fluid theory approximations. 1999 , 161, 1-20	32
1296	Correlation of mean ionic activity coefficients of electrolyte solutions by the simplified nonprimitive mean spherical approximation. 1999 , 162, 131-141	7
1295	Activity coefficients of associating mixtures by group contribution. 1999 , 163, 195-207	42
1294	Self-diffusion coefficient equation for polyatomic fluid. 1999 , 166, 111-124	33
1293	Modeling of solid[Iquid equilibria in naphthalene, normal-alkane and polyethylene solutions. 1999 , 155, 57-73	52
1292	Phase equilibria in systems containing o-cresol, p-cresol, carbon dioxide, and ethanol at 323.15🏿 73.15 K and 10🗸 MPa. 1999 , 157, 53-79	60

(2000-1999)

1291	Phase behavior and modeling of the poly(methyl methacrylate)[IO2]hethyl methacrylate system. 1999 , 157, 285-297	65
1290	Modeling of the separation of polydisperse polymer systems by compressed gases. 1999 , 158-160, 869-877	15
1289	Influence of the alkyl tail on the solubility of poly(alkyl acrylates) in ethylene and CO2 at high pressures: Experiments and modeling. 1999 , 73, 1979-1991	45
1288	Phase Behavior of Polymers in Supercritical Fluid Solvents. 1999 , 99, 565-602	310
1287	SAFT-VRE: Phase Behavior of Electrolyte Solutions with the Statistical Associating Fluid Theory for Potentials of Variable Range. 1999 , 103, 10272-10281	181
1286	Lennard-Jones chain mixtures: radial distribution functions from Monte Carlo simulation. 1999 , 97, 997-1008	6
1285	Phase Behavior of Poly(ethylene-co-hexene-1) Solutions in Isobutane and Propane. <i>Industrial & amp; Engineering Chemistry Research</i> , 1999 , 38, 2842-2848	24
1284	The thermodynamics of heteronuclear molecules formed from bonded square-well (BSW) segments using the SAFT-VR approach. 1999 , 97, 551-558	62
1283	Crossover SAFT Equation of State: Application for Normal Alkanes. <i>Industrial & amp; Engineering Chemistry Research</i> , 1999 , 38, 4993-5004	110
1282	A Perturbed Hard-Sphere-Chain Equation of State for Polymer Solutions and Blends Based on the Square-Well Coordination Number Model. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 4966-4974	14
1281	Effect of the Power Series Dispersion Term on the Pressure Volume Behavior of Statistical Associating Fluid Theory. <i>Industrial & amp; Engineering Chemistry Research</i> , 1999 , 38, 1718-1722	29
1280	Phase Behavior of Telechelic Polyisobutylene in Subcritical and Supercritical Fluids. 4. SAFT Association Parameters from FTIR for Blank, Monohydroxy, and Dihydroxy PIB 200 in Ethane, Carbon Dioxide, and Chlorodifluoromethane. 1999 , 103, 1167-1175	10
1279	Phase Equilibria of Dilute Poly(ethylene-co-1-butene) Solutions in Ethylene, 1-Butene, and 1-Butene + Ethylene. 1999 , 44, 854-859	22
1278	A Molecular-Based Equation of State for Simple and Chainlike Fluids. <i>Industrial & Description Amp; Engineering Chemistry Research</i> , 1999 , 38, 4951-4958	19
1277	A continuous polydisperse thermodynamic algorithm for a modified flory Huggins model: The (polystyrene + nitroethane) example. 2000 , 38, 632-651	34
1276	Berechnung von Fest/Fluid-Phasengleichgewichten bei erhfliten Drīlken. 2000 , 72, 722-727	
1275	Equations of state for the calculation of fluid-phase equilibria. 2000 , 46, 169-196	298
1274	Molecular thermodynamics of asphaltene precipitation in reservoir fluids. 2000 , 46, 197-209	76

1273	Phase equilibria for chain-fluid mixtures near to and far from the critical region. 2000, 46, 2525-2536	35
1272	Thermodynamic modeling, synthesis and optimization of extraction Edehydration processes. 2000 , 24, 2069-2080	14
1271	Application of the sCPA equation of state for polymer solutions. 2000 , 10, 501-506	12
1270	Wall slip and shear stresses of polymer melts at high shear rates without pressure and viscous heating effects. 2000 , 89, 117-131	50
1269	Critical temperatures and pressures for hydrocarbon mixtures from an equation of state with renormalization-group theory corrections. 2000 , 169, 127-147	39
1268	Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains. 2000 , 168, 183-199	251
1267	A study of associating LennardIlones chains by a new reference radial distribution function. 2000 , 171, 27-44	39
1266	Tricritical phenomena in chain-like mixtures from a molecular-based equation of state. 2000 , 171, 91-104	28
1265	Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS. 2000 , 172, 27-42	123
1264	The use of statistical associating fluid theory to improve the BACK equation of state. 2000 , 172, 111-127	10
1263	A new equation of state for the hard-sphere chain fluids based on the thermodynamic perturbation theory and the multidensity integral equation. 2000 , 173, 177-187	9
1262	Simplified crossover SAFT equation of state for pure fluids and fluid mixtures. 2000 , 174, 93-113	67
1261	A perturbed LennardIIones chain equation of state for polymer liquids. 2000 , 168, 19-29	7
1260	Vaporliquid equilibrium in polymerlolvent systems with a cubic equation of state. 2000 , 168, 165-182	29
1259	Prediction of phase equilibria for CO2ሺ2H5OH⊞2O system using the SAFT equation of state. 2000 , 169, 1-18	24
1258	Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)Bropane, PEGBitrogen and PEGBarbon dioxide. 2000 , 17, 1-12	79
1257	Study on ionic surfactant solutions by SAFT equation incorporated with MSA. 2000, 168, 107-123	16
1256	4 Cubic and generalized van der waals equations. 2000 , 5, 75-126	18

1255	7 Quasilattice equations of state for molecular fluids. 2000 , 255-288		4	
1254	6 Equations of state from analytically solvable integral equation approximations. 2000 , 169-254		5	
1253	Dimerization and solvation equilibria: The direct correlation function. 2000 , 113, 3766-3771		5	
1252	9 Mixing and combining rules. 2000 , 5, 321-357		7	
1251	Ab Initio Calculations of Cooperativity Effects on Clusters of Methanol, Ethanol, 1-Propanol, and Methanethiol. 2000 , 104, 1121-1129		99	
1250	Investigation of Surface Tension and Interfacial Tension in Surfactant Solutions by SAFT. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 320-327	3.9	32	
1249	Equation of state and critical behavior of polymer models: A quantitative comparison between Wertheim thermodynamic perturbation theory and computer simulations. 2000 , 113, 419-433		72	
1248	TPT2 and SAFTD equations of state for mixtures of hard chain copolymers. 2000 , 98, 2045-2052		13	
1247	Comparison of Perturbed Hard-Sphere-Chain Theory with Statistical Associating Fluid Theory for Square-Well Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 2559-2567	3.9	7	
1246	FluidLiquid and FluidBolid Phase Behavior of Poly(ethylene-co-hexene-1) Solutions in Sub- and Supercritical Propane, Ethylene, and Ethylene + Hexene-1. 2000 , 33, 6800-6807		20	
1245	Extraction of Petroleum Pitch with Supercritical Toluene: Experiment and Prediction. 2000, 14, 70-75		18	
1244	FluidLiquid and FluidBolid Transitions of Poly(ethylene-co-octene-1) in Sub- and Supercritical Propane Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 3069-3075	3.9	26	
1243	FluidLiquid Transitions of Poly(ethylene-co-octene-1) in Supercritical Ethylene Solutions. <i>Industrial & Emp; Engineering Chemistry Research</i> , 2000 , 39, 4370-4375	3.9	27	
1242	FluidLiquid and FluidBolid Transitions of Tetracontane in Propane. 2000 , 45, 362-368		16	
1241	SAFT Modeling of Inert-Gas Effects on the Cloud-Point Pressures in Ethylene Copolymerization Systems: Poly(ethylene-co-vinyl acetate) + Vinyl Acetate + Ethylene and Poly(ethylene-co-hexene-1) + Hexene-1 + Ethylene with Carterian Dioxide, Nitrogen, or n-Butane.	3.9	9	
1240	Industrial & Chemistry Research, 2000, 39, 541-546 Phase Behavior and Modeling of Supercritical Carbon Dioxide Drganic Acid Mixtures. Industrial & Camp; Engineering Chemistry Research, 2000, 39, 4580-4587	3.9	48	
1239	A Molecular-Based Model for Normal Fluid Mixtures: Perturbed Lennard-Jones Chain Equation of State. <i>Industrial & Description of State. Industrial & Descrip</i>	3.9	12	
1238	Phase Behavior of Poly(ethylene-co-propylene) in Ethylene and Carbon Dioxide: Experimental Results and Modeling with the Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4510-4515	3.9	7	

1237	Excess Thermodynamic Properties of Chainlike Mixtures. 1. Predictions from the SoftBAFT Equation of State and Molecular Simulation. 2000 , 104, 9239-9248		14
1236	Modeling Mutual Solubility of n-alkanes and CO2 Using SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 2578-2585	3.9	24
1235	12 Associating fluids and fluid mixtures. 2000 , 435-477		25
1234	14 Equations of state for polymer systems. 2000 , 523-588		4
1233	Correlation of Activity Coefficients in Electrolyte Solutions Using a Kelvin Hard SphereMean Spherical Approximation (K-MSA) Model. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 759-	7 86	21
1232	Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 797-804	3.9	107
1231	Thermodynamic properties and phase equilibria of branched chain fluids using first- and second-order Wertheim thermodynamic perturbation theory. 2001 , 115, 3906-3915		19
1230	Simulation of Ternary Mixtures of Ethylene, 1-Hexene, and Polyethylene. 2001 , 34, 7841-7848		36
1229	Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 4641-4648	3.9	154
1228	Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 2193-2211	3.9	553
1227	SAFT1 for Associating Fluids: Alkanols. 2001 , 105, 9822-9827		17
1226	A statistical associating fluid theory for electrolyte solutions (SAFT-VRE). 2001 , 99, 531-546		73
1225	Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. <i>Industrial & Discourse Chemistry Research</i> , 2001 , 40, 1244-1260	3.9	2283
1224	Vaporliquid Equilibria and Critical Behavior of Heavy n-Alkanes Using Transferable Parameters from the Soft-SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 2532-2.	343	132
1223	Application of Group Contribution Models to the Calculation of the Octanol Water Partition Coefficient. <i>Industrial & Coefficient amp; Engineering Chemistry Research</i> , 2001 , 40, 434-443	3.9	16
1222	Thermodynamic Properties at High Pressure. 2001 , 9, 17-63		2
1221	Prediction of the Solubility of Chloroform in Acrylate Polymer Mixtures with Inclusion of the Hydrogen-bonding Effect. 2001 , 105, 3143-3149		9
1220	Henry's Constant Analysis for Water and Nonpolar Solvents from Experimental Data, Macroscopic Models, and Molecular Simulation. 2001 , 105, 7792-7798		31

(2001-2001)

Statistical Associating Fluid Theory. 1. Application toward Describing Isoparaffins. <i>Industrial &ar Engineering Chemistry Research</i> , 2001 , 40, 2947-2955	mp; 3.9	O
Equation of State for Nonpolar, Polar, Chain, and Associating Fluids Based on the Dipolar Yukaw Potential. <i>Industrial & Dipolar State Chemistry Research</i> , 2001 , 40, 973-979	va 3.9	27
1217 A molecular-based theory for the thermodynamic properties of water. 2001 , 99, 1595-1606		39
Examining the Adsorption (VaporIliquid Equilibria) of Short-Chain Hydrocarbons in Low-Density Polyethylene with the SAFT-VR Approach. <i>Industrial & Engineering Chemistry Research</i> , 200 °40, 3835-3842		70
Perturbation theory for mixtures of discrete potential fluids. 2001 , 99, 703-710		43
Modeling phase behavior of multicomponent mixtures of wood preservatives in supercritical carbon dioxide with cosolvents. 2001 , 179, 5-22		9
Predictive use of a SAFT EOS for phase equilibria of some hydrocarbons and their binary mixture 2001 , 180, 1-26	es.	21
Study on self-diffusion in water, alcohols and hydrogen fluoride by the statistical associating flu theory. 2001 , 179, 165-179	ıid	28
1211 Mixing rules for binary Lennardlones chains: theory and Monte Carlo simulation. 2001 , 180, 71-	85	10
FT-IR spectroscopic investigations of hydrogen bonding in alcoholflydrocarbon solutions. 2001 , 186, 1-25		119
1209 Solid[Iquid equilibria based on an equation of state for chain fluids. 2001 , 180, 299-311		19
1208 A crossover equation of state for associating fluids. 2001 , 183-184, 53-64		37
Perturbed hard-sphere-chain theory modeling of vaporllquid equilibria of high concentration polymer and coploymer systems. 2001 , 183-184, 99-109		8
Equation of state extended from SAFT with improved results for non-polar fluids across the crit point. 2001 , 186, 165-184	ical	33
Development of an equation of state for the square-well chain molecules of variable well width based on a modified coordination number model. 2001 , 187-188, 39-59		7
1204 Mutual solubility of water and a reservoir fluid at high temperatures and pressures. 2001 , 189, 8	35-97	43
The associating MartinHou (AMH) equation-of-state. 2001 , 191, 155-175		4
Phase behavior of isotactic polypropylene/C4-solvents at high pressure. Experimental data and SAFT modeling. 2001 , 21, 93-103		16

1201	Correlation and Prediction of Osmotic Pressures for Aqueous Bovine Serum Albumin-NaCl Solutions Based on Two Yukawa Potentials. 2001 , 239, 58-63	24
1200	Extension to mixtures of two robust hard-sphere equations of state satisfying the ordered close-packed limit. 2001 , 79, 678-686	19
1199	Phase equilibria of polypropylene samples with hydrocarbon solvents at high pressures. 2001 , 81, 3044-3055	22
1198	Modeling of Solid/Fluid Phase Equilibria in Multicomponent Systems at High Pressure. 2001 , 24, 607-612	22
1197	Scale-up and Operation of a Steam Pressure Filter in Pilot Scale. 2001 , 24, 612-616	4
1196	Calculation of sedimentation equilibrium using a modified flash algorithm. 2001 , 56, 3771-3779	2
1195	Gas solubilities in molten polymers based on an equation of state. 2001 , 56, 6967-6975	28
1194	Prediction of surface tension for pure non-polar fluids based on density functional theory. 2001 , 56, 6989-699	624
1193	Thermodynamic calculations of linear chain molecules using a SAFT model. 2001 , 99, 65-76	27
1192	A new Monte Carlo simulation approach for the prediction of sorption equilibria of oligomers in polymer melts: Solubility of long alkanes in linear polyethylene. 2001 , 115, 2860-2875	29
1191	An examination of the vapour-liquid interface of associating fluids using a SAFT-DFT approach. 2001 , 99, 1851-1865	76
1190	Interface profiles in a dimerizing system. 2001 , 114, 2387-2394	11
1189	Multidensity integral equation theory for a sticky hard sphere-hard sphere heteronuclear dimer fluid: Thermodynamic and structural properties. 2001 , 115, 6641-6652	7
1188	Excess thermodynamic properties of chainlike mixtures. II. Self-associating systems: predictions from soft-SAFT and molecular simulation. 2002 , 100, 2221-2240	11
1187	Thermodynamic and structural properties of a sticky hard-sphere heteronuclear dimer fluid. 2002 , 117, 4462-4472	4
1186	Critical properties of homopolymer fluids studied by a Lennard-Jones statistical associating fluid theory. 2002 , 100, 2519-2529	28
1185	Gibbs Topological Analysis for Constructing Phase Diagrams of Binary and Ternary Mixtures. <i>Industrial & Diagrams of Binary and Ternary Mixtures.</i> 3.9	9
1184	Modeling Comblike Polymer Solutions Using an Equation of State: Application to Vapor Liquid Equilibria. <i>Industrial & Equilibria amp; Engineering Chemistry Research</i> , 2002 , 41, 862-870	3

1183	Constructing Binary and Ternary Phase Diagrams on the Basis of Phase Stability Analysis. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 3722-3730	3.9	4
1182	Phase Coexistence Curves for Off-Lattice PolymerBolvent Mixtures: Gibbs-Ensemble Simulations. 2002 , 35, 2827-2834		18
1181	Weeks©handlerAndersen Model for Solid©iquid Equilibria in Lennard-Jones Systems. 2002 , 106, 7878-78	381	4
1180	Inclusion and Exclusion Approximations of Copolymer Solids Applied to Calculation of Solid[Iiquid Transitions. <i>Industrial & amp; Engineering Chemistry Research</i> , 2002 , 41, 1774-1779	3.9	6
1179	Prototype of an LJ solid equation of state applied to argon, krypton and methane. 2002 , 100, 2559-256	9	14
1178	Modeling of Liquidliquid-Phase Separation in Linear Low-Density PolyethyleneBolvent Systems Using the Statistical Associating Fluid Theory Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2002 , 41, 887-891	3.9	27
1177	Reliable Computation of Phase Stability and Equilibrium from the SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 938-952	3.9	44
1176	Representation of the Solubility of Solids in Supercritical Fluids Using the SAFT Equation of State. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2002 , 41, 4899-4905	3.9	18
1175	An Algorithm for Calculation of Phase Equilibria in Polydisperse Polymer Solutions Using the SAFT Equation of State. 2002 , 35, 1002-1011		20
1174	Solvent Effects on the Self-Association of Formic Acid in Carbon Dioxide and Ethane. 2002 , 106, 9696-93	700	13
1173	Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 5510-5515	3.9	794
1172	Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1084-1093	3.9	309
1171	Predictions of the JouleThomson Inversion Curve for the n-Alkane Series and Carbon Dioxide from the Soft-SAFT Equation of State Industrial & amp; Engineering Chemistry Research, 2002, 41, 1069-1075	3.9	33
1170	Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 953-962	3.9	290
1169	A SAFT model for associating Lennard-Jones chain mixtures. 2002 , 100, 1033-1047		32
1168	Physical Properties, Reactor Modeling, and Polymerization Kinetics in the Low-Density Polyethylene Tubular Reactor Process1. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1017	′ ³ 1830	40
1167	SAFT Modeling of the Effect of Various Carriers on the Operating Range of Slurry Reactors. <i>Industrial & Description of the Effect of Various Carriers on the Operating Range of Slurry Reactors.</i> **The Company of the Effect of Various Carriers on the Operating Range of Slurry Reactors.** **Industrial & Description** **The Company of the Effect of Various Carriers on the Operating Range of Slurry Reactors.** **Industrial & Description** **Industrial	3.9	9
			_

1165	Phase Behavior Modeling of Hydrocarbon-Methanol-Water Mixtures by Peng-Robinson and SAFT Equations of State. 2002 ,	2
1164	Applied thermodynamics for process modeling. 2002 , 48, 194-200	125
1163	Phase-equilibria calculation by group-contribution perturbed-hard-sphere-chain equation of state. 2002 , 48, 359-368	41
1162	Lattice-fluid equation of state with hydrogen-bond cooperativity. 2002 , 48, 386-392	11
1161	Cosolvent Studies with the System Ethylene/Poly(ethylene-co-acrylic acid): Effects of Solvent, Density, Polarity, Hydrogen Bonding, and Copolymer Composition. 2002 , 85, 659-670	14
1160	The influence of supercritical gases on the phase behavior of polystyreneByclohexane and polyethyleneByclohexane systems: experimental results and modeling with the SAFT-equation of state. 2002 , 23, 181-194	19
1159	Evaluation of equations of state applicable to polymers and complex systems. 2002, 194-197, 77-86	25
1158	Recent advances in the use of the SAFT approach in describing electrolytes, interfaces, liquid crystals and polymers. 2002 , 194-197, 87-96	102
1157	Improving the SAFT-EOS by using an effective WCA segment diameter. 2002, 194-197, 531-539	2
1156	Application of density functional theory for predicting the surface tension of pure polar and associating fluids. 2002 , 194-197, 755-769	22
1155	Extended hydrogen-bonding lattice fluid theory for dimers and n-mers. 2002, 194-197, 609-617	15
1154	Molecular dynamics study on homonuclear and heteronuclear chains of LennardIIones segments. 2002 , 193, 179-189	11
1153	Modeling of polymer phase equilibria using Perturbed-Chain SAFT. 2002 , 194-197, 541-551	97
1152	Phase behavior of PVAC P TAN block copolymer in supercritical carbon dioxide using SAFT. 2002 , 194-197, 553-565	11
1151	Liquid II quid equilibria of copolymer mixtures based on an equation of state. 2002 , 201, 19-35	1
1150	Measurement and calculation of phase equilibria in the system n-pentane + poly(dimethylsiloxane) at 308.15閏23.15 K. 2002 , 202, 289-306	26
1149	Equation of state based on the thermodynamic perturbation theory of sequential polymerization for associating molecules and polymers. 2002 , 194-197, 579-586	4
1148	High pressure phase behavior and modeling of CO2propyl acrylate and CO2propyl methacrylate systems. 2002 , 198, 299-312	12

