Fungal endophyte-infected grasses: Alkaloid accumulat

Journal of Chemical Ecology 16, 3301-3315 DOI: 10.1007/bf00982100

Citation Report

#	Article	IF	CITATIONS
1	The ?-tubulin gene of Epichlo� typhina from perennial ryegrass (Lolium perenne). Current Genetics, 1990, 18, 347-354.	0.8	124
2	Expression of Antifungal Activity in Agar Culture by Isolates of Grass Endophytes. Mycologia, 1991, 83, 529-537.	0.8	66
3	Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Systematics and Evolution, 1991, 178, 27-41.	0.3	147
4	Reproductive performance of CD-1 mice fed diets containing endophyte-infected perennial ryegrass seed through continuous breeding. New Zealand Journal of Agricultural Research, 1992, 35, 205-210.	0.9	6
5	Acremonium endophytes in perennial ryegrass and other pasture grasses in Australia and New Zealand. Australian Journal of Agricultural Research, 1992, 43, 1683.	1.5	61
6	The Chemical Ecology of Aphids. Annual Review of Entomology, 1992, 37, 67-90.	5.7	398
7	Tremorgenic mycotoxins, paspalitrem A and C, from a tropical Phomopsis. Mycological Research, 1992, 96, 977-983.	2.5	46
8	The Loline Group of Pyrrolizidine Alkaloids. , 1992, , 320-338.		11
9	Suppression of mycorrhizal fungi in fescue by the acremonium coenophialum endophyte. Soil Biology and Biochemistry, 1992, 24, 633-637.	4.2	114
10	Role of <i>Acremonium</i> Endophyte of Fescue on Inhibition of Colonization and Reproduction of Mycorrhizal Fungi. Mycologia, 1992, 84, 882-885.	0.8	68
11	Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Current Genetics, 1992, 22, 399-406.	0.8	48
12	Diversity and origins of endophytic fungal symbionts of the North American grass Festuca arizonica. Theoretical and Applied Genetics, 1992, 85-85, 366-371.	1.8	41
13	Fungal endophytes of plants: Biological and chemical diversity. Natural Toxins, 1993, 1, 147-149.	1.0	35
14	Systematics, distribution, and host specificity of grass endophytes. Natural Toxins, 1993, 1, 150-162.	1.0	201
15	Alkaloid toxins in endophyte-infected grasses. Natural Toxins, 1993, 1, 163-170.	1.0	81
16	Molecular biology and evolution of the grass endophytes. Natural Toxins, 1993, 1, 171-184.	1.0	29
17	Endophytic fungi alter foraging and dispersal by desert seed-harvesting ants. Oecologia, 1993, 95, 470-473.	0.9	52
18	Barley yellow dwarf viruses in Japanese pasture grasses and lack of correlation with the presence of fungal endophytes. Plant Pathology, 1993, 42, 1-5.	1.2	8

#	Article	IF	CITATIONS
19	Face flies (Musca autumnalis De Geer) and the behavior of grazing beef cattle. Applied Animal Behaviour Science, 1993, 35, 313-326.	0.8	19
20	Fungal symbionts of grasses: evolutionary insights and agricultural potential. Trends in Microbiology, 1993, 1, 196-200.	3.5	30
21	The internal mycobiota of Juncus spp.: microscopic and cultural observations of infection patterns. Mycological Research, 1993, 97, 367-376.	2.5	88
22	Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F.) Tj ETQq1 1 0.78	4314 rgBT 2.5	- /Overlock 1(214
23	The ecology and evolution of endophytes. Agriculture, Ecosystems and Environment, 1993, 44, 39-64.	2.5	81
24	Chemistry of compounds associated with endophyte/grass interaction: ergovaline- and ergopeptine-related alkaloids. Agriculture, Ecosystems and Environment, 1993, 44, 65-80.	2.5	72
25	Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agriculture, Ecosystems and Environment, 1993, 44, 81-102.	2.5	138
26	Lolitrems, peramine and paxilline: Mycotoxins of the ryegrass/endophyte interaction. Agriculture, Ecosystems and Environment, 1993, 44, 103-122.	2.5	113
27	Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agriculture, Ecosystems and Environment, 1993, 44, 123-141.	2.5	187
28	Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems and Environment, 1993, 44, 143-156.	2.5	161
29	Causes and control of perennial ryegrass staggers in New Zealand. Agriculture, Ecosystems and Environment, 1993, 44, 283-300.	2.5	54
30	Acremonium endophytes: our current state of knowledge and future directions for research. Agriculture, Ecosystems and Environment, 1993, 44, 301-321.	2.5	33
31	Nonreciprocal Compatibility between Epichloe typhina and Four Host Grasses. Mycologia, 1993, 85, 157.	0.8	26
32	Nonreciprocal Compatibility BetweenEpichloë Typhinaand Four Host Grasses. Mycologia, 1993, 85, 157-163.	0.8	33
33	Ergovaline and peramine production in endophyte-infected tall fescue: Independent regulation and effects of plant and endophyte genotype. Journal of Chemical Ecology, 1994, 20, 2171-2183.	0.9	72
34	Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the poaceae. Phytochemistry, 1994, 35, 335-338.	1.4	48
35	Acremonium Endophyte Interactions with Enhanced Plant Resistance to Insects. Annual Review of Entomology, 1994, 39, 401-423.	5.7	305
36	Isozyme relationships of Acremonium endophytes from twelve Festuca species. Mycological Research, 1994, 98, 25-33.	2.5	67

#	Article	IF	CITATIONS
37	Endophyte-Enhanced Resistance in Perennial Ryegrass and Tall Fescue to Bluegrass Webworm, Parapediasia teterrella Japanese Journal of Applied Entomology and Zoology, 1994, 38, 141-145.	0.5	12
38	Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloe species Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2542-2546.	3.3	267
39	Variation in the ability of Acremonium endophytes of Lolium perenne, Festuca arundinacea and F. pratensis to form compatible associations in the three grasses. Mycological Research, 1995, 99, 466-470.	2.5	75
40	Endophytes of fescue grasses enhance susceptibility of <i>Popillia japonica</i> larvae to an entomopathogenic nematode. Entomologia Experimentalis Et Applicata, 1995, 74, 219-224.	0.7	40
41	Incidence and compatibility of nonclavicipitaceous fungal endophytes in <i>Festuca</i> and <i>Lolium</i> grass species. Mycologia, 1995, 87, 196-202.	0.8	20
42	Field resistance to Argentine stem weevil <i>(Listronotus bonariensis)</i> in different ryegrass cultivars infected with an endophyte deficient in lolitrem B. New Zealand Journal of Agricultural Research, 1995, 38, 519-528.	0.9	27
43	Chemistry, Biology and Chemoecology of the Pyrrolizidine Alkaloids. Alkaloids: Chemical and Biological Perspectives, 1995, 9, 155-233.	0.2	144
44	A mutualistic fungal symbiont of perennial ryegrass contains two different pyr4 genes, both expressing orotidine-5′-monophosphate decarboxylase. Gene, 1995, 158, 31-39.	1.0	22
45	Chapter 4 The Ecological Activity of Alkaloids. Alkaloids: Chemistry and Pharmacology, 1995, 47, 227-354.	0.2	11
46	Mycophagy by a Millipede and Its Possible Impact on an Insect-Fungus Mutualism. Oikos, 1996, 75, 67.	1.2	18
47	Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology, 1996, 38, 191-201.	0.9	80
48	EPICHLOÃ< SPECIES: Fungal Symbionts of Grasses. Annual Review of Phytopathology, 1996, 34, 109-130.	3.5	165
49	Interactions between Herbivores and Endophyte-Infected Festuca rubra from the Scottish Islands of St. Kilda, Benbecula and Rum. Journal of Applied Ecology, 1997, 34, 847.	1.9	96
50	Infection of Holcus lanatus and H. mollis by Epichloë in Experimental Grasslands. Oikos, 1997, 79, 363.	1.2	20
51	Coevolution by Common Descent of Fungal Symbionts (Epichloe spp.) and Grass Hosts. Molecular Biology and Evolution, 1997, 14, 133-143.	3.5	166
52	Protective Grass Endophytes: Where are they from and where are they going?. Plant Disease, 1997, 81, 430-438.	0.7	160
53	Genetics of Host Specificity in Epichloë typhina. Phytopathology, 1997, 87, 599-605.	1.1	45
55	Effect of a Fungal Endophyte on the Growth and Survival of Two Euplectrus parasitoids. Oikos, 1997, 78, 170.	1.2	62

