Plant strategies of manipulating predatorprey interacti Prospects for application in pest control

Journal of Chemical Ecology 16, 3091-3118 DOI: 10.1007/bf00979614

Citation Report

#	Article	IF	CITATIONS
1	How To Hunt for Hiding Hosts: the Reliability-Detectability Problem in Foraging Parasitoids. Animal Biology, 1990, 41, 202-213.	0.4	152
2	Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science, 1990, 250, 1251-1253.	6.0	1,507
3	Do Parasitoids Use Herbivore-Induced Plant Chemical Defenses to Locate Hosts?. Florida Entomologist, 1991, 74, 42.	0.2	39
4	Chemically mediated tritrophic interactions consisting of predatory mites, spider mites and plants Nippon Nogeikagaku Kaishi, 1991, 65, 1250-1253.	0.0	0
5	Induction of indirect defence aganist spider-mites in uninfested lima bean leaves. Phytochemistry, 1991, 30, 1459-1462.	1.4	51
6	Larvalâ€damaged plants: source of volatile synomones that guide the parasitoid <i>Cotesia marginiventris</i> to the microâ€habitat of its hosts. Entomologia Experimentalis Et Applicata, 1991, 58, 75-82.	0.7	166
7	Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology, 1991, 2, 1-6.	0.6	222
8	Receptor cell responses in the anterior tarsi ofPhytoseiulus persimilis to volatile kairomone components. Experimental and Applied Acarology, 1991, 13, 53-58.	0.7	26
9	Isolation and identification of allelochemicals that attract the larval parasitoid,Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology, 1991, 17, 2235-2251.	0.9	289
10	Integrated pest management of disease and arthropod pests of greenhouse vegetable crops in Ontario: Current status and future possibilities. Canadian Journal of Plant Science, 1991, 71, 887-914.	0.3	37
11	Effects of Host Plant Experience on Foraging Behavior of the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae). Annals of the Entomological Society of America, 1992, 85, 775-783.	1.3	8
12	Interspecific and Intraspecific Interactions Via Plant Responses to Folivory: An Experimental Field Test. Ecology, 1992, 73, 1802-1813.	1.5	48
13	Ecology of Infochemical Use by Natural Enemies in a Tritrophic Context. Annual Review of Entomology, 1992, 37, 141-172.	5.7	1,573
14	Are acyclic C11 and C16 homoterpenes plant volatiles indicating herbivory?. Die Naturwissenschaften, 1992, 79, 368-371.	0.6	68
15	Perspectives of non-phytoseiid predators for the biological control of plant pests. Experimental and Applied Acarology, 1992, 14, 383-391.	0.7	2
16	Induced defence in detached uninfested plant leaves: effects on behaviour of herbivores and their predators. Oecologia, 1992, 91, 554-560.	0.9	40
17	Adult experience modifies attraction of the leafminer parasitoidOpius dissitus (Hymenoptera:) Tj ETQq0 0 0 rgB1	- Overlock	10 Tf 50 102

Bibliography of plant resistance to arthropods in vegetables, 1977–1991. Phytoparasitica, 1992, 20, 0.6 14 125-138.

ARTICLE IF CITATIONS # Orientation of Microplitis croceipes (Hymenoptera: Braconidae) to green leaf volatiles: Dose-response 19 0.9 71 curves. Journal of Chemical Ecology, 1992, 18, 1743-1753. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia, 1992, 48, 525-529. 1.2 Response of predatory mites with different rearing histories to volatiles of uninfested plants. 21 0.7 145 Entomologia Experimentalis Et Applicata, 1992, 64, 187-193. New directions in semiochemical research¹. Journal of Applied Entomology, 1992, 114, 0.8 431-438. Semiochemically mediated foraging behavior in beneficial parasitic insects. Archives of Insect 23 0.6 73 Biochemistry and Physiology, 1993, 22, 385-391. Anemotactic responses of the predatory mite, Phytoseiulus persimilis Athias-Henriot, and their role in prey finding. Experimental and Applied Acarology, 1993, 17, 521-529. Influence of caterpillar-feeding damage on the foraging behavior of the paper waspMischocyttarus 25 0.4 17 flavitarsis (Hymenoptera: Vespidae). Journal of Insect Behavior, 1993, 6, 771-781. Relative importance of infochemicals from first and second trophic level in long-range host location 26 158 by the larval parasitoidCotesia glomerata. Journal of Chemical Ecology, 1993, 19, 47-59. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals 27 0.9 277 attractive to parasitic wasps. Journal of Chemical Ecology, 1993, 19, 411-425. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: 132 Extraction of endogenous elicitor. Journal of Chemical Ecology, 1993, 19, 581-599. Application of Semiochemicals in Integrated Pest Management Programs. ACS Symposium Series, 1993, , 29 0.5 5 199-218. Hunger and age effects on searching behavior of three species of predatory mites (Acari: Phytoseiidae). Canadian Journal of Zoology, 1993, 71, 1997-2004. 0.4 Learning of Host-Finding Cues by Hymenopterous Parasitoids., 1993, , 51-78. $\mathbf{31}$ 319 Bioluminescence in Dinoflagellates: A Test of the Burgular Alarm Hypothesis. Ecology, 1993, 74, 1.5 76 258-260. SUNNA, HÌŁADĪTH, AND MADINAN 'AMAL. Journal of Islamic Studies, 1993, 4, 1-31. 33 0.0 25 Le potentiel de l'écologie chimique dans la lutte contre les insectes nuisibles. Phytoprotection, 1993, 34 74, 29-39. Biological pest control. Biomass and Bioenergy, 1994, 6, 93-101. 36 2.9 18 Why do plants ?talk??. Chemoecology, 1994, 5-6, 159-165. 19

		CITATION REPORT		
#	Article		IF	Citations
38	Evolution of plant volatile production in insect-plant relationships. Chemoecology, 199	94, 5-6, 55-73.	0.6	60
39	Induction of parasitoid attracting synomone in brussels sprouts plants by feeding ofPi larvae: Role of mechanical damage and herbivore elicitor. Journal of Chemical Ecology, 2229-2247.	eris brassicae 1994, 20,	0.9	218
40	Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J Chemical Ecology, 1994, 20, 3039-3050.	ournal of	0.9	146
41	Higher plant terpenoids: A phytocentric overview of their ecological roles. Journal of Cl Ecology, 1994, 20, 1223-1280.	nemical	0.9	729
42	Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by b abiotic factors. Journal of Chemical Ecology, 1994, 20, 1329-1354.	iotic and	0.9	325
43	Natural and synthetic oviposition stimulants forCatolaccus grandis (Burks) females. Jo Chemical Ecology, 1994, 20, 1583-1594.	urnal of	0.9	10
44	Plant-natural enemy association in the tritrophic system,Cotesia rubecula-Pieris rapae- (cruciferae): I. Sources of infochemicals. Journal of Chemical Ecology, 1994, 20, 1725-		0.9	63
45	Plant-natural enemy association in the tritrophic systemCotesia rubecula-Pieris rapae- (cruciferae): II. Preference ofC. rubecula for landing and searching. Journal of Chemical 20, 1735-1748.	prassicaceae Ecology, 1994,	0.9	45
46	Leaf age affects composition of herbivore-induced synomones and attraction of preda Journal of Chemical Ecology, 1994, 20, 373-386.	tory mites.	0.9	144
47	Plant-natural enemy association in tritrophic system,Cotesia rubecula-Pieris rapae-bras (Cruciferae). III: Collection and identification of plant and frass volatiles. Journal of Che Ecology, 1994, 20, 1955-1967.	sicaceae mical	0.9	69
48	Plant-Herbivore Interactions and Theory of Coevolution1. Plant Species Biology, 1994,	9, 155-161.	0.6	6
49	Environmental variation in physical and chemical cues used by the parasitic wasp, <i>A melinus</i> , for host recognition. Entomologia Experimentalis Et Applicata, 1994, 72,	xphytis 97-108.	0.7	11
50	Volatiles from damaged plants as major cues in longâ€range hostâ€searching by the s Cotesia rubecula. Entomologia Experimentalis Et Applicata, 1994, 73, 289-297.	pecialist parasitoid	0.7	118
51	Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phas and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Letters, 19	eolus lunatus 94, 352, 146-150.	1.3	203
52	Biosynthesis of Acyclic Homoterpenes in Higher Plants Parallels Steroid Hormone Meta Journal of Plant Physiology, 1994, 143, 473-478.	abolism.	1.6	45
53	Local and Systemic Production of Volatile Herbivore-induced Terpenoids: Their Role in Plant-carnivore Mutualism. Journal of Plant Physiology, 1994, 143, 465-472.		1.6	323
54	How caterpillar-damaged plants protect themselves by attracting parasitic wasps Pro National Academy of Sciences of the United States of America, 1995, 92, 4169-4174.	ceedings of the	3.3	645
55	The chemistry of eavesdropping, alarm, and deceit Proceedings of the National Acade of the United States of America, 1995, 92, 23-28.	emy of Sciences	3.3	150