1147	Gas solubility in glassy polymers: predictions from non-equilibrium EoS. 2002 , 144, 73-78	11
1146	Theoretical Examination of the Global Fluid Phase Behavior and Critical Phenomena in Carbon Dioxide + n-Alkane Binary Mixtures. 2002 , 106, 4503-4515	105
1145	Extension of the Cubic-Plus-Association Equation of State to Glycol Water Cross-Associating Systems. <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Associating Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Association Systems</i> . <i>Industrial & Description of State to Glycol Water Cross-Association Systems</i> . <i>Industrial & Description Systems</i> . <i>In</i>	86
1144	Multicomponent flash algorithm for mixtures containing polydisperse polymers. 2003 , 49, 258-268	14
1143	Solubility of hydrogen in heavy n-alkanes: Experiments and saft modeling. 2003 , 49, 3260-3269	64
1142	Solubility of eicosane in supercritical ethane and ethylene. 2003 , 26, 95-113	12
1141	Phase equilibrium of propane and alkanes part II: hexatriacontane through hexacontane. 2003 , 27, 145-156	28
1140	Equation of state of Linear fused Hard Sphere Chain fluids. 2003 , 105, 1-12	1
1139	Crossover SAFT equation of state for pure supercritical fluids. 2003 , 205, 1-15	22
1138	Application of IR-spectroscopy in thermodynamic investigations of associating solutions. 2003 , 205, 195-214	21
1137	Equations of state for copolymer systems based on different perturbation terms. 2003 , 206, 147-162	5
1136	Phase equilibrium modeling of mixtures of long-chain and short-chain alkanes using Peng R obinson and SAFT. 2003 , 206, 267-286	49
1135	Gas solubility in hydrocarbons SAFT-based approach. 2003, 209, 229-243	49
1134	Simultaneous description of excess properties and vapor I quid equilibria for associating mixtures by hydrogen-bonding lattice fluid equation of state. 2003 , 212, 221-231	5
	by hydrogen bonding tactice hard equation of states 2005 , 212, 221 251	
1133	Phase equilibria and properties of amino acids + water mixtures by hydrogen-bonding lattice fluid equation of state. 2003 , 212, 175-182	19
1133	Phase equilibria and properties of amino acids + water mixtures by hydrogen-bonding lattice fluid	19 9
	Phase equilibria and properties of amino acids + water mixtures by hydrogen-bonding lattice fluid equation of state. 2003 , 212, 175-182	

1129	Computational and Physical Performance of a Modified PC-SAFT Equation of State for Highly Asymmetric and Associating Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1098-1	₹065	225
1128	Hydrogen-Bonding Effects in Liquid Crystals for Application to LCDs. <i>Industrial & amp; Engineering Chemistry Research</i> , 2003 , 42, 1129-1136	3.9	28
1127	Anomalies in the Solubility of Alkanes in Near-Critical Water. 2003, 107, 12307-12314		46
1126	A Parametric Study of Dipolar Chain Theory with Applications to Ketone Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 5687-5696	3.9	54
1125	Strong Lewis Acidlewis Base Interactions between Supercritical Carbon Dioxide and Carboxylic Acids: Effects on Self-association. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6280-6289	3.9	32
1124	Unnoticed Pitfalls of Soave-Type Alpha Functions in Cubic Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 5662-5673	3.9	65
1123	Phase Equilibria in Sugar Solutions Using the A-UNIFAC Model. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 6212-6222	3.9	55
1122	An Application of Statistical Chain Theories on HC and HFC Mixtures. 2003,		
1121	Modeling Some Alcohol/Alkane Binary Systems Using the SAFT Equation of State with a Semipredictive Approach. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 5383-5391	3.9	15
1120	Vaporliquid Equilibrium of Systems Containing Alcohols Using the Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 4953-4961	3.9	31
1119	Integral equation theories for monodisperse and polydisperse sticky hard sphere chain fluid: Thermodynamic and structural properties in the polymer PercusMevick and ideal chain approximations. 2003 , 118, 10794-10807		3
1118	Study on Surface Tension for Non-polar and Associating Fluids Based on Density Functional Theory. 2003 , 29, 809-815		11
1117	Association in a four-coordinated, water-like fluid. 2003 , 118, 2286-2300		10
1116	Structure of liquids composed of shifted dipole linear molecules. 2003 , 68, 021201		9
1115	Renormalization Group Theory Applied for Fluids and Mixtures up to Critical Region. 2003, 29, 773-776		4
1114	The liquidNapour interface of chain molecules investigated using a density functional approach. 2004 , 16, 8861-8873		19
1113	Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory. 2004 , 121, 10715-24		97
1112	Study of Lennard-Jones Chains for Hydrocarbons. 2004 , 18, 243-252		2

1111 Influence of additional components on the solvent power of supercritical ethylene. **2004**, 39-60

1110	High pressure phase equilibria of copolymer solutions Experiments and correlation. 2004, 61-84	1
1109	Perturbed-Chain-SAFT: development of a new equation of state for simple, associating, multipolar and polymeric compounds. 2004 , 295-322	2
1108	Challenges in thermodynamics. 2004 , 43, 221-238	34
1107	Application of the perturbed chain SAFT equation of state to complex polymer systems using simplified mixing rules. 2004 , 215, 71-78	46
1106	Theoretical and experimental comparison of the Soret coefficient for water-methanol and water-ethanol binary mixtures. 2004 , 15, 241-7	17
1105	Applying Association Theories to Polar Fluids. <i>Industrial & amp; Engineering Chemistry Research</i> , 2004 , 43, 1803-1806	48
1104	Steady-State and Dynamic Modeling of Gas-Phase Polypropylene Processes Using Stirred-Bed Reactors. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 884-900	60
1103	Provision of thermodynamic properties of polymer systems for industrial applications. 2004 , 217, 189-199	13
1102	Square-well chain molecules: a semi-empirical equation of state and Monte Carlo simulation data. 2004 , 221, 63-72	10
1101	Universal equation of state for engineering application: algorithm and application to non-polar and polar fluids. 2004 , 222-223, 107-118	25
1100	Modelling of phase equilibria for associating mixtures using an equation of state. 2004 , 36, 1105-1117	47
1099	Determination of thermodynamic properties by supercritical fluid chromatography. 2004 , 1037, 369-91	27
1098	Phase equilibria for biomass conversion processes in subcritical and supercritical water. 2004 , 98, 105-113	41
1097	An application of statistical chain theories on thermodynamic properties of hydrocarbon refrigerants. 2004 , 113, 101-113	1
1096	Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis. 2004 , 43, 1459-1467	95
1095	Vaporliquid equilibria of nitrogenliydrocarbon systems using the PC-SAFT equation of state. 2004 , 217, 241-253	47
1094	Hydrogen-bonding between a dichroic dye and a liquid crystal-forming molecule, for application to LCDs. 2004 , 220, 47-55	11

1093	Application of the CPA equation of state to organic acids. 2004 , 225, 107-113		50
1092	A systematic study of methanol + n-alkane vaporliquid and liquidliquid equilibria using the CK-SAFT and PC-SAFT equations of state. 2004 , 226, 195-205		44
1091	Cloud points for polystyrene in propane and poly(4-methyl styrene) in propane. 2004 , 226, 189-194		13
1090	Phase-equilibrium calculations for n-alkane + alkanol systems using continuous thermodynamics. 2004 , 217, 125-135		12
1089	Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series. 2004 , 222-223, 67-76		142
1088	Vaporllquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT. 2004 , 224, 111-118		52
1087	Chain reference system and scaling factor algorithm for perturbed hard-sphere-chain equation of state. 2004 , 226, 129-139		4
1086	An analytical equation of state for water and alkanols. 2004 , 59, 5831-5838		14
1085	Chapter 6: Association Models IThe CPA Equation of State. 2004 , 19, 113-142		O
1084	Ethylene and 1-Hexene Sorption in LLDPE under Typical Gas Phase Reactor Conditions: A Priori Simulation and Modeling for Prediction of Experimental Observations. 2004 , 37, 9139-9150		51
1083	The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures. <i>Industrial & Discourse Chemistry Research</i> , 2004 , 43, 6890-6897	3.9	12
1082	Statistical associating Fluid Dimer Theory. 2004 , 42, 237-243		
1081	Nonequilibrium Behavior in Ethylene/Polyethylene Flash Separators. <i>Industrial & Description of the Mistry Research</i> , 2004 , 43, 1768-1778	3.9	18
1080	SAFT Modeling of the Solubility of Gases in Perfluoroalkanes. 2004 , 108, 1450-1457		68
1079	Application of Crossover Theory to the SAFT-VR Equation of State: SAFT-VRX for Pure Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2839-2851	3.9	90
1078	Investigation of the Phase Equilibria for Nonpolar Chainlike Fluids by the Yukawa Potential and Renormalization-Group Theory. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2271-2279	3.9	6
1077	Reactive Phase Equilibria in Silica Aerogel Synthesis: Experimental Study and Prediction of the Complex Phase Behavior Using the PC-SAFT Equation of State. <i>Industrial & Description of State</i> . <i>In</i>	3.9	30
1076	Investigation of the Phase Equilibria for Pure Associating Fluids by the Yukawa Potential and Renormalization Group Theory. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 5425-5429	3.9	6

1075	Novel Method for Estimating Pure-Component Parameters for Polymers: Application to the PC-SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2830-2838	3.9	49
1074	Phase Equilibria, PVT Behavior, and Critical Phenomena in Carbon Dioxide + n-Alkane Mixtures Using the Perturbed-Chain Statistical Associating Fluid Theory Approach. <i>Industrial & amp; Engineering Chemistry Research</i> , 2004 , 43, 8345-8353	3.9	46
1073	Description of PVT behaviour of hydrofluoroethers using the PC-SAFT EOS. 2004 , 6, 766-770		57
1072	Towards an understanding of the heat capacity of liquids. A simple two-state model for molecular association. 2004 , 120, 6648-59		53
1071	Generalized Procedure for Estimating the Fractions of Nonbonded Associating Molecules and Their Derivatives in Thermodynamic Perturbation Theory. <i>Industrial & Designation Theory</i> . <i>Industria</i>	3.9	51
1070	Thermodynamic Stability Analysis and Pressurellemperature Flash for Polydisperse Polymer Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6222-6230	3.9	8
1069	Prediction of Thermodynamic Properties of the Systems Formed by n-Alkanes, Aliphatic Monoethers, and 1-Chloroalkanes, Using a CellHole Group Contribution Model. 2004 , 108, 2383-2397		7
1068	Modeling the Cloud Curves and the Solubility of Gases in Amorphous and Semicrystalline Polyethylene with the SAFT-VR Approach and Flory Theory of Crystallization. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 6871-6889	3.9	78
1067	An Application of Statistical Chain Theories for Highly Polar Molecules. 2004,		
1066	Thermodynamic properties and aggregate formation of surfactant-like molecules from theory and simulation. 2004 , 120, 9822-30		8
1065	Application of the Simplified PC-SAFT Equation of State to the Vaporliquid Equilibria of Binary and Ternary Mixtures of Polyamide 6 with Several Solvents. <i>Industrial & Discrete Manager Chemistry Research</i> , 2004 , 43, 826-834	3.9	33
1064	EXCESS MOLAR ENTHALPIES FOR BINARY SYSTEMS OF N-ALKANE +1-ALKANOL SYSTEMS AT 313.15 K. 2004 ,		
1063	Predicting Gas Solubility in Glassy Polymers through Nonequilibrium EOS. 2004 , 74-90		20
1062	Solubility of Gases in Polymeric Membranes. 2005 , 41-61		15
1061	Application of Generalized Pressure Perturbation Principle to Cubic Equation of State Formulation. 2005 ,		
1060	Application of the GCA-EoS model to the supercritical processing of fatty oil derivatives. 2005 , 70, 579	-587	26
1059	Evaluation of SAFT and PC-SAFT models for the description of homo- and co-polymer solution phase equilibria. 2005 , 46, 10772-10781		19
1058	Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT). 2005, 228-229, 409-419		69

1057	Extension of the A-UNIFAC model to mixtures of cross- and self-associating compounds. 2005 , 227, 165-176	32
1056	Phase-equilibrium calculations for non-aqueous and aqueous associating systems using continuous thermodynamics. 2005 , 230, 143-152	10
1055	VLE calculation for non-polar fluid mixtures and polymer solutions using a SAFT-VR type equation of state. 2005 , 232, 100-112	4
1054	Application of a new simplified SAFT to VLE study of associating and non-associating fluids. 2005 , 233, 110-121	4
1053	Liquid II quid equilibria of solvent + polymer solutions with a chain-referenced perturbed hard-sphere-chain equation of state. 2005 , 237, 162-169	4
1052	High-pressure density and vaporliquid equilibrium for the binary systems carbon dioxidelthanol, carbon dioxideltcetone and carbon dioxideltichloromethane. 2005 , 33, 7-14	96
1051	Modeling of the solubility of aromatic compounds in supercritical carbon dioxidellosolvent systems using SAFT equation of state. 2005 , 33, 99-106	37
1050	Structural and hydrogen bond analysis for supercritical ethanol: A molecular simulation study. 2005 , 36, 145-153	26
1049	Parameterization of molecular-based equations of state. 2005 , 228-229, 561-575	3
1048	Thermodynamic modeling of complex systems using PC-SAFT. 2005 , 228-229, 89-98	99
1047	Volumetric properties under pressure for the binary system ethanol+toluene. 2005 , 235, 139-151	56
1046	Enthalpy of mixing for polymer solutions based on Gibbs excess function limit of hard spheres mixtures. 2005 , 235, 26-29	
1045	Application of the SAFT equation of state to biomass fast pyrolysis liquid. 2005 , 60, 617-624	28
1044	Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 3355-3362	213
1043	Investigation of the Phase Equilibria and Interfacial Properties for Non-polar Fluids. 2005 , 23, 386-392	6
1042	Extended statistical associating fluid theory (SAFT) equations of state for dipolar fluids. 2005 , 51, 2328-2342	106
1041	Application of the simplex simulated annealing technique to nonlinear parameter optimization for the SAFT-VR equation of state. 2005 , 60, 6607-6621	20
1040	Application of SAFT™RX to binary phase behaviour: alkanes. 2005 , 228-229, 275-282	29

1039	Recent applications of the cubic-plus-association (CPA) equation of state to industrially important systems. 2005 , 228-229, 121-126	35
1038	Transferable step potentials for amines, amides, acetates, and ketones. 2005 , 236, 42-52	26
1037	Statistical Approach to Calculate Thermodynamic Properties for Propane. 2005 , 26, 453-470	О
1036	A Corresponding States Model for Generalized Engineering Equations of State. 2005 , 26, 705-728	14
1035	An Approach to Calculate Thermodynamic Properties of Mixtures Including Propane, n-Butane, and Isobutane. 2005 , 26, 1769-1780	2
1034	. 2005,	3
1033	A molecular-based equation of state for process engineering. 2005 , 20, 505-510	4
1032	A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. 2005 , 123, 014908	47
1031	Phase Equilibria of Ethylene Glycol Oligomers and Their Mixtures. <i>Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Description of Ethylene Glycol Oligomers and Their Mixtures. Ind</i>	47
1030	Thermodynamic Modeling of Refrigerants Using the Statistical Associating Fluid Theory with Variable Range. 1. Pure Components. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4798-4808	23
1029	Examination of the excess thermodynamic properties of n-alkane binary mixtures: a molecular approach. 2005 , 109, 12145-53	16
1028	SAFT1-RPM Approximation Extended to Phase Equilibria and Densities of CO2H2O and CO2H2ONaCl Systems. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 8419-8427	80
1027	Predicting mixture phase equilibria and critical behavior using the SAFT-VRX approach. 2005 , 109, 9047-58	56
1026	Extension of the Cubic-plus-Association (CPA) Equation of State to Amines. <i>Industrial & Amp;</i> Engineering Chemistry Research, 2005 , 44, 4406-4413	38
1025	Isothermal Vapor Liquid Equilibria for the n-Pentane + 1-Butanol and n-Pentane + 2-Butanol Systems near the Critical Region of the Mixtures. 2005 , 50, 1520-1524	16
1024	Vapor-liquid and vapor-liquid-liquid equilibria of carbon dioxide/n-perfluoroalkane/n-alkane ternary mixtures. 2005 , 109, 2899-910	20
1023	Perturbed Dipolar Chains: A Thermodynamic Model for Polar Copolymers. 2005 , 38, 1025-1027	5
1022	Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory. 2005 , 109, 20546-53	15

1021	Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems. <i>Industrial & Comp. Engineering Chemistry Research</i> , 2005 , 44, 3823-3833	3.9	114
1020	Asymptotic trends in thermodynamic perturbation theory. 2005 , 123, 184902		14
1019	Attractive Nanocolloid Polymer Mixtures: ©Comparison of a Modified Perturbed Lennard-Jones Equation of State to Monte Carlo Simulation. 2005, 38, 167-173		2
1018	Generalized SAFT-DFT/DMT Model for the Thermodynamic, Interfacial, and Transport Properties of Associating Fluids: Application for n-Alkanols. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 6916-6927	3.9	34
1017	Statistical Associating Fluid Theory Coupled with Restricted Primitive Model To Represent Aqueous Strong Electrolytes. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4442-4452	3.9	67
1016	THE MODIFIED PGR EQUATION OF STATE: PURE-FLUID PREDICTIONS. 2006 , 193, 438-459		2
1015	Evaluation of the Truncated Perturbed Chain-Polar Statistical Associating Fluid Theory for Complex Mixture Fluid Phase Equilibria. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6063-6074	3.9	64
1014	Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. 2006 , 110, 1350-62		100
1013	Perturbed chain-statistical associating fluid theory extended to dipolar and quadrupolar molecular fluids. 2006 , 110, 9252-61		101
1012	Comparison of Two Association Models (ElliottBureshDonohue and Simplified PC-SAFT) for Complex Phase Equilibria of HydrocarbonWater and Amine-Containing Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8170-8179	3.9	60
1011	Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. 2006 , 39, 4240-4246		33
1010	Reliable Computation of All the Density Roots of the Statistical Associating Fluid Theory Equation of State through Global Fixed-Point Homotopy. <i>Industrial & Description of State 2006</i> , 45, 3303-3310	3.9	8
1009	Application of the Cubic-Plus-Association Equation of State to Mixtures with Polar Chemicals and High Pressures. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1516-1526	3.9	57
1008	Bulk and Interfacial Properties of Polymers from Interfacial SAFT Density Functional Theory. <i>Industrial & Density Engineering Chemistry Research</i> , 2006 , 45, 6785-6792	3.9	46
1007	A quasi-chemical nonrandom lattice fluid model: General derivation and application to pure fluids and mixtures. 2006 , 246, 79-88		25
1006	Modeling the Partitioning of Oligomers in Supercritical CO2. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2006 , 45, 3335-3342	3.9	6
1005	Application of the Cubic-Plus-Association (CPA) Equation of State to Complex Mixtures with Aromatic Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 1527-1538	3.9	97
1004	Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state. 2006 , 110, 9262-9		153

1003	Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 1. Single salt + water solutions. 2006 , 110, 16694-9		47
1002	Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 2. Brine/seawater properties predicted. 2006 , 110, 16700-6		30
1001	Investigation of Critical Properties and Surface Tensions for n-Alkanes by Perturbed-Chain Statistical Associating Fluid Theory Combined with Density-Gradient Theory and Renormalization-Group Theory. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 8199-8206	3.9	36
1000	How Well Can Coarse-Grained Models of Real Polymers Describe Their Structure? The Case of Polybutadiene. 2006 , 2, 588-97		18
999	How To Represent Hydrogen Sulfide within the CPA Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7688-7699	3.9	18
998	Ion-Based SAFT2 to Represent Aqueous Single- and Multiple-Salt Solutions at 298.15 K. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7719-7728	3.9	34
997	Efficient Solution of the Association Term Equations in the Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6056-6062	3.9	16
996	Robust and Efficient Solution Procedures for Association Models. <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 8449-8453	3.9	41
995	Developing optimal Wertheim-like models of water for use in Statistical Associating Fluid Theory (SAFT) and related approaches. 2006 , 104, 3561-3581		146
994	Vaporliquid Equilibrium of Carbon DioxidePerfluoroalkane Mixtures: Experimental Data and SAFT Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2341-2350	3.9	95
993	Association and molecular chain length effects on interfacial behavior View all notes. 2006, 44, 45-59		17
992	Study on vapor-liquid equilibria and surface tensions for nonpolar fluids by renormalization group theory and density gradient theory. 2006 , 110, 19575-81		12
991	PVTx measurements of the N-methylpyrrolidone/methanol mixed solvent: cubic and SAFT EOS analyses. 2006 , 110, 6933-42		14
990	Modeling of the Sorption and Swelling Behavior of Semicrystalline Polymers in Supercritical CO2. <i>Industrial & Description of Semicry Research</i> , 2006 , 45, 1183-1200	3.9	40
989	HRX-SAFT Equation of State for Fluid Mixtures: Application to Binary Mixtures of Carbon Dioxide, Water, and Methanol. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 3981-3990	3.9	34
988	Temperature Dependence of the Heat Capacity and Vapor Pressure of Pure Self-Associated Liquids. A New Correlation Based on a Two-State Association Model. <i>Industrial & Description of the Research</i> , 2006 , 45, 2150-2155	3.9	9
987	Investigating Models for Associating Fluids Using Spectroscopy. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2006 , 45, 5368-5374	3.9	51
986	Phase behavior of olive and soybean oils in compressed propane and n-butane. 2006 , 23, 405-415		42

985	Investigating the Solubility of CO2 in Polypropylene Using Various EOS Models. 2006 , 25, 237-248	35
984	Application to Petroleum Engineering of Statistical Thermodynamics Based Equations of State. 2006 , 61, 363-386	40
983	Verfahrenstechnische Grundlagen zu Stoffaustausch und Wilmeßertragung. 187-301	
982	Design of polyolefin reactor mixtures. 2006 , 22, 301-332	2
981	Minimum Miscibility Pressure Prediction Using Statistical Associating Fluid Theory: Two- and Three-Phase Systems. 2006 ,	10
980	On the thermodynamics of diblock chain fluids from simulation and heteronuclear statistical associating fluid theory for potentials of variable range. 2006 , 104, 571-586	36
979	Recent advances in study on thermodynamic models for real systems including electrolytes. 2006 , 11, 181-187	1
978	Vapor liquid equilibrium modeling of alkane systems with Equations of State: Bimplicity versus complexity[]2006, 240, 127-139	45
977	Representation of carboxylic acid-containing systems by association model-incorporated equations of state. 2006 , 241, 31-40	1
976	Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR. 2006 , 243, 74-91	30
975	The BACK equation of state for hydrogen and related compounds. 2006 , 240, 96-100	18
974	Solubility of gases and vapors in glassy polymers modelled through non-equilibrium PHSC theory. 2006 , 241, 300-307	36
973	Modification of SimhaBomcynsky equation of state for small and large molecules. 2006 , 242, 10-18	10
972	Thermodynamic modeling of the vaporliquid equilibrium of the water/ethanol/CO2 system. 2006 , 243, 142-150	61
971	Athermal lattice chains compared with hard-sphere chains. 2006 , 244, 99-103	3
970	Volumetric and derivative properties under pressure for the system 1-propanol+toluene: A discussion of PC-SAFT and SAFT-VR. 2006 , 247, 121-134	63
969	Comparison of the SRK and CPA equations of state for physical properties of water and methanol. 2006 , 247, 149-157	38
968	A modified thermodynamic perturbation theory of Wertheim for heteronuclear molecules. 2006 , 123, 56-60	2

