Pituitary cell phenotypes involve cell-specific Pit-1 mRI interactions with other classes of transcription factors.

Genes and Development 4, 695-711 DOI: 10.1101/gad.4.5.695

Citation Report

#	Article	IF	CITATIONS
1	Autoregulation of pit-1 gene expression mediated by two cis-active promoter elements. Nature, 1990, 346, 583-586.	13.7	214
2	Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature, 1990, 347, 528-533.	13.7	1,177
3	Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1 Genes and Development, 1990, 4, 1811-1822.	2.7	344
4	Both Pit-1 and the Estrogen Receptor Are Required for Estrogen Responsiveness of the Rat Prolactin Gene. Molecular Endocrinology, 1990, 4, 1964-1971.	3.7	198
5	Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backross. Genomics, 1991, 10, 515-526.	1.3	80
6	The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron, 1991, 7, 881-889.	3.8	337
7	XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos. Developmental Biology, 1991, 147, 363-373.	0.9	52
8	Appearance of melatonin receptors during embryonic life in Siberian hamsters (Phodopus sungorous). Brain Research, 1991, 568, 345-349.	1.1	37
9	Regulation of transcription and cell identity by POU domain proteins. Cell, 1991, 64, 475-478.	13.5	247
10	Pregnancy and the Prolactin Family of Hormones: Coordination of Anterior Pituitary, Uterine, and Placental Expression*. Endocrine Reviews, 1991, 12, 402-423.	8.9	186
11	POU-domain proteins Pit-1 and Oct-1 interact to form a heteromeric complex and can cooperate to induce expression of the prolactin promoter Genes and Development, 1991, 5, 1309-1320.	2.7	198
12	Tst-1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule PO Molecular and Cellular Biology, 1991, 11, 1739-1744.	1.1	125
13	Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements Molecular and Cellular Biology, 1991, 11, 3492-3503.	1.1	119
14	In situ hybridization in endocrine pathology. Endocrine Pathology, 1991, 2, 1-3.	5.2	3
15	I-POU: a POU-domain protein that inhibits neuron-specific gene activation. Nature, 1991, 350, 577-584.	13.7	230
16	POU-domain transcription factors: pou-er-ful developmental regulators Genes and Development, 1991, 5, 897-907.	2.7	446
17	Interactions between Rat Prolactin Gene Promoter and Enhancer Regions in Mammosomatotrope and Lactotrope Cell Lines. Molecular Endocrinology, 1991, 5, 1836-1844.	3.7	6
18	Targeted Ablation of Pituitary Gonadotropes in Transgenic Mice. Molecular Endocrinology, 1991, 5, 2025-2036.	3.7	113

#	Article	IF	CITATIONS
19	Molecular Cloning of the Rhesus Glycoprotein Hormone α-Subunit Gene. DNA and Cell Biology, 1991, 10, 367-380.	0.9	20
20	An analysis of vertebrate mRNA sequences: intimations of translational control Journal of Cell Biology, 1991, 115, 887-903.	2.3	1,653
21	Molecular basis of mouse developmental mutants Genes and Development, 1991, 5, 1115-1123.	2.7	64
22	Cloning of the human cDNA for transcription factor pit-1. Nucleic Acids Research, 1991, 19, 6329-6329.	6.5	29
23	TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis, defines a new class of leucine zipper proteins Genes and Development, 1991, 5, 1739-1753.	2.7	235
24	Mammosomatotropes: Presence and Functions in Normal and Neoplastic Pituitary Tissue*. Endocrine Reviews, 1991, 12, 337-355.	8.9	209
25	Inhibition of Prolactin Gene Transcription by Transforming Growth Factor-Î ² in GH ₃ Cells. Molecular Endocrinology, 1991, 5, 1716-1722.	3.7	47
26	Structure-Function Analysis of the Rat Prolactin Promoter: Phasing Requirements of Proximal Cell-Specific Elements. Molecular Endocrinology, 1991, 5, 836-843.	3.7	32
27	The Tissue-Specific Mammalian Transcription Factor, Pit-1, Activates Transcription inSaccharomyces cerevisiae. Molecular Endocrinology, 1991, 5, 1239-1245.	3.7	14
28	Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science, 1991, 253, 786-789.	6.0	204
29	Glycoprotein hormone alpha-subunit production in somatotroph adenomas with and without Gs alpha mutations Journal of Clinical Endocrinology and Metabolism, 1992, 75, 918-923.	1.8	46
30	Effects of calcium and calcium ionophores on prolactin gene expression in GH3 and 235-1 rat pituitary tumor cells Molecular Endocrinology, 1992, 6, 1268-1276.	3.7	9
31	Cyclic adenosine 3',5'-monophosphate activation of the rat prolactin promoter is restricted to the pituitary-specific cell type Molecular Endocrinology, 1992, 6, 2059-2070.	3.7	36
32	Binding of a nuclear protein to the rat growth hormone silencer element. Nucleic Acids Research, 1992, 20, 401-408.	6.5	39
33	Complementary DNA Cloning and Expression of Pit-1/GHF-1 from the Domestic Turkey. DNA and Cell Biology, 1992, 11, 651-660.	0.9	47
34	A Cell Line That Produces the Glycoprotein Hormone α-Subunit Contains Specific Nuclear Factors Similar to Those Present in Thyrotropes. Thyroid, 1992, 2, 31-38.	2.4	14
35	Phylogenetic specificity of prolactin gene expression with conservation of Pit-1 function Molecular Endocrinology, 1992, 6, 515-522.	3.7	30
36	Chapter 8 Spatiotemporal patterns of transcription factor gene expression accompanying the development and plasticity of cell phenotypes in the neuroendocrine system. Progress in Brain Research, 1992, 92, 97-113.	0.9	27

#	ARTICLE	IF	CITATIONS
37	Hormonal regulation of the thyrotropin beta-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1 Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5942-5945.	3.3	99
38	Interaction of basal positive and negative transcription elements controls repression of the proximal rat prolactin promoter in nonpituitary cells Molecular and Cellular Biology, 1992, 12, 2708-2719.	1.1	63
39	Tissue-specific gene expression in the pituitary: the glycoprotein hormone alpha-subunit gene is regulated by a gonadotrope-specific protein Molecular and Cellular Biology, 1992, 12, 2143-2153.	1.1	120
40	Slow changes of tyrosine hydroxylase gene expression in dopaminergic brain neurons after neurotoxin lesioning: a model for neuron aging. Molecular Brain Research, 1992, 13, 63-73.	2.5	64
41	Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Research, 1992, 20, 4613-4620.	6.5	266
42	Transcription factors: positive and negative regulators of cell growth and disease. Current Opinion in Cell Biology, 1992, 4, 480-487.	2.6	29
43	Structures of cDNAs encoding chum salmon pituitary-specific transcription factor, Pit-1/GHF-1. Gene, 1992, 116, 275-279.	1.0	46
44	Effects of pituitary hormones on the cell-specific expression of the KAP gene. Molecular and Cellular Endocrinology, 1992, 89, 153-162.	1.6	21
45	Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins EMBO Journal, 1992, 11, 2261-2269.	3.5	111
46	Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression EMBO Journal, 1992, 11, 2551-2561.	3.5	136
47	Development of Prolactin and Growth Hormone Production in the Fetal Rat Pituitary: An Immunochemical Study. (hormone production/ontogeny/fetal rat pituitary/immunochemistry). Development Growth and Differentiation, 1992, 34, 473-478.	0.6	11
48	Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature, 1992, 360, 765-768.	13.7	311
49	Localization of luteinizing hormone β-mRNA by in situ hybridization in the sheep pars tuberalis. Cell and Tissue Research, 1992, 267, 301-306.	1.5	32
50	Differentiation of the melanotrophic cells of rat pituitary primordium in organotypic culture in defined medium. Cell and Tissue Research, 1992, 267, 169-183.	1.5	8
51	Nucleotide sequence of the complementary DNA for human Pit-1/GHF-1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1129, 231-234.	2.4	38
52	The transcription factor Pit-I/GHF-1 is expressed in hemopoietic and lymphoid tissues. European Journal of Immunology, 1993, 23, 951-955.	1.6	75
53	Oligodendrocyte maturation and myelin gene expression in PDGF-treated cultures from rat cerebral white matter. Journal of Neurocytology, 1993, 22, 322-333.	1.6	72
54	Molecular basis of the little mouse phenotype and Implications for cell type-specific growth. Nature, 1993, 364, 208-213.	13.7	477

#	Article	IF	CITATIONS
55	POU domain transcription factors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 1-21.	2.4	228
56	Introduction to molecular endocrine pathology. Endocrine Pathology, 1993, 4, 64-72.	5.2	3
57	Pit-1/ghf-1 transcription factor expression in rodent pituitaries. Endocrine Pathology, 1993, 4, 146-154.	5.2	5
58	Immunohistochemical expression of Pit-1 protein in human pituitary adenomas. Endocrine Pathology, 1993, 4, 201-204.	5.2	11
59	Pit-1/GHF-1 binds to TRH-sensitive regions of the rat thyrotropin .beta. gene. Biochemistry, 1993, 32, 8932-8938.	1.2	25
60	Activation of the silent progesterone receptor gene by ectopic expression of estrogen receptors in a rat fibroblast cell line. Biochemistry, 1993, 32, 8348-8359.	1.2	45
61	Characterization of the ovine LHβ-subunit gene: the promoter directs gonadotrope-specific expression in transgenic mice. Molecular and Cellular Endocrinology, 1993, 93, 157-165.	1.6	36
62	Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron, 1993, 11, 1187-1195.	3.8	524
63	POU-domain proteins: structure and function of developmental regulators. Current Opinion in Cell Biology, 1993, 5, 488-498.	2.6	238
64	Analysis of Pit-1 in regulating mouse TSH \hat{I}^2 promoter activity in thyrotropes. Molecular and Cellular Endocrinology, 1993, 96, 75-84.	1.6	47
65	Pit-1 and Pituitary Function. Journal of Pediatric Endocrinology and Metabolism, 1993, 6, 229-234.	0.4	22
66	A subpopulation of neonatal gonadotropin-releasing hormone-sensitive pituitary cells is responsive to melatonin Endocrinology, 1993, 133, 360-367.	1.4	29
67	Lactotrope differentiation in rats is modulated by a milk-borne signal transferred to the neonatal circulation Endocrinology, 1993, 133, 1284-1291.	1.4	18
68	Stimulatory effect of thyroid hormone on growth hormone gene expression in a human pituitary cell line Journal of Clinical Endocrinology and Metabolism, 1993, 77, 281-285.	1.8	30
69	Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1275-1280.	1.8	101
70	An alternative Pit-1 RNA splicing product reveals modular binding and nonmodular transcriptional activities of the POU-specific domain Molecular Endocrinology, 1993, 7, 1551-1560.	3.7	25
71	Transcriptional Control of GH Expression and Anterior Pituitary Development*. Endocrine Reviews, 1993, 14, 670-689.	8.9	144
72	Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas Journal of Clinical Endocrinology and Metabolism, 1993, 77, 1281-1286.	1.8	50