#	Article	IF	CITATIONS
56	beta-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2036-2040.	3.3	522
57	Preselection of predatory mites to improve yearâ€round biological control of western flower thrips in greenhouse crops. Entomologia Experimentalis Et Applicata, 1995, 74, 225-234.	0.7	99
58	Hostâ€age discrimination during host location by <i>Cotesia glomerata</i> , a larval parasitoid of <i>Pieris brassicae</i> . Entomologia Experimentalis Et Applicata, 1995, 76, 37-48.	0.7	35
59	Do anthocorid predators respond to synomones from <i>Psylla</i> â€infested pear trees under field conditions?. Entomologia Experimentalis Et Applicata, 1995, 77, 193-203.	0.7	102
60	Olfactory responses of the predatory mite <i>Amblyseius andersoni</i> Chant (Acari, Phytoseiidae) to bean plants infested by the spider mite <i>Tetranychus urticae</i> Koch (Acari, Tetranychidae). Journal of Applied Entomology, 1995, 119, 615-619.	0.8	17
61	Jasmonsäre―und Coronatinâ€induzierte Duftproduktion in Pflanzen. Angewandte Chemie, 1995, 107, 1715-1717.	1.6	28
62	Jasmonic Acid and Coronatin Induce Odor Production in Plants. Angewandte Chemie International Edition in English, 1995, 34, 1600-1602.	4.4	150
63	Host microhabitat location by stem-borer parasitoidCotesia flavipes: the role of herbivore volatiles and locally and systemically induced plant volatiles. Journal of Chemical Ecology, 1995, 21, 525-539.	0.9	115
64	Developmental stage of herbivorePseudaletia separata affects production of herbivore-induced synomone by corn plants. Journal of Chemical Ecology, 1995, 21, 273-287.	0.9	268
65	Integration of chemical and biological control systems for arthropods: Evaluation in a multitrophic context. Pest Management Science, 1995, 44, 207-218.	0.7	74
66	Biosynthesis of acyclic homoterpenes: Enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry, 1995, 39, 785-790.	1.4	115
67	Reply from M.L. Arnold and S.A. Hodges. Trends in Ecology and Evolution, 1995, 10, 289.	4.2	4
68	Terpenoids: a plant language. Trends in Ecology and Evolution, 1995, 10, 289.	4.2	45
69	A protist writes 3 Trends in Ecology and Evolution, 1995, 10, 289.	4.2	6
71	Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalli. FEBS Letters, 1995, 377, 523-529.	1.3	136
72	Parasitoid Foraging and Learning. , 1995, , 65-101.		223
73	Chapter 4 The Ecological Activity of Alkaloids. Alkaloids: Chemistry and Pharmacology, 1995, 47, 227-354.	0.2	11
74	Do plants tap SOS signals from their infested neighbours?. Trends in Ecology and Evolution, 1995, 10, 167-170.	4.2	106

ARTICLE IF CITATIONS # Chemical ecology: Multifunctional compounds and multitrophic interactions. Die 0.6 13 75 Naturwissenschaften, 1996, 83, 248-254. Living on Leaves: Mites, Tomenta, and Leaf Domatia. Annual Review of Entomology, 1996, 41, 101-114. 5.7 204 Plantâ€"carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant 77 4.3 443 Science, 1996, 1, 109-113. Volatile infochemicals used in host and host habitat location byCotesia flavipes Cameron andCotesia sesamiae (Cameron) (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminae. Journal of Chemical Ecology, 1996, 22, 307-323. 0.9 A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their 79 0.6 79 hosts. Ćhemoecology, 1996, 7, 121-131. Innate responses of the parasitoidsCotesia glomerata andC. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. Journal of Insect Behavior, 1996, 9, 525-538. 0.4 Effects of chlorogenic acid-and tomatine-fed caterpillars on the behavior of an insect predator. 81 0.4 38 Journal of Insect Behavior, 1996, 9, 461-476. Volatiles emitted by apple fruitlets infested by larvae of the European apple sawfly. Phytochemistry, 1.4 68 1996, 42, 373-381. Host location by <i>Gelis festinans</i>, an eggsac parasitoid of the linyphiid spider <i>Erigone atra</i>. Entomologia Experimentalis Et Applicata, 1996, 81, 155-163. 83 0.7 23 84 Plant–Arthropod Interactions in Agroecosystems. , 1997, , 239-290. The Slow-Growth–High-Mortality Hypothesis: A Test Using the Cabbage Butterfly. Ecology, 1997, 78, 987. 85 1.5 44 A total system approach to sustainable pest management. Proceedings of the National Academy of 3.3 86 Sciences of the United States of America, 1997, 94, 12243-12248. Chemically-Mediated Attraction of Three Parasitoid Species to Mealybug-Infested Cassava Leaves. 87 0.2 42 Florida Entomologist, 1997, 80, 383. THE SLOW-GROWTHâ€"HIGH-MORTALITY HYPOTHESIS: A TEST USING THE CABBAGE BUTTERFLY. Ecology, 1997, 1.5 78, 987-999. Predators Use Volatiles to Avoid Prey Patches with Conspecifics. Journal of Animal Ecology, 1997, 66, 89 1.3106 223. Induced synthesis of plant volatiles. Nature, 1997, 385, 30-31. 218 NMR structure of a receptor-bound G-protein peptide. Nature, 1997, 390, 424-424. 92 13.7 5 DNA antisense therapy for asthma in an animal model. Nature, 1997, 390, 424-424.

	CITATION R	CITATION REPORT		
#	Article	IF	Citations	
94	Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 1997, 385, 718-721.	13.7	700	
95	Semiochemical-Mediated Location of Host Habitat by Apanteles carpatus (Say) (Hymenoptera:) Tj ETQq1 1 0.78	34314 rgB1 0.9	- /Qyerlock 10	
96	Comparisons and Contrasts in Host-Foraging Strategies of Two Larval Parasitoids with Different Degrees of Host Specificity. Journal of Chemical Ecology, 1997, 23, 1589-1606.	0.9	56	
97	Response of Predatory Insect Scolothrips takahashii Toward Herbivore-Induced Plant Volatiles Under Laboratory and Field Conditions. Journal of Chemical Ecology, 1997, 23, 2033-2048.	0.9	94	
98	Comparative Analysis of Headspace Volatiles from Different Caterpillar-Infested or Uninfested Food Plants of Pieris Species. Journal of Chemical Ecology, 1997, 23, 2935-2954.	0.9	158	
99	Response of a phytoseiid predator to herbivore-Induced plant volatiles: Selection on attraction and effect on prey exploitation. Journal of Insect Behavior, 1997, 10, 695-709.	0.4	53	
100	Host recognition by the specialist endoparasitoidMicroplitis croceipes (Hymenoptera: Braconidae): Role of host- and plant-related volatiles. Journal of Insect Behavior, 1997, 10, 313-330.	0.4	31	
101	Title is missing!. Journal of Chemical Ecology, 1998, 24, 1355-1368.	0.9	382	
102	Title is missing!. Journal of Chemical Ecology, 1998, 24, 37-48.	0.9	22	
103	Title is missing!. Journal of Chemical Ecology, 1998, 24, 303-319.	0.9	122	
104	Title is missing!. Experimental and Applied Acarology, 1998, 22, 311-333.	0.7	152	
105	OLFACTORY ORIENTATION OF THE PARASITOID WASP <i>LYSIPHLEBUS FABARUM</i> TO ITS HOST FOOD	1.5	2	
107	Mevalonate-Independent Biosynthesis of Terpenoid Volatiles in Plants: Induced and Constitutive Emission of Volatiles. Angewandte Chemie - International Edition, 1998, 37, 2478-2481.	7.2	107	
108	Catalytic Enantioselective Retro-Aldol Reactions: Kinetic Resolution ofβ-Hydroxyketones with Aldolase Antibodies. Angewandte Chemie - International Edition, 1998, 37, 2481-2484.	7.2	100	
109	Timing of induced volatile emissions in maize seedlings. Planta, 1998, 207, 146-152.	1.6	256	
110	Tritrophic interactions in sorghum, midge (Stenodiplosis sorghicola) and its parasitoid (Aprostocetus spp.). Crop Protection, 1998, 17, 165-169.	1.0	9	
111	The Effects of Domestication ofBrassicaandPhaseoluson the Interaction between Phytophagous Insects and Parasitoids. Biological Control, 1998, 11, 130-140.	1.4	129	
112	The Induction of Volatile Emissions in Maize by Three Herbivore Species with Different Feeding Habits: Possible Consequences for Their Natural Enemies. Biological Control, 1998, 11, 122-129.	1.4	229	

#	Article	IF	CITATIONS
113	Vibrational Sounding by the Pupal ParasitoidPimpla (Coccygomimus) turionellae:An Additional Solution to the Reliability–Detectability Problem. Biological Control, 1998, 11, 141-146.	1.4	53
114	Manipulating Natural Enemies By Plant Variety Selection and Modification: A Realistic Strategy?. Annual Review of Entomology, 1998, 43, 347-367.	5.7	252
115	SPATIAL HETEROGENEITY AND INSECT ADAPTATION TO TOXINS. Annual Review of Entomology, 1998, 43, 571-594.	5.7	127
116	The potential for manipulating crop–pest–natural enemy interactions for improved insect pest management. Bulletin of Entomological Research, 1998, 88, 493-501.	0.5	76
117	Interactions of host plant resistance and biological control of stemborers in sorghum. International Journal of Tropical Insect Science, 1998, 18, 261-266.	0.4	3
118	Oviposition Response of Cotesia plutellae (Hymenoptera: Braconidae) to Sterile and Normal Diamondback Moth (Lepidoptera: Plutellidae) Larvae. Environmental Entomology, 1998, 27, 1520-1524.	0.7	9
119	Effects of plant metabolites on the behavior and development of parasitic wasps. Ecoscience, 1998, 5, 321-333.	0.6	202
120	Influence of plants on invertebrate predators. , 1998, , 83-100.		33
121	Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari : Phytoseiidae) in a prey patch. Applied Entomology and Zoology, 1998, 33, 573-576.	0.6	23
122	Naturally occurring biological controls in genetically engineered crops. , 1998, , 185-205.		34
123	Response of the predatory mite, Amblyseius womersleyi (Acari : Phytoseiidae), toward herbivore-induced plant volatiles : Variation in response between two local populations. Applied Entomology and Zoology, 1999, 34, 449-454.	0.6	31
124	Environmental Management to Enhance Biological Control in Agroecosystems. , 1999, , 319-354.		42
125	Spider Mite-Induced (3S)-(E)-Nerolidol Synthase Activity in Cucumber and Lima Bean. The First Dedicated Step in Acyclic C11-Homoterpene Biosynthesis. Plant Physiology, 1999, 121, 173-180.	2.3	119
126	Differential Induction of Plant Volatile Biosynthesis in the Lima Bean by Early and Late Intermediates of the Octadecanoid-Signaling Pathway. Plant Physiology, 1999, 121, 153-162.	2.3	242
127	Predator-prey interactions: olfactory adaptations of generalist and specialist predators. Agricultural and Forest Entomology, 1999, 1, 47-54.	0.7	76
128	Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomologia Experimentalis Et Applicata, 1999, 90, 191-198.	0.7	86
129	Infochemicals mediating the foraging behaviour of Aleochara bilineata Gyllenhal adults: sources of attractants. Entomologia Experimentalis Et Applicata, 1999, 90, 199-205.	0.7	35
130	Behavioural responses of the endoparasitoid Apoanagyrus lopezi to odours of the host and host's cassava plants. Entomologia Experimentalis Et Applicata, 1999, 90, 215-220.	0.7	10