(2007-2006)

967	Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. 2006 , 31, 19-43	472
966	Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4855-4868	301
965	Thermodynamic Models for Calculating Mutual Solubilities in H2O\(\mathbb{L}\)O2\(\mathbb{L}\)H4 Mixtures. 2006 , 84, 781-794	72
964	Phase behavior of soybean oil, castor oil and their fatty acid ethyl esters in carbon dioxide at high pressures. 2006 , 37, 29-37	92
963	Phase equilibria in polydisperse and associating copolymer solutions: Poly(ethene-co-(meth)acrylic acid)Thonomer mixtures. 2006 , 241, 113-123	48
962	Modelling of the thermodynamic properties of the waterEmmonia mixture by three different approaches. 2006 , 29, 211-218	41
961	A multi-fluid nonrandom lattice fluid model: General derivation and application to pure fluids. 2006 , 23, 469-475	17
960	A multi-fluid nonrandom lattice fluid model: Mixtures. 2006 , 23, 476-481	11
959	Ethylene and 1-hexene sorption in LLDPE under typical gas-phase reactor conditions: Experiments. 2006 , 100, 1124-1136	54
958	Investigation of Surface Tensions for Pure Fluids outside and inside the Critical Region. 2006 , 24, 1315-1320	4
957	Prediction of global VLE for mixtures with improved renormalization group theory. 2006 , 52, 342-353	19
956	An equation-of-state contribution for polar components: Dipolar molecules. 2006 , 52, 1194-1204	261
955	General friction theory viscosity model for the PC-SAFT equation of state. 2006 , 52, 1600-1610	63
954	Density functional theory for inhomogeneous associating chain fluids. 2006 , 125, 24909	31
953	Theoretical Prediction of Thermal Diffusion in WaterMethanol, WaterEthanol, and WaterBopropanol Mixtures using the PC-SAFT Equation of State. 2006 , 31,	14
952	SAFTIIC: An Equation of State for Predicting Liquid-Crystalline Phase Behavior in Carbonaceous Pitches. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7018-7026	7
951	Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling. 2007 , 33, 851-860	14
950	On the estimation of water pure compound parameters in association theories. 2007 , 105, 1797-1801	18

949	Phase equilibrium of liquid mixtures: experimental and modeled data using statistical associating fluid theory for potential of variable range approach. 2007 , 127, 144513		9
948	Investigation of vapourliquid nucleation properties for spherical and chain-like fluids by density functional theory. 2007 , 16, 3475-3482		1
947	Theoretical approach to evaluate thermodiffusion in aqueous alkanol solutions. 2007 , 126, 014502		27
946	Application of the CPA Equation of State to Reservoir Fluids in Presence of Water and Polar Chemicals. 2007 ,		
945	A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach. 2007 , 111, 3447-61		76
944	Thermodynamic Modeling of the Water + Acetic Acid + CO2System: The Importance of the Number of Association Sites of Water and of the Nonassociation Contribution for the CPA and SAFT-Type Models. <i>Industrial & Description of the Models and Saft-Type Models and S</i>	3.9	38
943	Properties of 1,8-cineole: a thermophysical and theoretical study. 2007 , 111, 3167-77		30
942	An Application of Statistical Chain Theories on Thermodynamic Properties of Binary and Ternary Hydrocarbon Mixtures. 2007 ,		
941	Use of PC-SAFT for Global Phase Diagrams in Binary Mixtures Relevant to Natural Gases. 1.n-Alkane +n-Alkane. <i>Industrial & Diagrams Chemistry Research</i> , 2007 , 46, 273-284	3.9	15
940	Use of PC-SAFT for Global Phase Diagrams in Binary Mixtures Relevant to Natural Gases. 2.n-Alkane + Other Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 285-290	3.9	11
939	Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model 2007, 111, 16028-16034		114
938	Properties and structure of aromatic ester solvents. 2007 , 111, 4417-31		9
937	Novel Four-Parameter EOS with Temperature-Independent Parameters. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 9248-9256	3.9	4
936	Application of the PC-SAFT Equation of State to Asphaltene Phase Behavior. 2007 , 301-327		15
935	Use of PC-SAFT for Global Phase Diagrams in Binary Mixtures Relevant to Natural Gases. 3. Alkane + Non-Hydrocarbons. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 291-296	3.9	12
934	Investigation of Vaporliquid Nucleation for Water and Heavy Water by Density Functional Theory. 2007 , 111, 13938-13944		6
933	Phase equilibrium of binary mixtures of cyclic ethers + chlorobutane isomers: experimental measurements and SAFT-VR modeling. 2007 , 111, 9588-97		16
932	HRX-SAFT Equation of State for Fluid Mixtures: New Analytical Formulation 2007, 111, 15969-15975		14

(2007-2007)

931	(SAFT)Dimer Equation for Hard-Chain Molecules. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5766-5774	3.9	13	
930	Density Calculation of Sugar Solutions with the SAFT Model. 2007 , 52, 135-140		7	
929	Accurate Global Thermophysical Characterization of Hydrofluoroethers through a Statistical Associating Fluid Theory Variable Range Approach, Based on New Experimental High-Pressure Volumetric and Acoustic Data. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 6998-7007	3.9	15	
928	Investigation of Surface Tensions for Pure Associating Fluids by Perturbed-Chain Statistical Associating Fluid Theory Combined with Density-Gradient Theory. <i>Industrial & Density Research</i> , 2007 , 46, 7378-7383	3.9	28	
927	Carbon Dioxide Solubility in Polymerized Ionic Liquids Containing Ammonium and Imidazolium Cations from Magnetic Suspension Balance: P[VBTMA][BF4] and P[VBMI][BF4]. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5542-5547	3.9	54	
926	Modeling of Polar Systems Using PCP-SAFT: An Approach to Account for Induced-Association Interactions 2007, 111, 15544-15553		121	
925	Predicting the phase equilibria of petroleum fluids with the SAFT-VR approach. 2007, 53, 720-731		33	
924	Phase equilibria, critical behavior and derivative properties of selected n-alkane/n-alkane and n-alkane/1-alkanol mixtures by the crossover soft-SAFT equation of state. 2007 , 41, 204-216		45	
923	Cloud-point pressure curves of ethylene-based terpolymers in fluid ethene and in ethenellomonomer-mixtures Experimental study and modeling via PC-SAFT. 2007 , 41, 461-471		15	
922	Modeling aspirin and naproxen ternary solubility in supercritical CO2/alcohol with a new Peng R obinson EOS plus association model. 2007 , 43, 259-266		18	
921	Prediction of sound velocity and heat capacities of n-alkanes from the modified SAFT-BACK equation of state. 2007 , 252, 152-161		29	
920	Intermolecular potential model parameters for cyclic ethers and chloroalkanes in the SAFT-VR approach. 2007 , 255, 200-206		14	
919	Modeling vaporliquid equilibria of ethanol+1,1,1,2,3,3,3-heptafluoropropane binary mixtures using PC-SAFT. 2007 , 260, 190-194		15	
918	Application of PC-SAFT to glycol containing systems IPC-SAFT towards a predictive approach. 2007 , 261, 248-257		36	
917	Vapor pressure measurements in the range 10B Pa to 1 Pa of four pentaerythritol esters: Density and vaporliquid equilibria modeling of ester lubricants. 2007 , 260, 248-261		41	
916	Modeling of water activity, oxygen solubility and density of sugar and sugar alcohol solutions. 2007 , 104, 551-558		16	
915	On predicting self-diffusion coefficients from viscosity in gases and liquids. 2007 , 62, 6499-6515		27	
914	Association equation of state (AEOS) based on aggregate formation for pure substance. 2007 , 336, 22-	-26	4	

913	A quasi-chemical nonrandom lattice fluid model for phase equilibria of associating systems. 2007 , 256, 27-33	17
912	Modeling of fluid phase equilibria with two thermodynamic theories: Non-random hydrogen bonding (NRHB) and statistical associating fluid theory (SAFT). 2007 , 253, 19-28	26
911	Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: Poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). 2007 , 256, 75-80	59
910	Measurement and modelling of hydrogen bonding in 1-alkanol+n-alkane binary mixtures. 2007 , 261, 272-280	28
909	Modelling of associating mixtures for applications in the oil & gas and chemical industries. 2007 , 261, 205-211	34
908	A semi-empirical hard-sphere chain equation of state: Pure and mixture. 2007 , 261, 258-264	4
907	An evaluation of the performance of the Cubic-Plus-Association equation of state in mixtures of non-polar, polar and associating compounds: Towards a single model for non-polymeric systems. 2007 , 261, 343-350	36
906	Modeling of density of aqueous solutions of amino acids with the statistical associating fluid theory. 2007 , 39, 1057-1064	12
905	Gas solubility and permeability in MFA. 2007 , 45, 1637-1652	6
904	Application of the PC-SAFT equation of state to modeling of solid-liquid equilibria in systems with organic components forming chemical compounds. 2007 , 80, 542-548	17
903	A multi-fluid nonrandom associating lattice fluid model. 2007 , 253, 29-35	7
902	Polydispersity-based homotopy/continuation for phase equilibria of polydisperse polymer systems. 2007 , 253, 88-97	3
901	Phase equilibria in water containing binary systems from molecular based equations of state. 2007 , 254, 112-125	49
900	Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters. 2007 , 258, 83-94	65
899	A crossover cubic equation of state near to and far from the critical region. 2007 , 39, 1257-1263	23
898	High-pressure phase equilibria in the system linear low density polyethylene+isohexane: Experimental results and modelling. 2007 , 40, 125-133	19
897	A new generalized corresponding-states equation of state for the extension of the LeeKesler equation to fluids consisting of polar and larger nonpolar molecules. 2008 , 63, 1490-1496	14
896	Application of GC-SAFT EOS to polar systems using a segment approach. 2008 , 264, 62-75	101

895	Predicting VLE of heavy esters and their mixtures using GC-SAFT. 2008, 264, 184-200	76
894	A Hydration Shell-Based Thermodynamic Model for Aqueous Two-Phase Systems. 2008 , 82, 530-538	
893	A crossover lattice fluid equation of state for pure fluids. 2008 , 40, 174-179	12
892	Estimation of second-order derivative thermodynamic properties using the crossover cubic equation of state. 2008 , 40, 688-694	9
891	A modified square well model in obtaining the surface tension of pure and binary mixtures of hydrocarbons. 2008 , 40, 1131-1135	3
890	Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling. 2008 , 40, 1253-1260	6
889	Estimation of 2nd-order derivative thermodynamic properties using the crossover lattice equation of state. 2008 , 40, 1580-1587	6
888	Calculation of critical points for multicomponent mixtures containing hydrocarbon and nonhydrocarbon components with the PC-SAFT equation of state. 2008 , 265, 192-204	22
887	Modeling the vapor Ilquid equilibrium and association of nitrogen dioxide/dinitrogen tetroxide and its mixtures with carbon dioxide. 2008 , 266, 154-163	15
886	Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. 2008 , 267, 83-91	78
885	Prediction of vaporliquid equilibrium in waterfilcoholflydrocarbon systems with the dipolar perturbed-chain SAFT equation of state. 2008 , 271, 82-93	59
884	Modelling of phase equilibria of glycol ethers mixtures using an association model. 2008 , 273, 11-20	16
883	Modeling of phase equilibrium of binary mixtures composed by polystyrene and chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons and supercritical fluids using cubic and non-cubic equations of state. 2008 , 45, 134-145	14
882	High-pressure phase behavior of carbon dioxide + heptadecafluoro-1-decanol system. 2008 , 44, 260-265	12
881	Phase and volumetric behavior of binary systems containing carbon dioxide and lubricants for transcritical refrigeration cycles. 2008 , 45, 261-271	13
880	Interfacial properties of water + alcohol mixtures. 2008, 263, 160-167	60
879	Hydrogen-bonding athermal lattice chains compared with associating hard-sphere chains. 2008 , 265, 215-222	2
878	A new molecular-thermodynamic model based on lattice fluid theory: Application to pure fluids and their mixtures. 2008 , 265, 112-121	11

877	Determination of liquidgas partition coefficients of BuA and MMA by headspace-gas chromatography utilizing the phase ratio variation method. 2008 , 266, 21-30		1
876	Liquid []quid equilibria of lactam containing binary systems. 2008 , 266, 90-100		13
875	Modeling aqueous electrolyte solutions. 2008 , 270, 87-96		145
874	Thermodynamic regularities for non-polar and polar fluids from the modified SAFT-BACK equation of state. 2008 , 142, 95-102		10
873	Freezing Point Depression of Electrolyte Solutions: Experimental Measurements and Modeling Using the Cubic-Plus-Association Equation of State. <i>Industrial & Discourse Member 1988</i> , 47, 3983-3989	3.9	42
872	A Predictive Group-Contribution Simplified PC-SAFT Equation of State: Application to Polymer Systems. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 5092-5101	3.9	134
871	On the properties of methylbenzoate/n-hexane mixed solvents: a theoretical and experimental study. 2008 , 112, 5047-57		2
870	Recent Advances and Applications of Statistical Associating Fluid Theory. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 8063-8082	3.9	232
869	Measurement and Modeling of the CO2 Solubility in Poly(ethylene glycol) of Different Molecular Weights. 2008 , 53, 185-188		57
868	THE MODIFIED PGR EQUATION OF STATE: ASYMMETRIC MIXTURE VLE REPRESENTATIONS AND PREDICTIONS. 2008 , 195, 492-510		2
867	Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. 2008 , 112, 15398-406		106
866	Prediction of Water Solubility in Biodiesel with the CPA Equation of State. <i>Industrial & amp;</i> Engineering Chemistry Research, 2008 , 47, 4278-4285	3.9	73
865	Equation of state modeling of the phase equilibria of ionic liquid mixtures at low and high pressure. 2008 , 10, 6160-8		39
864	Measurements and predictive models for the N-methyl-2-pyrrolidone/water/methanol system. 2008 , 112, 11361-73		38
863	Equation of state taking into account dipolar interactions and association by hydrogen bonding. I: Application to pure water and hydrogen sulfide. 2008 , 251, 58-66		16
862	Phase Equilibrium Modelling for Mixtures with Acetic Acid Using an Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 5660-5668	3.9	28
861	Modeling Systems Containing Alkanolamines with the CPA Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7441-7446	3.9	41
860	Thermodynamics of a long-range triangle-well fluid. 2008 , 106, 113-126		28

(2009-2008)

859	Research, 2008 , 47, 5723-5733	3.9	15
858	Setup and Validation of a PII Measuring Device. Volumetric Behavior of the Mixture 1,8-Cineole + Ethanol. 2008 , 53, 1393-1400		23
857	Solubility Of Amino Acids In Water And Aqueous Solutions By the Statistical Associating Fluid Theory. <i>Industrial & Discours amp; Engineering Chemistry Research</i> , 2008 , 47, 6275-6279	3.9	34
856	A new crossover sine model based on trigonometric model and its application to the crossover lattice equation of state. 2008 , 129, 234503		2
855	Renormalization-Group Corrections to a Perturbed-Chain Statistical Associating Fluid Theory for Pure Fluids Near to and Far from the Critical Region. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 6264-6274	3.9	32
854	Modeling Phase Equilibria of Asymmetric Mixtures Using a Group-Contribution SAFT (GC-SAFT) with a kij Correlation Method Based on London Theory. 2. Application to Binary Mixtures Containing Aromatic Hydrocarbons, n-Alkanes, CO2, N2, and H2S. <i>Industrial & Dance Containing Chemistry</i>	3.9	53
853	Evaluation of the Nonrandom Hydrogen Bonding (NRHB) Theory and the Simplified Perturbed-Chain@tatistical Associating Fluid Theory (sPC-SAFT). 2. Liquid@iquid Equilibria and Prediction of Monomer Fraction in Hydrogen Bonding Systems. <i>Industrial & Description of Monomer Fraction in Hydrogen Bonding Systems</i> .	3.9	57
852	Chemistry Research, 2008, 47, 5651-5659 Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach. 2008, 112, 9417-27		19
851	Group Contribution Prediction of Vapor Pressure with Statistical Associating Fluid Theory, Perturbed-Chain Statistical Associating Fluid Theory, and ElliottBureshDonohue Equations of State. <i>Industrial & Donohue Equations Chemistry Research</i> , 2008 , 47, 8401-8411	3.9	29
850	Modeling the phase equilibria of nitriles by the soft-SAFT Equation of State. 2008 , 25, 739-744		3
849	Thermodynamics of Polymer Solutions. 2008 , 499-537		
848	Thermodynamics of Fluid Phase and Chemical Equilibria. 2008, 255-392		
847	Solvation Phenomena in Association Theories with Applications to Oil & Gas and Chemical Industries. 2008 , 63, 305-319		39
846	Methane and Water Phase Equilibria in the Presence of Single and Mixed Electrolyte Solutions Using the Cubic-Plus-Association Equation of State. 2009 , 64, 141-154		60
845	PC-SAFT Equation: A Predictive Tool to Determine Experimental Conditions for Polymer Blend Demixing. 2009 , 44, 2661-2680		3
844	Vapor-liquid coexistence of fluids with attractive patches: An application of Wertheim's theory of association. 2009 , 130, 044902		30
843	A new generic model potential for mesogenic systems: square well line potential of variable range. 2009 , 131, 194506		5
842	A novel approach for calculation of liquidNapor interfacial thickness. 2009 , 2009, P05003		6

841	Effect of alcohol on the solubility of amino acid in water. 2009 , 56, 185-188	16
840	Description of the mutual solubilities of fatty acids and water with the CPA EoS. 2009 , 55, 1604-1613	41
839	Investigation of Vapor-Liquid Nucleation for Associating Fluids by Density Gradient Theory. 2009 , 27, 235-240	2
838	A new development of equation of state for square-well chain-like molecules with variable width 1.1 B. 2009 , 276, 57-68	23
837	Interfacial properties of selected binary mixtures containing n-alkanes. 2009, 282, 68-81	89
836	Equation of state for square-well chain molecules with variable range. I: Application for pure substances. 2009 , 286, 8-16	15
835	Excluded volume contribution to deviations from ideality in liquid mixtures: Consequences for engineering models. 2009 , 286, 182-189	1
834	On the Calculation of Liquid Vapor Interfacial Thickness Using Experimental Surface Tension Data. 2009 , 38, 685-694	4
833	Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model. 2009 , 38, 1097-1117	13
832	A multi-fluid nonrandom lattice fluid model for mixtures containing nonionic surfactants. 2009 , 26, 225-229	6
831	Modeling of aqueous electrolyte solutions based on perturbed-chain statistical associating fluid theory incorporated with primitive mean spherical approximation. 2009 , 26, 1733-1747	24
830	Phase equilibria for petroleum reservoir fluids containing water and aqueous methanol solutions: Experimental measurements and modelling using the CPA equation of state. 2009 , 278, 109-116	67
829	Phase equilibria of glycerol containing systems and their description with the Cubic-Plus-Association (CPA) Equation of State. 2009 , 280, 22-29	78
828	PolymerBupercritical fluid interactions. 2009 , 47, 458-465	75
827	Polymer miscibility, phase separation, morphological modifications and polymorphic transformations in dense fluids. 2009 , 47, 466-483	66
826	Modeling solubilities of subcritical and supercritical fluids in polymers with cubic and non-cubic equations of state. 2009 , 49, 143-153	35
825	Phase and volumetric behaviour of mixtures of carbon dioxide (R-744) and synthetic lubricant oils. 2009 , 50, 6-12	8
824	Combined equation of liquid and gas states, including classical and scaling parts. 2009 , 147, 162-165	8

823	Inner segment radial distribution functions at contact point for chain-like molecules. 2009 , 147, 198-210)	1
822	Partitioning behaviour of organic compounds between ionic liquids and supercritical fluids. 2009 , 1216, 1861-80		52
821	Experimental and thermodynamic modelling of systems containing water and ethylene glycol: Application to flow assurance and gas processing. 2009 , 276, 24-30		116
820	Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals. 2009 , 276, 75-85		44
819	Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems apabilities and limitations. 2009 , 281, 70-77		20
818	Thermodynamic modeling of the vaporliquid equilibrium of the CO2/H2O mixture. 2009 , 284, 56-63		58
817	Equation of state for square-well chain molecules with variable range II. Extension to mixtures. 2009 , 287, 50-61		8
816	Application of a New Lattice-Fluid Equation of State Based on Chemical-Association Theory for Polymer Systems. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 7828-7837	3.9	6
815	Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5472-5480	3.9	26
814	Phase Equilibria of Mixtures Containing Glycol and n-Alkane: Experimental Study of Infinite Dilution Activity Coefficients and Modeling Using the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 11202-11210	3.9	17
813	Modelling Specific Ion Effects in Engineering Science. 2009 , 85-115		
812	Capturing the solubility minima of n-alkanes in water by soft-SAFT. 2009 , 113, 7621-30		92
811	Phase Equilibrium of Hydrogen, Carbon Dioxide, Squalene, and Squalane 2009, 54, 1598-1609		13
810	Measurements of Hydrate Dissociation Temperature of Methane, Ethane, and CO2 in the Absence of Any Aqueous Phase and Prediction with the Cubic Plus Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 4045-4050	3.9	22
809	Application of the Simplified Perturbed-Chain SAFT to Hydrocarbon Systems with New Group-Contribution Parameters. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 5867-5873	3.9	9
808	Modeling the Phase Behavior of PEOPPOPEO Surfactants in Carbon Dioxide Using the PC-SAFT Equation of State: Application to Dry Decontamination of Solid Substrates 2009, 54, 1551-1559		27
807	Progress in the perturbation approach in fluid and fluid-related theories. 2009 , 109, 2829-58		59
806	The Modified Sanchezlacombe Equation of State Applied to Polydisperse Polyethylene Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 10664-10681	3.9	30