#	Article	IF	CITATIONS
73	Dexamethasone induces advanced growth hormone expression in the fetal rat pituitary gland in vivo Endocrinology, 1993, 132, 517-523.	1.4	46
74	A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene Genes and Development, 1993, 7, 913-932.	2.7	231
75	GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice Genes and Development, 1993, 7, 683-693.	2.7	120
76	Tissue-specific RNA splicing generates an ankyrin-like domain that affects the dimerization and DNA-binding properties of a bHLH protein Genes and Development, 1993, 7, 55-71.	2.7	75
77	Identification of a novel zinc finger protein binding a conserved element critical for Pit-1-dependent growth hormone gene expression Genes and Development, 1993, 7, 1674-1687.	2.7	124
78	Immunohistochemical Expression of PIT-1 Protein in Pituitary Glands of Human GRF Transgenic Mice: Its Relationship with Hormonal Expressions Endocrine Journal, 1993, 40, 133-139.	0.7	29
79	Wnt-1-inducing factor-1: a novel G/C box-binding transcription factor regulating the expression of Wnt-1 during neuroectodermal differentiation Molecular and Cellular Biology, 1993, 13, 1590-1598.	1.1	33
80	Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10841-10845.	3.3	192
81	The orphan nuclear receptor, steroidogenic factor-1, regulates the glycoprotein hormone alpha-subunit gene in pituitary gonadotropes Molecular Endocrinology, 1994, 8, 878-885.	3.7	201
82	The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis Genes and Development, 1994, 8, 2302-2312.	2.7	548
83	The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis Molecular and Cellular Biology, 1994, 14, 5671-5681.	1.1	501
84	Cells that express luteinizing hormone (LH) and follicle-stimulating hormone (FSH) beta-subunit messenger ribonucleic acids during the estrous cycle: the major contributors contain LH beta, FSH beta, and/or growth hormone Endocrinology, 1994, 134, 990-997.	1.4	81
85	A Regulatory Element Within the Uteroferrin Gene 5′-Flanking Region Binds a Pregnancy-Associated Uterine Endometrial Protein. DNA and Cell Biology, 1994, 13, 365-376.	0.9	11
86	The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain. Journal of Neurobiology, 1994, 25, 1095-1112.	3.7	4
87	Expression of the ?-subunit of glycoprotein hormones in the pars tuberalis-specific glandular cells in rat, mouse and guinea-pig. Cell and Tissue Research, 1994, 278, 617-624.	1.5	30
88	Pitfalls during development: controlling differentiation of the pituitary gland. Trends in Genetics, 1994, 10, 222-224.	2.9	26
89	Proopiomelanocortin Gene Expression During Pig Pituitary and Brain Development. Journal of Neuroendocrinology, 1994, 6, 201-209.	1.2	18
90	Targeted pituitary tumorigenesis using the human thyrotropin β-subunit chain promoter in transgenic mice. Molecular and Cellular Endocrinology, 1994, 105, 147-154.	1.6	16

#	Article	IF	CITATIONS
91	Transcriptional mechanisms in anterior pituitary cell differentiation. Current Opinion in Genetics and Development, 1994, 4, 709-717.	1.5	104
92	The rat prolactin gene: a target for tissue-specific and hormone-dependent transcription factors. Molecular and Cellular Endocrinology, 1994, 100, 133-142.	1.6	37
93	Ontogeny of glucocorticoid and D2 receptors in the rat pituitary: an in situ hybridization study. Molecular and Cellular Endocrinology, 1994, 105, 65-75.	1.6	11
94	The Mouse Homeoprotein mLIM-3 Is Expressed Early in Cells Derived from the Neuroepithelium and Persists in Adult Pituitary. DNA and Cell Biology, 1994, 13, 1163-1180.	0.9	98
95	Increase in Pit-1 mRNA Is Not Required for the Estrogen-Induced Expression of Prolactin Gene and Lactotroph Proliferation Endocrine Journal, 1994, 41, 579-584.	0.7	5
96	5 The Somatolactin Gene. Fish Physiology, 1994, 13, 159-177.	0.2	14
97	10 Comparative Aspects of Pituitary Development and Pit-1 Function. Fish Physiology, 1994, , 309-330.	0.2	7
98	Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor Molecular and Cellular Biology, 1994, 14, 2985-2993.	1.1	143
99	Negative Regulation of Expression of the Pituitary-Specific Transcription Factor GHF-1/Pit-1 by Thyroid Hormones through Interference with Promoter Enhancer Elements. Molecular and Cellular Biology, 1995, 15, 6322-6330.	1.1	39
100	Congenital hypopituitarism with hypoplasia of the anterior pituitary gland and a normal posterior pituitary lobe. Acta Paediatrica, International Journal of Paediatrics, 1995, 84, 1201-1203.	0.7	5
101	Pituitary-type transcription of the human prolactin gene in the absence of Pit-1 Molecular Endocrinology, 1995, 9, 887-901.	3.7	35
102	Upstream stimulatory factor, a basic-helix-loop-helix-zipper protein, regulates the activity of the alpha-glycoprotein hormone subunit gene in pituitary cells Molecular Endocrinology, 1995, 9, 278-291.	3.7	29
103	Thyrotropin-Producing Pituitary Adenoma Discovered as a Pituitary Incidentaloma Internal Medicine, 1995, 34, 1055-1060.	0.3	10
104	Division of Labor among Gonadotropes. Vitamins and Hormones, 1995, 50, 215-286.	0.7	36
105	Molecular Biology of the Growth Hormone-Prolactin Gene System. Vitamins and Hormones, 1995, 50, 385-459.	0.7	50
106	M-Phase-Specific Phosphorylation of the POU Transcription Factor GHF-1 by a Cell Cycle-Regulated Protein Kinase Inhibits DNA Binding. Molecular and Cellular Biology, 1995, 15, 6694-6701.	1.1	61
107	Epidermal Growth Factor and Ras Regulate Gene Expression in GH4 Pituitary Cells by Separate, Antagonistic Signal Transduction Pathways. Molecular and Cellular Biology, 1995, 15, 6777-6784.	1.1	22
108	Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Developmental Dynamics, 1995, 202, 354-364.	0.8	142

#	Article	IF	CITATIONS
109	Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. Journal of Comparative Neurology, 1995, 355, 237-295.	0.9	203
110	Interactions between adenohypophyseal, hypothalamic and nasal presumptive territories during early neurulation process. Endocrine, 1995, 3, 335-343.	2.2	1
111	A POU homeo domain protein related to dPOU-19/pdm-1 binds to the regulatory DNA necessary for vital expression of the Drosophila choline acetyltransferase gene. Journal of Neuroscience, 1995, 15, 3509-3518.	1.7	14
112	A Dopamine-responsive Domain in the N-terminal Sequence of Pit-1. Journal of Biological Chemistry, 1995, 270, 7156-7160.	1.6	26
113	Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1322-1326.	3.3	297
114	Pubertal Development of Male African Catfish (Clarias Gariepinus). Pituitary Ultrastructure and Responsiveness to Gonadotropin-Releasing Hormone. Biology of Reproduction, 1995, 53, 940-950.	1.2	37
115	Functional Dissection of the Brain-specific Rat Aldolase C Gene Promoter in Transgenic Mice. Journal of Biological Chemistry, 1995, 270, 20316-20321.	1.6	13
116	P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2720-2724.	3.3	292
117	Development and Heterogeneity of Prolactin Cells. International Review of Cytology, 1995, 157, 33-98.	6.2	31
118	Pit-1 binding to specific DNA sites as a monomer or dimer determines gene-specific use of a tyrosine-dependent synergy domain Genes and Development, 1995, 9, 1992-2006.	2.7	92
119	DNase l-hypersensitive sites in the chromatin of rat growth hormone gene locus and enhancer activity of regions with these sites. Nucleic Acids Research, 1995, 23, 2236-2244.	6.5	18
120	A Composite Ets/Pit-1 Binding Site in the Prolactin Gene Can Mediate Transcriptional Responses to Multiple Signal Transduction Pathways. Journal of Biological Chemistry, 1995, 270, 20930-20936.	1.6	60
121	Effect of perinatal hypothyroidism on the developmental regulation of rat pituitary growth hormone and thyrotropin genes Endocrinology, 1995, 136, 4339-4350.	1.4	33
122	Ames dwarf mice exhibit somatotrope commitment but lack growth hormone-releasing factor response Endocrinology, 1995, 136, 1161-1167.	1.4	37
123	Nerve growth factor promotes the differentiation of pituitary mammotroph cells in vitro Endocrinology, 1995, 136, 1205-1213.	1.4	36
124	GH and PRL gene expression by nonradioisotopic in situ hybridization in TSH-secreting pituitary adenomas Journal of Clinical Endocrinology and Metabolism, 1995, 80, 2518-2522.	1.8	40
125	Cell-specific expression of estrogen receptor in the human pituitary and its adenomas Journal of Clinical Endocrinology and Metabolism, 1995, 80, 3621-3627.	1.8	69
126	Retinoic acid induces expression of the transcription factor GHF-1/Pit-1 in pituitary prolactin- and growth hormone-producing cell lines Endocrinology, 1995, 136, 5391-5398.	1.4	18

# 127	ARTICLE Targeted disruption of the pituitary glycoprotein hormone alpha-subunit produces hypogonadal and hypothyroid mice Genes and Development, 1995, 9, 2007-2019.	IF 2.7	CITATIONS 236
128	In Vivo Mutational Analysis of the DNA Binding Domain of the Tissue-specific Transcription Factor, Pit-1. Journal of Biological Chemistry, 1995, 270, 25520-25525.	1.6	24
129	Implementing Transgenic and Embryonic Stem Cell Technology to Study Gene Expression, Cell-Cell Interactions and Gene Function. Biology of Reproduction, 1995, 52, 246-257.	1.2	48
130	CpG methylation represses the activity of the rat prolactin promoter in rat GH3 pituitary cell lines. Molecular and Cellular Endocrinology, 1995, 108, 95-105.	1.6	23
131	Embryology of the pituitary gland. Trends in Endocrinology and Metabolism, 1995, 6, 1-7.	3.1	43
132	The regulatory region and transcription factor required for the expression of rat and salmon pituitary hormone-encoding genes show cell-type and species specificity. Gene, 1995, 153, 267-271.	1.0	22
133	Molecular mechanisms and neural pathways mediating the influence of interleukin-1 on the activity of neuroendocrine CRF motoneurons in the rat. International Journal of Developmental Neuroscience, 1995, 13, 135-146.	0.7	42
134	Isoform-specific retinoid-X receptor (RXR) antibodies detect differential expression of RXR proteins in the pituitary gland Endocrinology, 1995, 136, 1766-1774.	1.4	65
135	ROLE OF PIT-1 IN THE GENE EXPRESSION OF GROWTH HORMONE, PROLACTIN, AND THYROTROPIN. Endocrinology and Metabolism Clinics of North America, 1996, 25, 523-540.	1.2	128
136	THE REGULATION OF GROWTH HORMONE SECRETION. Endocrinology and Metabolism Clinics of North America, 1996, 25, 541-571.	1.2	24
137	Control of growth hormone synthesis. Domestic Animal Endocrinology, 1996, 13, 1-33.	0.8	85
138	The hypothalamic-pituitary axis; co-development of two organs. Current Opinion in Cell Biology, 1996, 8, 833-843.	2.6	129
139	Specification of Pituitary Cell Lineages by the LIM Homeobox Gene Lhx3. Science, 1996, 272, 1004-1007.	6.0	435
140	P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7706-7710.	3.3	258
141	Gsh-1, an orphan Hox gene, is required for normal pituitary development EMBO Journal, 1996, 15, 714-724.	3.5	154
142	CCAAT/Enhancer-binding Protein α Activation of the Rat Growth Hormone Promoter in Pituitary Progenitor GHFT1-5 Cells. Journal of Biological Chemistry, 1996, 271, 21484-21489.	1.6	46
143	Expression and Alternative Splicing of Pit-1 Messenger Ribonucleic Acid in Pituitary Adenomas. Neurosurgery, 1996, 38, 362-366.	0.6	7
144	Regulation of striatal D1A dopamine receptor gene transcription by Brn-4 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11933-11938.	3.3	29

#	Article	IF	CITATIONS
145	In Vivo Genomic Footprinting of Thyroid Hormone-Responsive Genes in Pituitary Tumor Cell Lines. Molecular and Cellular Biology, 1996, 16, 4465-4477.	1.1	22
146	Expression of the pituitary transcription factor GHF-1/PIT-1 in cell types of the adult porcine adenohypophysis Journal of Histochemistry and Cytochemistry, 1996, 44, 621-627.	1.3	6
147	Site-Specific Methylation of the Rat Prolactin and Growth Hormone Promoters Correlates with Gene Expression. Molecular and Cellular Biology, 1996, 16, 3245-3254.	1.1	44
148	Selective constraints on the activation domain of transcription factor Pit-1 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10256-10261.	3.3	17
149	Expression and regulation of transforming growth factor β1 in cultured normal and neoplastic rat pituitary cells. Endocrine Pathology, 1996, 7, 77-90.	5.2	14
150	In situ hybridization analysis of Pit-1 mRNA and hormonal production in human pituitary adenomas. Acta Neuropathologica, 1996, 91, 263-268.	3.9	32
151	A Case of pituitary somatotroph adenoma with concomitant secretion of growth hormone, prolactin, and adrenocorticotropic hormone ? an adenoma derived from primordial stem cell, studied by immunohistochemistry, in situ hybridization, and cell culture. Acta Neurochirurgica, 1996, 138, 1002-1007.	0.9	22
152	POU-domain gene expression during spermatogenesis. World Journal of Urology, 1996, 14, 274-7.	1.2	2
153	Evidence for a Trophic Action of the Glycoprotein Hormone ?-Subunit in Rat Pituitary. Journal of Neuroendocrinology, 1996, 8, 99-102.	1.2	35
154	Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genetics, 1996, 14, 392-399.	9.4	852
155	Role of transcription factors a Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature, 1996, 381, 603-606.	13.7	512
156	Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature, 1996, 384, 327-333.	13.7	748
157	Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene Genes and Development, 1996, 10, 1284-1295.	2.7	384
158	An Activation Function in Pit-1 Required Selectively for Synergistic Transcription. Journal of Biological Chemistry, 1996, 271, 17733-17738.	1.6	31
159	AP-1 and Oct-1 Transcription Factors Down-regulate the Expression of the Human PIT1/GHF1 Gene. Journal of Biological Chemistry, 1996, 271, 32349-32358.	1.6	61
160	Thyroid Hormone Receptor β2 Promoter Activity in Pituitary Cells Is Regulated by Pit-1. Journal of Biological Chemistry, 1996, 271, 24213-24220.	1.6	23
161	A 26-Amino Acid Insertion Domain Defines a Functional Transcription Switch Motif in Pit-1β. Journal of Biological Chemistry, 1996, 271, 28925-28932.	1.6	23
162	The role of the near upstream sequence in hypoxia-induced expression of the erythropoietin gene. Nucleic Acids Research, 1996, 24, 4768-4774.	6.5	19