	CITATION RE	PORT	
#	Article	IF	CITATIONS
131	Are herbivoreâ€induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?. Entomologia Experimentalis Et Applicata, 1999, 91, 131-142.	0.7	259
132	Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 93, 77-86.	0.7	71
133	Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 1999, 399, 686-688.	13.7	494
134	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2313-2325.	0.9	49
135	Sex-Related Perception of Insect and Plant Volatiles in Lygocoris pabulinus. Journal of Chemical Ecology, 1999, 25, 2357-2371.	0.9	37
136	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1597-1609.	0.9	258
137	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2623-2641.	0.9	42
138	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1247-1261.	0.9	129
139	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1813-1826.	0.9	17
140	Title is missing!. Experimental and Applied Acarology, 1999, 23, 21-40.	0.7	34
141	Nutrition of Entomophagous Insects and Other Arthropods. , 1999, , 594-652.		53
142	REDUCING PREDATION THROUGH CHEMICALLY MEDIATED CAMOUFLAGE: INDIRECT EFFECTS OF PLANT DEFENSES ON HERBIVORES. Ecology, 1999, 80, 495-509.	1.5	105
143	NUTRITION AND CULTURE OF ENTOMOPHAGOUS INSECTS. Annual Review of Entomology, 1999, 44, 561-592.	5.7	179
144	The Influence of the Host Plant of the Cassava MealybugPhenacoccus manihotion the Plant and Host Preferences of Its ParasitoidApoanagyrus lopezi. Biological Control, 1999, 15, 64-70.	1.4	10
145	Signal conflicts and synergies in induced resistance to multiple attackers. Physiological and Molecular Plant Pathology, 1999, 55, 99-109.	1.3	135
146	PLANT QUALITY AND SPIDER PREDATION AFFECTS GRASSHOPPERS (ACRIDIDAE): FOOD-QUALITY-DEPENDENT COMPENSATORY MORTALITY. Ecology, 2000, 81, 66-77.	1.5	56
147	The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae) Applied Entomology and Zoology, 2000, 35, 345-351.	0.6	19
148	Local and distant prey-related cues influence when an acarine predator leaves a prey patch. Entomologia Experimentalis Et Applicata, 2000, 96, 245-252.	0.7	27

#	Article	IF	CITATIONS
149	Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis Et Applicata, 2000, 97, 237-249.	0.7	416
150	Variation in the suitability of Pinus contorta (lodgepole pine) to feeding by three pine defoliators, Panolis flammea, Neodiprion sertifer and Zeiraphera diniana. Journal of Applied Entomology, 2000, 124, 11-17.	0.8	5
151	Conflicting interests of plants and the natural enemies of herbivores. Oikos, 2000, 89, 202-208.	1.2	83
152	Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 2000, 406, 512-515.	13.7	670
153	Title is missing!. Journal of Chemical Ecology, 2000, 26, 189-202.	0.9	139
154	Induction of Plant Synomones by Oviposition of a Phytophagous Insect. Journal of Chemical Ecology, 2000, 26, 221-232.	0.9	181
155	Change in Behavioral Response to Herbivore-induced Plant Volatiles in a Predatory Mite Population. Journal of Chemical Ecology, 2000, 26, 1497-1514.	0.9	28
156	Title is missing!. Journal of Chemical Ecology, 2000, 26, 1765-1771.	0.9	111
157	Do herbivore-induced plant volatiles influence predator migration and local dynamics of herbivorous and predatory mites?. , 2000, 24, 427-440.		6
158	Lotus japonicus Infested with Herbivorous Mites Emits Volatile Compounds That Attract Predatory Mites. Journal of Plant Research, 2000, 113, 427-433.	1.2	53
159	Examining plant-parasitoid interactions in tritrophic systems. Neotropical Entomology, 2000, 29, 189-203.	0.2	29
160	Attraction of a predator to chemical information related to nonprey: when can it be adaptive?. Behavioral Ecology, 2000, 11, 606-613.	1.0	28
161	Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proceedings of the United States of America, 2000, 97, 14418-14420.	3.3	126
162	Gene Responses in Bean Leaves Induced by Herbivory and by Herbivore-Induced Volatiles. Biochemical and Biophysical Research Communications, 2000, 277, 305-310.	1.0	131
163	Understanding and Manipulating Plant Attributes to Enhance Biological Control. Biological Control, 2000, 17, 35-49.	1.4	265
164	Leaf volatile compounds and the distribution of ant patrollingin an ant-plant protection mutualism: Preliminary results onLeonardoxa (Fabaceae: Caesalpinioideae) andPetalomyrmex(Formicidae:) Tj ETQq1 1 0.784	3 1 04.5 gBT /	O uø rlock 10
165	An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14801-14806.	3.3	254
166	Involvement of Jasmonate- and Salicylate-Related Signaling Pathways for the Production of Specific Herbivore-Induced Volatiles in Plants. Plant and Cell Physiology, 2000, 41, 391-398.	1.5	249

#	Article	IF	CITATIONS
167	Gut Bacteria May Be Involved in Interactions between Plants, Herbivores and Their Predators: Microbial Biosynthesis of N-Acylglutamine Surfactants as Elicitors of Plant Volatiles. Biological Chemistry, 2000, 381, 755-62.	1.2	123
168	Pheromone Technology and Management of Sugarcane Pest Chilo Infuscatellus Snell. The Early Shoot Borer: A Case Study. , 2001, , 181-188.		1
169	The Influence of Aphid-Induced Plant Volatiles on Ladybird Beetle Searching Behavior. Biological Control, 2001, 21, 191-195.	1.4	126
170	Interactions mediated by predators in arthropod food webs. Neotropical Entomology, 2001, 30, 1-9.	0.5	18
171	EstÃmulos Olfativos Envolvidos na Localização de Presas pelo Ãcaro Predador Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) em Macieiras e Plantas Hospedeiras Alternativas. Neotropical Entomology, 2001, 30, 631-639.	0.5	6
172	Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis(Acari: Phytoseiidae) with changes of Tetranychus urticae(Acari: Tetranychidae) density on a plant Applied Entomology and Zoology, 2001, 36, 47-52.	0.6	62
174	Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae. Chemoecology, 2001, 11, 167-173.	0.6	39
175	Migration of specialist insect predators to exploit patchily distributed spider mites. Population Ecology, 2001, 43, 15-21.	0.7	13
176	Modulation of predator attraction to pheromones of two prey species by stereochemistry of plant volatiles. Oecologia, 2001, 127, 444-453.	0.9	75
177	Evolution of benzoxazinone biosynthesis and indole production in maize. Planta, 2001, 213, 493-498.	1.6	148
178	Plants protect their roots by alerting the enemies of grubs. Ecology Letters, 2001, 4, 292-294.	3.0	204
179	Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agricultural and Forest Entomology, 2001, 3, 201-209.	0.7	72
180	Ion Channel-Forming Alamethicin Is a Potent Elicitor of Volatile Biosynthesis and Tendril Coiling. Cross Talk between Jasmonate and Salicylate Signaling in Lima Bean. Plant Physiology, 2001, 125, 369-377.	2.3	224
181	Seasonal occurrence of specialist and generalist insect predators of spider mites and their response to volatiles from spider-mite-infested plants in Japanese pear orchards. Experimental and Applied Acarology, 2001, 25, 393-402.	0.7	19
182	Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2001, 27, 1355-1372.	0.9	52
183	Exogenous methyl jasmonate induces volatile emissions in cotton plants. Journal of Chemical Ecology, 2001, 27, 679-695.	0.9	150
184	Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Experimental and Applied Acarology, 2001, 25, 65-77.	0.7	43
185	Title is missing!. Journal of Insect Behavior, 2001, 14, 557-572.	0.4	12

#	Article	IF	CITATIONS
186	Systemically induced plant volatiles emitted at the time of "danger". Journal of Chemical Ecology, 2001, 27, 2233-2252.	0.9	96
187	The Complexity of Factors Driving Volatile Organic Compound Emissions by Plants. Biologia Plantarum, 2001, 44, 481-487.	1.9	230

188 Effects of allelochemicals from first (brassicaceae) and second (Myzus persicae and Brevicoryne) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 6