805	Phase Behavior Modeling of Alkyl Amine + Hydrocarbon and Alkyl Amine + Alcohol Systems Using a Group Contribution Associating Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 7705-7712	3.9	14
804	New Thermodynamic Model of Equilibrium States of Gas Hydrates Considering Lattice Distortion. 2009 , 113, 422-430		42
803	A Simple Two-Parameter Correlation Model for Aqueous Electrolyte Solutions across a Wide Range of Temperatures 2009, 54, 179-186		16
802	Effect of Gas Impurities on the Throttling Process of Fluorocarbon Refrigerants: Estimation of the Henry Law Constant. 2009 , 54, 2395-2403		14
801	Equation of state for He4, including a regular and a scalar part. 2009, 35, 741-747		4
800	Molecular Model and Helmholtz Energy Contribution for Association Effects in SAFT. 2010,		
799	Water/CO2 System at High Pressure and Temperature Conditions: Measurement and Modeling of Density in Equilibrium Liquid and Vapor Phases. 2010 ,		10
798	Soft-SAFT modeling of vaporliquid equilibria of nitriles and their mixtures. 2010 , 289, 191-200		12
797	Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state. 2010 , 293, 11-21		59
796	Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory. 2010 , 293, 141-150		60
795	About the physical validity of attaching the repulsive terms of analytical EOS models by temperature dependencies. 2010 , 293, 164-167		35
794	An analytical perturbed equation of state for hard chain fluids: Application to n-alkanes and n-perfluoroalkanes. 2010 , 295, 50-59		2
793	Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?. 2010 , 295, 76-92		109
792	Phase equilibrium and thermophysical properties of mixtures containing a cyclic ether and 1-chloropropane. 2010 , 295, 130-136		7
791	Equation of state for aqueous electrolyte systems based on the semirestricted non-primitive mean spherical approximation. 2010 , 297, 23-33		28
790	About the numerical pitfalls characteristic for SAFT EOS models. 2010 , 298, 67-74		58
789	Thermophysical properties of the binary mixtures (1,8-cineole $+$ 1-alkanol) at T = (298.15 and 313.15) K and at atmospheric pressure. 2010 , 42, 291-303		36
788	A cross-association model for CO2-methanol and CO2-ethanol mixtures. 2010 , 53, 1438-1444		5

787	An empirical near-critical correction for a quasi-chemical nonrandom lattice fluid. 2010 , 27, 289-298	2
786	On the Calculation of Surface Tensions of n-Alkanes Using the Modified SAFT-BACK-DFT Approach. 2010 , 39, 31-41	7
785	Molecular thermodynamic model for associated polymers. 2010 , 19, 1165-1171	4
7 ⁸ 4	Bulk and Interfacial Properties for CO2-SO2 Binary Mixtures. 2010 , 28, 1885-1889	4
783	Study on Vapor-Liquid Nucleation Rates for n-Alcohols by Density Functional Theory. 2010 , 28, 2067-2073	
782	Nucleation rates of methanol using the SAFT-0 equation of state. 2010 , 11, 3987-95	5
781	Transferable intermolecular potentials for carboxylic acids and their phase behavior. 2010, 56, NA-NA	5
780	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. 2010 , 56, 2965-2982	103
779	Extension of the new proposed association equation of state (AEOS) to associating fluid mixtures. 2010 , 42, 808-816	4
778	Extended Veytsman statistics for the solidfluid transition in the framework of lattice fluid. 2010 , 42, 891-899	3
777	Effect of surface area parameters on the vaporliquid equilibrium calculations using a lattice fluid equation of state with hydrogen bonding. 2010 , 16, 640-645	1
776	Speed of sound prediction in 1B-alcohol+n-alkane mixtures using a translated SAFT-VR-Mie equation of state. 2010 , 288, 145-154	25
775	Crossover CPA equation of state for associating fluids. 2010 , 290, 148-152	17
774	Solid I Iquid equilibria for binary and ternary systems with the Cubic-Plus-Association (CPA) equation of state. 2010 , 293, 121-129	4
773	Use of monomer fraction data in the parametrization of association theories. 2010 , 296, 219-229	49
772	Prediction of near and supercritical fatty acid ester + alcohol systems with the CPA EoS. 2010 , 52, 241-248	31
771	Solubility of carbon dioxide in pentaerythritol ester oils. New data and modeling using the PC-SAFT model. 2010 , 55, 62-70	17
770	Density functional theory for calculating surface tensions with a simple renormalization formalism for the critical point. 2010 , 55, 735-742	23

769	Equation of state modeling of high-pressure, high-temperature hydrocarbon density data. 2010 , 55, 701-711	71
768	Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region. 2010 , 55, 755-768	55
767	Equations of state: From the ideas of van der Waals to association theories. 2010 , 55, 421-437	41
766	Supercritical phase behavior for biotransformation processing. 2010 , 55, 635-642	8
765	Water solubility of drug-like molecules with the cubic-plus-association equation of state. 2010 , 298, 75-82	15
764	Modelling LLE and VLE of methanol+n-alkane series using GC-PC-SAFT with a group contribution kij. 2010 , 298, 154-168	53
763	Semi-empirical insertion probability for hard-spheres and hard-sphere chains. 2010 , 299, 65-74	1
762	Combined equation of state for liquids and gases, which includes the classical and scaling parts. 2010 , 48, 482-488	6
761	Prewetting transitions of one site associating fluids. 2010 , 132, 144501	7
760	Multidensity integral-equation theory for short diblock hard-sphere-sticky-hard-sphere chains. 2010 , 81, 041809	3
759	Vaporlliquid Equilibria of Acid Gas Aqueous Ethanolamine Solutions Using the PC-SAFT Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 7620-7630	57
758	Molecular Modeling of Matter: Impact and Prospects in Engineering. <i>Industrial & Description of Matter and Prospects in Engineering Chemistry Research</i> , 2010 , 49, 3026-3046	86
757	Equation of State for the Phase Behavior of Carbon Dioxide P olymer Systems. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 7678-7684	17
756	Modeling the Fluid Phase Behavior of Carbon Dioxide in Aqueous Solutions of Monoethanolamine Using Transferable Parameters with the SAFT-VR Approach. <i>Industrial & amp; Engineering Chemistry</i> 3.9 <i>Research</i> , 2010 , 49, 1883-1899	114
755	Predicting the Phase Behavior of Polymer Systems with the GC-SAFT-VR Approach. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 1378-1394	40
754	Group-Contribution Method for the Molecular Parameters of the PC-SAFT Equation of State Taking into Account the Proximity Effect. Application to Nonassociated Compounds. <i>Industrial & amp;</i> 3.9 Engineering Chemistry Research, 2010 , 49, 9394-9406	35
753	Prediction of infinite dilution benzene solubility in linear polyethylene melts via the direct particle deletion method. 2010 , 114, 6233-46	14
752	Phase Equilibria of Mixtures Containing Organic Sulfur Species (OSS) and Water/Hydrocarbons: VLE Measurements and Modeling Using the Cubic-Plus-Association Equation of State. <i>Industrial & Samp</i> ; 3.9 Engineering Chemistry Research 2010 , 49, 12718-12725	7

751	P, IT Measurements and Isobaric Vaporliquid l quilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis. 2010 , 55, 5932-5940	10
750	Phase Equilibria of Ester + Alcohol Systems and Their Description with the Cubic-Plus-Association Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 3452-3458	39
749	Renormalization-Group Corrections to the Perturbed-Chain Statistical Associating Fluid Theory for Binary Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 9436-9444 3.9	23
748	PII Measurements of the (Ethanol + Linalool), (Propan-1-ol + Linalool), and (Propan-2-ol + Linalool) Mixtures: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analyses. 2010 , 55, 5332-53	339 ¹¹
747	Prediction of vaporliquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2OliO2 system. 2010 , 74, 1982-1998	43
746	Modeling of Polymer Phase Equilibria Using Equations of State. 2010 , 389-418	8
745	Liquid[liquid Equilibrium for Ternary Systems Containing Ethyl Esters, Anhydrous Ethanol and Water at 298.15, 313.15, and 333.15 K. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12613-3126	19 ³¹
744	A New Association Term for SAFT Equation of State. 2010 , 31, 1591-1599	2
743	Solvent Swelling Extent of Permian-Aged Vitrinite- and Inertinite-Rich Coals: Experiments and Modeling Using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). 2011 , 25, 2559-2564	8
742	Theory and simulation for associating cyclic molecules. 2011 , 109, 1813-1820	2
741	High Pressure Phase Behavior of Carbon Dioxide in Carbon Disulfide and Carbon Tetrachloride. 2011 , 56, 2786-2792	9
740	An Object-Oriented Approach for Structure Design of Property Calculation Programs Using Equations of State. <i>Industrial & Design Chemistry Research</i> , 2011 , 50, 6404-6412	O
739	Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100. 2011 , 115, 12822-34	39
738	Phase Equilibria of Long-Chain Carboxylic Acids in Supercritical Propane. 2011 , 56, 1116-1124	11
737	P, □and T Measurements of the Limonene + □-Pinene Mixtures. 2011 , 56, 1709-1713	4
736	On the isobaric thermal expansivity of liquids. 2011 , 134, 094502	31
735	Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. <i>Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. <i>Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. <i>Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. Industrial & Development of Single Insertion Probability for Equation of State Applicable to Three Phases of Matter. <i>Industrial & Development of Single Insertion Probability Research</i>, 2011, 50, 4166-4176</i></i></i>	1
734	Isothermal Vapor□iquid Equilibrium of (1-Butanol + 1,8-Cineole) at 10 Temperatures between (278.15 and 323.15) K. 2011 . 56. 2443-2448	7

733	Predictive Model for the Solubility of Fluid Mixtures in Glassy Polymers. 2011, 44, 4852-4862		64
732	Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture. 2011 , 115, 8155-68		69
731	Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration. 2011 , 25, 3334-3343		80
730	Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes. 2011 , 115, 1429-39		57
729	Hydrate Equilibrium Modeling for Pure Alkanes and Mixtures of Alkanes Using Statistical Associating Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 12815-12823	3.9	12
728	Behavior of the Environmentally Compatible Absorbent 1-Butyl-3-methylimidazolium Tetrafluoroborate with 2,2,2-Trifluoroethanol: Experimental Densities at High Pressures and Modeling of PVT and Phase Equilibria Behavior with PC-SAFT EoS. <i>Industrial & Densities and Phase Equilibria Behavior with PC-SAFT EoS</i> .	3.9	19
727	PIT Behavior of a Lean Synthetic Natural Gas Mixture Using Magnetic Suspension Densimeters and an Isochoric Apparatus: Part I. 2011 , 56, 212-221		18
726	Solubility of gases and liquids in glassy polymers. 2011 , 2, 97-120		65
725	Hybridizing SAFT and Cubic EOS: What Can Be Achieved?. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2011 , 50, 4183-4198	3.9	60
724	THERMOPHYSICAL PROPERTIES OF ASSOCIATING FLUIDS IN NATURAL GAS INDUSTRY USING PC-SAFT EQUATION OF STATE. 2011 , 198, 1244-1262		6
723	Cross-Association Model for the Phase Equilibria and Surface Tensions of CO2Methanol and CO2Ethanol Mixtures. 2011 , 115, 3340-3345		4
722	Phase Behavior of High Pressure and Temperature Gas Reservoirs: Water Solubility and Density Measurement and Modeling from (3.7 to 132) MPa and Temperatures from (422 to 478) K. 2011 , 56, 3839-3847		7
721	Modeling of the Thermodynamic Properties of Aqueous Ionic Liquid Solutions with an Equation of State for Square-Well Chain Fluid with Variable Range. <i>Industrial & Discourse Chemistry Research</i> , 2011 , 50, 7027-7040	3.9	15
720	Minimal Experimental Data Set Required for Estimating PCP-SAFT Parameters. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 11746-11754	3.9	14
719	Calculation of Viscosity Coefficient of Moderately Dense Fluids from the Modified SAFT-BACK Equation of State. 2011 , 110-116, 874-879		
718	New Association Scheme for 1-Alcohols in Alcohol/Water Mixtures with sPC-SAFT: The 2C Association Scheme. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8711-8725	3.9	23
717	Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. 2011 , 115, 4387-98		90
716	Water Solubility in Supercritical Methane, Nitrogen, and Carbon Dioxide: Measurement and Modeling from 422 to 483 K and Pressures from 3.6 to 134 MPa. <i>Industrial & Engineering Chemistry Research</i> 2011 50 4029-4041	3.9	59

(2011-2011)

715	Vapor-Liquid Equilibrium of Carbon Dioxide + Ethanol: Experimental Measurements with Acoustic Method and Thermodynamic Modeling. 2011 , 2011, 1-11	18
714	Group Contribution Methodologies for the Prediction of Thermodynamic Properties and Phase Behavior in Mixtures. 2011 , 135-172	3
713	Solubility of nitrogen in one-component refrigerants: Prediction by PC-SAFT EoS and a correlation of Henry law constants. 2011 , 34, 2109-2117	19
712	Teaching advanced equations of state in applied thermodynamics courses using open source programs. 2011 , 6, e114-e121	20
711	Thermophysical behaviour of the mixture (\boxplus)-3,7-dimethyl-1,6-octadien-3-ol with ethanol. 2011 , 308, 78-89	13
710	Waporllquidlequilibrium measurements and modeling for the cyclohexane+n-hexanoic acid binary system. 2011 , 309, 15-19	1
709	Total vapour pressure and excess Gibbs energy of ethanol with 1,8-cineole at temperatures between 278.15K and 323.15K. 2011 , 309, 83-88	11
708	Prediction of the critical properties of binary alkanol+alkane mixtures using a crossover CPA equation of state. 2011 , 309, 168-173	13
707	Phase behaviour of high molecular mass methyl esters in supercritical ethane. 2011 , 311, 36-44	8
706	Experimental measurements and equation of state modeling of liquid densities for long-chain n-alkanes at pressures to 265MPa and temperatures to 523K. 2011 , 311, 17-24	45
705	Phase behavior of hyperbranched polymer solutions in mixed solvents. 2011 , 66, 5244-5252	35
704	Experimental determination and modeling of the phase behavior for the selective oxidation of benzyl alcohol in supercritical CO2. 2011 , 302, 83-92	10
703	Insights into Associating Fluid Properties and Microstructure from Classical Density Functional Theory. 2011 , 145, 467-480	14
702	Phase- and interfacial behavior of hyperbranched polymer solutions. 2011 , 302, 321-330	46
701	Second-order thermodynamic derivative properties of binary mixtures of n-alkanes through the SAFT-CP equation of state. 2011 , 302, 195-201	19
700	On the prediction of ternary mixture phase behavior from the GC-SAFT-VR approach: 1-Pentanol+dibutyl ether+n-nonane. 2011 , 302, 161-168	4
699	On the behaviour of solutions of xenon in liquid cycloalkanes: Solubility of xenon in cyclopentane. 2011 , 303, 193-200	2
698	20 Years of the SAFT equation of state R ecent advances and challenges: Symposium held in Bellaterra, Barcelona, 19 2 1 September 2010. 2011 , 306, 1-3	20

697	Investigation of the interfacial properties for CO2-methanol and CO2-ethanol mixtures. 2011 , 54, 856-862	2
696	Modeling of phase equilibria with CPA using the homomorph approach. 2011 , 301, 1-12	16
695	Equation of state for square-well chain molecules with variable range, extension to associating fluids. 2011 , 302, 139-152	5
694	Addressing the issue of numerical pitfalls characteristic for SAFT EOS models. 2011 , 301, 123-129	42
693	Application of association models to mixtures containing alkanolamines. 2011 , 306, 31-37	10
692	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2. 2011 , 306, 38-56	131
691	Recent advances in classical density functional theory for associating and polyatomic molecules. 2011 , 306, 15-30	69
690	Simultaneous prediction of vapourllquid and liquidllquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-lgroup contribution approach. 2011 , 306, 82-96	49
689	Evaluating perturbation contributions in SAFT models by comparing to molecular simulation of n-alkanes. 2011 , 306, 57-66	13
688	Extending the GC-SAFT-VR approach to associating functional groups: Alcohols, aldehydes, amines and carboxylic acids. 2011 , 306, 97-111	36
687	Application of GC-PPC-SAFT EoS to amine mixtures with a predictive approach. 2011 , 303, 15-30	26
686	An equation of state for acetic acid including the association term of SAFT. 2011 , 303, 134-149	7
685	Solubility of drug-like molecules in pure organic solvents with the CPA EoS. 2011 , 303, 62-70	14
684	Solid[Iquid equilibrium using the SAFT-VR equation of state: Solubility of naphthalene and acetic acid in binary mixtures and calculation of phase diagrams. 2011 , 306, 137-147	8
683	Liquid II quid phase equilibrium of (piperidinium-based ionic liquid+an alcohol) binary systems and modelling with NRHB and PCP-SAFT. 2011 , 305, 43-52	64
682	Solubility of light reservoir gasses in water by the modified Peng-Robinson plus association equation of state using experimental critical properties for pure water. 2011 , 78, 109-118	12
681	Liquid I quid equilibria for the canola oil biodiesel + ethanol + glycerol system. 2011, 90, 2738-2745	54
68o	Thermophysical properties of {(日)-linalool+propan-1-ol}: A first stage towards the development of a green process. 2011 , 43, 527-536	17

679	Experimental study and PC-SAFT simulations of sorption equilibria in polystyrene. 2011 , 52, 3082-3091		12
678	Evaluation of the CO2 behavior in binary mixtures with alkanes, alcohols, acids and esters using the Cubic-Plus-Association Equation of State. 2011 , 55, 876-892		60
677	Polymer Thermodynamics. 2011 ,		4
676	Supercritical fluid extraction from vegetable materials. 2011 , 27,		62
675	Theory and simulation of chain molecules with multiple bonding sites in an associating solvent. 2011 , 109, 1911-1924		
674	The numerical challenges of SAFT EoS models. 2011 , 27,		31
673	Hydrates in High MEG Concentration Systems. 2012 , 366-373		8
672	Influence of small rings on the thermodynamics of equilibrium self-assembly. 2012 , 136, 244904		9
671	Modelling the fluid phase behaviour of aqueous mixtures of multifunctional alkanolamines and carbon dioxide using transferable parameters with the SAFT-VR approach. 2012 , 110, 1325-1348		67
670	A novel multiscale method for the prediction of the volumetric and gas solubility behavior of high-Tg polyimides. 2012 , 333, 87-96		32
669	Volume-translated Peng R obinson equation of state for saturated and single-phase liquid densities. 2012 , 335, 74-87		57
668	Predictive Calculations of the Solubility of Gases and Vapours in Glassy Polymers: An Overview. 2012 , 44, 110-112		
667	A Predictive Model for Vapor Solubility and Volume Dilation in Glassy Polymers. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16505-16516	3.9	35
666	Hydroformylation of 1-Dodecene in the Thermomorphic Solvent System Dimethylformamide/Decane. Phase Behavior R eaction Performancellatalyst Recycling. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10296-10306	3.9	102
665	Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13496-13517	3.9	17
664	Approach to Improve Speed of Sound Calculation within PC-SAFT Framework. <i>Industrial &</i> Engineering Chemistry Research, 2012 , 51, 14903-14914	3.9	55
663	Prediction of the PC-SAFT associating parameters by molecular simulation. 2012 , 116, 367-77		26
662	Vapor Pressures and Activity Coefficients of (1-Propanol + 1,8-Cineole) at 10 Temperatures between 278.15 K and 323.15 K. 2012 , 57, 3026-3031		7

661	Influence of cyclic dimer formation on the phase behavior of carboxylic acids. 2012 , 116, 7874-82		18
660	Heterosegmented Perturbed-Chain Statistical Associating Fluid Theory as a Robust and Accurate Tool for Modeling of Various Alkanes. 1. Pure Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12967-12983	3.9	28
659	Liquid Diquid Equilibria of Systems with Linear Aldehydes. Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with PCP-SAFT</i> . <i>Industrial & Description of Systems with PCP-SAFT</i> . <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Modeling with PCP-SAFT. <i>Industrial & Description of Systems with Linear Aldehydes</i> . Experimental Data and Data	3.9	18
658	Modeling Poly(N-isopropylacrylamide) Hydrogels in Water/Alcohol Mixtures with PC-SAFT. 2012 , 45, 6686-6696		49
657	Reducing the amount of PCP-SAFT fitting parameters. 1. Non-polar and dipolar components. 2012 , 326, 21-30		12
656	Reducing the amount of PCPBAFT fitting parameters. 2. Associating components. 2012 , 326, 31-44		18
655	Measurement and correlation of solubility of water in carbon dioxide-rich phase. 2012, 328, 9-12		15
654	Thermodynamic properties and vaporllquid equilibria of associating fluids, PengRobinson equation of state coupled with shield-sticky model. 2012 , 330, 1-11		2
653	Phase equilibrium and interfacial properties of water + CO2 mixtures. 2012 , 332, 40-47		45
652	Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. 2012 , 332, 128-143		74
651	Vaporliquidliquid Equilibrium Measurements and Modeling of the Methanethiol + Methane + Water Ternary System at 304, 334, and 364 K. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11561-11564	3.9	7
650	Application of Simplified PC-SAFT to Glycol Ethers. <i>Industrial & amp; Engineering Chemistry Research</i> , 2012 , 51, 547-555	3.9	18
649	Estimation of natural gas compressibility factors using artificial neural network approach. 2012 , 9, 220-2	226	31
648	Thermodynamic Modeling of Imidazolium-Based Ionic Liquids with the [PF6][Anion for Separation Purposes. 2012 , 47, 399-410		45
647	Modeling the [NTf2] pyridinium ionic liquids family and their mixtures with the soft statistical associating fluid theory equation of state. 2012 , 116, 9089-100		53
646	Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state. 2012 , 116, 14375-88		92
645	Environmental Resistance of High Performance Polymeric Matrices and Composites. 2012, 1		4
644	Phase behaviour of hyperbranched polymers in demixed solvents. 2012 , 110, 1359-1373		20

(2012-2012)