#	Article	IF	CITATIONS
163	Pituitary-specific chromatin structure of the rat prolactin distal enhancer element. Nucleic Acids Research, 1996, 24, 1065-1072.	6.5	16
164	Glycoprotein hormone alpha-subunit functions synergistically with progesterone to stimulate differentiation of cultured human endometrial stromal cells to decidualized cells: a novel role for free alpha-subunit in reproduction Endocrinology, 1996, 137, 1332-1339.	1.4	38
165	Targeted ablation of cells in the pituitary primordia of transgenic mice Molecular Endocrinology, 1996, 10, 1467-1477.	3.7	27
166	Multiple Characteristics of a Pentameric Regulatory Array Endow the Human α-Subunit Glycoprotein Hormone Promoter with Trophoblast Specificity and Maximal Activity. Molecular Endocrinology, 1997, 11, 1669-1680.	3.7	29
167	The Tripartite Basal Enhancer of the Gonadotropin-Releasing Hormone (GnRH) Receptor Gene Promoter Regulates Cell-Specific Expression Through a Novel GnRH Receptor Activating Sequence. Molecular Endocrinology, 1997, 11, 1814-1821.	3.7	74
168	Involvement of Glucocorticoid-Induced Factor(s) in the Stimulation of Growth Hormone Expression in the Fetal Rat Pituitary Gland in Vitro*. Endocrinology, 1997, 138, 1810-1815.	1.4	46
169	Activities in Pit-1 Determine Whether Receptor Interacting Protein 140 Activates or Inhibits Pit-1/Nuclear Receptor Transcriptional Synergy. Molecular Endocrinology, 1997, 11, 1332-1341.	3.7	50
170	A Growth Hormone-Releasing Hormone-Producing Pancreatic Islet Cell Tumor Metastasized to the Pituitary Is Associated with Pituitary Somatotroph Hyperplasia and Acromegaly. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2731-2737.	1.8	34
171	Msx1 Is Present in Thyrotropic Cells and Binds to a Consensus Site on the Glycoprotein Hormone α-Subunit Promoter. Molecular Endocrinology, 1997, 11, 1782-1794.	3.7	25
172	Production and Characterization of Specific Anti-peptide Antiserum Against Free α-subunit of Rat Pituitary Glycoprotein Hormones. Journal of Histochemistry and Cytochemistry, 1997, 45, 985-990.	1.3	5
173	Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Human Molecular Genetics, 1997, 6, 457-464.	1.4	243
174	Pit-1 and GATA-2 Interact and Functionally Cooperate to Activate the Thyrotropin β-Subunit Promoter. Journal of Biological Chemistry, 1997, 272, 24339-24347.	1.6	128
175	A Binding Site for Steroidogenic Factor-1 is Part of a Complex Enhancer that Mediates Expression of the Murine Gonadotropin-Releasing Hormone Receptor Gene1. Biology of Reproduction, 1997, 56, 160-168.	1.2	93
176	Pituitary Gonadotrophs are Strongly Activated at the Beginning of Spermatogenesis in African Catfish, Clarias Gariepinus. Biology of Reproduction, 1997, 57, 139-147.	1.2	49
177	POU domain family values: flexibility, partnerships, and developmental codes Genes and Development, 1997, 11, 1207-1225.	2.7	447
178	A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins Genes and Development, 1997, 11, 1370-1380.	2.7	267
179	Chapter 2 Molecular aspects of hormone deficiency caused by Pit-1 gene mutations. Advances in Molecular and Cellular Endocrinology, 1997, , 31-50.	0.1	0
180	Chapter 3 Regulation of growth hormone gene expression. Advances in Molecular and Cellular Endocrinology, 1997, , 51-82.	0.1	1

		CITATION REPORT		
#	Article		IF	CITATIONS
181	Prolactin. Principles of Medical Biology, 1997, , 439-450.		0.1	0
182	Role of Estrogen Receptor- \hat{l} \pm in the Anterior Pituitary Gland. Molecular Endocrinology,	1997, 11, 674-681.	3.7	187
183	Molecular and Cellular Ontogeny of Distinct Pituitary Cell Types. , 1997, , 1-31.			2
184	Growth Hormone. , 1997, , 79-112.			1
185	Multistep Control of Pituitary Organogenesis. Science, 1997, 278, 1809-1812.		6.0	355
186	The PIT-1 Gene Is Regulated by Distinct Early and Late Pituitary-Specific Enhancers. De Biology, 1997, 182, 180-190.	velopmental	0.9	69
187	Pituitary-directed leukemia inhibitory factor transgene forms Rathke's cleft cysts and i pituitary function. A model for human pituitary Rathke's cysts Journal of Clinical Inves 99, 2462-2469.	mpairs adult stigation, 1997,	3.9	66
188	Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuro system 1Published on the World Wide Web on 3 June 1997. 1. Brain Research Review	endocrine s, 1997, 24, 255-291.	9.1	86
189	Characterization of DNA regions mediating the ability of Ca2+/calmodulin dependent to stimulate prolactin promoter activity. Molecular and Cellular Endocrinology, 1997,	protein kinase II 132, 109-116.	1.6	10
190	Changes in prolactin secretion in postnatal rats and effect of neonatal thyroidectomy. and Cellular Endocrinology, 1997, 134, 101-107.	Molecular	1.6	6
191	Gene coding for the transcription factor, SUG/proteasome, p45 is located nearly 40kb from the rat growth hormone gene. Gene, 1997, 198, 323-327.	downstream	1.0	7
192	Gene structure of rat BAF60b, a component of mammalian SWI/SNF complexes, and it to the growth hormone gene and transcription factor SUG/proteasome p45 gene. Ger 157-165.	s physical linkage e, 1997, 202,	1.0	14
193	Evidence That the Homeodomain Protein Gtx Is Involved in the Regulation of Oligoder Myelination. Journal of Neuroscience, 1997, 17, 6657-6668.	drocyte	1.7	61
194	Chromatin Structure of the Rat Somatotropin Gene Locus and Physical Linkage of the Somatotropin Gene and Skeletal-Muscle Sodium-Channel Gene. FEBS Journal, 1997, 2	Rat 44, 494-500.	0.2	12
195	Cytochemical studies of multifunctional gonadotropes. Microscopy Research and Tech 114-130.	ınique, 1997, 39,	1.2	25
196	Transcription factors in normal and neoplastic pituitary tissues. , 1997, 39, 168-181.			36
197	Development and differentiation of pituitary cells. , 1997, 39, 98-113.			34
198	How many homeobox genes does it take to make a pituitary gland?. Trends in Genetic	s, 1998, 14, 284-290.	2.9	150

ARTICLE IF CITATIONS Expression of the tissue-specific transcription factor Pit-1 in the lancelet, Bbranchiostoma 199 0.9 34 lanceolatum. Journal of Comparative Neurology, 1998, 392, 343-351. Evidence for the presence of the tissue-specific transcription factor Pit-1 in lancelet larvae., 1998, 400, 310-316. Co-regulation of pituitary tumor cell adhesion and prolactin gene expression by glucocorticoid. 201 2.0 13 Journal of Cellular Physiology, 1998, 174, 115-124. Simultaneous localization of Pit-1 protein and gonadotropins on the same cell type in the anterior 0.8 pituitary glands of the rat. Histochemistry and Cell Biology, 1998, 110, 183-188. Anterior pituitary development and Pit-1/GHF-1 transcription factor. Cellular and Molecular Life 203 2.4 15 Sciences, 1998, 54, 1059-1066. Presence of Gonadotropinâ€Releasing Hormone (GnRH) mRNA in Rathke's Pouch and Effect of the 204 GnRH $\hat{a}\in$ Antagonist ORG 30276 on Lactotroph Development. Journal of Neuroendocrinology, 1998, 10, 1.2 437-445. Discrete stages of anterior pituitary differentiation recapitulated in immortalized cell lines. 205 1.6 34 Molecular and Cellular Endocrinology, 1998, 140, 25-30. Physical Linkage of the B29/lg-12 (CD79B) Gene to the Skeletal Muscle, Sodium-Channel, and Growth 206 1.3 Hormone Genes in Rat and Human. Genomics, 1998, 48, 363-368. Multistep signaling requirements for pituitary organogenesis in vivo. Genes and Development, 1998, 12, 207 2.7 432 1691-17'04. Visualization of Pit-1 Transcription Factor Interactions in the Living Cell Nucleus by Fluorescence 208 118 Resonance Energy Transfer Microscopy. Molecular Endocrinology, 1998, 12, 1410-1419. The pan-Pituitary Activator of Transcription, Ptx1 (Pituitary Homeobox 1), Acts in Synergy with SF-1 and 209 Pit1 and Is an Upstream Regulator of the Lim-Homeodomain Gene Lim3/Lhx3. Molecular Endocrinology, 285 3.7 1998, 12, 428-441. Pituitary-Directed Leukemia Inhibitory Factor Transgene Causes Cushing's Syndrome: Neuro-Immune-Endocrine Modulation of Pituitary Development. Molecular Endocrinology, 1998, 12, 84 1709,1720 The Thyrotropin β-Subunit Gene Is Repressed by Thyroid Hormone in a Novel Thyrotrope Cell Line, Mouse TαT1 Ćells**This work was supported by NIH Research Grants R01-HD-20377 and HD-12303 (to P.L.M.) and R01-DK-36843 (to E.C.R.); fellowships from the Spanish Ministry of Education and Science and 211 1.4 43 Fundacion Jaime del Amo, Universidad Complutense de Madrid, Spain (to B.Y.); and a Ford Foundation Fellowship, the President's Fellowship of the University of California, and NIH National Research Scientist Award Fel. Endocrinology, 1998, 139, 4476-4482. Activation of the Prolactin Gene by Peroxisome Proliferator-activated Receptor-α Appears to Be DNA Binding-independent. Journal of Biological Chemistry, 1998, 273, 26652-26661. 1.6 Role of GHF-1 in the Regulation of the Rat Growth Hormone Gene Promoter by Thyroid Hormone and 213 32 1.6 Retinoic Acid Receptors. Journal of Biological Chemistry, 1998, 273, 27541-27547. The Cytogenesis and Pathogenesis of Pituitary Adenomas*. Endocrine Reviews, 1998, 19, 798-827. 214 8.9 285 Upstream Elements Involved in Vivo in Activation of the Brain-specific Rat Aldolase C Gene. Journal of 215 1.6 $\mathbf{13}$ Biological Chemistry, 1998, 273, 31806-31814. Synthesis of Turkey Pit-1 mRNA Variants by Alternative Splicing and Transcription Initiation. DNA and Cell Biology, 1998, 17, 93-103.