	Сітатіо	n Report	
#	Article	IF	CITATIONS
56	Alkaloids from endophyte-infected Festuca argentina. Journal of Ethnopharmacology, 1997, 57, 1-9.	2.0	17
57	Endophytic fungi and alkaloid production in perennial ryegrass in Germany. Grass and Forage Science, 1997, 52, 425-431.	1.2	29
58	Symbiont Regulation and Reducing Ergot Alkaloid Concentration by Breeding Endophyte-Infected Tall Fescue. Journal of Chemical Ecology, 1997, 23, 691-704.	0.9	48
59	Distribution and Accumulation of the Alkaloid Peramine in Neotyphodium lolii-Infected Perennial Ryegrass. Journal of Chemical Ecology, 1997, 23, 1419-1434.	0.9	42
60	Neotyphodium coenophialum Mycelial Protein and Herbage Mass Effects on Ergot Alkaloid Concentration in Tall Fescue. Journal of Chemical Ecology, 1997, 23, 2721-2736.	0.9	39
61	Double-stranded RNA and virus-like particles in the grass endophyte Epichloë festucae. Mycological Research, 1998, 102, 914-918.	2.5	23
62	Ammoniation to Reduce the Toxicity of Endophyte-Infected Tall Fescue Seed Fed to Rats. Drug and Chemical Toxicology, 1998, 21, 67-78.	1.2	3
63	Comparison of two Ammoniation Procedures to Reduce the Toxicity of Endophyte-Infected Tall Fescue Seed Fed to Rats. Drug and Chemical Toxicology, 1998, 21, 79-95.	1.2	3
64	Ammoniation to Reduce the Toxicity of Endophyte-Infected Tall Fescue Seed fed to Rats. Drug and Chemical Toxicology, 1998, 21, 373-385.	1.2	0
65	FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 319-343.	6.7	866
66	Distribution, Abundances, and Associations of the Endophytic Fungal Community of Arizona Fescue (Festuca arizonica). Mycologia, 1998, 90, 569.	0.8	66
67	Comparison of two Ammoniation Procedures to Reduce the Toxicity of Endophyte-Infected Tall Fescue Seed Fed to Rats. Drug and Chemical Toxicology, 1998, 21, 387-404.	1.2	0
68	Comparison of Population Growth Rates of Confused Flour Beetle, Tribolium confusum Jacquelin(Coleoptera: Tenebrionidae), on Endophyte-Infected or Endophyte-Uninfected Seeds of Ground Tall Fescue and Perennial Ryegrass Japanese Journal of Applied Entomology and Zoology, 1998, 42, 227-229.	0.5	2
69	Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (<i>Festuca arizonica</i>). Mycologia, 1998, 90, 569-578.	0.8	109
70	Occurrence of Fungal Endophytes in Species of Wild <i>Triticum</i> . Crop Science, 1999, 39, 1507-1512.	0.8	41
71	Identification of EpichloeÌ^ Endophytes In Planta by a Microsatellite-Based PCR Fingerprinting Assay with Automated Analysis. Applied and Environmental Microbiology, 1999, 65, 1268-1279.	1.4	119
72	Distribution of fungal endophyte genotypes in doubly infected host grasses. Plant Journal, 1999, 18, 349-358.	2.8	40
73	Neotyphodium endophytes in grasses: deterrents or promoters of herbivory by leaf-cutting ants?. Oecologia, 1999, 118, 297-305.	0.9	62

#	Article	IF	CITATIONS
74	Endophyte-grass-herbivore interactions: the case of Neotyphodium endophytes in Arizona fescue populations. Oecologia, 1999, 121, 411-420.	0.9	98
75	Nitrogenâ€form and endophyteâ€Infection effects on growth, nitrogen uptake, and alkaloid content of chewings fescue turf grass. Journal of Plant Nutrition, 1999, 22, 67-79.	0.9	14
76	Influence of fungal endophyte infection on nutrient element content of tall fescue. Journal of Plant Nutrition, 1999, 22, 163-176.	0.9	14
77	Ryegrass Staggers in Japan Induced by Consumption of Ryegrass Straw Imported from America. Mycotoxins, 1999, 1999, 138-144.	0.2	2
78	Adaptations of Endophyteâ€Infected Coolâ€5eason Grasses to Environmental Stresses: Mechanisms of Drought and Mineral Stress Tolerance. Crop Science, 2000, 40, 923-940.	0.8	654
79	Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 2000, 3, 0-0.	1.2	358
80	Title is missing!. Journal of Chemical Ecology, 2000, 26, 279-292.	0.9	29
81	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1025-1036.	0.9	134
82	Endophytic fungi and ergot alkaloids in native Turkish grasses. Phytoparasitica, 2000, 28, 375-377.	0.6	18
83	Cross Species Inoculation of Chewings and Strong Creeping Red Fescues with Fungal Endophytes. Crop Science, 2000, 40, 1485-1489.	0.8	28
84	Contribution of Fungal Loline Alkaloids to Protection from Aphids in a Grass-Endophyte Mutualism. Molecular Plant-Microbe Interactions, 2000, 13, 1027-1033.	1.4	228
85	Isolation and Characterization of Fungal Inhibitors fromEpichloë festucae. Journal of Agricultural and Food Chemistry, 2000, 48, 4687-4692.	2.4	138
86	DO FUNGAL ENDOPHYTES RESULT IN SELECTION FOR LEAFMINER OVIPOSITIONAL PREFERENCE?. Ecology, 2001, 82, 1097-1111.	1.5	42
87	Epichloë festucae and Related Mutualistic Symbionts of Grasses. Fungal Genetics and Biology, 2001, 33, 69-82.	0.9	172
88	Incidence and Diversity of Neotyphodium Fungal Endophytes in Tall Fescue from Morocco, Tunisia, and Sardinia. Crop Science, 2001, 41, 570-576.	0.8	59
89	Detection of Endophyte Toxins in the Imported Perennial Ryegrass Straw Journal of Veterinary Medical Science, 2001, 63, 1013-1015.	0.3	21
90	Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia, 2001, 126, 522-530.	0.9	80
91	Festuca arundinacea Schreber (F. elatior L. ssp. arundinacea (Schreber) Hackel). Journal of Ecology, 2001, 89, 304-324.	1.9	60