189	ROLE OF RICE VOLATILES IN THE FORAGING BEHAVIOUR OF CYRTORHINUS LIVIDIPENNIS REUTER. Insect Science, 2001, 8, 240-250.	1.5	1
190	Night moves of pregnant moths. Nature, 2001, 410, 530-531.	13.7	11
191	Dragging single electrons. Nature, 2001, 410, 531-533.	13.7	8
192	Effects of atmospheric CO2 enrichment on plant constituents related to animal and human health. Environmental and Experimental Botany, 2001, 45, 179-199.	2.0	91
193	Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. Journal of Insect Physiology, 2001, 47, 749-757.	0.9	78
194	Chemical information transfer between plants:. Biochemical Systematics and Ecology, 2001, 29, 981-994.	0.6	150
195	Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochemical Systematics and Ecology, 2001, 29, 1049-1061.	0.6	140
196	Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochemical Systematics and Ecology, 2001, 29, 1075-1087.	0.6	72
197	Meta-analysis of laboratory experiments on plant–plant information transfer. Biochemical Systematics and Ecology, 2001, 29, 1089-1102.	0.6	15
198	Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species. Bulletin of Entomological Research, 2002, 92, 539-546.	0.5	30
199	The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants. Plant Physiology, 2002, 129, 1296-1307.	2.3	470
200	IS ATTRACTION FATAL? THE EFFECTS OF HERBIVORE-INDUCED PLANT VOLATILES ON HERBIVORE PARASITISM. Ecology, 2002, 83, 3416-3425.	1.5	17
201	Use of infochemicals in Pest Management with Special Reference to the Banana Weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). International Journal of Tropical Insect Science, 2002, 22, 241-261.	0.4	11
202	Olfactory responses of two specialist insect predators of spider mites toward plant volatiles from lima bean leaves induced by jasmonic acid and/or methyl salicylate Applied Entomology and Zoology, 2002, 37, 535-541.	0.6	45
203	Functions of Plant Infochemicals in Tritrophic Interactions between Plants, Herbivores and Carnivorous Natural Enemies Japanese Journal of Applied Entomology and Zoology, 2002, 46, 117-133.	0.5	22

#	Article	IF	CITATIONS
204	Chemical responses to plant injury and plant aging. Studies in Natural Products Chemistry, 2002, 27, 59-102.	0.8	0
205	Resistance of Cultivated Tomato to Cell Content-Feeding Herbivores Is Regulated by the Octadecanoid-Signaling Pathway. Plant Physiology, 2002, 130, 494-503.	2.3	223
206	SPME Applied to the Study of Volatile Organic Compounds Emitted by Three Species ofEucalyptusin Situ. Journal of Agricultural and Food Chemistry, 2002, 50, 7199-7205.	2.4	45
207	The chemical ecology of plant–caterpillar–parasitoid interactions. , 2002, , 148-173.		37
208	Evolution of Exploitation and Defense in Tritrophic Interactions. , 2002, , 297-322.		17
209	Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production. Journal of Separation Science, 2002, 25, 677-684.	1.3	76
210	Induced responses in clover to an herbaceous mite. Archives of Insect Biochemistry and Physiology, 2002, 51, 170-181.	0.6	0
211	Evolution of herbivore-induced plant volatiles. Oikos, 2002, 97, 134-138.	1.2	34
212	Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. Entomologia Experimentalis Et Applicata, 2002, 104, 181-192.	0.7	140
213	Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Letters, 2002, 5, 764-774.	3.0	193
214	A breath of fresh air: beyond laboratory studies of plant volatile-natural enemy interactions. Agricultural and Forest Entomology, 2002, 4, 81-86.	0.7	55
215	Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant Journal, 2002, 29, 87-98.	2.8	201
216	Selective induction of secondary metabolism in Phaseolus lunatus by 6-substituted indanoyl isoleucine conjugates. Phytochemistry, 2002, 61, 807-817.	1.4	18
217	Genetic variation in foraging traits among inbred lines of a predatory mite. Heredity, 2002, 89, 371-379.	1.2	33
218	Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid cotesia marginiventris: is quality or quantity important?. Journal of Chemical Ecology, 2002, 28, 951-968.	0.9	164
219	Epilogue A summary with personal bias. Euphytica, 2002, 124, 259-264.	0.6	4
220	Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. Journal of Chemical Ecology, 2002, 28, 1717-1732.	0.9	90
221	Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. Journal of Chemical Ecology, 2003, 29, 1601-1609.	0.9	185

#	Article	IF	CITATIONS
222	Title is missing!. BioControl, 2003, 48, 73-86.	0.9	44
223	Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. Journal of Chemical Ecology, 2003, 29, 145-162.	0.9	93
224	State-dependent and odor-mediated anemotactic responses of a micro-arthropod on a novel type of locomotion compensator. Behavior Research Methods, 2003, 35, 478-482.	1.3	9
225	Inducible indirect defence of plants: from mechanisms to ecological functions. Basic and Applied Ecology, 2003, 4, 27-42.	1.2	243
226	Effects of plant quality on the population ecology of parasitoids. Agricultural and Forest Entomology, 2003, 5, 1-8.	0.7	109
227	Manipulation of parasitoids for aphid pest management: progress and prospects. Pest Management Science, 2003, 59, 149-155.	1.7	77
228	Indanoyl amino acid conjugates: Tunable elicitors of plant secondary metabolism. Chemical Record, 2003, 3, 12-21.	2.9	42
229	Evolution of signal emission by non-infested plants growing near infested plants to avoid future risk. Journal of Theoretical Biology, 2003, 223, 489-503.	0.8	7
231	Synthetic Herbivore-Induced Plant Volatiles as Field Attractants for Beneficial Insects. Environmental Entomology, 2003, 32, 977-982.	0.7	161
232	Olfactory responses of Cotesia flavipes (Hymenoptera: Braconidae) to target and non-target Lepidoptera and their host plants. Biological Control, 2003, 28, 360-367.	1.4	12
233	Consequences of removing a keystone herbivore for the abundance and diversity of arthropods associated with a cruciferous shrub. Ecological Entomology, 2003, 28, 299-308.	1.1	31
234	Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Applied Entomology and Zoology, 2003, 38, 365-368.	0.6	33
235	Signaling and Insect-Inducible Compounds in Plants. , 2003, , .		0
236	Recruitment of predators and parasitoids by herbivore-injured plants. , 2004, , 21-75.		240
237	Herbivore-Induced Defense Response in a Model Legume. Two-Spotted Spider Mites Induce Emission of (E)-β-Ocimene and Transcript Accumulation of (E)-β-Ocimene Synthase in Lotus japonicus. Plant Physiology, 2004, 135, 1976-1983.	2.3	139
238	Emission of Plutella xylostella-Induced Compounds from Cabbages Grown at Elevated CO2 and Orientation Behavior of the Natural Enemies. Plant Physiology, 2004, 135, 1984-1992.	2.3	157
239	Olfactory responses of the omnivorous generalist predator Dicyphus hesperus to plant and prey odours. Entomologia Experimentalis Et Applicata, 2004, 112, 201-205.	0.7	21
240	Host plant, host plant chemistry and the polyembryonic parasitoidCopidosoma sosares: indirect effects in a tritrophic interaction. Oikos, 2004, 104, 388-400.	1.2	82

#	Article	IF	CITATIONS
241	Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmospheric Environment, 2004, 38, 675-682.	1.9	78
242	Indirect Defence of Plants against Herbivores: UsingArabidopsis thalianaas a Model Plant. Plant Biology, 2004, 6, 387-401.	1.8	145
243	State-dependent and odour-mediated anemotactic responses of the predatory mite Phytoseiulus persimilis in a wind tunnel. Experimental and Applied Acarology, 2004, 32, 263-270.	0.7	3
244	Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Experimental and Applied Acarology, 2004, 33, 21-30.	0.7	60
245	Evaluation of Prey-Stage Preference as an Indicator of Life-Style Type in Phytoseiid Mites. Experimental and Applied Acarology, 2004, 33, 261-280.	0.7	31
246	Exposure of Lima Bean Leaves to Volatiles from Herbivore-Induced Conspecific Plants Results in Emission of Carnivore Attractants: Active or Passive Process?. Journal of Chemical Ecology, 2004, 30, 1305-1317.	0.9	86
247	Field-Testing of Methyl Salicylate for Recruitment and Retention of Beneficial Insects in Grapes and Hops. Journal of Chemical Ecology, 2004, 30, 1613-1628.	0.9	244
248	Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure–activity study with elicitor-active N-acyl glutamines from insects. Phytochemistry, 2004, 65, 1047-1055.	1.4	38
249	Demonstration of the protective effects of fluorescent proteins in baculoviruses exposed to ultraviolet light inactivation. Journal of Insect Science, 2004, 4, 1-9.	0.9	21
250	Foraging behavior and prey interactions by a guild of predators on various lifestages of Bemisia tabaci. Journal of Insect Science, 2004, 4, 1-13.	0.9	17
251	Natural history of whitefly in Costa Rica: an evolutionary starting point. Ecological Entomology, 2004, 29, 150-163.	1.1	4
252	Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environmental Pollution, 2004, 131, 305-311.	3.7	99
253	Chapter four Evolution of indole and benzoxazinone biosynthesis in Zea mays. Recent Advances in Phytochemistry, 2004, , 69-83.	0.5	3
254	Induction of Phenylalanine ammonia-lyase and lipoxtgenase in cotton seedlings by mechanical wounding and aphid infestation*. Progress in Natural Science: Materials International, 2005, 15, 419-423.	1.8	16
255	Response of Neoseiulus fallacis Garmen and Galendromus occidentalis Nesbitt (Acari: Phytoseiidae) to Tetranychus urticae Koch (Acari: Tetranychidae)-Damaged Hop Humulus lupulus (L.) (Urticales:) Tj ETQq0 0 0 rgB	T Øverloc	k å 0 Tf 50 1
256	Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus,) Tj ETQq1 1 C).784314 ı 1.2	gBT/Overlo
257	The piercing-sucking herbivoresLygus hesperusandNezara viridulainduce volatile emissions in plants. Archives of Insect Biochemistry and Physiology, 2005, 58, 84-96.	0.6	65
258	Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 2005, 222, 848-857.	1.6	107