643	Modeling the phase equilibria of a H2OLO2 mixture with PC-SAFT and tPC-PSAFT equations of state. 2012 , 110, 1205-1212	36
642	Perturbed-chain SAFT as a versatile tool for thermodynamic modeling of binary mixtures containing isoquinolinium ionic liquids. 2012 , 116, 8191-200	31
641	A Survey of Equations of State for Polymers. 2012 ,	6
640	Application of Chebyshev Polynomials to Calculate Density and Fugacity Using SAFT Equation of State to Predict Asphaltene Precipitation Conditions. 2012 ,	
639	Optimized Binary Interaction Parameters for VLE Calculations of Natural Gas Mixtures via Cubic and Molecular-Based Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 9687-96999	5
638	Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. 2012 , 116, 5002-18	88
637	A practical equation of state for non-spherical and asymmetric systems for application at high pressures. Part 1: Development of the pure component model. 2012 , 90, 584-596	2
636	A practical equation of state for non-spherical and asymmetric systems for application at high pressures. Part 2: Extension to mixtures. 2012 , 90, 597-611	
635	Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the soft-SAFT approach. 2012 , 116, 7709-18	55
634	Measuring and modeling alcohol/salt systems. 2012 , 68, 328-339	58
633	Predicting the vaporliquid equilibrium of hydrocarbon binary mixtures and polymer solutions using predetermined pure component parameters. 2012 , 400, 171-177	
632		
	A modified polar PHSC model for thermodynamic modeling of gas solubility in ionic liquids. 2012 , 313, 60-72	27
631		27 19
	313, 60-72 Experimental study and phase equilibrium modeling of systems containing acid gas and glycol.	
631	Experimental study and phase equilibrium modeling of systems containing acid gas and glycol. 2012, 318, 40-50 Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of	19
631	Experimental study and phase equilibrium modeling of systems containing acid gas and glycol. 2012, 318, 40-50 Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of solid[]quid equilibria in binary systems. 2012, 318, 61-76 Prediction of fluid density at extreme conditions using the perturbed-chain SAFT equation	19 35
631 630 629	Experimental study and phase equilibrium modeling of systems containing acid gas and glycol. 2012, 318, 40-50 Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of solidliquid equilibria in binary systems. 2012, 318, 61-76 Prediction of fluid density at extreme conditions using the perturbed-chain SAFT equation correlated to high temperature, high pressure density data. 2012, 319, 55-66 Liquidliquid equilibria for ternary systems containing ethyl esters, ethanol and glycerol at 323.15	19 35 45

625	Sorption of hydrocarbons and alcohols in addition-type poly(trimethyl silyl norbornene) and other high free volume glassy polymers. II: NELF model predictions. 2012 , 405-406, 201-211		40
624	High-pressure vaporliquid equilibria of methanol + propylene: Experimental and modeling with SAFT. 2012 , 63, 25-30		7
623	Generalization of SAFT + Cubic equation of state for predicting and correlating thermodynamic properties of heavy organic substances. 2012 , 67, 94-107		27
622	High-pressure solubilities of carbon dioxide in ionic liquids based on bis(trifluoromethylsulfonyl)imide and chloride. 2012 , 65, 1-10		46
621	P, □and T measurements of the (limonene + ⊕inene) mixtures. 2012 , 48, 175-180		1
620	Phase equilibrium modeling of gas hydrate systems for CO2 capture. 2012 , 48, 13-27		47
619	A semi-empirical molecular clustering based lattice model near to and far from the critical region. 2012 , 18, 785-791		
618	Calculation of the solubility of liquid solutes in glassy polymers. 2012 , 58, 292-301		31
617	The theory of non-electrolyte solutions: an historical review. 2013 , 111, 3666-3697		17
616	Association theories for complex thermodynamics. 2013 , 91, 1840-1858		29
615	Solubility of sugars and sugar alcohols in ionic liquids: measurement and PC-SAFT modeling. 2013 , 117, 9980-95		59
614	Phase Equilibrium Engineering in Conceptual Process Design. 2013 , 3, 299-322		
613	A Lattice-Fluid Equation of State for Associating CO2 + Polymer Systems. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 12654-12660	3.9	10
612	Novel Methodology for Analysis and Evaluation of SAFT-Type Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 13875-13885	3.9	43
611	Accurate statistical associating fluid theory for chain molecules formed from Mie segments. 2013 , 139, 154504		283
610	Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions. 2013 , 359, 38-44		32
609	Predictions of hydrate formation for systems containing hydrogen. 2013 , 358, 290-295		8
608	Intelligent Hydrogels. 2013,		9

(2013-2013)

607	Adsorption of Chain Molecules in Slit-Shaped Pores: Development of a SAFT-FMT-DFT Approach. 2013 , 117, 21337-21350	15
606	Water+1-alkanol systems: Modeling the phase, interface and viscosity properties. 2013 , 360, 367-378	41
605	Experimental determination and modeling of the phase behavior for the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. 2013 , 84, 155-163	3
604	Equations of State and Formulations for Mixtures. 2013 , 333-480	2
603	Solubility of CO2 in 1-butyl-3-methylimidazolium diethylene-glycolmonomethylethersulfate and trihexyl(tetradecyl)phosphonium dodecyl-benzenesulfonate. 2013 , 354, 191-198	15
602	Vaporliquid equilibria of isopropyl alcohol+propylene at high pressures: Experimental measurement and modeling with the CPA EoS. 2013 , 84, 182-189	12
601	Novel methods predict equilibrium vapor methanol content during gas hydrate inhibition. 2013, 15, 69-75	49
600	Application of the cubic-plus-association (CPA) equation of state to model the fluid phase behaviour of binary mixtures of water and tetrahydrofuran. 2013 , 356, 209-222	11
599	Mixing Liquids: Polymeric Solutions. 2013 , 325-369	
598	Extension of the PC-SAFT based group contribution method for polymers to aromatic, oxygen- and silicon-based polymers. 2013 , 339, 89-104	16
597	Boyle temperature from SAFT, PC-SAFT and SAFT-VR equations of state. 2013 , 187, 114-128	14
596	Prediction of Water Solubility in Glassy Polymers Using Nonequilibrium Thermodynamics. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 12865-12875	19
595	Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS. 2013 , 337, 298-310	14
594	Solubility of hydrofluorocarbons in aromatic solvents and alcohols: Experimental data and modeling with CPA EoS. 2013 , 337, 60-66	8
593	Experimental determination and theoretical modeling of the vaporliquid equilibrium and densities of the binary system butan-2-ol+tetrahydro-2H-pyran. 2013 , 342, 52-59	1
592	Evaluation of the PC-SAFT, SAFT and CPA equations of state in predicting derivative properties of selected non-polar and hydrogen-bonding compounds. 2013 , 338, 1-15	69
591	High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate. 2013 , 19, 299-309	38
590	High-pressure gas solubility in multicomponent solvent systems for hydroformylation. Part I: Carbon monoxide solubility. 2013 , 81, 23-32	24

589	Thermodynamic modeling of PVTx properties for several water/hydrocarbon systems in near-critical and supercritical conditions. 2013 , 30, 201-212		3
588	Potential Theory of Adsorption for Associating Mixtures: Possibilities and Limitations. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 2672-2684	3.9	26
587	Excess enthalpies of mixing of piperidinium ionic liquids with short-chain alcohols: measurements and PC-SAFT modeling. 2013 , 117, 3884-91		38
586	A Perturbed-Chain SAFT Equation of State Applied to Mixtures of Short- and Long-Chain n-Alkanes. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 6582-6591	3.9	8
585	Modeling liquid[Iquid and vapor[Iquid equilibria for the hydrocarbon+N-formylmorpholine system using the CPA equation of state. 2013 , 98, 152-159		11
584	Permeability and solubility of carbon dioxide in different glassy polymer systems with and without plasticization. 2013 , 444, 429-439		30
583	Application of Sanchez Lacombe and Perturbed-Chain Statistical Associating Fluid Theory Equation of State Models in Catalytic Olefins (Co)polymerization Industrial Applications. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 9060-9068	3.9	12
582	Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the VaporIliquid Equilibrium Modeling of CO2 Mixtures with Other Gases. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 3933-3942	3.9	78
581	Renormalization Group Adaptation to Equations of State From Molecular Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7030-7043	3.9	5
580	Solubility of R22, R23, R32, R134a, R152a, R125 and R744 refrigerants in water by using equations of state. 2013 , 36, 1681-1688		17
579	Accurate Modeling of CO2 Solubility in Ionic Liquids Using a Cubic EoS. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7593-7601	3.9	22
578	Renewable feedstocks in green solvents: thermodynamic study on phase diagrams of D-sorbitol and xylitol with dicyanamide based ionic liquids. 2013 , 117, 7034-46		27
577	GC-PPC-SAFT Equation of State for VLE and LLE of Hydrocarbons and Oxygenated Compounds. Sensitivity Analysis. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2013 , 52, 7014-7029	3.9	20
576	Experimental measurement of phase equilibrium for gas hydrates of refrigerants, and thermodynamic modeling by SRK, VPT and CPA EOSs. 2013 , 65, 213-219		16
575	Isobaric VLE of the mixture {(\(\mathrever\))-linalool + ethanol}: A case study for the distillation of absolute and volatile oils. 2013 , 64, 182-186		1
574	Application of modified PHSC model in prediction of phase behavior of single and mixed electrolyte solutions. 2013 , 344, 92-100		15
573	P, IT and heat capacity measurements of (日-pinene + 即inene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modelling. 2013 , 57, 493-499		6
572	Adapting SAFT-[perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids. 2013 , 139, 234104		28

571	Prediction of vapor-liquid-liquid-hydrate phase equilibrium for multicomponent systems containing tetrahydrofuran. 2013 , 56, 1800-1810	6
570	Experimental Study of Sorption and Diffusion of n-Pentane in Polystyrene. 2013 , 58, 851-865	11
569	An equation of state for methanol including the association term of SAFT. 2013 , 349, 12-24	6
568	Vapor[liquid[liquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water, 1-Propanethiol + Methane + Water and 1-Butanethiol + Methane + Water Ternary Systems at 303, 335, and 365 K and Pressure Up to 9 MPa. <i>Industrial & Description Chemistry Research</i> , 2013 ,	5
567	Influence of cyclic dimer formation on the phase behavior of carboxylic acids. II. Cross-associating systems. 2013 , 117, 9430-8	13
566	Modeling the Solubility of Nitrogen Dioxide in Water Using Perturbed-Chain Statistical Associating Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 16032-16043	18
565	Application of PC-SAFT and cubic equations of state for the correlation of solubility of some pharmaceutical and statin drugs in SC-CO2. 2013 , 19, 449-460	8
564	Size distribution of associated clusters in liquid alcohols: interpretation of simulation results in the frame of SAFT approach. 2013 , 139, 174502	8
563	Modeling phase diagrams of systems containing ionic liquids used in different applications. 2013, 3, 01014	
562	Comparison of thermodynamic lattice models for multicomponent mixtures. 2014 , 380, 100-115	9
562 561	Comparison of thermodynamic lattice models for multicomponent mixtures. 2014, 380, 100-115 Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014, 140, 054107	9
Ť	Group contribution methodology based on the statistical associating fluid theory for heteronuclear	
561	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014 , 140, 054107 Nonlocal Density Functional Theory and Grand Canonical Monte Carlo Molecular Simulations of	174
561 560	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014 , 140, 054107 Nonlocal Density Functional Theory and Grand Canonical Monte Carlo Molecular Simulations of Water Adsorption in Confined Media. 2014 , 118, 24905-24914 Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. 2014 ,	174 16
561 560 559	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014, 140, 054107 Nonlocal Density Functional Theory and Grand Canonical Monte Carlo Molecular Simulations of Water Adsorption in Confined Media. 2014, 118, 24905-24914 Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. 2014, 92, 231-241	174 16 35
561 560 559 558	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014, 140, 054107 Nonlocal Density Functional Theory and Grand Canonical Monte Carlo Molecular Simulations of Water Adsorption in Confined Media. 2014, 118, 24905-24914 Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. 2014, 92, 231-241 Development of electrolyte SAFT-HR equation of state for single electrolyte solutions. 2014, 31, 2251-2260 Vapor-Liquid and Liquid-Liquid Interfacial Tension of Water and Hydrocarbon Systems at	174 16 35
561 560 559 558	Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. 2014, 140, 054107 Nonlocal Density Functional Theory and Grand Canonical Monte Carlo Molecular Simulations of Water Adsorption in Confined Media. 2014, 118, 24905-24914 Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. 2014, 92, 231-241 Development of electrolyte SAFT-HR equation of state for single electrolyte solutions. 2014, 31, 2251-2260 Vapor-Liquid and Liquid-Liquid Interfacial Tension of Water and Hydrocarbon Systems at Representative Reservoir Conditions: Experimental and Modelling Results. 2014,	174 16 35 10

553	On the predictive capabilities of CPA for applications in the chemical industry: Multicomponent mixtures containing methyl-methacrylate, dimethyl-ether or acetic acid. 2014 , 92, 2947-2969		12
552	Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes. 2014 , 375, 89-103		16
551	Thermophysical properties of alkyl-imidazolium based ionic liquids through the heterosegmented SAFT-BACK equation of state. 2014 , 191, 59-67		30
550	Methanol treatment in gas condensate reservoirs: A modeling and experimental study. 2014 , 92, 876-89	0	22
549	A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium Calculations. 2014 , 43, 241-254		1
548	Thermodynamic modeling of phase equilibrium for gas hydrate in single and mixed refrigerants by using sPC-SAFT equation of state. 2014 , 370, 69-74		13
547	On estimating self-diffusivities by the extended corresponding states principle. 2014 , 108, 134-153		1
546	Application of GC-PPC-SAFT EoS to ammonia and its mixtures. 2014 , 367, 159-172		16
545	Mutual solubilities of water and hydrocarbons from the Cubic plus Association equation of state: A new mixing rule for the correlation of observed minimum hydrocarbon solubilities. 2014 , 368, 5-13		10
544	Vaporlliquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 3737-3748	3.9	69
543	Predicting the Extraction Behavior of Pharmaceuticals. <i>Industrial & Discourse Industrial &</i>	3.9	3
542	Thermophysical properties of {R-fenchone+ethanol} at several temperatures and pressures. 2014 , 69, 48-55		6
541	Thermodynamic properties of binary mixtures containing N,N-dimethylformamide+2-alkanol: Cubic and statistical associating fluid theory-based equation of state analysis. 2014 , 45, 365-371		4
540	Thermodynamic Properties of Binary Mixtures Containing N,N-Dimethylacetamide + 2-Alkanol: Experimental Data and Modeling. 2014 , 59, 275-281		23
539	Densities and viscosities of the mixtures (formamide+2-alkanol): Experimental and theoretical approaches. 2014 , 69, 101-106		18
538	Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. 2014 , 7, 2803		219
537	Comparison between a Homo- and a Heterosegmented Group Contribution Approach Based on the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14854-14864	3.9	57
536	Modeling the surface tension and surface properties of (CO2+H2O) and (H2S+H2O) with gradient theory in combination with sPCBAFT EOS and a new proposed influence parameter. 2014 , 198, 292-298		36

535	A new CPA equation of state for water and primary alcohols. 2014 , 52, 701-709	1
534	Hydrogen Bonding in Supercritical Water. 2014 , 3-39	4
533	Density Measurement and PC-SAFT/tPC-PSAFT Modeling of the CO2 + H2O System over a Wide Temperature Range. 2014 , 59, 1400-1410	11
532	Experimental and modeling investigation on surface tension and surface properties of (CH4 + H2O), (C2H6 + H2O), (CO2 + H2O) and (C3H8 + H2O) from 284.15 K to 312.15 K and pressures up to 60 bar. 2014 , 47, 26-35	47
531	Electrolyte CPA equation of state for very high temperature and pressure reservoir and basin applications. 2014 , 142, 1-14	22
530	Thermodynamic Properties of Supercritical Mixtures of Carbon Dioxide and Methane: A Molecular Simulation Study. 2014 , 59, 3041-3054	31
529	Modeling Water Containing Systems with the Simplified PC-SAFT and CPA Equations of State. <i>Industrial & Description of State and State and State are also as a second and state are also as a second and state are also as a second are a second are also as a second are a second are also as a second are a second are also as a second are a seco</i>	65
528	In silico design of solvents for carbon capture with simultaneous optimisation of operating conditions. 2014 , 30, 179-187	7
527	Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport. 2014 , 59, 2955-2972	18
526	Application of sPC-SAFT-JC and sPC-SAFT-GV to Phase Equilibria Predictions of Alkane/Alcohol, Alcohol/Alcohol, and Water/Alcohol Binary Systems. <i>Industrial & Engineering Chemistry</i> 3.9 <i>Research</i> , 2014 , 53, 6065-6075	13
525	High-Pressure Densities of 2,2,2-Trifluoroethanol + Ionic Liquid Mixtures Useful for Possible Applications in Absorption Cycles. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 10791-108029	22
524	Group-Contribution Method with Proximity Effect for PC-SAFT Molecular Parameters. 2. Application to Association Parameters: Primary Alcohols and Amines. <i>Industrial & Engineering</i> 3.9 Chemistry Research, 2014 , 53, 909-919	13
523	Near-critical and Supercritical Water and Their Applications for Biorefineries. 2014,	16
522	Capability of PHSC equation of state for thermodynamic modeling of aqueous amino acid and peptide solutions. 2014 , 199, 21-28	6
521	Simultaneous modeling of VLE, LLE and VLLE of CO2 and 1, 2, 3 and 4 alkanol containing mixtures using GC-PPC-SAFT EOS. 2014 , 95, 146-157	33
520	A Priori Prediction of the Vaporlliquid Equilibria of Mixtures of Acetic Acid and Water or Alcohols by Explicit Consideration of Hydrogen-Bonded Dimers. <i>Industrial & Engineering Chemistry</i> 3.9 <i>Research</i> , 2014 , 53, 15261-15269	4
519	An equation of state (EoS) based model for the fluid solubility in semicrystalline polymers. 2014 , 367, 173-181	26
518	Supplementary graphical analysis for the multi-density expansion of associating fluids. 2014 , 31, 374-380	

517	Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water. 2014 , 372, 113-125	16
516	Phase equilibria of systems containing aromatic oxygenated compounds with CH4, CO2, H2, H2S, CO and NH3: Experimental data and predictions. 2014 , 382, 219-234	3
515	Support vector machine and CPA EoS for the prediction of high-pressure liquid densities of normal alkanols. 2014 , 45, 2888-2898	6
514	Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11766-11778	9
513	Examination of CO2-SO2 solubility in water by SAFT1. Implications for CO2 transport and storage. 2014 , 118, 10214-23	20
512	Practical use of statistical learning theory for modeling freezing point depression of electrolyte solutions: LSSVM model. 2014 , 20, 414-421	46
511	High-pressure interfacial tensions for nitrogen+ethanol, or hexane or 2-methoxy-2-methylbutane: A comparison between experimental tensiometry and Monte Carlo simulations. 2014 , 89, 78-88	23
510	New Group-Contribution Parameters for the Calculation of PC-SAFT Parameters for Use at Pressures to 276 MPa and Temperatures to 533 K. <i>Industrial & Engineering Chemistry Research</i> , 3.9 2014 , 53, 2520-2528	32
509	Density of Mixtures Containing Sugars and Ionic Liquids: Experimental Data and PC-SAFT Modeling. 2014 , 59, 2942-2954	33
508	Experimental Measurement and Modeling of Phase Diagrams of Binary Systems Encountered in the Gasoline Desulfurization Process Using Ionic Liquids. 2014 , 59, 603-612	22
507	VaporlIquid and liquidIIquid equilibrium calculations in mixtures containing non-ionic glycol ether surfactant using PHSC equation of state. 2014 , 377, 16-26	6
506	Simultaneous liquid I quid and vapour I quid equilibria predictions of selected oxygenated aromatic molecules in mixtures with alkanes, alcohols, water, using the polar GC-PC-SAFT. 2014 , 92, 2912-293	35 ²¹
505	Low pressure vaporliquid equilibria modeling of biodiesel related systems with the CubicPlusAssociation (CPA) equation of state. 2014 , 133, 224-231	9
504	High pressure phase behavior of methanol + ethylene: Experimental measurements and CPA modeling. 2014 , 92, 47-54	2
503	Phase equilibria of linear saturated high molecular mass acids in supercritical ethane. 2014 , 87, 40-49	3
502	Density gradient theory combined with the PC-SAFT equation of state used for modeling the surface tension of associating systems. 2014 , 67, 02129	5
501	Group Contribution Methodologies for the Prediction of Thermodynamic Properties and Phase Behavior in Mixtures. 2014 , 135-172	1
500	Status of Equation of State Project at the NETL. 2014 ,	2

499	Modelling of Bitumen-and-Solvent-Mixture Viscosity Data Using Thermodynamic Perturbation Theory. 2014 , 53, 48-54	6
498	Thermodynamics of Polymer Solutions. 2015 , 199-246	
497	Pressurized hot water extraction of polyphenols from plant material. 2015 , 63-101	3
496	Analysis of equations of state for polymers. 2015 , 25, 277-288	14
495	References. 2015 , 329-360	
494	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols. 2015 , 104, 29-39	14
493	Vapour permeation modelling. 2015 , 203-246	1
492	Modeling the viscosity of pure imidazolium-based ionic liquids using SAFT-VR-Mie EoS. 2015 , 394, 61-70	20
491	Prediction of methanol content in natural gas with the GC-PR-CPA model. 2015 , 27, 745-750	3
490	Solubility of Carbon Dioxide in Secondary Butyl Alcohol at High Pressures: Experimental and Modeling with CPA. 2015 , 44, 1555-1567	3
489	Modelling of phase equilibria in CH4112H6113H811C4H101NaClH2O systems. 2015 , 56, 23-36	9
488	Vapourliquid equilibrium of propanoic acid + water at 423.2, 453.2 and 483.2 K from 1.87 to 19.38 bar. Experimental and modelling with PR, CPA, PC-SAFT and PCP-SAFT. 2015 , 388, 151-159	9
487	Liquid I quid interfacial tensions of binary water-hydrocarbons mixtures via gradient theory and CPA equation of state. 2015 , 392, 65-73	14
486	Liquid[liquid Equilibrium of Associating Fluid Mixtures Using Perturbed-Hard-Sphere-Chain Equation of State Combined with the Association Model. <i>Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association Model. Industrial & Description of State Combined with the Association of State Combined with the Ass</i>	8
485	Calculations of vaporliquid equilibria of the H2O-N2 and H2O-H2 systems with improved SAFT-LJ EOS. 2015 , 390, 23-33	11
484	Prediction of CO2 solubility in bitumen using the cubic-plus-association equation of state (CPA-EoS). 2015 , 98, 44-49	17
483	Twenty-one new theoretically based cubic equations of state for athermal hard-sphere chain pure fluids and mixtures. 2015 , 61, 1677-1690	2
482	Group Contribution Method for Viscosities Based on Entropy Scaling Using the Perturbed-Chain Polar Statistical Associating Fluid Theory. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 7942-79.	52 ⁷⁸