#	Article	IF	CITATIONS
92	Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 2001, 58, 395-401.	1.4	124
93	Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiologia Plantarum, 2001, 113, 557-563.	2.6	65
94	Presence of Neotyphodium-like endophytes in European grasses. Annals of Applied Biology, 2001, 139, 119-127.	1.3	34
95	Symbiosis and the Regulation of Communities1. American Zoologist, 2001, 41, 810-824.	0.7	27
96	Symbiosis and the Regulation of Communities. American Zoologist, 2001, 41, 810-824.	0.7	25
97	Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. American Naturalist, 2002, 160, S99-S127.	1.0	842
98	The evolutionary origins of three newNeotyphodiumendophyte species from grasses indigenous to the Southern Hemisphere. Mycologia, 2002, 94, 694-711.	0.8	105
99	Endophytic fungi and interactions among host plants, herbivores, and natural enemies. , 2002, , 89-123.		50
100	Endophytic and Biological Control Potential of Bacillus mojavensis and Related Species. Biological Control, 2002, 23, 274-284.	1.4	159
101	Expressed sequence tags and genes associated with loline alkaloid expression by the fungal endophyte Neotyphodium uncinatum. Fungal Genetics and Biology, 2002, 36, 242-254.	0.9	47
102	Performance of Tall Fescue Germplasms Bred for High―and Lowâ€Ergot Alkaloids. Crop Science, 2002, 42, 518-523.	0.8	21
103	Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos, 2002, 96, 281-290.	1.2	54
104	Are endophytic fungi defensive plant mutualists?. Oikos, 2002, 98, 25-36.	1.2	262
105	Genetic structure of natural populations of the grass endophyte Epichloe festucae in semiarid grasslands. Molecular Ecology, 2002, 11, 355-364.	2.0	41
106	Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass?. Journal of Chemical Ecology, 2002, 28, 939-950.	0.9	27
107	Peramine alkaloid variation in Neotyphodium-infected Arizona fescue: effects of endophyte and host genotype and environment. Journal of Chemical Ecology, 2002, 28, 1511-1526.	0.9	62
108	Does mowing height influence alkaloid production in endophytic tall fescue and perennial ryegrass?. Journal of Chemical Ecology, 2003, 29, 1319-1328.	0.9	21
109	Production of swainsonine by fungal endophytes of locoweed. Mycological Research, 2003, 107, 980-988.	2.5	144

			2
#	ARTICLE	IF	CITATIONS
110	Ergovaline occurrence in grasses infected by fungal endophytes of semi-arid pastures in Spain. Journal of the Science of Food and Agriculture, 2003, 83, 347-353.	1.7	23
111	Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos, 2003, 103, 182-190.	1.2	85
112	Indole Alkaloids. , 2003, , 1-143.		2
113	Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiological and Molecular Plant Pathology, 2003, 63, 305-317.	1.3	69
114	Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes. Genome, 2003, 46, 277-290.	0.9	51
115	Effects of Turfgrass Endophytes (Clavicipitaceae: Ascomycetes) on White Grub (Coleoptera:) Tj ETQq1 1 0.7843	14 rgBT /C	verlock 10 Tf
116	Effects of Turfgrass Endophytes (Clavicipitaceae: Ascomycetes) on White Grub (Coleoptera:) Tj ETQq0 0 0 rgBT / bacteriophora (Rhabditida: Heterorhabditidae). Environmental Entomology, 2003, 32, 392-396.	Overlock 0.7	10 Tf 50 507 21
117	Genetic Diversity in the Perennial Ryegrass Fungal Endophyte Neotyphodium Iolii. Developments in Plant Breeding, 2004, , 155-164.	0.2	4
118	Mealybug, Phenococcus solani, and barley aphid, Sipha maydis, response to endophyte-infected tall and meadow fescues. Entomologia Experimentalis Et Applicata, 2004, 113, 205-209.	0.7	17
119	Low allelopathic potential of an invasive forage grass on native grassland plants: a cause for encouragement?. Basic and Applied Ecology, 2004, 5, 261-269.	1.2	30
120	SYMBIOSES OF GRASSES WITH SEEDBORNE FUNGAL ENDOPHYTES. Annual Review of Plant Biology, 2004, 55, 315-340.	8.6	759
122	A FUNGAL ENDOPHYTE MEDIATES REVERSAL OF WOUND-INDUCED RESISTANCE AND CONSTRAINS TOLERANCE IN A GRASS. Ecology, 2004, 85, 679-685.	1.5	74
123	Contig assembly and microsynteny analysis using a bacterial artificial chromosome library for Epichloë festucae, a mutualistic fungal endophyte of grasses. Fungal Genetics and Biology, 2004, 41, 23-32.	0.9	3
127	Resistance to the rice leaf bug, Trigonotylus caelestialium, is conferred by Neotyphodium endophyte infection of perennial ryegrass, Lolium perenne. Entomologia Experimentalis Et Applicata, 2005, 115, 387-392.	0.7	25
128	Influence of temperature on alkaloid levels and fall armyworm performance in endophytic tall fescue and perennial ryegrass. Entomologia Experimentalis Et Applicata, 2005, 115, 417-426.	0.7	37
129	Endophyte persistence and toxin (lolitrem b) production in a Danish seed crop of perennial ryegrass. European Journal of Agronomy, 2005, 23, 68-78.	1.9	9
130	Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Molecular Genetics and Genomics, 2005, 274, 13-29.	1.0	175
131	Are endophyte-mediated effects on herbivores conditional on soil nutrients?. Oecologia, 2005, 142, 38-45.	0.9	84