#	Article	IF	CITATIONS
259	Further Field Evaluation Of Synthetic Herbivore-Induced Plan Volatiles As Attractants For Beneficial Insects. Journal of Chemical Ecology, 2005, 31, 481-495.	0.9	239
260	Herbivore-induced Plant Volatiles Trigger Sporulation in Entomopathogenic Fungi: The Case of Neozygites tanajoae Infecting the Cassava Green Mite. Journal of Chemical Ecology, 2005, 31, 1003-1021.	0.9	41
261	Increased Sulfur Precursors and Volatiles Production by the Leek Allium porrum in Response to Specialist Insect Attack. Journal of Chemical Ecology, 2005, 31, 1299-1314.	0.9	27
262	Olfactory Responses of Banana Weevil Predators to Volatiles from Banana Pseudostem Tissue and Synthetic Pheromone. Journal of Chemical Ecology, 2005, 31, 1537-1553.	0.9	14
263	Methyl Salicylate, a Soybean Aphid-Induced Plant Volatile Attractive to the Predator Coccinella septempunctata. Journal of Chemical Ecology, 2005, 31, 1733-1746.	0.9	283
264	Volatile Allelochemicals in the Ageratum conyzoides Intercropped Citrus Orchard and their Effects on Mites Amblyseius newsami and Panonychus citri. Journal of Chemical Ecology, 2005, 31, 2193-2203.	0.9	37
265	Interactions Between Nematodes and Microorganisms: Bridging Ecological and Molecular Approaches. Advances in Applied Microbiology, 2005, 57, 53-78.	1.3	24
266	Response of the entomopathogenic fungus Pandora neoaphidis to aphid-induced plant volatiles. Journal of Invertebrate Pathology, 2005, 89, 157-164.	1.5	26
267	In vitro biosynthesis of volicitin in Spodoptera litura. Insect Biochemistry and Molecular Biology, 2005, 35, 175-184.	1.2	25
268	Indirect Effects, Apparent Competition and Biological Control. , 2006, , 145-169.		24
269	Examination of the Interaction Between the Black Vine Weevil (Coleoptera: Curculionidae) and an Entomopathogenic Fungus Reveals a New Tritrophic Interaction. Environmental Entomology, 2006, 35, 1021-1029.	0.7	34
270	Solid phase microextraction with gas chromatography–mass spectrometry: a very rapid method for identification of volatile organic compounds emitted by Carum copticum. Natural Product Research, 2006, 20, 850-859.	1.0	3
271	Control strategies for Rhagoletis mendax disrupt host-finding and ovipositional capability of its parasitic wasp, Diachasma alloeum. Biological Control, 2006, 36, 91-99.	1.4	21
272	PLANT CHEMISTRY AND NATURAL ENEMY FITNESS: Effects on Herbivore and Natural Enemy Interactions. Annual Review of Entomology, 2006, 51, 163-185.	5.7	420
273	DEFECATION BEHAVIOR AND ECOLOGY OF INSECTS. Annual Review of Entomology, 2006, 51, 635-661.	5.7	145
274	Intact lima bean plants exposed to herbivore-induced plant volatiles attract predatory mites and spider mites at different levels according to plant parts. Applied Entomology and Zoology, 2006, 41, 537-543.	0.6	9
275	Odour-mediated preference and prey preference of Macrolophus caliginosus between spider mites and green peach aphids. Journal of Applied Entomology, 2006, 130, 504-508.	0.8	19
276	Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomologia Experimentalis Et Applicata, 2006, 118, 87.96	0.7	39

#	Article	IF	Citations
277	Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomologia Experimentalis Et Applicata, 2006, 120, 1-9.	0.7	57
278	Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry, 2006, 67, 34-42.	1.4	67
279	Evolution of talking plants in a tritrophic context: Conditions for uninfested plants to attract predators prior to herbivore attack. Journal of Theoretical Biology, 2006, 243, 361-374.	0.8	8
280	Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences, 2006, 25, 417-440.	2.7	1,008
281	Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecological Research, 2006, 21, 3-8.	0.7	67
282	Herbivore-Induced Extrafloral Nectar Production in Lima Bean Plants Enhanced by Previous Exposure to Volatiles from Infested Conspecifics. Journal of Chemical Ecology, 2006, 32, 2073-2077.	0.9	53
283	Differences in Induced Volatile Emissions among Rice Varieties Result in Differential Attraction and Parasitism of Nilaparvata lugens Eggs by the Parasitoid Anagrus nilaparvatae in the Field. Journal of Chemical Ecology, 2006, 32, 2375-2387.	0.9	90
284	Kairomones Extracted from Rice Yellow Stem Borer and their Influence on Egg Parasitization by Trichogramma japonicum Ashmead. Journal of Chemical Ecology, 2006, 33, 59-73.	0.9	15
285	Genetic Variation in Foraging Traits and Life-History Traits of the Predatory Mite Neoseiulus womersleyi (Acari: Phytoseiidae) among Isofemale Lines. Journal of Insect Behavior, 2006, 19, 573-589.	0.4	5
286	Resource-Dependent Giving-Up Time of the Predatory Mite, Phytoseiulus persimilis. Journal of Insect Behavior, 2006, 19, 741-752.	0.4	9
287	Does Methyl Salicylate, A Component of Herbivore-induced Plant Odour, Promote Sporulation of the Mite-pathogenic Fungus Neozygites tanajoae?. Experimental and Applied Acarology, 2006, 39, 63-74.	0.7	17
288	Odour-mediated responses of a predatory mirid bug and its prey, the two-spotted spider mite. Experimental and Applied Acarology, 2006, 40, 27-36.	0.7	19
289	Volatiles released from bean plants in response to agromyzid flies. Planta, 2006, 224, 279-287.	1.6	51
290	Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia, 2006, 147, 455-460.	0.9	68
291	Effect of Volatiles from Plants on the Selectivity of Tetranychus viennensis for Different Host Plants. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2006, 1, 105-108.	0.2	3
293	Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities. , 2007, , 188-218.		40
294	PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 2007, 42, 316-325.	1.4	18
295	Mites for the control of pests in protected cultivation. Pest Management Science, 2007, 63, 658-676.	1.7	133

#	Article	IF	CITATIONS
296	Survival and development of Campoletis chlorideae on various insect and crop hosts: implications for Bt-transgenic crops. Journal of Applied Entomology, 2007, 131, 179-185.	0.8	24
297	Olfactory response of a predatory mirid to herbivore induced plant volatiles: multiple herbivory vs. single herbivory. Journal of Applied Entomology, 2007, 131, 326-332.	0.8	128
298	Host plant effects on the functional response of <i>Neoseiulus cucumeris</i> to onion thrips larvae. Journal of Applied Entomology, 2007, 131, 728-733.	0.8	57
299	Shared signals –â€~alarm calls' from plants increase apparency to herbivores and their enemies in nature. Ecology Letters, 2008, 11, 24-34.	3.0	250
300	Plant odours with potential for a push?pull strategy to control the onion thrips, Thrips tabaci. Entomologia Experimentalis Et Applicata, 2007, 122, 69-76.	0.7	43
301	Males of the predatory mirid bug Macrolophus caliginosus exploit plant volatiles induced by conspecifics as a sexual synomone. Entomologia Experimentalis Et Applicata, 2007, 123, 49-55.	0.7	23
302	Host plant location by Chrysomelidae. Basic and Applied Ecology, 2007, 8, 97-116.	1.2	74
303	Protection in an ant–plant mutualism: an adaptation or a sensory trap?. Animal Behaviour, 2007, 74, 377-385.	0.8	28
304	Evolution of signal emission by uninfested plants to help nearby infested relatives. Evolutionary Ecology, 2007, 21, 281-294.	0.5	13
305	Induction of Plant Volatiles by Herbivores with Different Feeding Habits and the Effects of Induced Defenses on Host-Plant Selection by Thrips. Journal of Chemical Ecology, 2007, 33, 997-1012.	0.9	112
306	Identification of a Widespread Monomolecular Odor Differentially Attractive to Several Delia Radicum Ground-dwelling Predators in the Field. Journal of Chemical Ecology, 2007, 33, 2064-2077.	0.9	59
307	Effect of the Presence of a Nonhost Herbivore on the Response of the Aphid Parasitoid Diaeretiella rapae to Host-infested Cabbage Plants. Journal of Chemical Ecology, 2007, 33, 2229-2235.	0.9	24
308	Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days. Experimental and Applied Acarology, 2007, 40, 231-239.	0.7	21
309	Impact of Herbivore-induced Plant Volatiles on Parasitoid Foraging Success: A Spatial Simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea System. Journal of Chemical Ecology, 2008, 34, 959-970.	0.9	24
310	Predatory Mite Attraction to Herbivore-induced Plant Odors is not a Consequence of Attraction to Individual Herbivore-induced Plant Volatiles. Journal of Chemical Ecology, 2008, 34, 791-803.	0.9	79
311	Cotton Plant, Gossypium hirsutum L., Defense in Response to Nitrogen Fertilization. Journal of Chemical Ecology, 2008, 34, 1553-1564.	0.9	62
312	"Sleeping with the enemyâ€â€"predator-induced diapause in a mite. Die Naturwissenschaften, 2008, 95, 1195-1198.	0.6	41
313	Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions, 2008, 2, 53-62.	0.5	88