#	Article	IF	CITATIONS
217	Expression of Pit-1 mRNA and Activin/Inhibin Subunits in Clinically Nonfunctioning Pituitary Adenomas. Hormone Research in Paediatrics, 1998, 50, 11-17.	0.8	20
218	The Molecular Basis of Hypopituitarism. Hormone Research, 1998, 49, 30-36.	1.8	39
219	Corticosteroids Stimulate the Differentiation of Growth Hormone Cells But Suppress That of Prolactin Cells in the Fetal Rat Pituitary Archives of Histology and Cytology, 1998, 61, 75-81.	0.2	21
220	Functional Differentiation and its Regulation in Pituitary Cells Acta Histochemica Et Cytochemica, 1998, 31, 281-286.	0.8	6
221	Nuclear factor 1 regulates the distal silencer of the human PIT1/GHF1 gene. Biochemical Journal, 1998, 333, 77-84.	1.7	18
222	A Functional Thyrotropin- and Growth Hormone-Secreting Pituitary Adenoma with a Ultrastructurally Monomorphic Feature: A Case Study Endocrine Journal, 1998, 45, 211-219.	0.7	9
223	Pituitary Homeobox 1 (Ptx1) Is Differentially Expressed during Pituitary Development*. Endocrinology, 1999, 140, 1416-1422.	1.4	107
224	Defective Retinoic Acid Regulation of the Pit-1 Gene Enhancer: A Novel Mechanism of Combined Pituitary Hormone Deficiency. Molecular Endocrinology, 1999, 13, 476-484.	3.7	66
225	A Requirement for the POU Transcription Factor, Brn-2, in Corticotropin-Releasing Hormone Expression in a Neuronal Cell Line. Molecular Endocrinology, 1999, 13, 1237-1248.	3.7	25
226	Regulation of Estrogen Receptor Activation of the Prolactin Enhancer/Promoter by Antagonistic Activation Function-2-Interacting Proteins. Molecular Endocrinology, 1999, 13, 935-945.	3.7	45
227	The Molecular Pathogenesis of Corticotroph Tumors. Endocrine Reviews, 1999, 20, 136-155.	8.9	74
228	Reconstitution of the Protein Kinase A Response of the Rat Prolactin Promoter: Differential Effects of Distinct Pit-1 Isoforms and Functional Interaction with Oct-1. Molecular Endocrinology, 1999, 13, 228-238.	3.7	26
229	The Role of POU Domain Proteins in the Regulation of Mammalian Pituitary and Nervous System Development. Progress in Molecular Biology and Translational Science, 1999, 63, 223-255.	1.9	32
230	Pituitary Somatotroph Adenoma Producing Growth Hormone (GH)-Releasing Hormone (GHRH) with an Elevated Plasma GHRH Concentration: A Model Case for Autocrine and Paracrine Regulation of GH Secretion by GHRH1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3241-3247.	1.8	33
231	Thyroid Hormone Is Essential for Pituitary Somatotropes and Lactotropes*. Endocrinology, 1999, 140, 1884-1892.	1.4	48
232	Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14378-14382.	3.3	148
233	Steroidogenic factor 1-DNA binding: a kinetic analysis using surface plasmon resonance. Journal of Molecular Endocrinology, 1999, 22, 241-249.	1.1	8
234	Parotid gland tissue is able partially to assume pituitary functions under the influence of hypothalamic factors: in vivo and in vitro studies. Journal of Endocrinology, 1999, 160, 205-216.	1.2	6

#	Article	IF	CITATIONS
235	An Upstream Regulator of the Glycoprotein Hormone α-Subunit Gene Mediates Pituitary Cell Type Activation and Repression by Different Mechanisms. Journal of Biological Chemistry, 1999, 274, 15526-15532.	1.6	18
236	Mapping genes for fatness and growth on pig chromosome 13: a search in the region close to the pig PIT1 gene. Journal of Animal Breeding and Genetics, 1999, 116, 269-280.	0.8	38
237	Molecular determinants of pituitary cytodifferentiation. , 1999, 1, 159-168.		46
238	Aspects of anterior pituitary growth, with special reference to corticotrophs. , 1999, 1, 257-268.		44
239	Pit-1 positive alpha-subunit positive nonfunctioning human pituitary adenomas: a dedifferentiated CH cell lineage?. Pituitary, 1999, 1, 269-271.	1.6	8
240	Reverse transcription polymerase chain reaction analysis of pituitary hormone, Pit-1 and steroidogenic factor-1 messenger RNA expression in pituitary tumors. Pituitary, 1999, 2, 217-224.	1.6	2
241	Expression of Ptx1 in the adult rat pituitary glands and pituitary cell lines: hormone-secreting cells and folliculo-stellate cells. Cell and Tissue Research, 1999, 298, 55-61.	1.5	32
242	Early steps in pituitary organogenesis. Trends in Genetics, 1999, 15, 236-240.	2.9	132
243	Expression patterns of the hepatic leukemia factor gene in the nervous system of developing and adult mice. Brain Research, 1999, 820, 1-11.	1.1	29
244	Combined pituirary hormone deficency: role of Pitâ€1 and Propâ€1. Acta Paediatrica, International Journal of Paediatrics, 1999, 88, 33-41.	0.7	55
245	<i>HESX1</i> : a novel gene implicated in a familial form of septoâ€optic dysplasia. Acta Paediatrica, International Journal of Paediatrics, 1999, 88, 49-54.	0.7	36
246	Transcription factor Pit-1 expression is modulated upon seasonal acclimatization of eurythermal ectotherms: Identification of two Pit-1 genes in the carp. , 1999, 75, 598-609.		23
247	Ultrastructural and Immunoelectron Microscopic Study of Three Unusual Plurihormonal Pituitary Adenomas. Ultrastructural Pathology, 1999, 23, 141-148.	0.4	17
248	Interaction between estrogen receptor and Pit-1 protein is influenced by estrogen in pituitary cells. Journal of Steroid Biochemistry and Molecular Biology, 1999, 68, 145-152.	1.2	16
249	Transcription Factors and Hypopituitarism. Trends in Endocrinology and Metabolism, 1999, 10, 326-332.	3.1	12
250	Genealogy of the Anterior Pituitary Gland: Tracing a Family Tree. Trends in Endocrinology and Metabolism, 1999, 10, 343-352.	3.1	86
251	Combinatorial codes in signaling and synergy: lessons from pituitary development. Current Opinion in Genetics and Development, 1999, 9, 566-574.	1.5	63
252	PIT1 abnormality. Growth Hormone and IGF Research, 1999, 9, 18-23.	0.5	27

#	Article	IF	CITATIONS
253	The tissue-specific transcription factor Pit-1 is expressed in the spinal cord of the lancelet, Branchiostoma lanceolatum. Neuroscience Letters, 1999, 260, 25-28.	1.0	4
254	Quantitative analysis of growth-related factors in human pituitary adenomas. Regulatory Peptides, 1999, 83, 31-38.	1.9	16
255	Gene structure of rat testicular cell adhesion molecule 1 (TCAM-1), and its physical linkage to genes coding for the growth hormone and BAF60b, a component of SWI/SNF complexes. Gene, 1999, 226, 95-102.	1.0	10
256	Cloning, chromosomal localization and identification of polymorphisms in the human thyroid transcription factor 2 gene (TITF2). Biochimie, 1999, 81, 433-440.	1.3	57
257	Targeted ablation of gonadotrophs in transgenic mice affects embryonic development of lactotrophs. Molecular and Cellular Endocrinology, 1999, 150, 129-139.	1.6	32
258	Progenitor cells in the embryonic anterior pituitary abruptly and concurrently depress mitotic rate before progressing to terminal differentiation. Molecular and Cellular Endocrinology, 1999, 150, 57-63.	1.6	19
259	Autoregulation of the rat prolactin gene in lactotrophs. Molecular and Cellular Endocrinology, 1999, 158, 99-109.	1.6	22
260	Multiple binding sites for nuclear proteins of the anterior pituitary are located in the 5′-flanking region of the porcine follicle-stimulating hormone (FSH) β-subunit gene. Molecular and Cellular Endocrinology, 1999, 158, 69-78.	1.6	11
261	Reciprocal Interactions of Pit1 and GATA2 Mediate Signaling Gradient–Induced Determination of Pituitary Cell Types. Cell, 1999, 97, 587-598.	13.5	292
264	Multifunctional Role of the Pitx2 Homeodomain Protein C-Terminal Tail. Molecular and Cellular Biology, 1999, 19, 7001-7010.	1.1	111
265	Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes and Development, 1999, 13, 2787-2800.	2.7	175
266	Immunohistochemical Studies of Early Changes of Pituitary Clands Induced by Synthetic Salmon Calcitonin(sCT) in Sprague-Dawley Rats. Experimental Models for the Human Alpha-Subunit-Producing Pituitary Adenomas Acta Histochemica Et Cytochemica, 1999, 32, 345-350.	0.8	0
267	Transcriptional Properties of Ptx1 and Ptx2 Isoforms. Neuroendocrinology, 2000, 71, 277-286.	1.2	90
268	Idiopathic Growth Hormone Deficiency: A Vanishing Diagnosis?. Hormone Research in Paediatrics, 2000, 53, 1-8.	0.8	6
269	The molecular basis for developmental disorders of the pituitary gland in man. Clinical Genetics, 2000, 57, 337-346.	1.0	92
270	Complementary DNA Cloning and Ontogenic Expression of Pituitary-Specific Transcription Factor of Chickens (Gallus domesticus) from the Pituitary Gland. General and Comparative Endocrinology, 2000, 120, 127-136.	0.8	33
271	Genetic Regulation of the Embryology of the Pituitary Gland and Somatotrophs. Endocrine, 2000, 12, 99-106.	2.2	29
272	Rieger syndrome: a clinical, molecular, and biochemical analysis. Cellular and Molecular Life	2.4	104

#	Article	IF	CITATIONS
273	Transdifferentiation of somatotrophs to thyrotrophs in the pituitary of patients with protracted primary hypothyroidism. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2000, 436, 43-51.	1.4	88
274	Differentiation of Lactotrope Precursor GHFT Cells in Response to Fibroblast Growth Factor-2. Journal of Biological Chemistry, 2000, 275, 21653-21660.	1.6	14
275	Estrogen-modulated Estrogen Receptor·Pit-1 Protein Complex Formation and Prolactin Gene Activation Require Novel Protein Synthesis. Journal of Biological Chemistry, 2000, 275, 15407-15412.	1.6	7
276	Effect of neonatal and adult testosterone treatment on the cellular composition of the adult female rat anterior pituitary. Journal of Endocrinology, 2000, 164, 265-276.	1.2	13
277	Pituitary Hormone Gene Expression and Secretion in Human Growth Hormone-Releasing Hormone Transgenic Mice: Focus on Lactotroph Function1. Endocrinology, 2000, 141, 81-90.	1.4	4
278	Expression of Pituitary Homeo Box 1 (Ptx1) in Human Non-Neoplastic Pituitaries and Pituitary Adenomas. Modern Pathology, 2000, 13, 1097-1108.	2.9	13
279	Adrenocorticotropin Deficiency in Combined Pituitary Hormone Deficiency Patients Homozygous for a Novel PROP1 Deletion. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4556-4561.	1.8	107
280	Expression of the Pituitary Transcription Factor Ptx-1, But Not That of the <i>Trans</i> -Activating Factor Prop-1, Is Reduced in Human Corticotroph Adenomas and Is Associated with Decreasedl± -Subunit Secretion ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2537-2542.	1.8	17
281	Pituitary and extrapituitary growth hormone: Pit-1 dependence?. Canadian Journal of Physiology and Pharmacology, 2000, 78, 1013-1028.	0.7	43
282	Structure and function of the growth-hormone-releasing hormone receptor. Vitamins and Hormones, 2000, 59, 35-69.	0.7	29
283	Contributions of Immunohistochemistry and In Situ Hybridization to the Functional Analysis of Pituitary Adenomas. Journal of Histochemistry and Cytochemistry, 2000, 48, 445-458.	1.3	22
284	Molecular Genetics of Septo-Optic Dysplasia. Hormone Research in Paediatrics, 2000, 53, 26-33.	0.8	15
285	Transcription Factors in Pituitary Gland Development and Their Clinical Impact on Phenotype. Hormone Research in Paediatrics, 2000, 54, 107-119.	0.8	22
286	The Pit-1 Homeodomain and β-Domain Interact with Ets-1 and Modulate Synergistic Activation of the Rat Prolactin Promoter. Journal of Biological Chemistry, 2000, 275, 3100-3106.	1.6	50
287	A POU Domain Transcription Factor–Dependent Program Regulates Axon Pathfinding in the Vertebrate Visual System. Neuron, 2000, 28, 779-792.	3.8	150
288	Combined pituitary hormone deficiency in German shepherd dogs with dwarfism. Domestic Animal Endocrinology, 2000, 19, 177-190.	0.8	41
289	Expression of the common α-subunit mRNA of glycoprotein hormones during the chick pituitary organogenesis, with special reference to the pars tuberalis. Cell and Tissue Research, 2000, 299, 71-80.	1.5	20