#	Article	IF	CITATIONS
134	Detrimental and neutral effects of wild barley-Neotyphodium fungal endophyte associations on insect survival. Entomologia Experimentalis Et Applicata, 2005, 114, 119-125.	0.7	51
137	Occurrence and impact of pasture mealybug (<i>Balanococcus poae</i>) and root aphid (<i>Aploneura) Tj ETQq1</i>	1 0.7843	<u> </u>
107	endophytes. New Zealand Journal of Agricultural Research, 2005, 48, 329-337.	0.9	63
138	Seasonal Change of Loline Alkaloids in Endophyte-Infected Meadow Fescue. Agricultural Sciences in China, 2006, 5, 793-797.	0.6	7
139	Chapter 2 Ergot Alkaloids – Biology and Molecular Biology. The Alkaloids Chemistry and Biology, 2006, 63, 45-86.	0.8	184
140	Endophytic fungus decreases plant virus infections in meadow ryegrass (Lolium pratense). Biology Letters, 2006, 2, 620-623.	1.0	56
141	Biology and chemistry of endophytes. Natural Product Reports, 2006, 23, 753.	5.2	827
142	Importance of Host Plant Species, <i>Neotyphodium</i> Endophyte Isolate, and Alkaloids on Feeding by <i>Spodoptera frugiperda</i> (Lepidoptera: Noctuidae) Larvae. Journal of Economic Entomology, 2006, 99, 1462-1473.	0.8	14
143	Reproductive characteristics of endophyte-infected or novel tall fescue fed ewes. Livestock Science, 2006, 104, 103-111.	0.6	7
144	Model systems in ecology: dissecting the endophyte–grass literature. Trends in Plant Science, 2006, 11, 428-433.	4.3	265
145	Chemical Control of Neotyphodium spp. Endophytes in Perennial Ryegrass and Tall Fescue Seeds. Crop Science, 2006, 46, 98-104.	0.8	8
146	Recent Molecular and Genomic Studies on Stress Tolerance of Forage and Turf Grasses. Crop Science, 2006, 46, 497-511.	0.8	61
147	Grass–herbivore interactions altered by strains of a native endophyte. New Phytologist, 2006, 170, 513-521.	3.5	53
148	Temporal and Spatial Variation in Alkaloid Levels in Achnatherum robustum, a Native Grass Infected with the Endophyte Neotyphodium. Journal of Chemical Ecology, 2006, 32, 307-324.	0.9	52
149	Fungal endosymbionts affect aphid population size by reduction of adult life span and fecundity. Basic and Applied Ecology, 2006, 7, 244-252.	1.2	57
150	Importance of Host Plant Species, Neotyphodium Endophyte Isolate, and Alkaloids on Feeding by Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Journal of Economic Entomology, 2006, 99, 1462-1473.	0.8	39
151	Effects of Fungal Endophyte Isolate on Performance and Preference of Bird Cherry-Oat Aphid. Environmental Entomology, 2006, 35, 1690-1695.	0.7	17
152	Bottom–up cascades induced by fungal endophytes in multitrophic systems. , 2007, , 164-187.		8
153	Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiological and Molecular Plant Pathology, 2007, 71, 149-157.	1.3	39

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
154	Comparison of loline alkaloid gene clusters across fungal endophytes: Predicting the co-regulatory sequence motifs and the evolutionary history. Fungal Genetics and Biology, 2007, 44, 1002-1010.	0.9	31
155	Molecular and genetic analysis of symbiosis expressed secondary metabolite genes from the mutualistic fungal endophytes Neotyphodium lolii and Epichloë festucae. , 0, , 59-77.		0
156	Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems?. Fungal Biology Reviews, 2007, 21, 107-124.	1.9	107
157	Fungal alkaloids in populations of endophyte-infected Festuca rubra subsp. pruinosa. Grass and Forage Science, 2007, 62, 364-371.	1.2	8
158	Symbiontâ€mediated changes in <i>Lolium arundinaceum</i> inducible defenses: evidence from changes in gene expression and leaf composition. New Phytologist, 2007, 176, 673-679.	3.5	61
159	Resistance to the rice leaf bug (Trigonotylus caelestialium) is conferred by Neotyphodium endophyte infection of Italian ryegrass (Lolium multiflorum). Grassland Science, 2007, 53, 205-209.	0.6	9
160	Loline alkaloids: Currencies of mutualism. Phytochemistry, 2007, 68, 980-996.	1.4	258
161	Effects of Methyl Jasmonate and an Endophytic Fungus on Plant Resistance to Insect Herbivores. Journal of Chemical Ecology, 2008, 34, 1511-1517.	0.9	39
162	Stromaâ€forming endophyte <i>Epichloë glyceriae</i> provides woundâ€inducible herbivore resistance t its grass host. Oikos, 2008, 117, 629-633.	0 1.2	24
163	Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiological Research, 2008, 163, 431-440.	2.5	23
164	Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. , 2008, , .		17
165	Solanaceae and Convolvulaceae: Secondary Metabolites. , 2008, , .		129
166	Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 2008, 46, 57-71.	1.4	286
167	Role of the LoIP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genetics and Biology, 2008, 45, 1307-1314.	0.9	29
168	Plant-endophyte-herbivore interactions. Plant Signaling and Behavior, 2008, 3, 974-977.	1.2	30
169	Regulation of a Chemical Defense against Herbivory Produced by Symbiotic Fungi in Grass Plants Â. Plant Physiology, 2009, 150, 1072-1082.	2.3	66
170	Endophyte-Mediated Resistance to Herbivores Depends on Herbivore Identity in the Wild GrassFestuca subverticillata. Environmental Entomology, 2009, 38, 1086-1095.	0.7	31
171	Indole-Diterpene Biosynthetic Capability of <i>EpichloeÌ^</i> Endophytes as Predicted by <i>ltm</i> Gene Analysis. Applied and Environmental Microbiology, 2009, 75, 2200-2211.	1.4	92

#	Article	IF	CITATIONS
172	Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic and Applied Ecology, 2009, 10, 43-51.	1.2	63
173	Metabolomics analysis of the Lolium perenne–Neotyphodium Iolii symbiosis: more than just alkaloids?. Phytochemistry Reviews, 2009, 8, 535-550.	3.1	57
174	A DFT/TDâ€DFT study for the ground and excited states of peramine and some pyrrolopyrazinone compounds. Journal of Physical Organic Chemistry, 2009, 22, 1058-1064.	0.9	3
175	High variation in frequency of infection by endophytes in cultivars of meadow fescue in Finland. Grass and Forage Science, 2009, 64, 169-176.	1.2	17
176	Fungal loline alkaloids in grass–endophyte associations confer resistance to the rice leaf bug, <i>TrigonotylusÂcaelestialium</i> . Entomologia Experimentalis Et Applicata, 2009, 130, 55-62.	0.7	17
177	Aphid genotypes vary in their response to the presence of fungal endosymbionts in host plants. Journal of Evolutionary Biology, 2009, 22, 1775-1780.	0.8	11
178	Epichloë Endophytes: Clavicipitaceous Symbionts of Grasses. , 2009, , 276-306.		16
179	Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Reviews, 2009, 28, 102-117.	1.5	26
180	Ergot alkaloids: extent of human and animal exposure. World Mycotoxin Journal, 2009, 2, 141-149.	0.8	52
181	Asexual Endophytes in a Native Grass: Tradeoffs in Mortality, Growth, Reproduction, and Alkaloid Production. Microbial Ecology, 2010, 60, 496-504.	1.4	23
182	Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia, 2010, 164, 431-444.	0.9	78
183	Defensive mutualism between plants and endophytic fungi?. Fungal Diversity, 2010, 41, 101-113.	4.7	216
184	Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regulation, 2010, 60, 91-97.	1.8	72
185	Influence of the fungal endophyte <i>Neotyphodium uncinatum</i> on the persistency and competitive ability of meadow fescue (<i>Festuca pratensis</i> Huds.). Grassland Science, 2010, 56, 59-64.	0.6	16
186	Alkaloids may not be responsible for endophyteâ€associated reductions in tall fescue decomposition rates. Functional Ecology, 2010, 24, 460-468.	1.7	60
187	Correlated evolution of defensive and nutritional traits in native and non-native plants. Botanical Journal of the Linnean Society, 2010, 163, 1-13.	0.8	6
188	Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecology Letters, 2010, 13, 106-117.	3.0	48
189	Controlling sap-sucking insect pests with recombinant endophytes expressing plant lectin. Nature Precedings, 0, , .	0.1	8