#	Article	IF	CITATIONS
314	Lessons from interactions within the cassava green mite fungal pathogen NeozygitesÂtanajoae system and prospects for microbial control using Entomophthorales. Experimental and Applied Acarology, 2008, 46, 195-210.	0.7	7
315	Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia, 2008, 156, 797-806.	0.9	58
316	Impact of variable nitrogen fertilisation on arthropods in cotton in Georgia, USA. Agriculture, Ecosystems and Environment, 2008, 126, 281-288.	2.5	20
317	Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies. Entomologia Experimentalis Et Applicata, 2008, 128, 109-116.	0.7	44
318	Behavioural responses of the sevenâ€spot ladybird <i>Coccinella septempunctata </i> to plant headspace chemicals collected from four crop Brassicas and <i>Arabidopsis thaliana</i> , infested with <i>Myzus persicae</i> . Agricultural and Forest Entomology, 2008, 10, 297-306.	0.7	17
319	Establishment of <i>Cotesia flavipes</i> (Hymenoptera: Braconidae) in Sugarcane Fields of Ethiopia and Origin of Founding Population. Journal of Economic Entomology, 2008, 101, 686-691.	0.8	12
320	Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 2008, 19, 677-689.	1.0	237
321	Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. , 2008, , 31-60.		30
322	Induced Plant Resistance to Herbivory. , 2008, , .		93
323	Location, acceptance and suitability of lepidopteran stemborers feeding on a cultivated and wild host-plant to the endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae). Biological Control, 2008, 45, 36-47.	1.4	17
324	Interplant communication: Airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochemical and Biophysical Research Communications, 2008, 376, 723-727.	1.0	96
325	Elucidation of the genomic basis of indirect plant defense against insects. Plant Signaling and Behavior, 2008, 3, 720-721.	1.2	5
326	Induction of serotonin accumulation by feeding of rice striped stem borer in rice leaves. Plant Signaling and Behavior, 2008, 3, 714-716.	1.2	38
327	Field-Testing of Synthetic Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects. Environmental Entomology, 2008, 37, 1410-1415.	0.7	110
328	Semiochemicals produced by tomato varieties and their role in parasitism of Corcyra cephalonica (Lepidoptera: Pyralidae) by the egg parasitoid Trichogramma chilonis (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock	1004Tf 50	1 73 Td (Tric
329	Ubiquitous Water-Soluble Molecules in Aquatic Plant Exudates Determine Specific Insect Attraction. PLoS ONE, 2008, 3, e3350.	1.1	14
330	Involvement of Green Leaf Volatiles in Interactions among Organisms. Journal of Japan Association on Odor Environment, 2009, 40, 166-176.	0.1	0
331	Can herbivoreâ€induced plant volatiles inform predatory insect about the most suitable stage of its prey?. Physiological Entomology, 2009, 34, 379-386.	0.6	43

#	Article	IF	CITATIONS
332	Herbivory induces a ROS burst and the release of volatile organic compounds in the fern <i>Pteris vittata</i> L. Journal of Plant Interactions, 2009, 4, 15-22.	1.0	30
333	Do adult leaf beetles (Plagiodera versicolora) discriminate between odors from intact and leaf-beetle-infested willow shoots?. Journal of Plant Interactions, 2009, 4, 125-129.	1.0	11
334	Molecular Interactions between the Specialist Herbivore <i>Manduca sexta</i> (Lepidoptera,) Tj ETQq0 0 0 rgBT the Plant's Elicited Volatile Emissions Â. Plant Physiology, 2009, 149, 1408-1423.	/Overlock 2.3	10 Tf 50 667 102
335	Neem chemicals disturb the behavioral response of Liriomyza huidobrensis to conspecific-induced potato volatiles. Pure and Applied Chemistry, 2009, 81, 85-95.	0.9	4
336	Ecological compatibility of GM crops and biological control. Crop Protection, 2009, 28, 1017-1030.	1.0	70
337	Modelling tritrophic interactions mediated by induced defence volatiles. Ecological Modelling, 2009, 220, 3241-3247.	1.2	12
338	Preference and consumption of Macrolophus pygmaeus preying on mixed instar assemblages of Myzus persicae. Biological Control, 2009, 51, 76-80.	1.4	26
339	Effect of needle damage on the release rate of Masson pine (Pinus massoniana) volatiles. Journal of Plant Research, 2009, 122, 193-200.	1.2	18
340	The predation consequence of continuous breeding vs starting a new colony of a polyphagous insect predator. Phytoparasitica, 2009, 37, 27-33.	0.6	1
341	Plant defence against nematodes is not mediated by changes in the soil microbial community. Functional Ecology, 2009, 23, 488-495.	1.7	19
342	Communication of Radiation-Induced Signals in Vivo between DNA Repair Deficient and Proficient Medaka (<i>Oryzias latipes</i>). Environmental Science & Technology, 2009, 43, 3335-3342.	4.6	40
343	Field evaluation of the combined deterrent and attractive effects of dimethyl disulfide on Delia radicum and its natural enemies. Biological Control, 2009, 49, 219-226.	1.4	38
344	Fungal entomopathogens in the rhizosphere. , 2009, , 103-112.		10
345	Relationships of Natural Enemies and Non-Prey Foods. , 2009, , .		235
346	Integrated Pest Management: Innovation-Development Process. , 2009, , .		62
348	A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Experimental and Applied Acarology, 2010, 50, 9-22.	0.7	38
349	The predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) follows extracts of trails left by the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 2010, 52, 111-118.	0.7	13
350	Fungal entomopathogens in the rhizosphere. BioControl, 2010, 55, 103-112.	0.9	90

#	Article	IF	CITATIONS
351	Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interactions, 2010, 4, 81-94.	0.5	120
352	Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis. Journal of Chemical Ecology, 2010, 36, 500-512.	0.9	41
353	Responses of Mikania micrantha, an Invasive Weed to Elevated CO2: Induction of β-Caryophyllene Synthase, Changes in Emission Capability and Allelopathic Potential of β-Caryophyllene. Journal of Chemical Ecology, 2010, 36, 1076-1082.	0.9	23
354	Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. Biological Control, 2010, 53, 62-67.	1.4	64
355	Background evolution in camouflage systems: A predator–prey/pollinator-flower game. Journal of Theoretical Biology, 2010, 262, 662-678.	0.8	20
356	Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiology and Biochemistry, 2010, 48, 279-287.	2.8	65
357	Headspace solid-phase microextraction and gas chromatography/ion trap-mass spectrometry applied to a living system: Pieris brassicae fed with kale. Food Chemistry, 2010, 119, 1681-1693.	4.2	13
358	Realâ€ŧime monitoring of herbivore induced volatile emissions in the field. Physiologia Plantarum, 2010, 138, 123-133.	2.6	93
359	Life history traits and foraging behaviour of <i>Cotesia nonagriae</i> (Olliff) (Hymenoptera:) Tj ETQq0 0 0 rgBT / parasitoids. Australian Journal of Entomology, 2010, 49, 56-65.	Overlock 1 1.1	.0 Tf 50 427 10
360	Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or "Cry Wolf―Signals?. PLoS ONE, 2010, 5, e12161.	1.1	125
361	Plant Mites and Sociality. , 2010, , .		40
363	Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions Canadian Journal of Zoology, 2010, 88, 628-667.	0.4	275
364	Chemical Defence and Toxins of Plants. , 2010, , 339-385.		42
366	Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agronomy for Sustainable Development, 2010, 30, 311-348.	2.2	204
367	Plant processing strategies and their affect upon starch grain survival when rendering Peltandra		80
	virginica (L.) Kunth, Araceae edible. Journal of Archaeological Science, 2010, 37, 328-336.	1.2	30
368		1.2 0.5	22
368 369	virginica (L.) Kunth, Araceae edible. Journal of Archaeological Science, 2010, 37, 328-336. Response of a complex foraging phenotype to artificial selection on its component traits.		

#	Article	IF	CITATIONS
371	Identifying (<i>E</i>)-4,8-Dimethyl-1,3,7-Nonatriene Plus Acetic Acid as a New Lure for Male and Female Codling Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2011, 40, 420-430.	0.7	49
372	Methyl Salicylate Attracts Natural Enemies and Reduces Populations of Soybean Aphids (Hemiptera:) Tj ETQq1 1	0.784314 0 . 8	rgBT /Over 126
373	Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management. , 2011, , 623-670.		8
374	Nitrogen Modulation on Plant Direct and Indirect Defenses. , 2011, , 86-102.		3
375	A Plant Pathologist on Wheat Breeding with Special Reference to Septoria Diseases. Czech Journal of Genetics and Plant Breeding, 2004, 40, 63-71.	0.4	0
376	Diverting the Flux of the JA Pathway in Nicotiana attenuata Compromises the Plant's Defense Metabolism and Fitness in Nature and Glasshouse. PLoS ONE, 2011, 6, e25925.	1.1	42
377	Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and Forest Entomology, 2011, 13, 45-57.	0.7	70
378	The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry, 2011, 72, 1635-1646.	1.4	104
379	The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry, 2011, 72, 1647-1654.	1.4	154
380	How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic and Applied Ecology, 2011, 12, 403-412.	1.2	55
381	Differential Response in Foliar Chemistry of Three Ash Species to Emerald Ash Borer Adult Feeding. Journal of Chemical Ecology, 2011, 37, 29-39.	0.9	22
382	Herbivore-Induced Plant Volatiles Can Serve as Host Location Cues for a Generalist and a Specialist Egg Parasitoid. Journal of Chemical Ecology, 2011, 37, 1304-1313.	0.9	70
383	Variation in Herbivory-induced Volatiles Among Cucumber (Cucumis sativus L.) Varieties has Consequences for the Attraction of Carnivorous Natural Enemies. Journal of Chemical Ecology, 2011, 37, 150-160.	0.9	85
384	Seed predator deterrence by seed arrying ants in a dyszoochorous plant, <i>Chamaesyce maculata</i> L. Small (Euphorbiaceae). Population Ecology, 2011, 53, 441-447.	0.7	3
385	Olfactory responses of Neoseiulus cucumeris (Acari: Phytoseiidae) to odors of host plants and Frankliniella occidentalis (Thysanoptera: Thripidae)–plant complexes. Arthropod-Plant Interactions, 2011, 5, 307-314.	0.5	6
387	Influence of <i>Saccharum officinarum</i> (Poales: Poaceae) Variety on the Reproductive Behavior of <i>Diatraea flavipennella</i> (Lepidoptera: Crambidae) and on the Attraction of the Parasitoid <i>Cotesia flavipes</i> (Hymenoptera: Braconidae). Florida Entomologist, 2011, 94, 420-427.	0.2	5
388	Can plants evolve stable alliances with the enemies' enemies?. Journal of Plant Interactions, 2011, 6, 71-75.	1.0	15
389	Herbivore induced plant volatiles: Their role in plant defense for pest managementÂ. Plant Signaling and Behavior, 2011, 6, 1973-1978.	1.2	145