481	Thermodynamic Modeling for Efficient Cocrystal Formation. 2015 , 15, 4406-4416		31
480	Prediction of water solubility in petroleum fractions and heavy crudes using cubic-plus-association equation of state (CPA-EoS). 2015 , 159, 894-899		31
479	Phase equilibria calculation of binary and ternary mixtures of associating fluids applying PC-SAFT equation of state. 2015 , 104, 132-144		12
478	(p, \Box T) Behavior of CO2 + Tetradecane Systems: Experiments and Thermodynamic Modeling. 2015 , 60, 1476-1486		15
477	Partition Coefficients of Pharmaceuticals as Functions of Temperature and pH. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 3968-3975	3.9	16
476	Developing intermolecular-potential models for use with the SAFT-VR Mie equation of state. 2015 , 61, 2891-2912		49
475	Vapor-liquid equilibria of CH4, CO2 and their binary system CH4 + CO2: A comparison between the molecular simulation and equation of state. 2015 , 58, 650-658		4
474	Cubic and quartic hard-sphere and Lennard-Jones chain equations of state as foundations for complex fluid modeling. 2015 , 399, 1-15		3
473	Comparison of Cubic-Plus-Association and Perturbed-Chain Statistical Associating Fluid Theory Methods for Modeling Asphaltene Phase Behavior and PressureVolumeTemperature Properties. 2015 , 29, 2864-2875		44
472	Prediction of the critical properties of n-alkanes and their mixtures with two versions of SAFT equation of state. 2015 , 12, 1493-1500		2
471	High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate. 2015 , 89, 41-50		27
470	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. 2015 , 397, 1-17		17
469	Thermodynamic modelling of asphaltene precipitation and related phenomena. 2015, 217, 1-12		32
468	Prediction of a stable associated liquid of short amyloidogenic peptides. 2015 , 17, 10556-67		14
467	Understanding the Thermodynamics of Hydrogen Bonding in Alcohol-Containing Mixtures: Self Association. 2015 , 119, 14086-101		23
466	Determination of Perturbed-Chain Statistical Association Fluid Theory Parameters for Pure Substances, Single Carbon Number Groups, and Petroleum Fractions Using Cubic Equations of State Parameters. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 11448-11465	3.9	12
465	An analytical equation of state for water and aliphatic alcohols. 2015, 211, 667-674		2
464	New Virtual Special Issue of Most-Cited Papers Posts: All-Time Greats and Contemporary Favorites. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 7757-7759	3.9	О

(2016-2015)

463	A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. 2015 , 115, 13093-164	87
462	Measuring solubility of carbon dioxide in aqueous blends of N-methyldiethanolamine and 2-((2-aminoethyl)amino)ethanol at low CO2 loadings and modelling by electrolyte SAFT-HR EoS. 2015 , 82, 143-155	32
461	Thermodynamic modeling of electrolyte solutions by a hybrid ion-interaction and solvation (HIS) model. 2015 , 48, 79-88	5
460	Thermodynamic model for biomass processing in pressure intensified technologies. 2015 , 96, 53-67	16
459	Hydrocarbons Iwater phase equilibria using the CPA equation of state with a group contribution method. 2015 , 93, 432-442	25
458	Application of the perturbed chain-SAFT equation of state for modeling CO2 solubility in aqueous monoethanolamine solutions. 2015 , 93, 789-799	12
457	Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der WaalsPlatteeuw model and sPC-SAFT EoS. 2015 , 81, 89-94	16
456	Modeling phase equilibria in CO2+polymer systems. 2015 , 96, 313-323	15
455	Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures. 2016, 21,	18
454	Vapor-Liquid Equilibria Predictions of Carbon Dioxide + Hydrogen Sulfide Mixtures using the CPA, SRK, PR, SAFT, and PC-SAFT Equations of State. 2016 , 183-189	
453	Application of ion-based ePC-SAFT in prediction of density of aqueous electrolyte solutions. 2016 , 221, 904-913	5
452	A density functional theory for colloids with two multiple bonding associating sites. 2016 , 28, 244009	13
451	Calculation of the phase envelope of multicomponent mixtures with the bead spring method. 2016 , 62, 868-879	9
450	Reliable PVT Calculations ICan Cubics Do It?. 2016 , 169-181	
449	Predicting the Aqueous Solubility of Pharmaceutical Cocrystals As a Function of pH and Temperature. 2016 , 16, 2726-2740	35
448	Influence of Salts on the Partitioning of 5-Hydroxymethylfurfural in Water/MIBK. 2016 , 120, 3797-808	41
447	CO2 transport: Data and models [A review. 2016 , 169, 499-523	76
446	Modeling viscosity of alcohols based on the CPA-EoS + Etheory. 2016 , 220, 558-565	18

445	p☑ Data of (Acetic Acid + Water) at T = (412.6, 443.2, 483.2) K. 2016 , 61, 2078-2082	4
444	Equation-of-State Modeling of SolidLiquidLas Equilibrium of CO2 Binary Mixtures. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2016 , 55, 6213-6226	12
443	Measurement of infinite dilution partition coefficients of isomeric benzene derivatives in [bmim][Tf2N]-CO2 biphasic system and correlation with the ePC-SAFT equation of state. 2016 , 420, 36-43	4
442	On the use of molecular-based thermodynamic models to assess the performance of solvents for CO capture processes: monoethanolamine solutions. 2016 , 192, 337-390	9
441	Equation of state SAFT-CP for vapourliquid equilibria and mutual solubility of carbon dioxide and water. 2016 , 114, 2451-2460	1
440	An improved thermodynamic model for Wax precipitation using a UNIQUAC + PC-SAFT approach. 2016 , 425, 21-30	23
439	Relation of Wertheim association constants to concentration-based equilibrium constants for mixtures with chain-forming components. 2016 , 430, 47-56	7
438	Equilibrium data and GC-PC SAFT predictions for furanic extraction. 2016 , 430, 57-66	7
437	Molecular Simulation of n-Octacosane Water Mixture in Titania Nanopores at Elevated Temperature and Pressure. 2016 , 120, 24743-24753	12
436	Modeling of carbon dioxide and water sorption in glassy polymers through PC-SAFT and NET PC-SAFT. 2016 , 104, 149-155	11
435	Sorption and transport of CO2 in copolymers containing soft (PEO, PPO) and hard (BKDA-ODA and BPDA-ODA) segments at different temperatures: Experimental data and modeling. 2016 , 520, 187-200	2
434	Detailed pedagogical review and analysis of Wertheim's thermodynamic perturbation theory. 2016 , 428, 121-152	25
433	Use of a non additive GC-PPC-SAFT equation of state to model hydrogen solubility in oxygenated organic compounds. 2016 , 429, 177-195	4
432	Predictive evaluation of phase equilibria in biofuel systems using molecular thermodynamic models. 2016 , 118, 64-78	8
431	Hydrogen Bonding in Polymer Solution. 2016 , 61, 3438-3447	8
430	Thermodynamic Perturbation Theory for Associating Molecules. 2016 , 1-47	3
429	PII measurement and PC-SAFT modeling of N,N-dimethyl formamide, N -methyl formamide, N,N-dimethyl acetamide, and ethylenediamine from T = (293.15423.15) K and pressures up to 35 MPa. 2016 , 427, 583-593	7
428	How do you write and present research well? 17Bubmit your manuscript to the journal you cite most. 2016 , 94, 2174-2178	O

427	Flash Calculation and Phase Stability Analysis of Reservoir Gas-Water SystemImplication for Extracting Dissolved CH4 by CO2 Injection. 2016 ,		1	
426	Prediction of thermodynamic properties of sodium dodecyl sulfate aqueous solutions through the hetero-SAFT equation of state. 2016 , 13, 1667-1672			
425	Polymorphs, Hydrates, Cocrystals, and Cocrystal Hydrates: Thermodynamic Modeling of Theophylline Systems. 2016 , 16, 4439-4449		26	
424	Four phase hydrate equilibria of methane and carbon dioxide with heavy hydrate former compounds: Experimental measurements and thermodynamic modeling. 2016 , 33, 2426-2438		3	
423	Modelling the phase equilibria of multicomponent mixtures containing CO2, alkanes, water, and/or alcohols using the quadrupolar CPA equation of state. 2016 , 114, 2641-2654		3	
422	VLE properties of CO2 Based binary systems containing N2, O2 and Ar: Experimental measurements and modelling results with advanced cubic equations of state. 2016 , 428, 18-31		33	
421	Predicting the Effect of pH on Stability and Solubility of Polymorphs, Hydrates, and Cocrystals. 2016 , 16, 4136-4147		11	
420	VOC Sorption in Stretched Cross-Linked Natural Rubber. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2016 , 55, 7191-7200	3.9	4	
419	Phase equilibrium and interfacial properties of water + methane mixtures. 2016 , 407, 143-151		25	
418	Review and new insights into the application of molecular-based equations of state to water and aqueous solutions. 2016 , 416, 150-173		54	
417	Uncertainty analysis of the CPA and a quadrupolar CPA equation of state LWith emphasis on CO2. 2016 , 414, 29-47		9	
416	Determination of hydrocarbon-water interfacial tension using a new empirical correlation. 2016 , 415, 42-50		21	
415	Hydrate Ifluid phase equilibria modeling using PC-SAFT and PengRobinson equations of state. 2016 , 413, 209-219		21	
414	Extensions of the SAFT model for complex association in the bulk and interface. 2016 , 416, 62-71		9	
413	Density Measurement and Modeling of CO2Brine System at Temperature and Pressure Corresponding to Storage Conditions. 2016 , 61, 873-880		5	
412	Global phase behaviour in methane plus n-alkanes binary mixtures. 2016 , 111, 151-161		15	
411	Phase behavior of the CO2H2O system at temperatures of 273B23K and pressures of 0.1D00MPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: An extension to the CO2TH4H2O system. 2016 , 417, 96-108		28	
410	Isobaric VLE of the mixture {1,8-cineole + ethanol}. EOS analysis and COSMO-RS modeling. 2016 , 97, 88-92		10	

409	Linear, cyclic and branched Lennard-Jones chain quartic equation of state templates for associating fluid model development. 2016 , 416, 42-61	
408	Theoretical and experimental study on volumetric and electromagnetic properties of binary systems consisting of 1,2-dichloroethane with benzene and its derivatives at $T = (293.15 \text{ to } 333.15)$ K. 2016 , 96, 210-221	2
407	Avoiding binary interaction parameters in the GC-PC-SAFT model with a parametrization based in VLE and IDAC data: n-Alkanes and 1-alkanols. 2016 , 412, 9-20	13
406	Estimation of the binary interaction parameter k of the PC-SAFT Equation of State based on pure component parameters using a QSPR method. 2016 , 416, 138-149	11
405	Salt influence on MIBK/water liquid[Iquid equilibrium: Measuring and modeling with ePC-SAFT and COSMO-RS. 2016 , 416, 83-93	34
404	Developing a new model for the determination of petroleum fraction PC-SAFT parameters to model reservoir fluids. 2016 , 412, 145-157	16
403	Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective. 2016 , 416, 3-17	30
402	Thermochemistry of halogenobenzoic acids as an access to PC-SAFT solubility modeling. 2016 , 409, 399-407	20
401	Prediction of surface properties of binary, sulfur containing mixtures. 2016 , 416, 94-103	8
400	Modelling the phase and chemical equilibria of aqueous solutions of alkanolamines and carbon dioxide using the SAFT-ISW group contribution approach. 2016 , 407, 280-297	25
399	Measurement and modelling of interfacial tension in methane/water and methane/brine systems at reservoir conditions. 2016 , 409, 301-311	49
398	Asphaltene Precipitation Models: A Review. 2016 , 37, 1027-1049	70
397	PC-SAFT predictions on mixtures of 1-alkyl-3methylimidazolium-bis(trifluroromethanesulphonyl)amide with hydrocarbons, alcohols and aqueous systems using a correlative based binary interaction parameter. 2016 , 59, 69-78	8
396	Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state. 2016 , 408, 151-169	30
395	Experimental measurements and modelling of carbon dioxide hydrate phase equilibrium with and without ethanol. 2016 , 413, 176-183	20
394	Interfacial tensions of systems comprising water, carbon dioxide and diluent gases at high pressures: Experimental measurements and modelling with SAFT-VR Mie and square-gradient theory. 2016 , 407, 159-176	37
393	Comparison of SRK and CPA equations of state for phase equilibrium of binary and ternary systems containing aromatics. 2016 , 408, 38-46	1
392	High pressure viscosity modeling of pure alcohols based on classical and advanced equations of state. 2016 , 58, 57-70	14

391	Modeling solubility of CO 2 in aqueous MDEA solution using electrolyte SAFT-HR EoS. 2016 , 58, 381-390	11
390	Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications. 2016 , 93, 305-319	11
389	Study of the impact of high temperatures and pressures on the equilibrium densities and interfacial tension of the carbon dioxide/water system. 2016 , 93, 404-415	45
388	Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN). 2017 , 28, 87-99	14
387	Modeling study of the phase behavior of mixtures containing non-ionic glycol ether surfactant. 2017 , 230, 529-541	3
386	A priori determination of the region of the three physical volume root loci in the Perturbed-Chain SAFT EOS. 2017 , 434, 152-166	6
385	Influence of lysolecithin and Tween 80 on the colloidal stability of branched chain amino acids in a nanosuspension system. 2017 , 221, 606-612	3
384	Prediction of the surface tension of binary liquid mixtures of associating compounds using the Cubic Plus Association (CPA) equation of state. 2017 , 231, 451-461	10
383	Refinement of the theoretical solubility model and prediction of solute solubility in mixed solvent systems. 2017 , 437, 43-55	5
382	Re-evaluating the CPA EoS for improving critical points and derivative properties description. 2017 , 436, 85-97	16
381	A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding. 2017 , 29, 044002	6
380	Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena. 2017 , 437, 140-154	9
379	Density and Speed of Sound of Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate, N,N-Dimethylformamide, and N,N-Dimethylacetamide at Temperature Range of 293.15B43.15 K: Measurement and PC-SAFT Modeling. 2017 , 62, 913-923	21
378	Evaluation of PR, NRTL, UNIFAC, and PCSAFT on the VLE of Binary Systems Containing Ammonia. <i>Industrial & Discourse Containing Ammonia</i> . 3.9	10
377	Comparative study of vapour-liquid equilibrium and density modelling of mixtures related to carbon capture and storage with the SRK, PR, PC-SAFT and SAFT-VR Mie equations of state for industrial uses. 2017 , 440, 19-35	26
376	Mutual Solubility of Water and Hydrocarbons: A New Mixing Rule and the Development of a Predictive Scheme via the Cubic Two-State Equation of State. <i>Industrial & amp; Engineering</i> 3.9 <i>Chemistry Research</i> , 2017 , 56, 2277-2286	2
375	Viscosities of Pure Ionic Liquids Using Combinations of Free Volume Theory or Friction Theory with the Cubic, the Cubic Plus Association, and the Perturbed-Chain Statistical Associating Fluid Theory 3.9 Equations of State at High Pressures. <i>Industrial & Engineering Chemistry Research</i> , 2017, 56, 2247-2258	16
374	On Lewis acidity/basicity and hydrogen bonding in the equation-of-state approach. 2017 , 110, 3-15	10

373	Dimerization of Carboxylic Acids: An Equation of State Approach. 2017, 121, 2153-2163		16
372	Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. 2017 , 448, 69-80		66
371	Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models. 2017 , 62, 2592-2605		11
370	Comparison of predictions of the PC-SAFT equation of state and molecular simulations for the metastable region of binary mixtures. 2017 , 444, 31-36		1
369	Accurate description of thermophysical properties of Tetraalkylammonium Chloride Deep Eutectic Solvents with the soft-SAFT equation of state. 2017 , 448, 81-93		39
368	Studies on thermodynamic properties of butyl acetate/Alkan-2-ol binary mixtures: Measurements and properties modeling. 2017 , 225, 490-495		10
367	Alkane solubilities in aqueous alkanolamine solutions with CPA EoS. 2017 , 434, 93-101		5
366	Scaled Particle Theory of solutions: Comparison with Lattice Fluid model. 2017 , 433, 67-78		
365	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 7830-7844	3.9	16
364	Modeling the PolystyreneAsphaltenesIIoluene Mixture Using the Perturbed-Chain Form of Statistical Associating Fluid Theory Equation of State. 2017 , 31, 6019-6024		7
363	Accurate thermodynamic modeling of ionic liquids/metal salt mixtures: Application to carbon monoxide reactive absorption. 2017 , 63, 3532-3543		13
362	Measurement Methods for Solubility and Diffusivity of Gases and Supercritical Fluids in Polymers and Its Applications. 2017 , 57, 695-747		19
361	PC-SAFT thermodynamics of EVA copolymer (Solvent systems. 2017 , 449, 10-17		4
360	Liquid-liquid equilibrium of hydrogen bonding polymer solutions. 2017 , 121, 1-8		7
359	Modeling vapor-liquid phase equilibria of methane-water and methane-carbon dioxide-water systems at 274K to 573K and 0.1 to 150IMPa using PRSV equation of state and Wong-Sandler mixing rule. 2017 , 447, 12-26		7
358	Evaluating Cubic Plus Association Equation of State Predictive Capacities: A Study on the Transferability of the Hydroxyl Group Associative Parameters. <i>Industrial & Discrete Engineering Chemistry Research</i> , 2017 , 56, 7086-7099	3.9	12
357	A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO 2 capture: the case of CO 2 /CH 4 mixture in Matrimid \square . 2017 , 539, 88-100		22
356	Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States. 2017 , 33, 11518-11529		19

The Development of a Molecular Systems Engineering Approach to the Design of Carbon-capture 355 Solvents. 2017, 1-41 50th Anniversary Perspective: Phase Behavior of Polymer Solutions and Blends. 2017, 50, 3051-3065 354 59 Correlation/prediction of sorption, swelling, and cloud points in CO2 + polymer systems. 2017, 122, 58-62 353 4 pH of CO2 saturated water and CO2 saturated brines: Experimental measurements and modelling. 352 27 **2017**, 66, 190-203 Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty Acids/Alcohols and Choline Chloride. *Industrial & Engineering Chemistry Research*, **2017**, 56, 12192-12202 40 351 Calculation of thermodynamic properties of water by the CPA equation of state. 2017, 4, 305-310 350 4 Isothermal Vapor Liquid Equilibria for Binary Mixtures of Methyl Nonafluorobutyl Ether + Acetone, 12 349 Cyclopentyl Methyl Ether, Ethyl Acetate, n-Heptane, Methanol, and Toluene. 2017, 62, 3878-3888 Fundamental multiparameter and association equation of state for ethanol. 2017, 452, 74-93 348 Prediction of water content of natural gases using the PC-SAFT equation of state. 2017, 453, 40-45 3 347 346 Modelling the solubility of H2S and CO2 in ionic liquids using PC-SAFT equation of state. 2017, 450, 30-41 18 Investigation of polymerBolvent interactions in poly(styrene sulfonate) thin films. 2017, 55, 1365-1372 345 15 Predicting the Solvation of Organic Compounds in Aqueous Environments: From Alkanes and 344 3.9 27 Alcohols to Pharmaceuticals. Industrial & Engineering Chemistry Research, 2017, 56, 10856-10876 Application of the modified group-contribution PC-SAFT to nitrile and their mixtures. 2017, 450, 112-125 343 11 Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for 342 Lattice-Fluid Mixtures. 2017, 121, 8338-8347 Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using 5 341 SAFT-VR. 2017, 33, 11733-11745 Equation of state for 1,2-dichloroethane based on a hybrid data set. 2017, 115, 1166-1185 340 11 Extension of 2C Association Scheme to Polyols Phase Equilibria. Industrial & Engineering 339 3.9 1 Chemistry Research, **2017**, 56, 14369-14383 Prediction of the CO2 Solubility in Deep Eutectic Solvents: A Comparative Study between PC-SAFT 338 and Cubic Equations of State. 2017,

337	Measurement and Modeling the Excess Molar Volumes and Refractive Index Deviations of Binary Mixtures of 2-Propanol, 2-Butanol and 2-Pentanol with N-Propylamine. 2017 , 46, 2135-2158	10
336	Soft-SAFT Equation of State as a Valuable Tool for the Design of new CO2 Capture Technologies 2017 ,	O
335	Characterization of Water Solubility in n-Octacosane Using Raman Spectroscopy. 2017 , 121, 10665-10673	9
334	The polyazeotropic behaviour of the benzene plus hexafluorobenzene system revisited. 2017 , 113, 340-349	7
333	Polar (s)PC-SAFT: Modelling of polar structural isomers and identification of the systematic nature of regression issues. 2017 , 449, 156-166	5
332	The Influence of Molecular Association. 2017 , 219-238	
331	Solubility of carbon monoxide in bio-oil compounds. 2017 , 105, 296-311	4
330	Modelling of phase equilibrium of natural gas mixtures containing associating compounds. 2017 , 433, 135-148	12
329	The implementation of ion-based ePC-SAFT EOS for calculation of the mean activity coefficient of single and mixed electrolyte solutions. 2017 , 433, 226-242	9
328	Fully compositional multi-scale reservoir simulation of various CO2 sequestration mechanisms. 2017 , 96, 183-195	12
327	Prediction of critical temperature and critical pressure of multi-component mixtures. 2017 , 441, 2-8	4
326	Prediction of vapor-liquid and liquid-liquid equilibria at high pressures of 2-alkoxyethanol mixtures using PC-SAFT EoS. 2017 , 434, 7-20	13
325	Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes. 2017 , 7,	5
324	Applicability of DFT model in reactive distillation. 2017 , 2,	
323	Equation-Oriented Approach for Handling the Perturbed-Chain SAFT Equation of State in Simulation and Optimization of Polymerization Processes. <i>Industrial & Description of Polymerization Processes</i> .	5
322	Evaluation of Thermodynamic Models for Predicting Phase Equilibria of (hbox {CO}_{2}) + Impurity Binary Mixture. 2018 , 39, 1	7
321	Measurement and Modeling of Isobaric Vaporliquid Equilibrium of Water + Glycols. 2018 , 63, 2394-2401	8
320	Extensive Study of the Capabilities and Limitations of the CPA and sPC-SAFT Equations of State in Modeling a Wide Range of Acetic Acid Properties. <i>Industrial & Engineering Chemistry Research</i> , 3.9 2018 , 57, 5690-5704	10