#	Article	IF	CITATIONS
291	Retinoic Acids and Thyroid Hormone Act Synergistically with Dexamethasone to Increase Growth Hormone-Releasing Hormone Receptor Messenger Ribonucleic Acid Expression*. Endocrinology, 2000, 141, 4396-4401.	1.4	19
292	Genetic aspects of central hypothyroidism. Journal of Endocrinological Investigation, 2000, 23, 125-134.	1.8	9
293	Signaling and Transcriptional Mechanisms in Pituitary Development. Annual Review of Neuroscience, 2001, 24, 327-355.	5.0	190
294	Transcription factors in pituitary development. Molecular and Cellular Endocrinology, 2001, 185, 1-16.	1.6	28
295	Cytochemical and Molecular BiologicalAspects of the Pituitary and Pituitary Adenomas — Cell Differentiation and Transcription Factors. Progress in Histochemistry and Cytochemistry, 2001, 36, 263-299.	5.1	16
296	CLONING OF THE FULL LENGTH PIGPIT1(POU1F1)CDNA AND A NOVEL ALTERNATIVEPIT1TRANSCRIPT, AND FUNCTIONAL STUDIES OF THEIR ENCODED PROTEINS. Animal Biotechnology, 2001, 12, 1-19.	0.7	14
297	Endocrine System and Endocrine Disrupting Chemicals(EDCs) Journal of Toxicologic Pathology, 2001, 14, 59-64.	0.3	0
298	Genetic Defects during Later Stages of Pituitary Development: The Clinical Phenotype of Pit-1 and Prop-1 Mutations. Clinical Pediatric Endocrinology, 2001, 10, 97-106.	0.4	0
299	Pituitary Transcription Factors, POU1F1 and PROP1 Defects. , 2001, 4, 61-76.		2
300	Septo-Optic Dysplasia and Related Malformations. , 2001, 4, 77-93.		0
301	Effect of Estradiol and FBS on PRL Cells, GH Cells, and PRL/GH Cells in Primary Cultures of Pituitary Cells from Prenatal Rats. Experimental Biology and Medicine, 2001, 226, 140-143.	1.1	3
302	Effects of diethylstilbestrol on the cytogenesis of prolactin cells in the pars distalis of the pituitary gland of the mouse. Cell and Tissue Research, 2001, 306, 301-307.	1.5	20
303	Characterization and expression pattern ofpoull1, a novel class II POU gene in zebrafish. Science Bulletin, 2001, 46, 1523-1527.	1.7	8
304	The Turkey Transcription Factor Pit-1/GHF-1 Can Activate the Turkey Prolactin and Growth Hormone Gene Promoters in Vitro but Is Not Detectable in Lactotrophs in Vivo. General and Comparative Endocrinology, 2001, 123, 244-253.	0.8	16
305	Pituitary leptin gene expression is reduced by neonatal androgenization of female rats. Pituitary, 2001, 4, 63-70.	1.6	10
306	Histopathological Analyses of Silent Pituitary Somatotroph Adenomas Using Immunohistochemistry, in situ Hybridization and Confocal Laser Scanning Microscopic Observation. Pathology Research and Practice, 2001, 197, 13-20.	1.0	9
307	Pitx2 Regulates Procollagen Lysyl Hydroxylase (Plod) Gene Expression. Journal of Cell Biology, 2001, 152, 545-552.	2.3	78
308	Prolactin and the Prolactin Receptor. , 2001, , 231-244.		0

#	Article	IF	CITATIONS
309	Proximal cis-Acting Elements, Including Steroidogenic Factor 1, Mediate the Efficiency of a Distal Enhancer in the Promoter of the Rat Gonadotropin-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2001, 15, 319-337.	3.7	48
310	Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Human Molecular Genetics, 2001, 10, 39-45.	1.4	268
311	CCAAT/Enhancer Binding Protein Î ² Regulates Expression of the Cystatin-Related Epididymal Spermatogenic (Cres) Gene1. Biology of Reproduction, 2001, 65, 1452-1461.	1.2	15
312	Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes and Development, 2001, 15, 3193-3207.	2.7	168
313	Identification, cellular and subcellular distribution of 21 and 72 kDa proteins (tuberalins?) secreted by specific cells of the pars tuberalis. Journal of Endocrinology, 2001, 168, 363-379.	1.2	24
314	POU Domain Factors in the Neuroendocrine System: Lessons from Developmental Biology Provide Insights into Human Disease*. Endocrine Reviews, 2001, 22, 2-35.	8.9	354
315	Molecular Basis of Combined Pituitary Hormone Deficiencies. Endocrine Reviews, 2002, 23, 431-442.	8.9	210
316	Novel Function of the Transactivation Domain of a Pituitary-specific Transcription Factor, Pit-1. Journal of Biological Chemistry, 2002, 277, 45141-45148.	1.6	32
317	Fetal Brain Progenitor Cells Transdifferentiate to Fates Outside the Nervous System. Molecular Endocrinology, 2002, 16, 2645-2656.	3.7	15
318	Expression of GATA-2 in Human Pituitary Adenomas. Modern Pathology, 2002, 15, 11-17.	2.9	42
319	Exogenous expression of Pit-1 in AtT-20 corticotropic cells induces endogenous growth hormone gene transcription. Journal of Endocrinology, 2002, 172, 477-487.	1.2	16
320	Pit-1/GHF-1 and GH expression in the MCF-7 human breast adenocarcinoma cell line. Journal of Endocrinology, 2002, 173, 161-167.	1.2	24
321	Expression of Ayu (Plecoglossus altivelis) Pit-1 in Escherichia coli: Its Purification and Immunohistochemical Detection Using Monoclonal Antibody. Protein Expression and Purification, 2002, 24, 292-301.	0.6	6
322	Domains of Pit-1 required for transcriptional synergy with GATA-2 on the TSHÎ ² gene. Molecular and Cellular Endocrinology, 2002, 196, 53-66.	1.6	32
323	Development of the neuroendocrine hypothalamus. Frontiers in Neuroendocrinology, 2002, 23, 257-291.	2.5	139
324	The tissue-specific transcription factor Pit-1 in the Antarctic notothenioid fish, Trematomus bernacchii. Polar Biology, 2002, 25, 506-511.	0.5	0
325	Ontogeny of Plurihormonal Cells in the Anterior Pituitary of the Mouse, as Studied by Means of Hormone mRNA Detection in Single Cells. Journal of Neuroendocrinology, 2002, 14, 611-619.	1.2	30
326	A Case of Cushing's Disease Caused by Pituitary Adenoma Producing Adrenocorticotropic Hormone and Growth Hormone Concomitantly: Aberrant Expression of Transcription Factors NeuroD1 and Pit-1 as a Proposed Mechanism, Modern Pathology, 2002, 15, 1102-1105.	2.9	36

#	Article	IF	Citations
327	HESX1 and Septo-Optic Dysplasia. Reviews in Endocrine and Metabolic Disorders, 2002, 3, 289-300.	2.6	34
328	Other transcription factors and hypopituitarism. Reviews in Endocrine and Metabolic Disorders, 2002, 3, 301-311.	2.6	6
329	Expression of Pit-1 and Growth Hormone-Releasing Hormone Receptor mRNA in Human Pituitary Adenomas: Difference Among Functioning, Silent, and Other Nonfunctioning Adenomas. Endocrine Pathology, 2002, 13, 83-98.	5.2	13
330	Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. Journal of Biomedical Science, 2003, 10, 805-812.	2.6	10
331	Transcriptional control during mammalian anterior pituitary development. Gene, 2003, 319, 1-19.	1.0	113
332	DNA testing in patients with GH deficiency at the time of transition. Growth Hormone and IGF Research, 2003, 13, S122-S129.	O.5	9
333	The Wnt/β-Catenin→Pitx2 Pathway Controls the Turnover of Pitx2 and Other Unstable mRNAs. Molecular Cell, 2003, 12, 1201-1211.	4.5	156
334	Paracrine control of lactotrope proliferation and differentiation. Trends in Endocrinology and Metabolism, 2003, 14, 188-195.	3.1	37
335	The R271W mutant form of Pit-1 does not act as a dominant inhibitor of Pit-1 action to activate the promoters of GH and prolactin genes. European Journal of Endocrinology, 2003, 148, 619-625.	1.9	12
336	A Novel Nonsense Mutation in the Pit-1 Gene: Evidence for a Gene Dosage Effect. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1241-1247.	1.8	16
337	The De Novo Q167K Mutation in the POU1F1 Gene Leads to Combined Pituitary Hormone Deficiency in an Italian Patient. Pediatric Research, 2003, 54, 635-640.	1.1	21
338	Stimulation of Combinatorial Expression of Prolactin and Glycoprotein Hormone α-Subunit Genes by Gonadotropin-Releasing Hormone and Estradiol-17β in Single Rat Pituitary Cells during Aggregate Cell Culture. Endocrinology, 2003, 144, 388-399.	1.4	27
339	Regulation of the Intronic Promoter of Rat Estrogen Receptor α Gene, Responsible for Truncated Estrogen Receptor Product-1 Expression. Endocrinology, 2003, 144, 2845-2855.	1.4	9
340	A PIT-1 Homeodomain Mutant Blocks the Intranuclear Recruitment Of the CCAAT/Enhancer Binding Protein α Required for Prolactin Gene Transcription. Molecular Endocrinology, 2003, 17, 209-222.	3.7	50
341	TCF and Groucho-Related Genes Influence Pituitary Growth and Development. Molecular Endocrinology, 2003, 17, 2152-2161.	3.7	97
342	Immunocytochemical Identification of Pit-1 Containing Cells in the Anterior Pituitary of Hens. Journal of Reproduction and Development, 2003, 49, 375-379.	O.5	3
343	Associations of polymorphisms in the Pit-1 gene with growth and carcass traits in Angus beef cattle12. Journal of Animal Science, 2004, 82, 2229-2233.	0.2	61
344	Glucocorticoid Induction of Lactotrophs and Prolactin Gene Expression in Chicken Embryonic Pituitary Cells: A Delayed Response Relative to Stimulated Growth Hormone Production. Endocrinology, 2004, 145, 1322-1330.	1.4	28

#	Article	IF	CITATIONS
345	Evidence that lactotrophs do not differentiate directly from somatotrophs during chick embryonic development. Journal of Endocrinology, 2004, 183, 417-425.	1.2	13
346	TALE Homeodomain Proteins Regulate Gonadotropin-releasing Hormone Gene Expression Independently and via Interactions with Oct-1. Journal of Biological Chemistry, 2004, 279, 30287-30297.	1.6	48
347	Sexual Dimorphism and the Immune System. , 2004, , 1071-1081.		0
348	From Panhypopituitarism to Combined Pituitary Deficiencies: Do We Need the Anterior Pituitary?. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 5-13.	2.6	9
349	Immunolocalization of Pit-1 in gonadotroph nuclei is indicative of the transdifferentiation of gonadotroph to lactotroph cells in prolactinomas induced by estrogen. Histochemistry and Cell Biology, 2004, 121, 453-62.	0.8	27
350	News and views in Histochemistry and Cell Biology. Histochemistry and Cell Biology, 2004, 122, 593-621.	0.8	0
351	Msx1disruption leads to diencephalon defects and hydrocephalus. Developmental Dynamics, 2004, 230, 446-460.	0.8	35
352	Inactivating Pit-1 mutations alter subnuclear dynamics suggesting a protein misfolding and nuclear stress response. Journal of Cellular Biochemistry, 2004, 92, 664-678.	1.2	8
353	WNT5A signaling affects pituitary gland shape. Mechanisms of Development, 2004, 121, 183-194.	1.7	79
354	Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Developmental Biology, 2004, 265, 329-340.	0.9	110
355	Cdk5 Phosphorylation of Doublecortin Ser297 Regulates Its Effect on Neuronal Migration. Neuron, 2004, 41, 215-227.	3.8	220
356	Growth hormone deficiency and related disorders: insights into causation, diagnosis, and treatment. Lancet, The, 2004, 363, 1977-1987.	6.3	101
357	Molecular Basis of Pituitary Development and Cytogenesis. , 2004, 32, 1-19.		42
358	Transcriptional frequency and cell determination. Journal of Theoretical Biology, 2005, 232, 151-156.	0.8	3
359	Double Adenomas of the Pituitary: Transcription Factors Pit-1, T-pit, and SF-1 Identify Cytogenesis and Differentiation. Endocrine Pathology, 2005, 16, 187-194.	5.2	40
360	Estrogen receptor-?, but not estrogen receptor-?, is expressed in prolactin neurons of the female rat paraventricular and supraoptic nuclei: Comparison with other neuropeptides. Journal of Comparative Neurology, 2005, 484, 28-42.	0.9	88
361	Colocalization of GH, TSH and prolactin, but not ACTH, with ?LH-immunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell and Tissue Research, 2005, 319, 413-421.	1.5	18
362	Induction of GH, PRL, and TSHÎ ² mRNA by transfection of Pit-1 in a human pituitary adenoma-derived cell line. Cell and Tissue Research, 2005, 322, 269-277.	1.5	23