#	Article	IF	CITATIONS
390	Pithy Protection: <i>Nicotiana attenuata</i> 's Jasmonic Acid-Mediated Defenses Are Required to Resist Stem-Boring Weevil Larvae Â. Plant Physiology, 2011, 155, 1936-1946.	2.3	26
391	VOC-mediated within-plant communications and nonvolatile systemic signals upregulate pyrethrin biosynthesis in wounded seedlings of <i>Chrysanthemum cinerariaefolium</i> . Journal of Plant Interactions, 2011, 6, 89-91.	1.0	10
392	Involutionary Momentum: Affective Ecologies and the Sciences of Plant/Insect Encounters. Differences, 2012, 23, 74-118.	0.2	314
393	Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomologia Experimentalis Et Applicata, 2012, 145, 115-123.	0.7	41
394	The predatory mite Typhlodromalus aripo prefers green-mite induced plant odours from pubescent cassava varieties. Experimental and Applied Acarology, 2012, 58, 359-370.	0.7	17
395	Identification of volatiles from Pinus silvestris attractive for Monochamus galloprovincialis using a SPME-GC/MS platform. Environmental Science and Pollution Research, 2012, 19, 2860-2869.	2.7	28
396	Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biological Control, 2012, 63, 48-55.	1.4	41
397	The influence of the rearing host on the response of the parasitoid Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) to odours from Ephestia kuehniella and Plodia interpunctella in a Y-tube olfactometer. BioControl, 2012, 57, 801-808.	0.9	4
398	Employing Chemical Ecology to Understand and Exploit Biodiversity for Pest Management. , 2012, , 185-195.		28
399	The conceptual and practical implications of interpreting diet breadth mechanistically in generalist predatory insects. Biological Journal of the Linnean Society, 2012, 107, 737-763.	0.7	26
401	Isolation and characterization of germacrene A synthases gene in Citrus unshiu Marc. Scientia Horticulturae, 2012, 145, 102-108.	1.7	12
402	Recent Advances in Entomological Research. , 2011, , .		10
403	The Sesquiterpenes β-Caryophyllene and Caryophyllene Oxide Isolated from Senecio salignus Act as Phytogrowth and Photosynthesis Inhibitors. Molecules, 2012, 17, 1437-1447.	1.7	34
404	Manipulation of Natural Enemies in Agroecosystems: Habitat and Semiochemicals for Sustainable Insect Pest Control. , 0, , .		31
405	COMPUTATIONAL FLUID DYNAMICS SIMULATION OF HERBIVORE-INDUCED PLANT VOLATILES AROUND GREENHOUSES. Acta Horticulturae, 2012, , 147-154.	0.1	5
406	Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), Female Moths Respond to Herbivore-Induced Corn Volatiles. Neotropical Entomology, 2012, 41, 22-26.	0.5	41
407	Oviposition Induced Volatile Emissions from African Smallholder Farmers' Maize Varieties. Journal of Chemical Ecology, 2012, 38, 231-234.	0.9	52
408	Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. Journal of Chemical Ecology, 2012, 38, 755-767.	0.9	90

#	Article	IF	CITATIONS
409	Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Animal Behaviour, 2012, 83, 1491-1496.	0.8	43
410	Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biological Control, 2012, 60, 7-15.	1.4	50
411	Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire?. Biological Control, 2012, 60, 77-89.	1.4	187
412	Herbivore egg deposition induces tea leaves to arrest the eggâ€larval parasitoid <i><scp>A</scp>scogaster reticulata</i> . Entomologia Experimentalis Et Applicata, 2012, 144, 172-180.	0.7	13
413	Olfactory response of <i>Typhlodromus pyri</i> (Acari: Phytoseiidae) to synthetic methyl salicylate in laboratory bioassays. Journal of Applied Entomology, 2012, 136, 476-480.	0.8	7
414	â€~Attract and reward': Combining a herbivore-induced plant volatile with floral resource supplementation – Multi-trophic level effects. Biological Control, 2013, 64, 106-115.	1.4	48
415	Birds exploit herbivoreâ€induced plant volatiles to locate herbivorous prey. Ecology Letters, 2013, 16, 1348-1355.	3.0	114
416	Mites: Ecology, Evolution & amp; Behaviour. , 2013, , .		165
417	Biogenic Volatile Organic Compounds and Their Impacts on Biosphere–Atmosphere Interactions. Developments in Environmental Science, 2013, 13, 57-75.	0.5	12
418	Do plants use airborne cues to recognize herbivores on their neighbours?. Experimental and Applied Acarology, 2013, 59, 263-273.	0.7	8
420	Plant–Animal Interactions. , 2013, , 39-55.		5
421	Chemical Ecology of Marine Angiosperms: Opportunities at the Interface of Marine and Terrestrial Systems. Journal of Chemical Ecology, 2013, 39, 687-711.	0.9	38
422	Could Brassica rapa, Brassica juncea and Sinapis alba facilitate the control of the cabbage seed weevil in oilseed rape crops?. Biological Control, 2013, 65, 124-129.	1.4	16
423	Genetic engineering of plant volatile terpenoids: effects on a herbivore, a predator and a parasitoid. Pest Management Science, 2013, 69, 302-311.	1.7	43
424	Mites on Plants. , 2013, , 281-339.		3
425	Comparative Study of the Volatiles' Composition of Healthy and Larvae-Infested Artemisia ordosica. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2013, 68, 8-12.	0.6	1
427	Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars. Frontiers in Plant Science, 2013, 4, 209.	1.7	48
428	Plant–plant communication mediated by airborne signals: ecological and plant physiological perspectives. Plant Biotechnology, 2014, 31, 409-416.	0.5	49

	CITATION RE	PORT	
#	Article	IF	CITATIONS
429	Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport. Biogeosciences, 2014, 11, 5425-5443.	1.3	30
430	Use of herbivoreâ€induced plant volatiles as search cues by <i><scp>T</scp>iphia vernalis</i> and <i><scp>T</scp>iphia popilliavora</i> to locate their belowâ€ground scarabaeid hosts. Entomologia Experimentalis Et Applicata, 2014, 150, 74-85.	0.7	7
431	Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biology, 2014, 14, 270.	1.6	86
432	Orientation behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod-Plant Interactions, 2014, 8, 429-437.	0.5	15
433	Smelling the tree and the forest: elm background odours affect egg parasitoid orientation to herbivore induced terpenoids. BioControl, 2014, 59, 29-43.	0.9	19
434	Plant Volatiles Influence the African Weaver Ant-Cashew Tree Mutualism. Journal of Chemical Ecology, 2014, 40, 1167-1175.	0.9	8
435	Food supplementation affects interactions between a phytoseiid predator and its omnivorous prey. Biological Control, 2014, 76, 95-100.	1.4	25
436	Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari:) Tj ETQq1 1 0.784314 rgE	BT /Oyerlo 0.7	ck 10 Tf 50 4
437	Plant volatiles and the environment. Plant, Cell and Environment, 2014, 37, 1905-1908.	2.8	174
438	Herbivoreâ€induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant, Cell and Environment, 2014, 37, 1909-1923.	2.8	120
439	Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Scientific Reports, 2014, 4, 5350.	1.6	25
440	Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	28
441	Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties. PLoS ONE, 2015, 10, e0129422.	1.1	58
442	Beneficial Effects of Ants and Spiders on the Reproductive Value of Eriotheca gracilipes (Malvaceae) in a Tropical Savanna. PLoS ONE, 2015, 10, e0131843.	1.1	33
443	In-field yellow starthistle (Centaurea solstitialis) volatile composition under elevated temperature and CO2 and implications for future control. Chemoecology, 2015, 25, 313-323.	0.6	6
444	Sublethal effects of four synthetic insecticides on the generalist predator Cyrtorhinus lividipennis. Journal of Pest Science, 2015, 88, 383-392.	1.9	35
445	Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 2015, 6, 6273.	5.8	349
446	In Planta Variation of Volatile Biosynthesis: An Alternative Biosynthetic Route to the Formation of the Pathogen-Induced Volatile Homoterpene DMNT via Triterpene Degradation in Arabidopsis Roots. Plant Cell, 2015, 27, 874-890.	3.1	64