#	Article	IF	CITATIONS
190	The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement. Recent Patents on Biotechnology, 2010, 4, 81-95.	0.4	174
191	The Epichloae, Symbionts of the Grass Subfamily Poöideae ¹ . Annals of the Missouri Botanical Garden, 2010, 97, 646-665.	1.3	101
192	Microarray analysis of endophyte-infected and endophyte-free tall fescue. Journal of Plant Physiology, 2010, 167, 1197-1203.	1.6	20
193	Endophyte-Mediated Resistance to Black Cutworm as a Function of Plant Cultivar and Endophyte Strain in Tall Fescue. Environmental Entomology, 2011, 40, 639-647.	0.7	27
194	Controlling Myzus persicae with recombinant endophytic fungi Chaetomium globosum expressing Pinellia ternata agglutinin. Journal of Applied Microbiology, 2011, 110, 1314-1322.	1.4	26
195	Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Annals of Applied Biology, 2011, 159, 281-290.	1.3	36
196	Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochemical Systematics and Ecology, 2011, 39, 471-476.	0.6	51
197	Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica. World Journal of Microbiology and Biotechnology, 2011, 27, 571-577.	1.7	53
198	Water availability alters the tri-trophic consequences of a plant-fungal symbiosis. Arthropod-Plant Interactions, 2011, 5, 19-27.	0.5	12
199	Natural Products with Antitumor Activity from Endophytic Fungi. Mini-Reviews in Medicinal Chemistry, 2011, 11, 1056-1074.	1.1	46
200	Endophyte Isolate and Host Grass Effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) Feeding. Journal of Economic Entomology, 2011, 104, 665-672.	0.8	13
201	Detrimental and Neutral Effects of a Wild Grass-Fungal Endophyte Symbiotum on Insect Preference and Performance. Journal of Insect Science, 2011, 11, 1-13.	0.6	22
202	Prevalence of an intraspecificNeotyphodiumhybrid in natural populations of stout wood reed (Cinna) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
203	Genetic Diversity and Host Specificity of Fungal Endophyte Taxa in Fescue Pasture Grasses. Crop Science, 2012, 52, 2243-2252.	0.8	34
204	Genotypic and Chemotypic Diversity of Neotyphodium Endophytes in Tall Fescue from Greece. Applied and Environmental Microbiology, 2012, 78, 5501-5510.	1.4	65
205	Enhanced Resistance to Four Species of Clypeorrhynchan Pests in Neotyphodium uncinatum Infected Italian ryegrass. Journal of Economic Entomology, 2012, 105, 129-134.	0.8	7
206	Beneficial effects of <i>Neotyphodium tembladerae</i> and <i>Neotyphodium pampeanum</i> on a wild forage grass. Grass and Forage Science, 2012, 67, 382-390.	1.2	24
207	Epichloe canadensis, a new interspecific epichloid hybrid symbiotic with Canada wildrye (Elymus) Tj ETQq1 1 0.78	34314 rgB 0.8	T /Qverlock 1

		CITATION	Report	
#	Article		IF	Citations
208	Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecology, 2012, 5	5, 331-344.	0.7	144
209	Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricu with the Neotyphodium endophyte. Science China Life Sciences, 2012, 55, 793-799.	is infected	2.3	47
210	Endophytic Fungus-Vascular Plant-Insect Interactions. Environmental Entomology, 2012	2, 41, 433-447.	0.7	32
211	Restoration of Native Warm Season Grassland Species in a Tall Fescue Pasture Using Preand Herbicides. Restoration Ecology, 2012, 20, 194-201.	escribed Fire	1.4	13
212	<i>Neotyphodium</i> endophyte increases <i>Achnatherum inebrians</i> (drunken hor resistance to herbivores and seed predators. Weed Research, 2012, 52, 70-78.	rse grass)	0.8	61
213	Biomass and tiller growth responses to competition between Ky31 and MaxQ <i>Festuc arundinacea</i> cultivars and response of Ky31 to exogenously applied liquid preparatio <i>Neotyphodium coenophialum</i> under glasshouse conditions. Grass and Forage Sc 299-304.	on of	1.2	3
214	Identification of extracellular siderophores and a related peptide from the endophytic fu Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry,	ingus 2012, 75, 128-139.	1.4	42
215	Antifeedent and toxic activity of endophytic Alternaria alternata against tobacco caterp Spodoptera litura. Journal of Pest Science, 2013, 86, 543-550.	illar	1.9	23
216	4 Fungal Toxins of Agricultural Importance. , 2013, , 75-113.			1
217	Fungal endophytes of a forage grass reduce faecal degradation rates. Basic and Applied 14, 146-154.	Ecology, 2013,	1.2	7
218	Phylogenomics of fescue grass-derived fungal endophytes based on selected nuclear ge mitochondrial gene complement. BMC Evolutionary Biology, 2013, 13, 270.	nes and the	3.2	16
219	The epichloae: alkaloid diversity and roles in symbiosis with grasses. Current Opinion in Biology, 2013, 16, 480-488.	Plant	3.5	132
220	Chemical Ecology Mediated by Fungal Endophytes in Grasses. Journal of Chemical Ecolo 962-968.	ıgy, 2013, 39,	0.9	165
221	Association of slugs with the fungal pathogen <i>Epichloë typhina</i> (Ascomycotina: 2013, 162, 324-334.	:) Tj ETQq1 1 0.784314	rgBT /Overl 1.3	ock 10 Tf 50 8
222	Stability and viability of novel perennial ryegrass host–Neotyphodium endophyte asso and Pasture Science, 2013, 64, 39.	ociations. Crop	0.7	11
223	Characterisation of novel perennial ryegrass host–Neotyphodium endophyte associat Pasture Science, 2013, 64, 716.	ions. Crop and	0.7	17
224	FORAGES AND PASTURES SYMPOSIUM: Managing the tall fescue–fungal endophyte s optimum forage-animal production12. Journal of Animal Science, 2013, 91, 2369-2378.	symbiosis for	0.2	41
225	Characterization of Epichlo $\tilde{A}f\hat{A}$ « coenophiala within the US: are all tall fescue endophyt equal?. Frontiers in Chemistry, 2014, 2, 95.	es created	1.8	61