#	Article	IF	CITATIONS
363	Pit-1 is expressed in normal and tumorous human breast and regulates GH secretion and cell proliferation. European Journal of Endocrinology, 2005, 153, 335-344.	1.9	46
364	Pit-1Ĵ² reduces transcription and CREB-binding protein recruitment in a DNA context-dependent manner. Journal of Endocrinology, 2005, 185, 173-185.	1.2	12
365	Silent Adenoma Subtype 3 of the Pituitary—lmmunohistochemical and Ultrastructural Classification: A Review of 29 Cases. Ultrastructural Pathology, 2005, 29, 511-524.	0.4	80
366	Multistep differentiation of GH-producing cells from their immature cells. Journal of Endocrinology, 2005, 184, 41-50.	1.2	34
367	The Zinc Finger Ikaros Transcription Factor Regulates Pituitary Growth Hormone and Prolactin Gene Expression through Distinct Effects on Chromatin Accessibility. Molecular Endocrinology, 2005, 19, 1004-1011.	3.7	40
368	Novel Mutations within the POU1F1 Gene Associated with Variable Combined Pituitary Hormone Deficiency. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4762-4770.	1.8	111
369	PITX Genes Are Required for Cell Survival and Lhx3 Activation. Molecular Endocrinology, 2005, 19, 1893-1903.	3.7	128
370	The Mimecan Gene Expressed in Human Pituitary and Regulated by Pituitary Transcription Factor-1 as a Marker for Diagnosing Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6657-6664.	1.8	26
371	Pituitary Transcription Factor-1 Induces Transient Differentiation of Adult Hepatic Stem Cells into Prolactin-Producing Cells in Vivo. Molecular Endocrinology, 2005, 19, 964-971.	3.7	25
372	The Adult Pituitary Contains a Cell Population Displaying Stem/Progenitor Cell and Early Embryonic Characteristics. Endocrinology, 2005, 146, 3985-3998.	1.4	228
373	Novel Molecular Signaling and Classification of Human Clinically Nonfunctional Pituitary Adenomas Identified by Gene Expression Profiling and Proteomic Analyses. Cancer Research, 2005, 65, 10214-10222.	0.4	189
374	Regulation of pituitary somatotroph differentiation by hormones of peripheral endocrine glands. Domestic Animal Endocrinology, 2005, 29, 52-62.	0.8	36
375	Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes and Development, 2006, 20, 2739-2753.	2.7	170
376	Homeodomain-Mediated β-Catenin-Dependent Switching Events Dictate Cell-Lineage Determination. Cell, 2006, 125, 593-605.	13.5	257
377	Identification and characterization of four splicing variants of ovine POU1F1 gene. Gene, 2006, 382, 12-19.	1.0	19
378	The chicken pituitary-specific transcription factor pit-1 is involved in the hypothalamic regulation of pituitary hormones. Acta Veterinaria Hungarica, 2006, 54, 455-471.	0.2	2
379	Regulation of MT1 Melatonin Receptor Expression in the Foetal Rat Pituitary. Journal of Neuroendocrinology, 2006, 18, 50-56.	1.2	28
380	Immunonegative "Null Cell" Adenomas and Gonadotropin (Gn) Subunit (SUs) Immunopositive Adenomas Share Frequent Expression of Multiple Transcription Factors. Endocrine Pathology, 2006, 17, 35-44.	5.2	8

#	Article	IF	CITATIONS
381	Gene expression profiling during cellular differentiation in the embryonic pituitary gland using cDNA microarrays. Physiological Genomics, 2006, 25, 414-425.	1.0	49
382	Cells of Proopiomelanocortin Lineage from the Rodent Anterior Pituitary Lack Sexually Dimorphic Expression of Neurofilaments. Neuroendocrinology, 2006, 83, 360-370.	1.2	2
383	Regulation of 5′-Promoter Activity of the Rat Growth Hormone and Growth Hormone-Releasing Hormone Receptor Genes in the MtT/S and MtT/E Cells. Neuroendocrinology, 2006, 84, 31-41.	1.2	9
384	Molecular Mechanisms of Pituitary Differentiation and Regulation: Implications for Hormone Deficiencies and Hormone Resistance Syndromes. , 2006, 35, 74-87.		28
385	The Vitamin D Receptor Represses Transcription of the Pituitary Transcription Factor Pit-1 Gene without Involvement of the Retinoid X Receptor. Molecular Endocrinology, 2006, 20, 735-748.	3.7	27
386	Role of Prophet of Pit1 (PROP1) in Gonadotrope Differentiation and Puberty. Endocrinology, 2006, 147, 1654-1663.	1.4	38
387	The Role of CBP/p300 Interactions and Pit-1 Dimerization in the Pathophysiological Mechanism of Combined Pituitary Hormone Deficiency. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 239-247.	1.8	25
388	A Pituitary Cell Type Coexpressing Messenger Ribonucleic Acid of Proopiomelanocortin and the Glycoprotein Hormone α-Subunit in Neonatal Rat and Chicken: Rapid Decline with Age and Reappearancein Vitrounder Regulatory Pressure of Corticotropin-Releasing Hormone in the Rat.	1.4	12
389	A Single Base Difference between Pit-1 Binding Sites at the hGH Promoter and Locus Control Region Specifies Distinct Pit-1 Conformations and Functions. Molecular and Cellular Biology, 2006, 26, 6535-6546.	1.1	19
390	Molecular Physiology of Pituitary Development: Signaling and Transcriptional Networks.		
	Physiological Reviews, 2007, 87, 933-963.	13.1	312
391	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983.	13.1 3.7	312 19
391 392	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63.	13.1 3.7 1.6	312 19 35
391 392 393	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63. Neuroendocrine complications of central nervous system malformations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 87, 433-450.	13.1 3.7 1.6 1.0	312 19 35 0
 391 392 393 394 	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63. Neuroendocrine complications of central nervous system malformations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 87, 433-450. Genetics of septo-optic dysplasia. Pituitary, 2007, 10, 393-407.	13.1 3.7 1.6 1.0 1.6	312 19 35 0 84
 391 392 393 394 395 	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63. Neuroendocrine complications of central nervous system malformations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 87, 433-450. Genetics of septo-optic dysplasia. Pituitary, 2007, 10, 393-407. Expression of retinaldehyde dehydrogenase (RALDH)2 and RALDH3 but not RALDH1 in the developing anterior pituitary glands of rats. Cell and Tissue Research, 2007, 328, 129-135.	13.1 3.7 1.6 1.0 1.6 1.5	 312 19 35 0 84 38
 391 392 393 394 395 396 	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63. Neuroendocrine complications of central nervous system malformations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 87, 433-450. Genetics of septo-optic dysplasia. Pituitary, 2007, 10, 393-407. Expression of retinaldehyde dehydrogenase (RALDH)2 and RALDH3 but not RALDH1 in the developing anterior pituitary glands of rats. Cell and Tissue Research, 2007, 328, 129-135. Detailed analysis of formation of chicken pituitary primordium in early embryonic development. Cell and Tissue Research, 2008, 333, 417-426.	 13.1 3.7 1.6 1.0 1.5 1.5 	 312 19 35 0 84 38 15
 391 392 393 394 395 396 397 	Physiological Reviews, 2007, 87, 933-963. Pituitary-Specific Expression and Pit-1 Regulation of the Rat Growth Hormone-Releasing Hormone Receptor Gene. Molecular Endocrinology, 2007, 21, 1969-1983. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Molecular and Cellular Endocrinology, 2007, 271, 55-63. Neuroendocrine complications of central nervous system malformations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2007, 87, 433-450. Genetics of septo-optic dysplasia. Pituitary, 2007, 10, 393-407. Expression of retinaldehyde dehydrogenase (RALDH)2 and RALDH3 but not RALDH1 in the developing anterior pituitary glands of rats. Cell and Tissue Research, 2007, 328, 129-135. Detailed analysis of formation of chicken pituitary primordium in early embryonic development. Cell and Tissue Research, 2008, 333, 417-426. The PIT1 gene polymorphisms were associated with chicken growth traits. BMC Genetics, 2008, 9, 20.	 13.1 3.7 1.6 1.0 1.5 1.5 2.7 	 312 19 35 0 84 38 15 35

#	Article	IF	CITATIONS
399	ATAD 3A and ATAD 3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic and chemoresistant properties. Experimental Cell Research, 2008, 314, 2870-2883.	1.2	42
400	Estradiol interacts with insulin through membrane receptors to induce an antimitogenic effect on lactotroph cells. Steroids, 2008, 73, 515-527.	0.8	26
401	Expression of the amphioxus Pit-1 gene (AmphiPOU1F1/Pit-1) exclusively in the developing preoral organ, a putative homolog of the vertebrate adenohypophysis. Brain Research Bulletin, 2008, 75, 324-330.	1.4	44
402	Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus. Growth Hormone and IGF Research, 2008, 18, 379-388.	0.5	20
403	Cell lineage-specific interactions between Men1 and Rb in neuroendocrine neoplasia. Carcinogenesis, 2008, 29, 620-628.	1.3	32
404	Identification and Analysis of Prophet of Pit-1-Binding Sites in Human Pit-1 Gene. Endocrinology, 2008, 149, 5491-5499.	1.4	9
405	Molecular Interaction of BMP-4, TGF-β, and Estrogens in Lactotrophs: Impact on the PRL Promoter. Molecular Endocrinology, 2009, 23, 1102-1114.	3.7	42
406	The role of IGF1 on the differentiation of prolactin secreting cells in the mouse anterior pituitary. Journal of Endocrinology, 2009, 203, 231-240.	1.2	19
407	Transcriptional programs: Modelling higher order structure in transcriptional control. BMC Bioinformatics, 2009, 10, 218.	1.2	3
408	Expression of Pit-1 in Nonsomatotrope Cell Lines Induces Human Growth Hormone Locus Control Region Histone Modification and hGH-N Transcription. Journal of Molecular Biology, 2009, 390, 26-44.	2.0	6
409	Genetic Regulation of Pituitary Gland Development in Human and Mouse. Endocrine Reviews, 2009, 30, 790-829.	8.9	389
410	Classification, Pathobiology, Molecular Markers, and Intraoperative Pathology. , 2010, , 70-91.		1
411	Involvement of insulin-like growth factor-I for the regulation of prolactin synthesis by estrogen and postnatal proliferation of lactotrophs in the mouse anterior pituitary. Cell and Tissue Research, 2010, 340, 147-158.	1.5	6
412	Effects of POU1F1 and GH1 genotypes on carcass traits in Hanwoo cattle. Genes and Genomics, 2010, 32, 105-109.	0.5	5
412 413	Effects of POU1F1 and GH1 genotypes on carcass traits in Hanwoo cattle. Genes and Genomics, 2010, 32, 105-109. Pituitary tumors: Cell type-specific roles for BMP-4. Molecular and Cellular Endocrinology, 2010, 326, 85-88.	0.5	5
412 413 414	Effects of POU1F1 and GH1 genotypes on carcass traits in Hanwoo cattle. Genes and Genomics, 2010, 32, 105-109. Pituitary tumors: Cell type-specific roles for BMP-4. Molecular and Cellular Endocrinology, 2010, 326, 85-88. Changes in Gene Expression during Pituitary Morphogenesis and Organogenesis in the Chick Embryo. Endocrinology, 2011, 152, 989-1000.	0.5 1.6 1.4	5 34 7
412413414415	Effects of POU1F1 and CH1 genotypes on carcass traits in Hanwoo cattle. Genes and Genomics, 2010, 32, 105-109.Pituitary tumors: Cell type-specific roles for BMP-4. Molecular and Cellular Endocrinology, 2010, 326, 85-88.Changes in Gene Expression during Pituitary Morphogenesis and Organogenesis in the Chick Embryo. Endocrinology, 2011, 152, 989-1000.The role of homeodomain transcription factors in heritable pituitary disease. Nature Reviews Endocrinology, 2011, 7, 727-737.	0.5 1.6 1.4 4.3	5 34 7 46