319	Modeling of the phase behavior of CO 2 in water, methanol, ethanol and acetone by different equations of state. 2018 , 469, 9-25	2
318	Thermodynamic properties of confined square-well fluids with multiple associating sites. 2018 , 148, 074703	4
317	Modeling of physical properties and vapor liquid equilibrium of ethylene and ethylene mixtures with equations of state. 2018 , 470, 149-163	15
316	A Comparative Study of the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Activity Coefficient Models in Phase Equilibria Calculations for Mixtures Containing Associating 3.9 and Polar Components. <i>Industrial & Discourse Amp; Engineering Chemistry Research</i> , 2018 , 57, 3014-3030	10
315	High pressure vapor-liquid equilibria for binary carbon dioxide and protic ionic liquid based on ethanolamines + butanoic acid. 2018 , 460, 162-174	8
314	A compositional model based on SAFT-VR and Maxwell-Stefan equations for pervaporative separation of aroma compounds from aqueous solutions. 2018 , 250, 212-222	5
313	Modeling Thermodynamic Properties of Isomeric Alkanes with a New Branched Equation of State. <i>Industrial & Demistry Research</i> , 2018 , 57, 1679-1688	3
312	A thermodynamic model to predict propane solubility in bitumen and heavy oil based on experimental fractionation and characterization. 2018 , 168, 156-177	21
311	Carbon dioxide solubilities in tricyanomethanide-based ionic liquids: Measurements and PC-SAFT modeling. 2018 , 469, 48-55	14
310	Thermodynamic modeling of amino acid solutions: A new perspective on CPA EOS. 2018 , 124, 21-31	3
309	Solubility of caffeic acid in CO2 + ethanol: Experimental and predicted data using Cubic Plus Association Equation of State. 2018 , 138, 238-246	7
308	Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models. 2018 , 222, 687-703	20
307	Experimental investigation and thermodynamic modeling of amino acids partitioning in a water/ionic liquid system. 2018 , 260, 386-390	12
306	Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT. 2018 , 39, 1	7
305	Peng-Robinson-based association equation of state for hydrofluorocarbon refrigerants. 2018 , 465, 83-99	3
304	Multi-criteria optimization for parameterization of SAFT-type equations of state for water. 2018 , 64, 226-237	24
303	SAFT-VR-Mie with an incorporated polar term for accurate holistic prediction of the thermodynamic properties of polar components. 2018 , 455, 24-42	14
302	Thermodynamic properties and sPC-SAFT modeling of 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol from T = (293.1513.15) K and pressure up to 30 MPa. 2018 , 457, 52-61	5

301	Modeling solubility of CO 2 in aqueous monoethanolamine (MEA) solution using SAFT-HR equation of state. 2018 , 456, 25-32	7
300	Integrated solvent and process design for continuous crystallization and solvent recycling using PC-SAFT. 2018 , 64, 1205-1216	14
299	Solubility predictions of acetanilide derivatives in water: Combining thermochemistry and thermodynamic modeling. 2018 , 455, 43-53	18
298	Modeling the Phase Behavior of Carbon Dioxide Solubility in Deep Eutectic Solvents with the Cubic Plus Association Equation of State. 2018 , 63, 897-906	22
297	A general viscosity model for deep eutectic solvents: The free volume theory coupled with association equations of state. 2018 , 470, 193-202	55
296	Phase behavior of Carbon dioxide/Trimethoxy(methyl)silane and Methylsilicate 51 system. 2018 , 455, 6-14	8
295	New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis. 2018 , 458, 211-233	8
294	Molecular modeling of systems related to the biodiesel production using the PHSC equation of state. 2018 , 458, 58-83	5
293	Low viscosity protic ionic liquid for CO2/CH4 separation: Thermophysical and high-pressure phase equilibria for diethylammonium butanoate. 2018 , 459, 30-43	20
292	Modeling vapor-liquid equilibria of mixtures of SO2 and deep eutectic solvents using the CPA-NRTL and CPA-UNIQUAC models. 2018 , 250, 259-268	22
291	Modeling of mixed-solvent electrolyte systems. 2018 , 459, 138-157	27
290	CO2 solubility in small carboxylic acids: Monte Carlo simulations and PC-SAFT modeling. 2018 , 458, 1-8	7
289	The friction theory for modeling the viscosities of deep eutectic solvents using the CPA and PC-SAFT equations of state. 2018 , 249, 554-561	28
288	Modeling adsorption on energetically heterogeneous surfaces with an extended SAFT-VR approach. 2018 , 133, 70-76	6
287	. 2018,	6
286	A new insight into the modeling of asphaltene precipitation in crude oils using PC-SAFT equation of state. 2018 ,	3
285	Inert and Reactive Working Fluids for Closed Power Cycles: Present Knowledge, Applications and Open Researches. 2018 ,	1
284	11. Applicability of DFT model in reactive distillation. 2018 , 283-308	

283	Density Characteristics of the CO2IIH4 Binary System: Experimental Data at 313II53 K and 3II8 MPa and Modeling from the PC-SAFT EoS. 2018 ,		O
282	Toluene/n-Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 14242-14253	3.9	24
281	Dampf-FlBsigkeits-Gleichgewichte von Mehrkomponenten-Gemischen. 2018, 1-18		
280	Prediction of minimum miscibility pressure of pure CO2, carbon dioxide gas mixtures and polymer-supercritical CO2 in oil using modified quadrupole Cubic Plus Association Equation of State (mqCPAIEoS). 2018 , 478, 114-128		5
279	A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models. 2018 , 232, 273-291		22
278	THERMODYNAMIC MODELING OF AZEOTROPIC MIXTURES WITH [EMIM][TFO] WITH CUBIC-PLUS-ASSOCIATION AND CUBIC EOSs. 2018 , 35, 363-372		
277	Evaluation of Gas Hydrate Formation Temperature for Gas/Water/Salt/Alcohol Systems: Utilization of Extended UNIQUAC Model and PC-SAFT Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2018 , 57, 13833-13855	3.9	21
276	A rigorous and accurate approach for predicting the wet-to-dry transition for working mixtures in organic Rankine cycles. 2018 , 156, 509-519		9
275	Recent advances with association models for practical applications. 2018 , 116, 1921-1944		6
274	Comparison of SAFT-VR-Mie and CP-PC-SAFT in predicting phase behavior of associating systems I. Ammonia water, methanol, ethanol and hydrazine. 2018 , 265, 639-653		12
273	An improved group contribution method for PC-SAFT applied to branched alkanes: Data analysis and parameterization. 2018 , 473, 183-191		3
272	Accurate modeling of multiphase behavior of aqueous systems. I. Alkanes, alkenes, cycloalkanes, alcohols, aromatics. 2018 , 473, 201-219		15
271	Comparison of two modelling approaches for the interfacial tension of binary aqueous mixtures. 2018 , 266, 309-320		13
270	SAFT-VR Mie: Application to Phase Equilibria of Alcohols in Mixtures with n-Alkanes and Water. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 9693-9706	3.9	17
269	A molecular equation of state for alcohols which includes steric hindrance in hydrogen bonding. 2018 , 149, 044505		О
268	Computer-Aided Molecular Design: Fundamentals, Methods, and Applications. 2018,		14
267	Multiphase flash calculations for gas hydrates systems. 2018 , 475, 45-63		9
266	The Role of Polyfunctionality in the Formation of [Ch]Cl-Carboxylic Acid-Based Deep Eutectic Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 11195-11209	3.9	34

265	Measuring and modeling thermodynamic properties of aqueous lysozyme and BSA solutions. 2018 , 472, 62-74	10
264	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (CmimTfO) and Molecular Solvents: n-Alkyl Alcohols and Water. 2018 , 122, 6017-6032	13
263	An interfacial statistical associating fluid theory (iSAFT) approach for surface/interfacial tension predictions. 2018 , 476, 193-201	12
262	Multicomponent VaporLiquid Equilibrium Measurement and Modeling of Ethylene Glycol, Water, and Natural Gas Mixtures at 6 and 12.5 MPa. 2018 , 63, 3628-3639	5
261	Global phase behaviour in carbon dioxide plus n-alkanes binary mixtures. 2018 , 140, 147-158	5
260	Vapor-liquid equilibrium of metal dialkyldithiophosphates: An analysis with the statistical associating fluid theory. 2019 , 486, 48-58	1
259	Loss of Methanol and Monoethylene Glycol in VLE and LLE: Prediction of Hydrate Inhibitor Partition. 2019 , 64, 3889-3903	2
258	Thermodynamic Modeling of Hydrate Phase Equilibria in Methyldiethanolamine Solution in the Presence or Absence of Monoethylene Glycol. 2019 , 64, 4148-4153	3
257	Comparison of SAFT-VR-Mie and CP-PC-SAFT in predicting phase behavior of associating systems IV. MethanolBliphatic hydrocarbons. 2019 , 291, 111321	7
256	EOS-LNG: A Fundamental Equation of State for the Calculation of Thermodynamic Properties of Liquefied Natural Gases. 2019 , 48, 033102	21
255	A doubly associated reference perturbation theory for water. 2019 , 500, 112252	4
254	I-PC-SAFT: An Industrialized Version of the Volume-Translated PC-SAFT Equation of State for Pure Components, Resulting from Experience Acquired All through the Years on the Parameterization of 3.9 SAFT-Type and Cubic Models. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 20815-20827	25
253	Thermodynamic study of the CO2 IH2O INaCl system: Measurements of CO2 solubility and modeling of phase equilibria using Soreide and Whitson, electrolyte CPA and SIT models. 2019 , 91, 102825	18
252	Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture. 2019 , 48, 1461-1487	3
251	Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. 2019 , 40, 1	19
250	Second-Order Differential Accelerators Based on the Geometry of Equilibrium for Thermodynamic Calculations. Part I. Pure Fluids. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 20838-20846 ^{3.9}	2
249	Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol. 2019 , 64, 5174-5184	4
248	The cubic-plus-association equation of state for hydrofluorocarbons, hydrofluoroolefins, and their binary mixtures. 2019 , 209, 115182	14

247	Role of Characterization in the Accuracy of PC-SAFT Equation of State Modeling of Asphaltenes Phase Behavior. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 18345-18354	3.9	4
246	Hybridized method of pseudopotential lattice Boltzmann and cubic-plus-association equation of state assesses thermodynamic characteristics of associating fluids. 2019 , 100, 043302		3
245	Development of a fused-sphere SAFT-IMie force field for poly(vinyl alcohol) and poly(ethylene). 2019 , 150, 034901		10
244	Comparison of SAFT-VR-Mie and CP-PC-SAFT in predicting phase behavior of associating systems III. Aliphatic hydrocarbons - 1-propanol, 1-butanol and 1-pentanol. 2019 , 279, 492-502		9
243	Simulation of Polymer Production Processes. 2019 , 367-386		
242	Vapor Liquid Equilibria of 1-Ethyl-3-methylimidazolium Triflate (CmimTfO) and -Alkyl Alcohol Mixtures. 2019 , 123, 6076-6089		6
241	Theoretical and experimental study of physicochemical behavior of binary mixtures: SAFT and PC-SAFT models. 2019 , 131, 1		3
240	Phase Stability Conditions for Clathrate Hydrates Formation in CO2 + (NaCl or CaCl2 or MgCl2) + Cyclopentane + Water Systems: Experimental Measurements and Thermodynamic Modeling. 2019 , 64, 4638-4646		7
239	A PC-SAFT model for hydrocarbons IV: Water-hydrocarbon phase behavior including petroleum pseudo-components. 2019 , 497, 79-86		8
238	Modeling the Hydrate Dissociation Pressure of Light Hydrocarbons in the Presence of Single NaCl, KCl, and CaCl2 Aqueous Solutions Using a Modified Equation of State for Aqueous Electrolyte Solutions with Partial Ionization. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 12369-123	3.9 91	4
237	Phase Behavior Modeling of Mixtures Containing N-, S-, and O-Heterocyclic Compounds Using PC-SAFT Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 11038-11059	3.9	8
236	Bond cooperativity and ring formation in hydrogen fluoride thermodynamic properties: A two-density formalism framework. 2019 , 150, 174503		4
235	Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation. 2019 , 253, 1392-1405		31
234	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. 2019 , 21, 15046-15061		17
233	Phase stability conditions for clathrate hydrate formation in (fluorinated refrigerant + water + single and mixed electrolytes + cyclopentane) systems: Experimental measurements and thermodynamic modelling. 2019 , 136, 59-76		10
232	Using Volume Shifts To Improve the Description of Speed of Sound and Other Derivative Properties with Cubic Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2019 ,	3.9	2
231	Application of the Modified Group Contribution PC-SAFT to Carboxylic Acids and Their Mixtures. <i>Industrial & Carboxylic Acids and Their Mixtures</i> .	3.9	7
230	On Application of PC-SAFT Model for Estimating the Speed of Sound in Synthetic and Natural Oil-and-Gas Mixtures. 2019 , 92, 262-266		3

229	NMR Spectroscopic Study of Chemical Reactions in Mixtures Containing Oleic Acid, Formic Acid, and Formoxystearic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5622-5630	3.9	2
228	Cubic-Plus-Chain (CPC). I: A Statistical Associating Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 7341-7351	3.9	9
227	Thermodynamic Modeling of the Solubility of Acetylacetonate-Type Metal Precursors in Supercritical Carbon Dioxide Using the PC-SAFT Equation of State. 2019 , 52, 243-252		4
226	PII measurements and modelling of (n-decane + m-xylene) mixtures from 293.15 K to 363.15 K at pressures up to 60 MPa. 2019 , 135, 107-115		2
225	Modeling phase behavior of poly(ethylene glycol) in supercritical fluids. 2019, 283, 332-337		2
224	Observations regarding the first and second order thermodynamic derivative properties of non-polar and light polar fluids by perturbed chain-SAFT equations of state. 2019 , 99, 78-86		1
223	110th Anniversary: Accurate Modeling of the Simultaneous Absorption of H2S and CO2 in Aqueous Amine Solvents. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 6870-6886	3.9	13
222	Insights into the influence of the molecular structures of fluorinated ionic liquids on their thermophysical properties. A soft-SAFT based approach. 2019 , 21, 6362-6380		21
221	GENERAL PRINCIPLES GOVERNING DISSOLUTION OF MATERIALS IN SOLVENTS. 2019 , 133-275		
220	Evaluation of the polar contribution in the SAFT-VR Mie equation of state for simultaneous correlation of condensed-phase density, condensed-phase speed of sound, saturated density and saturated pressure of pure polar fluids. 2019 , 134, 106-118		8
219	Modeling the Water Solubility in Imidazolium-Based Ionic Liquids Using the PengRobinson Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 4341-4353	3.9	1
218	Prediction of Asphaltene Precipitation in Reservoir Model Oils in the Presence of Fe3O4 and NiO Nanoparticles by Cubic Plus Association Equation of State. <i>Industrial & Discourse Chemistry Research</i> , 2019 , 58, 4293-4302	3.9	10
217	A Statistical Associating Fluid Theory Perspective of the Modeling of Compounds Containing Ethylene Oxide Groups. <i>Industrial & Ethylene Oxide Groups</i> . <i>Industrial & Industrial & Industri</i>	3.9	3
216	Tolman lengths and rigidity constants from free-energy functionals-General expressions and comparison of theories. 2019 , 151, 244710		15
215	Melting properties of peptides and their solubility in water. Part 1: dipeptides based on glycine or alanine 2019 , 9, 32722-32734		21
214	Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems by extended PR and PC-SAFT EOSs: Carbon capture implication. 2019 , 275, 323-337		22
213	Nonphysical Behavior in Several Statistical Mechanically Based Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1382-1395	3.9	6
212			

211	Application of an equation of state incorporating association to alcohols up to decanol. 2019 , 482, 24-37	1
210	Prediction of solid solute solubility in supercritical CO2 with cosolvents using the CPA EoS. 2019 , 482, 1-10	9
209	Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. 2019 , 274, 497-504	8
208	Phase Behavior of Natural Gas Systems. 2019 , 37-101	1
207	Accounting for cross association in non-self-associating species using a physically consistent SAFT-VR Mie approach. 2019 , 483, 1-13	9
206	Advanced Models: Association Theories and Models. 2019 , 163-213	
205	Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state. 2019 , 65, 792-803	10
204	Modelling phase behavior of biodiesel related systems with CO2 using a polar version of PC-SAFT. 2019 , 485, 32-43	9
203	Solubility of gases in ionic liquids using PHTC equation of state. 2019 , 276, 553-561	8
202	Predicting the solubility of carbon dioxide or methane in imidazolium-based ionic liquids with GC-sPC-SAFT equation of state. 2019 , 479, 85-98	6
201	Peng-Robinson-based association equation of state for mixtures of hydrofluorocarbon refrigerants. 2019 , 480, 11-24	1
200	Associating lattice cluster theory and application to modeling oleic acid + formic acid + formoxystearic acid. 2019 , 65, 783-791	1
199	Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. 2019 , 236, 1377-1390	36
198	Development of a novel PengRobinson plus association equation of state for industrially important associating compounds. 2019 , 31, 2107-2115	
197	Performance of non-aqueous amine hybrid solvents mixtures for CO2 capture: A study using a molecular-based model. 2020 , 35, 126-144	25
196	Prediction of vapor pressure and density for nonaqueous solutions of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using PC-SAFT equation of state. 2020 , 506, 112320	4
195	Combining soft-SAFT and COSMO-RS modeling tools to assess the CO2BO2 separation using phosphonium-based ionic liquids. 2020 , 297, 111795	5
194	Renormalization group theory applied to the CPA equation of state: Impacts on phase equilibrium and derivative properties. 2020 , 506, 112365	4

193	Methane solubility in ionic liquids: Comparison of cubic-plus-association and modified Sanchez-Lacombe equation of states. 2020 , 738, 136903	1
192	Competitive H2S ICO2 absorption in reactive aqueous methyldiethanolamine solution: Prediction with ePC-SAFT. 2020 , 511, 112453	11
191	A computational tool for parameter estimation in EoS: New methodologies and natural gas phase equilibria calculations. 2020 , 215, 115437	3
190	110th Anniversary: Gas and Vapor Sorption in Glassy Polymeric Membranes Tritical Review of Different Physical and Mathematical Models. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 3.9 59, 341-365	14
189	Modeling the Critical and Phase Equilibrium Properties of Pure Fluids and Mixtures with the Crossover Cubic-Plus-Association Equation of State. 2020 , 65, 1095-1107	4
188	A method for thermodynamic modeling of H2S solubility using PC-SAFT equation of state based on a ternary solution of water, methyldiethanolamine and hydrogen sulfide. 2020 , 299, 112113	6
187	Experimental solubility and density studies on aqueous solutions of quaternary ammonium halides, and thermodynamic modelling for melting enthalpy estimations. 2020 , 300, 112281	6
186	Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. 2020 , 298, 112183	46
185	A Quadrupolar SAFT-VR Mie Approach to Modeling Binary Mixtures of CO2 or Benzene with n-Alkanes or 1-Alkanols. 2020 , 65, 5778-5800	3
184	Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. 2020 , 65, 5753-5767	6
183	Modeling of interfacial tension in binary mixtures of CH4, CO2, and N2 - alkanes using gene expression programming and equation of state. 2020 , 320, 114454	11
182	Accurate and Model-Free Control Function for a Single Stage Transcritical Refrigerator Cycle. 2020 , 5, 19217-19226	O
181	Modeling Interfacial Tension of Hexane (+) Alcohol Mixtures at Different Temperatures Using Linear Gradient Theory with Cubic Plus Association Equation of State. 2020 , 41, 1	3
180	Tangent Point Approach in Reliably Solving the Density Roots for PC-SAFT Equation of State. 2020 , 65, 5643-5653	O
179	SEPP: Segment-Based Equation of State Parameter Prediction. 2020 , 65, 5830-5843	2
178	Parameterization of SAFT Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of PC-SAFT Molecular Parameters. 2020 , 65, 5920-5932	6
177	On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling. 2020 , 8,	2
176	Beyond Wertheim Multi-density Theory: Steric Hindrance and Associated Rings in a Two-Density Formalism for Binary Mixtures of Molecules with Two Associating Sites. 2020 , 65, 5743-5752	2

175 A Thermodynamic Robust Model to Assess Hybrid Solvents for CO2 Capture. **2020**,

174	Phase Equilibria of Ternary Liquid[liquid Systems (Water + C1[14 Monocarboxylic Acids + Dibutyl Ether) at Three Different Temperatures: Modeling with A-UNIFAC. 2020 , 49, 1009-1028		1
173	An insight into the role of the association equations of states in gas hydrate modeling: a review. 2020 , 17, 1432-1450		7
172	A Comparative Assessment of Emerging Solvents and Adsorbents for Mitigating CO2 Emissions From the Industrial Sector by Using Molecular Modeling Tools. 2020 , 8,		10
171	Molecular modelling techniques for predicting liquid-liquid interfacial properties of methanol plus alkane (-hexane, -heptane, -octane) mixtures. 2020 , 22, 27121-27133		0
170	Screening of Ionic Liquids and Deep Eutectic Solvents for Physical CO2 Absorption by Soft-SAFT Using Key Performance Indicators. 2020 , 65, 5844-5861		24
169	Investigation on the Surface Tension and Viscosity of (dimethylsulfoxide + alcohol) Mixtures by Using Gradient Theory and Eyring Rate Theory. 2020 , 41, 1		4
168	Heat Capacities of Fluids: The Performance of Various Equations of State. 2020 , 65, 5654-5676		6
167	The density characteristics of CO2 and alkane mixtures using PC-SAFT EoS. 2020 , 10, 1063-1076		1
166	Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension Data. 2020 , 65, 5698-5707		7
165	Estimation of Thermodynamic Properties and Phase Equilibria in Systems of Deep Eutectic Solvents by PC-SAFT EoS. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 22292-22300	3.9	8
164	VaporIliquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. 2020 , 65, 2405-2421		7
163	Polar soft-SAFT: theory and comparison with molecular simulations and experimental data of pure polar fluids. 2020 , 22, 13171-13191		11
162	A Comprehensive Study on Thermophysical Properties of Carbon Dioxide through the Cubic-Plus-Association and Crossover Cubic-Plus-Association Equations of State. 2020 , 65, 4268-4284		3
161	An improved equation of state of binary CO2N2 fluid mixture and its application in the studies of fluid inclusions. 2020 , 513, 112554		1
160	Towards a predictive thermodynamic description of sorption processes in polymers: The synergy between theoretical EoS models and vibrational spectroscopy. 2020 , 140, 100525		17
159	Matching the critical point of associating fluids with the Cubic Plus Association equation of state. 2020 , 526, 112674		1
158	Enrichment at vapour l iquid interfaces of mixtures: establishing a link between nanoscopic and macroscopic properties. 2020 , 39, 319-349		26