#	Article	IF	CITATIONS
226	Vasoconstrictive responses by the carotid and auricular arteries in goats to ergot alkaloid exposure1. Frontiers in Chemistry, 2014, 2, 101.	1.8	17
227	Alkaloid Genotype Diversity of Tall Fescue Endophytes. Crop Science, 2014, 54, 667-678.	0.8	49
228	Influence of nitrogen fertilization on growth and loline alkaloid production of meadow fescue (<i>Festuca pratensis</i>) associated with the fungal symbiont <i>Neotyphodium uncinatum</i> . Botany, 2014, 92, 370-376.	0.5	10
229	Ergovaline and Lolitrem B Concentrations in Perennial Ryegrass in Field Culture in Southern France: Distribution in the Plant and Impact of Climatic Factors. Journal of Agricultural and Food Chemistry, 2014, 62, 12707-12712.	2.4	25
230	Interspecific hybridization and bioactive alkaloid variation increases diversity in endophytic <i>Epichloë</i> species of <i>Bromus laevipes</i> . FEMS Microbiology Ecology, 2014, 90, 276-289.	1.3	52
231	Phloem phytochemistry and aphid responses to elevated <scp>CO₂</scp> , nitrogen fertilization and endophyte infection. Agricultural and Forest Entomology, 2014, 16, 273-283.	0.7	25
232	<i>Epichloë</i> fungal endophytes and the formation of synthetic symbioses in Hordeeae (=Triticeae) grasses. Journal of Systematics and Evolution, 2014, 52, 794-806.	1.6	34
233	Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 2014, 28, 299-314.	1.7	154
234	Bottom–up regulates top–down: the effects of hybridization of grass endophytes on an aphid herbivore and its generalist predator. Oikos, 2014, 123, 545-552.	1.2	15
235	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675.		1
235 236		0.6	1 0
	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa,	0.6	
236	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa, Cssa and Sssa, 2015, , 318-366.		0
236 237	 Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa, Cssa and Sssa, 2015, , 318-366. Tall Fescue-Endophyte Symbiosis. Agronomy, 0, , 251-272. Is the Vertical Transmission of Neotyphodium Iolii in Perennial Ryegrass the Only Possible Way to the 	0.2	0 19
236 237 238	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa, Cssa and Sssa, 2015, , 318-366. Tall Fescue-Endophyte Symbiosis. Agronomy, 0, , 251-272. Is the Vertical Transmission of Neotyphodium Iolii in Perennial Ryegrass the Only Possible Way to the Spread of Endophytes?. PLoS ONE, 2015, 10, e0117231.	0.2	0 19 40
236 237 238 239	Epichloë Endophytes: Models of an Ecological Strategy., 2014,, 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa, Cssa and Sssa, 2015,, 318-366. Tall Fescue-Endophyte Symbiosis. Agronomy, 0,, 251-272. Is the Vertical Transmission of Neotyphodium Iolii in Perennial Ryegrass the Only Possible Way to the Spread of Endophytes?. PLoS ONE, 2015, 10, e0117231. Insect Pests. Agronomy, 2015, , 129-149.	0.2 1.1 0.2	0 19 40 4
236 237 238 239 240	Epichloī Endophytes: Models of an Ecological Strategy., 2014, , 660-675. Fungal Endophytes, Other Fungi, and Their Metabolites as Extrinsic Factors of Grass Quality. Assa, Cssa and Sssa, 2015, , 318-366. Tall Fescue-Endophyte Symbiosis. Agronomy, 0, , 251-272. Is the Vertical Transmission of Neotyphodium Iolii in Perennial Ryegrass the Only Possible Way to the Spread of Endophytes?. PLoS ONE, 2015, 10, e0117231. Insect Pests. Agronomy, 2015, , 129-149. Tall Fescue. Agronomy, 0, , 471-502. Novel Endophyte Technology: Selection of the Fungus. CSSA Special Publication - Crop Science Society	0.2 1.1 0.2 0.2	0 19 40 4

		CITATION REPORT		
#	Article		IF	CITATIONS
244	Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë. Toxins, 2015, 7,	773-790.	1.5	64
245	Alkaloid Variation Among Epichloid Endophytes of Sleepygrass (Achnatherum robustun Consequences for Resistance to Insect Herbivores. Journal of Chemical Ecology, 2015, 4	ı) and 41, 93-104.	0.9	46
246	Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Loliu Fungal Ecology, 2015, 15, 1-8.	n perenne).	0.7	50
247	Comparison of the chemistry and diversity of endophytes isolated from wild-harvested greenhouse-cultivated yerba mansa (Anemopsis californica). Phytochemistry Letters, 20	and)15, 11, 202-208.	0.6	12
248	The Hidden World within Plants: Ecological and Evolutionary Considerations for Definin Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 201		2.9	1,895
249	Disparate Independent Genetic Events Disrupt the Secondary Metabolism Gene <i>per/ Symbiotic Epichloë Species. Applied and Environmental Microbiology, 2015, 81, 2797</i>	A<∕i> in Certain -2807.	1.4	27
250	Segregating endophyte infected seed from uninfected seed in annual ryegrass (Lolium infected with Epichloë occultans. Seed Science and Technology, 2015, 43, 40-51.	rigidum)	0.6	2
251	Effect of Endophyte Infection and Clipping Treatment on Resistance and Tolerance of A sibiricum. Frontiers in Microbiology, 2016, 7, 1988.	chnatherum	1.5	10
252	New findigs of endophytic fungi: Brief note. Moscow University Biological Sciences Bull 80-81.	etin, 2016, 71,	0.1	0
253	Context-dependent outcomes of subarctic grass-endophyte symbiosis. Fungal Ecology,	2016, 23, 66-74.	0.7	9
254	The fungal endophyte <i>Chaetomium globosum</i> negatively affects both above- and herbivores in cotton. FEMS Microbiology Ecology, 2016, 92, fiw158.	belowground	1.3	38
255	Identification and Quantification of Loline-Type Alkaloids in Endophyte-Infected Grasses Journal of Agricultural and Food Chemistry, 2016, 64, 6212-6218.	s by LC-MS/MS.	2.4	15
256	Endophytic Epichloë species and their grass hosts: from evolution to applications. Pla Biology, 2016, 90, 665-675.	ıt Molecular	2.0	125
257	Synthesis of Peramine, an Anti-insect Defensive Alkaloid Produced by Endophytic Fungi Grasses. Journal of Natural Products, 2016, 79, 1189-1192.	of Cool Season	1.5	15
258	Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2016, , .		0.6	13
259	Epichloë Fungal Endophytes for Grassland Ecosystems. Sustainable Agriculture Reviev	vs, 2016, , 233-305.	0.6	44
260	Functions, mechanisms and regulation of endophytic and epiphytic microbial communi Symbiosis, 2016, 68, 87-98.	ties of plants.	1.2	134
261	Effects of Tall Fescue and Its Fungal Endophyte on the Development and Survival of Tav Skippers (Lepidoptera: Hesperiidae). Environmental Entomology, 2016, 45, 142-149.	vny-Edged	0.7	11