#	Article	IF	CITATIONS
417	Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: Differential effects of dexamethasone and thyroid hormone. Molecular and Cellular Endocrinology, 2011, 345, 48-57.	1.6	26
418	Genetic polymorphism of three genes associated with milk trait in Egyptian buffalo. Journal of Genetic Engineering and Biotechnology, 2011, 9, 97-102.	1.5	13
420	Ontogenic characterization of gene expression in the developing neuroendocrine system of the chick. General and Comparative Endocrinology, 2011, 171, 82-93.	0.8	31
421	Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Molecular Biology Reports, 2011, 38, 5189-5197.	1.0	66
422	Expression of FOXL2 in human normal pituitaries and pituitary adenomas. Modern Pathology, 2011, 24, 765-773.	2.9	38
423	Thyroid-stimulating Hormone. , 2011, , 167-203.		5
424	Pulsatile patterns of pituitary hormone gene expression change during development. Journal of Cell Science, 2011, 124, 3484-3491.	1.2	29
425	Genetic disorders of the pituitary. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 33-39.	1.2	32
426	Differential Abilities of Chicken Pit1 Isoforms to Regulate the GH Promoter: Evidence for Synergistic Activation. Endocrinology, 2012, 153, 3320-3330.	1.4	7
427	Cellular and Molecular Specificity of Pituitary Gland Physiology. Physiological Reviews, 2012, 92, 1-38.	13.1	95
428	Homology of insect corpora allata and vertebrate adenohypophysis?. Arthropod Structure and Development, 2012, 41, 409-417.	0.8	12
429	Detailed analysis of the δ-crystallin mRNA-expressing region in early development of the chick pituitary gland. Journal of Molecular Histology, 2012, 43, 273-280.	1.0	3
430	Polymorphisms of Pit-1 gene and its association with growth traits in chicken. Poultry Science, 2012, 91, 1057-1064.	1.5	15
431	The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells. Molecular and Cellular Endocrinology, 2012, 363, 1-9.	1.6	22
432	Activated Phenotype of the Pituitary Stem/Progenitor Cell Compartment During the Early-Postnatal Maturation Phase of the Gland. Stem Cells and Development, 2012, 21, 801-813.	1.1	87
433	Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. Journal of Endocrinology, 2012, 215, 239-245.	1.2	60
434	Neuroendocrine Growth Disorders – Dwarfism, Gigantism. , 2012, , 707-721.		0
435	ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression. Journal of Bioenergetics and Biomembranes, 2012, 44, 189-197.	1.0	44

ARTICLE IF CITATIONS # Analysis of polymorphism within POU1F1 gene in relation to milk production traits in dairy Sarda 436 1.0 27 sheep breed. Molecular Biology Reports, 2012, 39, 6975-6979. The Prolactin Gene: A Paradigm of Tissueâ€Specific Gene Regulation with Complex Temporal 1.2 Transcription Dynamics. Journal of Neuroendocrinology, 2012, 24, 977-990. Polymorphisms of caprine POU1F1 gene and their association with litter size in Jining Grey goats. 438 1.0 12 Molecular Biology Reports, 2012, 39, 4029-4038. Detailed morphogenetic analysis of the embryonic chicken pars tuberalis as glycoprotein alpha subunit positive region. Journal of Molecular Histology, 2013, 44, 401-409. Ras-dva Is a Novel Pit-1- and Glucocorticoid-Regulated Gene in the Embryonic Anterior Pituitary Gland. 440 1.4 9 Endocrinology, 2013, 154, 308-319. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope 3.7 Development. Molecular Endocrinology, 2013, 27, 422-436. 442 Childhood Growth Hormone Deficiency and Hypopituitarism., 2013, , 3-27. 1 Stem cells in the canine pituitary gland and in pituitary adenomas. Veterinary Quarterly, 2013, 33, 217-224. 444 Pituitary Gland Development and Disease. Current Topics in Developmental Biology, 2013, 106, 1-47. 1.0 101 Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development. 445 Molecular Endocrinology, 2013, 27, 2013-2027. The effect of aspartame on the pituitary thyroid axis of adult male albino rat and the possible 446 0.0 3 protective effect of Pimpinella anisum oil. Égyptian Journal of Histology, 2013, 36, 195-205. Expression of Steroidogenic Factor 1 and Pituitary Specific Transcription Factor 1 in Rat Pituitary Adenomas. Journal of Toxicologic Pathology, 2013, 26, 209-213. Characterization of MENXâ€associated pituitary tumours. Neuropathology and Applied Neurobiology, 448 1.8 17 2013, 39, 256-269. Both Estrogen Receptor \hat{I}_{\pm} and \hat{I}^2 Stimulate Pituitary GH Gene Expression. Molecular Endocrinology, 2014, 3.7 58 28, 40-52 Clinical Outcome of Silent Subtype III Pituitary Adenomas Diagnosed by Immunohistochemistry. Journal 451 0.9 6 of Neuropathology and Experimental Neurology, 2015, 74, 1170-1177. Clinical Outcome of Silent Subtype III Pituitary Adenomas Diagnosed by Immunohistochemistry. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1170-1177. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary 453 0.8 15 progenitors and alters pituitary structure. Developmental Dynamics, 2015, 244, 921-934. Current status of molecular genetics research of goat fecundity. Small Ruminant Research, 2015, 125, 454 34-42.

#	Article	IF	Citations
455	Genetic regulation of murine pituitary development. Journal of Molecular Endocrinology, 2015, 54, R55-R73.	1.1	54
456	A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development. Acta Histochemica, 2015, 117, 355-366.	0.9	36
457	Gonadotropes and Gonadotropin-Releasing Hormone Signaling. , 2015, , 335-397.		25
458	Hypothalamic Control of Prolactin Secretion, and the Multiple Reproductive Functions of Prolactin. , 2015, , 469-526.		17
459	Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation. Endocrinology, 2016, 157, 3631-3646.	1.4	13
460	ZBTB20 is required for anterior pituitary development and lactotrope specification. Nature Communications, 2016, 7, 11121.	5.8	40
461	Identification of marker genes for pars tuberalis morphogenesis in chick embryo: expression of Cytokine-like 1 and Gap junction protein alpha 5 in pars tuberalis. Cell and Tissue Research, 2016, 366, 721-731.	1.5	4
462	Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13408-13413.	3.3	18
463	Comprehensive evaluation of thyrotropinomas: single-center 20-year experience. Pituitary, 2016, 19, 183-193.	1.6	39
464	Aggressive Pituitary Tumors or Localized Pituitary Carcinomas: Defining Pituitary Tumors. Expert Review of Endocrinology and Metabolism, 2016, 11, 149-162.	1.2	42
465	Thyroid-Stimulating Hormone. , 2016, , 1278-1296.e7.		1
466	Growth Hormone Deficiency in Children. , 2016, , 418-440.e6.		0
467	Prolactin. , 2016, , 91-103.e4.		3
468	Development of the Pituitaryâ^—. , 2016, , 71-90.e5.		0
469	Applications of Genetics in Endocrinology. , 2016, , 41-68.e8.		1
470	Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss. BMC Endocrine Disorders, 2017, 17, 17.	0.9	13
471	Thyroid-Stimulating Hormone. , 2017, , 163-201.		7
472	The Pituitary Gland: Anatomy, Physiology, and its Function as the Master Gland. , 2017, , 1-41.		5

#	Article	IF	CITATIONS
473	Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines. Reproductive Biology and Endocrinology, 2017, 15, 86.	1.4	8
474	Childhood Growth Hormone Deficiency and Hypopituitarism. , 2018, , 3-29.		2
475	Multilevel Differential Control of Hormone Gene Expression Programs by hnRNP L and LL in Pituitary Cells. Molecular and Cellular Biology, 2018, 38, .	1.1	8
476	Complex integration of intrinsic and peripheral signaling is required for pituitary gland developmentâ€. Biology of Reproduction, 2018, 99, 504-513.	1.2	10
477	Sex-specific changes in postnatal CH and PRL secretion in somatotrope LEPR-null mice. Journal of Endocrinology, 2018, 238, 221-230.	1.2	3
478	Molecular Mechanisms Governing Embryonic Differentiation of Pituitary Somatotropes. Trends in Endocrinology and Metabolism, 2018, 29, 510-523.	3.1	6
479	High Fat Diet Dysregulates Hypothalamicâ€Pituitary Axis Gene Expression Levels which are Differentially Rescued by EPA and DHA Ethyl Esters. Molecular Nutrition and Food Research, 2018, 62, e1800219.	1.5	4
480	Regulation of Pituitary Progenitor Differentiation by β-Catenin. Endocrinology, 2018, 159, 3287-3305.	1.4	11
481	Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Frontiers in Endocrinology, 2019, 10, 623.	1.5	74
482	Transcriptional regulation of the chicken CRHR2 gene by pituitary transcription factors. General and Comparative Endocrinology, 2019, 284, 113263.	0.8	0
484	Identification of a pituitary ERα-activated enhancer triggering the expression of Nr5a1, the earliest gonadotrope lineage-specific transcription factor. Epigenetics and Chromatin, 2019, 12, 48.	1.8	12
485	Determination of Polymorphisms in Pituitary Genes of the Native Afghani Naked Neck Chicken. Journal of Poultry Science, 2019, 56, 253-261.	0.7	0
486	How Valuable Is the RT-qPCR of Pituitary-Specific Transcription Factors for Identifying Pituitary Neuroendocrine Tumor Subtypes According to the New WHO 2017 Criteria?. Cancers, 2019, 11, 1990.	1.7	12
487	Molecular Mechanisms of Pituitary Cell Plasticity. Frontiers in Endocrinology, 2020, 11, 656.	1.5	20
488	Somatic SF3B1 hotspot mutation in prolactinomas. Nature Communications, 2020, 11, 2506.	5.8	38
489	MiR-130a-3p Inhibits PRL Expression and Is Associated With Heat Stress-Induced PRL Reduction. Frontiers in Endocrinology, 2020, 11, 92.	1.5	13
490	Mouse models of growth hormone deficiency. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 3-16.	2.6	7
491	Transcription Factor Pit-1 Affects Transcriptional Timing in the Dual-Promoter Human Prolactin Gene. Endocrinology, 2021, 162, .	1.4	5

#	ARTICLE Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes, 2021, 12,	IF	CITATIONS
493 494	509. Physiological and metabolic characteristics of novel doubleâ€mutant female mice with targeted disruption of both growth hormoneâ€releasing hormone and growth hormone receptor. Aging Cell,	3.0	6
495	High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. American Journal of Human Genetics, 2021, 108, 1526-1539.	2.6	23
496	Biology of Pituitary Stem Cells. , 2021, , 79-91.		0
497	Developmental Endocrinology in the Fetal-Placental Unit. , 1998, , 425-436.		2
498	Development and Function of the Fetal Endocrine System. , 1998, , 387-405.		3
499	The Rodent Placental Prolactin Family and Pregnancy. , 1998, , 145-176.		9
500	Molecular Genetics and Biology of the Rat Placental Prolactin Family. , 1993, , 169-190.		11
501	Trophoblast Cell Differentiation: Expression of the Placental Prolactin Family. , 1993, , 45-67.		14
502	Rodent Prolactin Family and Pregnancy. Growth Hormone, 2001, , 139-167.	0.2	15
503	POU Domain Factors in Neural Development. Advances in Experimental Medicine and Biology, 1998, 449, 39-53.	0.8	56
504	Normal and Aberrant Growth in Children. , 2016, , 964-1073.		12
505	Gonadotropes and Lactotropes. , 2006, , 1483-1579.		19
506	Prolactin. , 2010, , 165-178.		1
507	Normal and Aberrant Growth. , 2011, , 935-1053.		8
508	Determination of tissue specificity of the enhancer by combinatorial operation of tissue-enriched transcription factors. Both HNF-4 and C/EBP beta are required for liver-specific activity of the ornithine transcarbamylase enhancer Journal of Biological Chemistry, 1994, 269, 1323-1331.	1.6	80
509	Somatostatin gene upstream enhancer element activated by a protein complex consisting of CREB, Isl-1-like, and alpha-CBF-like transcription factors Journal of Biological Chemistry, 1992, 267, 12876-12884.	1.6	68
510	Pit-1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis Journal of Biological Chemistry, 1994, 269, 29335-29338.	1.6	181