157	Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach. 2020 , 124, 2900-2913		6
156	Vaporlliquid Equilibria of the Ionic Liquid 1-Hexyl-3-methylimidazolium Triflate (C6mimTfO) with n-Alkyl Alcohols. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 5142-5157	3.9	2
155	A general framework for modelling association. 2020 , 513, 112544		0
154	Isobaric vapor-liquid equilibrium of water + glymes binary mixtures: Experimental measurements and molecular thermodynamic modelling. 2020 , 513, 112547		4
153	A new study of associating inhomogeneous fluids with classical density functional theory. 2020 , 118, e1725668		5
152	Energy Conservation in Absorption Refrigeration Cycles Using DES as a New Generation of Green Absorbents. 2020 , 22,		5
151	Description of phase equilibrium and volumetric properties for CO2+water and CO2+ethanol using the CPA equation of state. 2020 , 161, 104841		4
150	Choice of reference, influence of non-additivity, and present challenges in thermodynamic perturbation theory for mixtures. 2020 , 152, 134106		4
149	Evaluation of association schemes in the CPA and PC-SAFT equations of state in modeling VLE of organic acids + water systems. 2021 , 208, 1313-1325		1
148	Quantifying the effect of polarity on the behavior of mixtures of n-alkanes with dipolar solvents using polar soft-statistical associating fluid theory (Polar soft-SAFT). 2021 , 67, e16649		5
147	Application of a sequential multi-solid-liquid equilibrium approach using PC-SAFT for accurate estimation of wax formation. 2021 , 284, 119010		3
146	Accounting for quadrupolar interactions in the CPA equation of state: A modelling approach for binary mixtures of CO2 or benzene with n-alkanes and 1-alkanols. 2021 , 528, 112848		1
145	Assessing the effect of impurities on the thermophysical properties of methane-based energy systems using polar soft-SAFT. 2021 , 527, 112841		5
144	Experimental investigation and thermodynamic modeling of equilibrium extraction of gold(III) from hydrochloric acid in 1-butyl-3-methylimidazolium hexafluorophosphate. 2021 , 527, 112839		
143	Improved Prediction of Saturated and Single-Phase Liquid Densities of Water through Volume-Translated SRK EOS. 2021 , 528, 112852		4
142	Solubility of H2S in ammonium-based ionic liquids. 2021 , 154, 106336		4
141	New modified PC-SAFT pure component parameters for accurate VLE and critical phenomena description. 2021 , 532, 112916		2
140	Vapor Pressures and Thermophysical Properties of 1-Heptanol, 1-Octanol, 1-Nonanol, and 1-Decanol: Data Reconciliation and PC-SAFT Modeling. 2021 , 66, 805-821		4

139	Modelling of solubility of vitamin K3 derivatives in supercritical carbon dioxide using cubic and SAFT equations of state. 2021 , 167, 105040		5
138	Solubility of Carbon Dioxide in Carboxylic Acid-Based Deep Eutectic Solvents. 2021, 66, 702-711		2
137	High pressure phase behaviour of binary systems containing supercritical solvents and uneven acids. 2021 , 168, 105075		1
136	Modelling acid gas mixtures of polar aprotic solvents and CO2 with the Cubic Plus Association equation of state. 2021 , 167, 105052		1
135	Density Modeling of High-Pressure Mixtures using Cubic and Non-Cubic EoS and an Excess Volume Method. 2021 , 532, 112884		3
134	Thermophysical Properties of Heavy Petroleum Fluids. 2021,		1
133	Combination of monovalent and divalent sites on an associating species: Application to water. 2021 , 67, e17146		1
132	The role of solvent additive in polymer crystallinity during physical supercritical fluid deposition. 2021 , 45, 11786-11796		1
131	Melting Properties of Peptides and Their Solubility in Water. Part 2: Di- and Tripeptides Based on Glycine, Alanine, Leucine, Proline, and Serine. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 4693-4704	3.9	7
130	Hydrogen solubility in bio-based furfural and furfuryl alcohol at elevated temperatures and pressures relevant for hydrodeoxygenation. 2021 , 290, 120021		7
129	Application of Quantum Chemistry Insights to the Prediction of Phase Equilibria in Associating Systems. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 5992-6005	3.9	2
128	Surfactant Modeling Using Classical Density Functional Theory and a Group Contribution PC-SAFT Approach. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 7111-7123	3.9	4
127	Quantifying the effect of polar interactions on the behavior of binary mixtures: Phase, interfacial, and excess properties. 2021 , 154, 164503		2
126	An Accurate Model to Calculate CO2 Solubility in Pure Water and in Seawater at Hydratelliquid Water Two-Phase Equilibrium. 2021 , 11, 393		O
125	Modeling of the Interfacial Behavior of (hbox $\{CO\}_{2}$) + (hbox $\{H\}_{2}$)O and (hbox $\{H\}_{2}$)S + (hbox $\{H\}_{2}$)O with CPA EOS and Gradient Theory. 2021 , 42, 1		1
124	Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar Cubic-Plus-Association Equation of State. 2021 , 9, 7602-7619		7
123	Possibility of optimal efficiency prediction of an organic Rankine cycle based on molecular property method for high-temperature exhaust gases. 2021 , 222, 119974		2
122	Experimental investigation of carbon dioxide solubility in the deep eutectic solvent (1 ChCl + 3 triethylene glycol) and modeling by the CPA EoS. 2021 , 330, 115647		1

121	Characterization of crude oils and asphaltenes using the PC-SAFT EoS: A systematic review. 2021 , 291, 120180		3
120	Vapor- liquid equilibrium for the n-dodecane⊕ phenol and n-hexadecane phenol systems at 523 K and 573 K. 2021 , 537, 112991		3
119	Assessment of the Perturbed Chain-Statistical Associating Fluid Theory Equation of State against a Benchmark Database of High-Quality Binary-System Data. <i>Industrial & Data & Da</i>	3.9	5
118	PII parameterization of SAFT equation of state: developing a new parameterization method for equations of state. 2021 , 538, 113024		3
117	Modeling the equilibrium of two and three-phase systems including water, alcohol, and hydrocarbons with CPA EOS and its improvement for electrolytic systems by Debye-Huckel equation. 2021 , 90, 103905		O
116	Thermodynamic Properties of Biogenic Amines and Their Solutions. 2021 , 66, 2822-2831		3
115	Towards a predictive Cubic Plus Association equation of state. 2021 , 540, 113045		2
114	Insights into the orientation and hydrogen bond influence on thermophysical and transport properties in choline-based deep eutectic solvents and methanol. 2021 , 117019		2
113	Measurement and PC-SAFT modeling of the water activity for aqueous solutions of D-mannose in some deep eutectic solvents. 2021 , 125, 58-68		
112	Prediction of JouleThomson coefficients and inversion curves of natural gas by various equations of state. 2021 , 118, 103350		O
111	CO2 Solubility in diethylenetriamine (DETA) and triethylenetetramine (TETA) aqueous mixtures: Experimental investigation and correlation using the CPA equation of state. 2021 , 3-4, 100017		О
110	Coarse-Grained Molecular Simulation of Polymers Supported by the Use of the SAFT-IMie Equation of State. 2100031		2
109	A unified thermodynamic framework to compute the hydrate formation conditions of acidic gas/water/alcohol/electrolyte mixtures up to 186.2 MPa. 2021 , 230, 120735		2
108	Effect of Lewis acid-base complexes between CO2 and alkanols on phase behavior at high pressure. 2021 , 52, 101680		1
107	New Association Schemes for Tri-Ethylene Glycol. 2021 , 113254		1
106	Hydrogen solubility equilibria in bio-based Guaiacol or Levulinic acid/water mixture as lignin or cellulose depolymerization model solutions. 2021 , 546, 113115		4
105	Vapour-liquid equilibria (VLE) and gas hydrate phase equilibria predictions using the cubic-plus association equation of state: CSMGem extension to association EoS model. 2021 , 94, 104083		2
104	Estimation of pure component parameters of PC-SAFT EoS by an artificial neural network based on a group contribution method. 2021 , 548, 113179		O

103	An effective procedure for wax formation modeling using multi-solid approach and PC-SAFT EOS for petroleum fluids with PNA characterization. 2021 , 207, 109103	2
102	The science behind foaming. 2022 , 37-78	
101	Extremely Low Vapor-Pressure Data as Access to PC-SAFT Parameter Estimation for Ionic Liquids and Modeling of Precursor Solubility in Ionic Liquids. 2021 , 10, 216-226	1
100	How Molecular Modelling Tools Can Help in Mitigating Climate Change. 2021 , 181-220	0
99	Esmaeilzadeh R oshanfekr equation of state coupled with CPA model: Application in viscosity modeling. 2018 , 13, e2159	6
98	Thermodynamic Modelling of Hydrogel Systems. 2013 , 175-187	4
97	Thermodynamic Modeling of Complex Systems. 2009 , 75-108	15
96	Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State. 2009 , 109-142	1
95	Polymer Formation, Modifications and Processing in or with Supercritical Fluids. 1994 , 541-588	16
94	Optimizing Properties of Polymer Systems. 1994 , 589-598	1
93	Copolymer Solution Behavior in Supercritical Fluids. 1994 , 599-617	1
92	Equations of State for Phase Equilibrium Computations. 1994 , 147-175	5
91	Chapter 5:Mixing and Combining Rules. 2010 , 84-134	3
90	Chapter 8:SAFT Associating Fluids and Fluid Mixtures. 2010 , 215-279	47
89	SAFT equation of state for fluid mixtures of hard chain copolymers. 1997 , 91, 1075-1082	27
88	Phase Behavior. 2008 , 181-265	1
87	Thermodynamics of Polymer Solutions. 2002,	1
86	Modeling of the thermodynamic properties of the methylamine/water refrigerant mixture. 2018, 3,	2

85	Modeling of aqueous electrolyte solutions based on perturbed-chain statistical associating fluid theory incorporated with primitive mean spherical approximation. 2011 , 26, 1733	2
84	Empirical Fundamental Equations of State for Pure Fluids and Mixtures. 2020 , 365-407	7
83	Modeling and Measurements of the Activity Coefficients and Solubilities of Amino Acids in the L-valine/electrolyte and L-proline/electrolyte Aqueous Solutions. 2012 , 50, 93-105	7
82	Prediction of CO2 solubility in electrolyte solutions using the e-PHSC equation of state. 2021 , 180, 105454	O
81	Modeling the solubility of carbon dioxide in the MDEA + AEEA aqueous solution using the SAFT-HR equation of state and extended UNIQUAC model. 2021 , 1-17	2
80	Chapter 9:Polydisperse Fluids. 2010 , 280-320	
79	Molecular Properties of SCW. 57-99	
78	Bulk Properties of SCW. 22-56	
77	Application of Separation Technology and Supercritical Fluids Process. 2012, 18, 123-143	3
76	A Study for Carbon dioxide Removal Process Using Methanol Solvent in DME Manufacture Process. 2013 , 14, 1502-1511	
75	Perturbation Theories for Molecular Fluids. 2013,	
74	PE 🗈 Scientific Computer Program for the Calculation of Fluid-Phase Equilibria. 1999 , 279-286	
73	Equation-of-State Approach in Polymer Solution and Polymer Foaming Thermodynamics. 2015, 61-95	
72	Reprint of Correlation/prediction of sorption, swelling, and cloud points in CO 2 + polymer systems 2017 , 129, 91-95	
71	D5.1 Dampf-Flßsigkeits-Gleichgewichte von Mehrkomponenten-Gemischen. 2019 , 603-620	
70	Examples for Complex Systems. 549-571	
69	Polymer Thermodynamics. 427-468	
68	Sorption thermodynamics of low molecular weight compounds in polymers. 2021 , 9, 69-177	

67	Modeling the fluid phase behavior of amines, aromatic amines and their mixtures using the modified group-contribution PC-SAFT. 2022 , 551, 113274	1
66	Phase Equilibrium. 2021 , 177-271	
65	Assessing the Feasibility of Deep Eutectic Solvents For CO2 Capture From Molecular And Process Modeling. 2020 ,	
64	Prediction of Sound Speed in Natural-Gas Mixtures Using the CP-PC-SAFT Equation of State. 2020 , 54, 1267-1275	O
63	Investigation on wave system matching of two-phase pressure oscillation tube. 2022,	1
62	The physics of Empty Liquids: from Patchy particles to Water 2021,	4
61	Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives 2022 , 23,	4
60	Thermodynamic modelling of industrially important associating mixtures with a group-contribution equation of state. 2022 , 557, 113375	
59	Predicting the phase equilibria of binary mixtures containing carbon dioxide + n-alkanols from a quadrupolar SAFT-VR approach. 2022 , 350, 118512	Ο
58	Isobaric Vaporlliquid Equilibria Measurements and Thermodynamic Modeling for the Systems Containing 2-Butanone, C3 Alcohols, and C4 Esters: Part I-Binary Mixtures.	O
57	Application of Friction Theory and PC-SAFT for Estimation of Viscosity in Live Reservoir Fluid Systems. 2022 , 43, 1	
56	Understanding the Absorption of Fluorinated Gases in Fluorinated Ionic Liquids for Recovering Purposes Using Soft-SAFT.	
55	Thermodynamic modeling of pharmaceuticals solubility in pure, mixed and supercritical solvents. 2022 , 353, 118809	2
54	Improving the separation of guaiacol from n-hexane by adding choline chloride to glycol extracting agents. 2022 , 355, 118936	1
53	Vapor-liquid phase equilibria, liquid densities, liquid viscosities and surface tensions for the ternary n-hexane []-[]cyclopentyl methyl ether []-[]-butanol mixture. 2022 , 558, 113444	1
52	FloryHuggins Parameters for Thiol-ene Networks Using Hansen Solubility Parameters. 2021 , 54, 11439-11	448 1
51	Ab initio development of generalized Lennard-Jones (Mie) force fields for predictions of thermodynamic properties in advanced molecular-based SAFT equations of state 2022 , 156, 154106	O
50	Extending the Structural (s)-SAFT-IMie Equation of State to Primary Alcohols. <i>Industrial & amp;</i> Engineering Chemistry Research,	.9 0

49	Prediction and correlation of physical properties including transport and interfacial properties with the PC-SAFT equation of state. 2022 , 1-31		
48	A Review of Phase Behavior Mechanisms of CO2 EOR and Storage in Subsurface Formations. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	1
47	Clapeyron.jl: An Extensible, Open-Source Fluid Thermodynamics Toolkit. <i>Industrial & amp; Engineering Chemistry Research</i> ,	3.9	4
46	A new empirical model and neural network-based approach for evaluation of isobaric heat capacity of natural gas. 2022 , 102, 104575		1
45	Solubility of hydrogen or oxygen in biomass-derived lipid, carbohydrate and lignin chemicals: From experiments to thermodynamic equilibria modelling. 2022 , 559, 113494		
44	The role of cross-association between carbon dioxide and hydrogen sulfide using the SAFT-VR Mie equation of state. 2022 , 559, 113493		1
43	Vapor-Liquid equilibria of the systems 1-octanol/nitrogen and 1-octanol/oxygen at pressures from 3 to 9 MPa and temperatures up to 613 Measured in a microcapillary with Raman spectroscopy. 2022 , 323, 124352		
42	Experimental investigations and the modeling approach for CO solubility in aqueous blended amine systems of monoethanolamine, 2-amino-2-methyl-1-propanol, and 2-(butylamino)ethanol 2022 ,		O
41	A General Framework for Modelling Association Formulated in Terms of Bond Sites. 2022, 113534		
40	Isobaric Vaporliquid Equilibria Measurements and Thermodynamic Modeling for the Systems Containing 2-Butanone, C3 Alcohols, and C4 Esters. Part II: Ternary Mixtures.		
39	Thermodynamic modeling of density, viscosity and critical micelle concentration of aqueous Tween and Span solutions via Cubic plus association equation of state. 2022 , 361, 119613		
38	Multicomponent Vapor-Liquid Equilibrium Measurements and Modeling of Triethylene Glycol, Water, and Natural Gas Mixtures at 6, 9 and 12.5 Mpa.		
37	Density Measurements of Homogeneous Phase Fluid Mixtures Comprising Co2/Methanol and Co2/Ethanol Binary Systems and Correlation with Equations of State.		
36	Fundamental equations of state of individual substances. 2022 , 335-395		
35	A new thermodynamic method to estimate surface tension of liquids. 2022 , 643, 414178		O
34	Applications of an Association Activity Coefficient Model, NRTL-PA, to Alcohol-Containing Mixtures.		3
33	A Comparison between the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Machine Learning Modeling Approaches in Asphaltene Onset Pressure and Bubble Point Pressure Prediction during Gas Injection.		
32	Phase Equilibrium of Cross-Associating Mixtures Using Association Theory-Based Equation of State.		3

31	Investigation of carbon dioxide solubility in various families of deep eutectic solvents by the PC-SAFT EoS. 10,	
30	Coarse-Grained Molecular Dynamics Simulation of Cobalt Nanoparticle in the n-Octacosane Water Mixture: The Effect of Water Concentration and Nanoparticle Size. 2022 , 126, 13975-13985	
29	Phase Equilibria of {Carbon Dioxide + Acetone + Dimethyl Sulfoxide} Systems: Experimental Data and Thermodynamic Modeling.	
28	Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility. 2022 , 177, 106273	
27	Experimental data and modeling of the CO2 solubility in 2-methylimidazole aqueous solution. 2023 , 331, 125694	1
26	Infrared quantification of ethanol and 1-butanol hydrogen bonded hydroxyl distributions in cyclohexane. 2023 , 285, 121837	1
25	Crossover PC-SAFT equations of state based on White's method for the thermodynamic properties of CO2, n-alkanes and n-alkanols. 2023 , 564, 113610	0
24	Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review. 2022 , 12, 857	2
23	Multi-objective optimization of equation of state molecular parameters: SAFT-VR Mie models for water. 2022 , 108015	0
22	Avoiding Artifacts in Noncubic Equations of State.	2
21	Thermodynamic modeling of gas solubility in ionic liquids using equations of state. 2022 , 28-28	0
20	Liquid[liquid Equilibria of Ternary Mixtures of Methanol + MEG + n-C5 , Ethanol + MEG + n-C5 , and	
	n-Butanol + MEG + n-C5.	Ο
19	m-Butanol + MEG + n-C5. Wertheim Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice. 2022, 61, 15678-15713	2
19 18	Wertheim Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice.	
	Wertheim Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice. 2022, 61, 15678-15713 Multicomponent vapor-liquid equilibrium measurements and modeling of triethylene glycol, water,	2
18	Wertheim Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice. 2022, 61, 15678-15713 Multicomponent vapor-liquid equilibrium measurements and modeling of triethylene glycol, water, and natural gas mixtures at 6.0, 9.0 and 12.5 MPa. 2023, 565, 113660 Calculation of azeotropic properties for binary mixtures with the PC-SAFT equation of state. 2023,	2
18 17	Wertheim Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice. 2022, 61, 15678-15713 Multicomponent vapor-liquid equilibrium measurements and modeling of triethylene glycol, water, and natural gas mixtures at 6.0, 9.0 and 12.5 MPa. 2023, 565, 113660 Calculation of azeotropic properties for binary mixtures with the PC-SAFT equation of state. 2023, 565, 113631	2 O

13	Modeling Interfacial Tension of Heptane + Alcohol Mixtures Using Cubic Plus Association Equation of State Plus Simplified Gradient Theory. 2023 , 44,	О
12	Toward Advanced, Predictive Mixing Rules in SAFT Equations of State. 2022 , 61, 18165-18175	O
11	The Thermodynamic Properties of Non-Associating and Associating Fluids: A Systematic Evaluation of SAFT-Type Equations of State. 2023 , 44,	O
10	The Effect of Binary Interaction Parameters and Induced Association on the Performance of the PC-SAFT Equation of State: Validation against a Benchmark Database of High-Quality Binary-System Data.	O
9	Development of a New Group Contribution Equation of State for associating compounds. 2023, 113824	0
8	Interfacial tension of water near to critical conditions by using the pendant drop method: New experimental data and a correlation based on the parachor method. 2023 , 196, 105899	O
7	Theoretical and experimental study of triethanolamine and 1-alkanol mixtures. 2023, 571, 113810	O
6	Thermodynamic model for CO2 absorption in imidazolium-based ionic liquids using cubic plus association equation of state. 2023 , 378, 121587	O
5	Aromatic volatile organic compounds absorption with phenyl-based deep eutectic solvents: A molecular thermodynamics and dynamics study. 2023 , 69,	О
4	The Effect of Sulfate Electrolytes on the Liquid[liquid Equilibrium of 2-MTHF/Water/5-HMF: Experimental Study and Thermodynamic Modeling.	O
3	Parameterization and uncertainty analysis of binary interaction parameters for triethylene glycol and ethane/propane. 2023 , 570, 113796	О
2	Molecular Modeling of Double Retrograde Vaporization Using Monte Carlo Simulations and Equations of State.	O
1	High-pressure densities of 2-(Dimethylamino) ethanol and 2-(Diethylamino) ethanol: Measurement and modeling with new modified Tait and PC-SAFT equations of state. 2023 , 113825	О