#	Article	IF	CITATIONS
262	Epichloë Fungal Endophytes and Plant Defenses: Not Just Alkaloids. Trends in Plant Science, 2017, 22, 939-948.	4.3	162
263	Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecology, 2017, 29, 52-58.	0.7	54
264	The effect of co-infestation by conspecific and heterospecific aphids on the feeding behaviour of Nasonovia ribisnigri on resistant and susceptible lettuce cultivars. Arthropod-Plant Interactions, 2017, 11, 785-796.	0.5	5
265	Herbivoreâ€specific induction of defence metabolites in a grass–endophyte association. Functional Ecology, 2017, 31, 318-324.	1.7	45
266	Herbaceous plants in the understory of a pitch canker-affected Pinus radiata plantation are endophytically infected with Fusarium circinatum. Fungal Ecology, 2018, 32, 65-71.	0.7	26
267	Endophytic Fungi, Occurrence, and Metabolites. , 2018, , 213-230.		9
268	Molecular identification and characterization of endophytes from uncultivated barley. Mycologia, 2018, 110, 453-472.	0.8	7
269	Seed Transmission of Epichloë Endophytes in Lolium perenne Is Heavily Influenced by Host Genetics. Frontiers in Plant Science, 2018, 9, 1580.	1.7	51
270	Biocontrol Potential of Forest Tree Endophytes. Forestry Sciences, 2018, , 283-318.	0.4	9
271	Toxigenic Foliar Endophytes from the Acadian Forest. Forestry Sciences, 2018, , 343-381.	0.4	12
273	Antiâ€insect defenses of <i><scp>A</scp>chnatherum robustum</i> (sleepygrass) provided by two <i>Epichloë</i> endophyte species. Entomologia Experimentalis Et Applicata, 2018, 166, 474-482.	0.7	12
274	Endophyte Infection and Methyl Jasmonate Treatment Increased the Resistance of Achnatherum sibiricum to Insect Herbivores Independently. Toxins, 2019, 11, 7.	1.5	18
275	Agricultural Applications of Endophytic Microflora. , 2019, , 385-403.		2
276	An endophytic fungus interacts with crown level and larval density to reduce the survival of eastern spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), on white spruce (Picea) Tj ETQq1 1 0.784	-31 4.8 gBT	/O ue rlock 10
277	A Simple LC–MS Method for the Quantitation of Alkaloids in Endophyte-Infected Perennial Ryegrass. Toxins, 2019, 11, 649.	1.5	16
278	Epichloë endophytes of Poa alsodes employ alternative mechanisms for host defense: insecticidal versus deterrence. Arthropod-Plant Interactions, 2019, 13, 79-90.	0.5	4
279	Do <i>Epichloë</i> Endophytes and Their Grass Symbiosis Only Produce Toxic Alkaloids to Insects and Livestock?. Journal of Agricultural and Food Chemistry, 2020, 68, 1169-1185.	2.4	15
280	Ergot alkaloids in New Zealand pastures and their impact. New Zealand Journal of Agricultural Research, 2022, 65, 1-41.	0.9	24

#	Article	IF	CITATIONS
282	Epichloë Fungal Endophytes—From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. Journal of Fungi (Basel, Switzerland), 2020, 6, 322.	1.5	26
283	Endophytes matter: Variation of dung beetle performance across different endophyte-infected tall fescue cultivars. Applied Soil Ecology, 2020, 152, 103561.	2.1	5
285	Fungal Endophyte-Host Plant Interactions: Role in Sustainable Agriculture. , 0, , .		11
286	Contrasting Effects of Grass - Endophyte Chemotypes on a Tri-Trophic Cascade. Journal of Chemical Ecology, 2020, 46, 422-429.	0.9	7
287	Novel bioassay to assess antibiotic effects of fungal endophytes on aphids. PLoS ONE, 2020, 15, e0228813.	1.1	4
288	Z-3-Hexenylacetate emissions induced by the endophyte Epichloë occultans at different levels of defoliation during the host plant's life cycle. Fungal Ecology, 2021, 49, 101015.	0.7	6
289	Epichloë endophytes stimulate grass development and physiological state in China. , 2021, , 41-57.		0
290	Antifeedant Effects and Repellent Activity of Loline Alkaloids from Endophyte-Infected Tall Fescue against Horn Flies, Haematobia irritans (Diptera: Muscidae). Molecules, 2021, 26, 817.	1.7	5
291	Achieving the European Green "Deal―of Sustainable Grass Forage Production and Landscaping Using Fungal Endophytes. Agriculture (Switzerland), 2021, 11, 390.	1.4	2
292	Global Changes in Asexual Epichloë Transcriptomes during the Early Stages, from Seed to Seedling, of Symbiotum Establishment. Microorganisms, 2021, 9, 991.	1.6	6
293	Endophytic Fungi for Pest and Disease Management. , 2008, , 365-387.		10
294	Fungal Endophytes of Grasses: Detrimental and Beneficial Associations. Brock/Springer Series in Contemporary Bioscience, 1991, , 198-221.	0.3	26
295	Endophytes as Antagonists of Plant Pests. Brock/Springer Series in Contemporary Bioscience, 1991, , 331-357.	0.3	36
296	Beyond Pest Deterrence—Alternative Strategies and Hidden Costs of Endophytic Mutualisms in Vascular Plants. Brock/Springer Series in Contemporary Bioscience, 1991, , 358-375.	0.3	36
297	Ecological Diversity in Neotyphodium-Infected Grasses as Influenced by Host and Fungus Characteristics. , 1997, , 93-108.		15
300	Effects of Natural and Artificial Herbivory on Endophyte-Infected Tall Fescue, Festuca Arundinacea and Response by the Aphid, Rhopalosiphum Padi. , 1997, , 187-189.		2
301	Physiological Manifestations of Endophyte Toxicosis in Ruminant and Laboratory Species. , 1997, , 311-346.		52
302	Immunosuppression in Cattle with Fescue Toxicosis. , 1997, , 411-412.		6