#	Article	IF	CITATIONS
511	Pituitary-specific repression of placental members of the human growth hormone gene family. A possible mechanism for locus regulation Journal of Biological Chemistry, 1993, 268, 8473-8479.	1.6	55
512	Decidual prolactin-related protein. Identification, molecular cloning, and characterization Journal of Biological Chemistry, 1993, 268, 3136-3142.	1.6	87
513	Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. Dual signaling pathways required for D2 receptor-regulated expression of the prolactin gene Journal of Biological Chemistry, 1991, 266, 22919-22925.	1.6	97
514	Distal cis-acting promoter sequences mediate glucocorticoid stimulation of cardiac atrial natriuretic factor gene transcription Journal of Biological Chemistry, 1991, 266, 23315-23322.	1.6	58
515	Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. Journal of Biological Chemistry, 1993, 268, 15751-15757.	1.6	283
516	Alternative translation initiation site usage results in two structurally distinct forms of Pit-1. Journal of Biological Chemistry, 1991, 266, 12832-12835.	1.6	51
517	An AP-1-like factor and the pituitary-specific factor Pit-1 are both necessary to mediate hormonal induction of human thyrotropin beta gene expression Journal of Biological Chemistry, 1993, 268, 23366-23375.	1.6	56
518	Pitx Genes during Cardiovascular Development. Cold Spring Harbor Symposia on Quantitative Biology, 2002, 67, 81-88.	2.0	10
519	Tst-1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule PO. Molecular and Cellular Biology, 1991, 11, 1739-1744.	1.1	53
520	Pituitary Pro-Opiomelanocortin Gene Expression Requires Synergistic Interactions of Several Regulatory Elements. Molecular and Cellular Biology, 1991, 11, 3492-3503.	1.1	58
521	Tissue-Specific Gene Expression in the Pituitary: The Glycoprotein Hormone α-Subunit Gene Is Regulated by a Gonadotrope-Specific Protein. Molecular and Cellular Biology, 1992, 12, 2143-2153.	1.1	24
522	<i>Wnt-1</i> -Inducing Factor-1: a Novel G/C Box-Binding Transcription Factor Regulating the Expression of <i>Wnt-1</i> during Neuroectodermal Differentiation. Molecular and Cellular Biology, 1993, 13, 1590-1598.	1.1	18
523	Activation of the Glycoprotein Hormone α-Subunit Promoter by a LIM-Homeodomain Transcription Facto. Molecular and Cellular Biology, 1994, 14, 2985-2993.	1.1	40
524	The Lung-Specific Surfactant Protein B Gene Promoter Is a Target for Thyroid Transcription Factor 1 and Hepatocyte Nuclear Factor 3, Indicating Common Factors for Organ-Specific Gene Expression along the Foregut Axis. Molecular and Cellular Biology, 1994, 14, 5671-5681.	1.1	156
525	Pituitary Today: Molecular, Physiological and Clinical Aspects. Frontiers of Hormone Research, 2006, ,	1.0	1
526	Paired-like Repression/Activation in Pituitary Development. Endocrine Reviews, 2003, 58, 249-261.	7.1	18
527	The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development (Cambridge), 1991, 113, 1093-1104.	1.2	809
528	Expression patterns of vHNF1 and HNF1 homeoproteins in early postimplantation embryos suggest distinct and sequential developmental roles. Development (Cambridge), 1992, 116, 783-797.	1.2	134

#	Article	IF	CITATIONS
529	Combinatorial control of touch receptor neuron expression in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 119, 773-783.	1.2	128
530	GATA factor activity is required for the trophoblast-specific transcriptional regulation of the mouse placental lactogen I gene. Development (Cambridge), 1994, 120, 3257-3266.	1.2	122
531	Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development (Cambridge), 1994, 120, 515-522.	1.2	169
532	Anterior pituitary cells defective in the cell-autonomous factor, <i>df</i> , undergo cell lineage specification but not expansion. Development (Cambridge), 1996, 122, 151-160.	1.2	78
533	<i>Rpx</i> : a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development (Cambridge), 1996, 122, 41-52.	1.2	259
534	Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development (Cambridge), 1996, 122, 3319-3329.	1.2	263
535	Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development (Cambridge), 1997, 124, 3111-3121.	1.2	182
536	Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development (Cambridge), 1998, 125, 1005-1015.	1.2	348
537	Transient dwarfism and hypogonadism in mice lacking <i>Otx1</i> reveal prepubescent stage-specific control of pituitary levels of GH, FSH and LH. Development (Cambridge), 1998, 125, 1229-1239.	1.2	85
538	Hedgehog signaling is required for pituitary gland development. Development (Cambridge), 2001, 128, 377-386.	1.2	254
539	<i>Pitx2</i> is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development (Cambridge), 2002, 129, 329-337.	1.2	168
540	The hSkn-1a POU transcription factor enhances epidermal stratification by promoting keratinocyte proliferation. Journal of Cell Science, 2001, 114, 1913-1923.	1.2	23
541	Presence of an 85 kDa Pituitary Protein (Pit-G) in Porcine GH-Producing Cells Journal of Reproduction and Development, 2002, 48, 87-95.	0.5	1
542	Over-Expression of POU Class 1 Homeobox 1 Transcription Factor (Pit-1) Predicts Poor Prognosis for Breast Cancer Patients. Medical Science Monitor, 2016, 22, 4121-4125.	0.5	4
543	Characteristics of the Pituitary Specific Factor 1 Gene. Clinical Pediatric Endocrinology, 1995, 4, 27-31.	0.4	2
544	A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs. PLoS ONE, 2011, 6, e27940.	1.1	22
545	Thyrotoxicosis with absence of clinical features of acromegaly in a TSH- and GH-secreting, invasive pituitary macroadenoma. Endocrinology, Diabetes and Metabolism Case Reports, 2015, 2015, 140070.	0.2	5
546	Glucocorticoid-Inducible Glutamine Synthetase in GH Cells of Chick Embryos, <i>Gallus domesticus</i> : Ontogeny of Glutamine Synthetase, GH, and Pit-1 Protein in the Pituitary Gland. Journal of Poultry Science, 2006, 43, 266-279.	0.7	1

#	Article	IF	CITATIONS
- 4-	Biosynthesis of Growth Hormone and Insulin-Like Growth Factor-I and the Regulation of their	0.1	11
547	Secretion. The Open Endocrinology Journal, 2012, 6, 3-12.	0.1	11
548	Genetic determinants of mammalian pituitary morphogenesis. Frontiers in Bioscience - Landmark, 2007, 12, 125.	3.0	9
549	Transgenic Approaches to Study Developmental Expression and Regulation of the Gonadotropin Genes. , 2000, , 217-237.		0
550	Placental Trophoblast Cells. , 2000, , 307-322.		0
552	Pit-1 Expression, Regulation, and Modulation of Multiple Pituitary Genes. , 2000, , 67-86.		0
553	Fo Transgenics for Studies of Transcriptional Control in vivo Tissue and Developmental—Specific Regulation of the Human and Rat Growth Hormone/Prolactin/Placental Lactogen Gene Family. Growth Hormone, 2001, , 79-103.	0.2	1
554	Septo-Optic Dysplasia: From Mouse to Man Clinical Pediatric Endocrinology, 2001, 10, 89-95.	0.4	0
556	Pituitary Gland Development. , 2002, , 499-518.		3
557	Molecular Development of the Hypothalamic-Pituitary-Adrenal (HPA) Axis. , 2002, , 359-380.		0
558	Transcriptional Control of the Development and Function of the Hypothalamic-Pituitary Axis. , 2002, , 3-39.		0
559	Development of the Paraventricular Nucleus of the Hypothalamus. , 2008, , 69-84.		0
560	Nonneoplastic and Neoplastic Pituitary Diseases. Molecular Pathology Library, 2010, , 175-193.	0.1	0
561	Growth Hormone Deficiency in Children. , 2010, , 517-539.		0
562	Thyroid-Stimulating Hormone. , 2010, , 1362-1383.		1
563	Development of the Pituitary. , 2010, , 146-164.		0
564	Applications of Genetics in Endocrinology. , 2010, , 118-143.		0
565	Immortalization of Neuroendocrine Cells by Targeted Oncogenesis. , 1991, 47, 69-96.		32
566	Interaction of Basal Positive and Negative Transcription Elements Controls Repression of the Proximal Rat Prolactin Promoter in Nonpituitary Cells. Molecular and Cellular Biology, 1992, 12, 2708-2719.	1.1	17

#	Article	IF	CITATIONS
567	Transcriptional Control of Pituitary Gene Expression. , 1993, , 243-295.		1
568	Functional Interaction of the Estrogen Receptor with the Tissue-Specific, Homeodomain Transcription Factor, PIT-1. , 1994, , 131-161.		0
569	Role of Helix-Loop-Helix Proteins in Gonadotropin Gene Expression. , 1994, , 44-64.		0
571	G Protein-Coupled Receptors, Pathology and Therapeutic Strategies. Molecular Biology Intelligence Unit, 1995, , 135-169.	0.2	1
572	ãfšãf—ãfãf‰ãf>ãf«ãf¢ãf³ã®ç"Ÿç"£ãëå^†æ³Œ-ãã®å¾Œ. Newsletter of Japan Society for Comparative Endoci	in olo gy, 1	.99 5 , 21, 4-8.
573	Prolactin Receptor mRNA Expression in Fetal Rat Brain Journal of Reproduction and Development, 1995, 41, 353-359.	0.5	2
574	Pituitary Gland in the Human Growth-Releasing Factor Transgenic Mouse. Monographs on Pathology of Laboratory Animals, 1996, , 101-105.	0.0	0
576	Classification of Pituitary Adenomas based on Molecular Histochemical Techniques (< Special) Tj ETQq1 1 0.7843	0.987 /	Overlock 10 T
577	Molecular Aspects of Pituitary Development. , 1999, , 231-251.		0
579	Cell Signalling Within Pituitary, the Master Gland of the Endocrine System. , 2020, , 33-61.		1
581	Regulation der Entwicklung der Hypophyse. , 2006, , 81-108.		1
583	Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO Journal, 1996, 15, 714-24.	3.5	61
584	Differential splicing of the GHF1 primary transcript gives rise to two functionally distinct homeodomain proteins. EMBO Journal, 1992, 11, 2261-9.	3.5	26
585	Brain 4: a novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression. EMBO Journal, 1992, 11, 2551-61.	3.5	45
586	Coexpression of galanin and adrenocorticotropic hormone in human pituitary and pituitary ad pituitary adenomas. American Journal of Pathology, 1991, 138, 897-909.	1.9	37
587	Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas, and gonadotroph adenomas by in situ hybridization. American Journal of Pathology, 1991, 139, 553-64.	1.9	32
588	The effects of estrogen on prolactin gene methylation in normal and neoplastic rat pituitary tissues. American Journal of Pathology, 1992, 140, 207-14.	1.9	13
589	Glycoprotein hormone alpha-subunit-producing pituitary adenomas in rats treated for one year with calcitonin. American Journal of Pathology, 1992, 140, 75-84.	1.9	14

#	Article	IF	CITATIONS
590	Morphologic effects of hGRH gene expression on the pituitary, liver, and pancreas of MT-hGRH transgenic mice. An in situ hybridization analysis. American Journal of Pathology, 1992, 141, 895-906.	1.9	40
593	A Novel Splice-Site Deletion in the POU1F1 Gene Causes Combined Pituitary Hormone Deficiency in Multiple Sudanese Pedigrees. Genes, 2022, 13, 657.	1.0	1
601	Targeted ablation of gonadotrophs in transgenic mice depresses prolactin but not growth hormone gene expression at birth as measured by quantitative mRNA detection. Journal of Biomedical Science, 2003, 10, 805-12.	2.6	6
602	Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats. Frontiers in Neuroanatomy, 0, 16, .	0.9	5
603	Harnessing the value of reproductive hormones in cattle production with considerations to animal welfare and human health. Journal of Animal Science, 2022, 100, .	0.2	3
605	Thyroid-Stimulating Hormone. , 2022, , 173-207.		1
606	Hatschek's pit and origin of pituitary gland. Acta Oceanologica Sinica, 2022, 41, 1-6.	0.4	4