#	Article	IF	Citations
303	Molecular Biology and Genetics of Protective Fungal Endophytes of Grasses. , 1993, 15, 191-212.		14
304	Defensive Chemicals in Grass-Fungal Endophyte Associations. , 1996, , 81-119.		42
305	Tryptophan-derived Alkaloids. , 2008, , 213-259.		2
306	Evolution of Mutualistic Endophytes from Plant Pathogens. , 1997, , 221-238.		33
307	Toxin Production in Grass/Endophyte Associations. , 1997, , 185-207.		34
308	Endophyte-Mediated Biocontrol of Herbaceous and Non-herbaceous Plants. , 2014, , 335-369.		7
309	Foliar Fungal Endophytes in Herbaceous Plants: A Marriage of Convenience?. , 2014, , 61-81.		9
310	Symbiotic Parasites and Mutualistic Pathogens. , 2000, , 307-345.		1
311	10.1007/BF02381785.,2011,,.		4
312	Mangrove endophytes: a rich source of bioactive substances. , 2020, , 27-47.		2
313	Stroma-forming endophyte Epichloë glyceriae provides wound-inducible herbivore resistance to its grass host. Oikos, 2008, .	1.2	1
314	Antiinsectan Compounds Derived from Microorganisms. , 2001, , .		1
316	Processes of Species Evolution in Epichloe $\hat{A}^{\cdot \prime}$ /Neotyphodium Endophytes of Grasses. , 2003, , .		6
317	Fungal Endophytes in Terrestrial Communities and Ecosystems. Mycology, 2005, , 423-442.	0.5	5
318	Ecological Fitness Factors for Fungi within the Balansieae and Clavicipiteae. Mycology, 2005, , 519-531.	0.5	2
319	Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression. PLoS ONE, 2014, 9, e92448.	1.1	53
320	Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE, 2018, 13, e0194815.	1.1	47
322	The production of loline alkaloids in artificial and natural grass/endophyte associations. New Zealand Plant Protection, 0, 52, 264-269.	0.3	23

#	Article	IF	CITATIONS
323	Transformation of the Endophyte Neotyphodium with the iaaM Gene Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1999, 65, 192-196.	0.1	1
324	Clavicipitaceous Anamorphic Endophytes in Hordeum germplasm. Plant Pathology Journal, 2007, 6, 1-13.	0.7	10
325	Control of Clavicipitaceous Anamorphic Endophytes with Fungicides, Aerated Steam and Supercritical Fluid CO2-Seed Extraction. Plant Pathology Journal, 2008, 7, 65-74.	0.7	6
327	Implementation of a Method to Determine Lolitrem-B in Ryegrass (Lolium perenne L.) by Liquid Chromatography (HPLC). Chilean Journal of Agricultural Research, 2009, 69, .	0.4	2
328	ANTIINSECTAN COMPOUNDS DERIVED FROM MICROORGANISMS. , 0, , 13.		9
329	Epichloë (formerly Neotyphodium) fungal endophytes increase adaptation of cool-season perennial grasses to environmental stresses. Acta Agrobotanica, 2019, 72, .	1.0	34
330	<i>Sipha maydis</i> sensitivity to defences of <i>Lolium multiflorum</i> and its endophytic fungus <i>Epichloë</i> occultans. PeerJ, 2019, 7, e8257.	0.9	9
331	The Effect of Arthropods, Diseases, and Nematodes on Tropical Pastures. , 2000, , .		1
332	Molecular Interactions Between Lolium Grasses and Their Fungal Symbionts. Developments in Plant Breeding, 2001, , 261-274.	0.2	5
333	Biological Control of Turfgrass Diseases. , 2002, , .		0
334	Genetic Manipulation of Clavicipitalean Endophytes. , 2003, , .		0
335	Loline and Ergot Alkaloids in Grass Endophytes. , 2004, , 446-467.		0
336	Neotyphodium Coenophialum Mycelial Protein and Herbage Mass Effects on Ergot Alkaloid Concentration in Tall Fescue. , 1997, , 257-259.		4
337	Interactions of Grasses with Endophytic Epichloë Species and Hybrids. , 1997, , 107-140.		2
338	Bioassay Methods for Fungi and Oomycetes. , 1998, , 142-178.		1
339	Ergopeptine Toxins and Peptide Synthetase Genes in Clavicipitaceous Pathogens and Symbionts of Plants. Developments in Plant Pathology, 1998, , 199-209.	0.1	1
340	Organisms Living Inside Others. , 1999, , 575-584.		0
341	Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields. , 2019, , 143-169.		1

	Сітатіс	on Report	
#	Article	IF	Citations
342	Endophyte infection influences arbuscular mycorrhizal fungi communities in rhizosphere soils of host as opposed to nonâ€host grass. European Journal of Soil Science, 2021, 72, 995-1009.	1.8	11
343	Metagenomic Insights Into Interactions Between Plant Nematodes and Endophytic Microbiome. , 2020, , 95-124.		1
344	Endophytic Secondary Metabolites for Biological Control: A Latest Perspective. , 2020, , 293-307.		2
345	Factors Affecting the Expression of Plant Resistance to Arthropods. , 2005, , 183-217.		0
348	The Endophytes. , 2021, , 151-215.		1
349	Application of Endophyte Microbes for Production of Secondary Metabolites. Environmental and Microbial Biotechnology, 2022, , 1-37.	0.4	6
350	Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Frontiers in Microbiology, 2021, 12, 786619.	1.5	13
351	Effects of Epichloë endophytes on litter decompositiondepending on different host species. Plant and Soil, 2022, 471, 715-728.	1.8	3
352	The Use of a Brine Shrimp Assay to Detect Bioactivity in the Endophyte-Infected Grass, <i>Agrostis hyemalis</i> . Journal of the Pennsylvania Academy of Science, 2016, 90, 13-20.	0.1	0
353	Allelopathic effects of Epichloë fungal endophytes: experiment and meta-analysis. Plant and Soil, 2023, 488, 217-232.	1.8	1
354	Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS ONE, 2022, 17, e0265357.	1.1	6
355	Isoflavone Containing Legumes Mitigate Ergot Alkaloid-Induced Vasoconstriction in Goats (Capra) Tj ETQq	l 1 0.784314 rg 1.0	;BT ₅ /Overloci
356	Loline Alkaloid Effects on Gastrointestinal Nematodes. Animals, 2022, 12, 996.	1.0	2
359	Enhance Systemic Resistance Significantly Reduces the Silverleaf Whitefly Population and Increases the Yield of Sweet Pepper, Capsicum annuum L. var. annuum. Sustainability, 2022, 14, 6583.	1.6	4
360	Comparative Research on Metabolites of Different Species of Epichloë Endophytes and Their Host Achnatherum sibiricum. Journal of Fungi (Basel, Switzerland), 2022, 8, 619.	1.5	1
361	Influence of Effective Microorganisms on Some Biological and Biochemical Aspects of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Life, 2022, 12, 1726.	1.1	1
363	Conventional loose mineral with added red clover leaf (Trifolium pratense L.) reverses vasoconstriction associated with tall fescue toxicosis in steers. Animal Feed Science and Technology, 2023, 295, 115523.	1.1	2
364	Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review. Agriculture (Switzerland), 2022, 12, 2081.	1.4	6

#	Article	IF	CITATIONS
365	The Beneficial Plant Microbial Association for Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 137-210.	0.4	4
366	Translocation of Loline Alkaloids in Epichloë-Infected Cereal and Pasture Grasses: What the Insects Tell Us. Journal of Fungi (Basel, Switzerland), 2023, 9, 96.	1.5	0
367	Quantitation and Distribution of Epichloë-Derived Alkaloids in Perennial Ryegrass Tissues. Metabolites, 2023, 13, 205.	1.3	1
368	The role of endophytes to boost the plant immunity. , 2023, , 199-223.		1
369	Endophytic PGPM-Derived Metabolites and their Role in Arid Ecosystem. , 2023, , 319-347.		0