		EPUKI	
#	Article	IF	CITATIONS
447	Plant Volatile Chemicals and Insect Responses. , 2015, , 671-695.		0
448	Herbivore-induced plant volatiles in natural and agricultural ecosystems: open questions and future prospects. Current Opinion in Insect Science, 2015, 9, 1-6.	2.2	35
449	Electrophysiological and Behavioral Responses of <i>Chrysopa phyllochroma</i> (Neuroptera:) Tj ETQq0 0 0 rgB ⁻	⊺ /Oyerlock 0.7	10 Tf 50 662
450	Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science, 2015, 6, 86.	1.7	141
451	Demography and mobility of three common understory butterfly species from tropical rain forest of Papua New Guinea. Population Ecology, 2015, 57, 445-455.	0.7	7
452	Mixture of Synthetic Herbivore-induced Plant Volatiles Attracts More Stethorus punctum picipes (Casey) (Coleoptera: Coccinellidae) than a Single Volatile. Journal of Insect Behavior, 2015, 28, 126-137.	0.4	24
453	Associations of Wheat with Pea Can Reduce Aphid Infestations. Neotropical Entomology, 2015, 44, 286-293.	0.5	28
454	Diving Into The Water: Cues Related to the Decisionâ€Making by an Egg Parasitoid Attacking Underwater Hosts. Ethology, 2015, 121, 168-175.	0.5	2
455	What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Management Science, 2015, 71, 139-150.	1.7	18
456	Behavioral responses of adult lacewings, Chrysoperla externa, to a rose–aphid–coriander complex. Biological Control, 2015, 80, 103-112.	1.4	28
457	Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory. Journal of Theoretical Biology, 2015, 364, 1-6.	0.8	28
458	A fungal metabolite masks the host plant odor for the pine weevil (Hylobius abietis). Fungal Ecology, 2015, 13, 103-111.	0.7	23
459	Chemical Communication between Phytopathogens, Their Host Plants and Vector Insects and Eavesdropping by Natural Enemies. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	13
460	PHYSIOLOGICAL EFFECTS OF RESVERATROL AND COUMARIC ACID ON TWO MAJOR GROUNDNUT PESTS AND THEIR EGG PARASITOID BEHAVIOR. Archives of Insect Biochemistry and Physiology, 2016, 91, 230-245.	0.6	18
461	Responses of a predatory bug to a mixture of herbivore-induced plant volatiles from multiple plant species. Arthropod-Plant Interactions, 2016, 10, 429-444.	0.5	9
462	Phytoseiid mites under environmental stress. Biological Control, 2016, 96, 120-134.	1.4	75
463	Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 23, 11-17.	1.1	51
464	A mixture of herbivore-induced plant volatiles from multiple host plant species enhances the attraction of a predatory bug under field-cage conditions. Arthropod-Plant Interactions, 2016, 10, 507-515.	0.5	5

#	Article	IF	CITATIONS
466	Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field. Scientific Reports, 2016, 6, 31552.	1.6	21
467	Defensive (anti-herbivory) Coloration in Land Plants. , 2016, , .		48
468	Effect of methyl salicylate on behavioral responses of insects in a forest park. Entomological Review, 2016, 96, 284-287.	0.1	8
469	Are naìve birds attracted to herbivore-induced plantÂdefences?. Behaviour, 2016, 153, 353-366.	0.4	17
470	Evaluating plant volatiles for monitoring natural enemies in apple, pear and walnut orchards. Biological Control, 2016, 102, 53-65.	1.4	44
471	Effects of single and dual species herbivory on the behavioral responses of three thrips species to cotton seedlings. Insect Science, 2017, 24, 684-698.	1.5	4
472	Impact of Plant Phenolics as Semiochemicals on the Performance of Trichogramma chilonis Ishii. Journal of Insect Behavior, 2017, 30, 16-31.	0.4	5
473	Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Scientific Reports, 2017, 7, 41508.	1.6	12
474	Can the pheromones of predators modulate responses to herbivoreâ€induced plant volatiles?. Annals of Applied Biology, 2017, 170, 369-378.	1.3	5
475	Predator performance is impaired by the presence of a second prey species. Bulletin of Entomological Research, 2017, 107, 313-321.	0.5	7
476	Comparison of volatile organic compounds from uninfested and <i>Monochamus alternatus</i> Hope infested <i>Pinus massoniana</i> Lamb Entomological Research, 2017, 47, 203-207.	0.6	7
477	From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology, 2017, 27, 51-63.	0.6	29
478	Oviposition of diamondback moth Plutella xylostella females is affected by herbivore-induced plant volatiles that attract the larval parasitoid Cotesia vestalis. Arthropod-Plant Interactions, 2017, 11, 235-239.	0.5	7
479	Nocturnal herbivore-induced plant volatiles attract the generalist predatory earwig Doru luteipes Scudder. Die Naturwissenschaften, 2017, 104, 77.	0.6	24
480	The chemistry of American and African amber, copal, and resin from the genus Hymenaea. Organic Geochemistry, 2017, 113, 43-54.	0.9	31
481	Agro-ecological Approaches to Pest Management for Sustainable Agriculture. , 2017, , .		22
482	Infochemical use and dietary specialization in parasitoids: a metaâ€analysis. Ecology and Evolution, 2017, 7, 4804-4811.	0.8	31
483	Race of Arms: Herbivore-Induced Volatiles and Their Co-evolution. , 2017, , 255-269.		0

#	Article	IF	Citations
484	Soil Reclamation Through Phytoextraction and Phytovolatilization. , 2017, , 25-43.		8
485	Volatiles and Food Security. , 2017, , .		12
486	Different effects of exogenous jasmonic acid on preference and performance of viruliferous <i>Bemisia tabaci</i> B and Q. Entomologia Experimentalis Et Applicata, 2017, 165, 148-158.	0.7	13
487	The effect of strawberry cultivars, infested with Tetranychus urticae (Acari: Tetranychidae), on the olfactory response of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Journal of Berry Research, 2018, 8, 71-80.	0.7	2
488	Cascading effects of combining synthetic herbivoreâ€induced plant volatiles with companion plants to manipulate natural enemies in an agroâ€ecosystem. Pest Management Science, 2018, 74, 2133-2145.	1.7	20
489	The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield. Journal of the Science of Food and Agriculture, 2018, 98, 4445-4453.	1.7	23
490	Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. Molecular Plant, 2018, 11, 95-117.	3.9	90
491	Identification and functional analysis of two P450 enzymes of <i>Gossypium hirsutum</i> involved in DMNT and TMTT biosynthesis. Plant Biotechnology Journal, 2018, 16, 581-590.	4.1	20
492	Parasitoid wasps' exposure to host-infested plant volatiles affects their olfactory cognition of host-infested plants. Animal Cognition, 2018, 21, 79-86.	0.9	9
495	Functional response of Amblyseius tamatavensis Blommers (Mesostigmata: Phytoseiidae) to eggs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on five host plants. Biological Control, 2019, 138, 104030.	1.4	7
496	Preference of Neoseiulus californicus (Acari: Phytoseiidae) for volatiles of Bt maize induced by multiple herbivory. Revista Brasileira De Entomologia, 2019, 63, 283-289.	0.1	5
497	Systemic acquired resistance networks amplify airborne defense cues. Nature Communications, 2019, 10, 3813.	5.8	85
498	Novel prey boosts the expansion of host-plant range in a native predatory bug. BioControl, 2019, 64, 677-683.	0.9	2
499	Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Journal of Integrative Agriculture, 2019, 18, 124-133.	1.7	14
500	Transcriptional profile of gene clusters involved in the methylerythritol phosphate pathway in Bacillus subtilis 916. Journal of Integrative Agriculture, 2019, 18, 644-655.	1.7	0
501	Host Plant Recognition and Performance of Klambothrips myopori (Thysanoptera: Phlaeothripidae) Across Myoporum Cultivars in Southern California. Journal of Economic Entomology, 2019, 112, 1645-1650.	0.8	1
502	The olfactive responses of Tetranychus urticae natural enemies in citrus depend on plant genotype, prey presence, and their diet specialization. Journal of Pest Science, 2019, 92, 1165-1177.	1.9	14
503	The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. International Journal of Molecular Sciences, 2019, 20, 5851.	1.8	47

#	Article	IF	CITATIONS
504	Plant–Plant Communication: Is There a Role for Volatile Damage-Associated Molecular Patterns?. Frontiers in Plant Science, 2020, 11, 583275.	1.7	49
505	Exploiting the chemical ecology of mosquito oviposition behavior in mosquito surveillance and control: a review. Journal of Vector Ecology, 2020, 45, 155-179.	0.5	23
506	Agasicles hygrophila attack increases nerolidol synthase gene expression in Alternanthera philoxeroides, facilitating host finding. Scientific Reports, 2020, 10, 16994.	1.6	2
507	Friend or foe? A parasitic wasp shifts the cost/benefit ratio in a nursery pollination system impacting plant fitness. Ecology and Evolution, 2020, 10, 4220-4232.	0.8	2
508	Variation in parasitoid attraction to herbivore-infested plants and alternative host plant cover mediate tritrophic interactions at the landscape scale. Landscape Ecology, 2020, 35, 907-919.	1.9	6
509	Response of Trichogramma pretiosum females (Hymenoptera: Trichogrammatidae) to herbivore-induced Bt maize volatiles. Arthropod-Plant Interactions, 2021, 15, 107-125.	0.5	5
510	Methyl Salicylate Fails to Enhance Arthropod Predator Abundance or Predator to Pest Ratios in Cotton. Environmental Entomology, 2021, 50, 293-305.	0.7	1
511	Walk this way, fly that way: Goniozus jacintae attunes flight and foraging behaviour to leafroller host instar. Entomologia Experimentalis Et Applicata, 2021, 169, 350-361.	0.7	4
512	Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China. Journal of Integrative Agriculture, 2021, 20, 804-814.	1.7	22
513	Priming of indirect defence responses in maize is shown to be genotype-specific. Arthropod-Plant Interactions, 2021, 15, 313-328.	0.5	7
514	<p>Chemosensory systems in predatory mites: from ecology to genome</p> . Systematic and Applied Acarology, 2021, 26, 852-865.	0.5	3
515	Great tits (<i>Parus major</i>) flexibly learn that herbivoreâ€induced plant volatiles indicate prey location: An experimental evidence with two tree species. Ecology and Evolution, 2021, 11, 10917-10925.	0.8	10
516	How do plants sense volatiles sent by other plants?. Trends in Plant Science, 2022, 27, 29-38.	4.3	44
517	Comparative Pollination Ecology of Five European Euphorbia Species. International Journal of Plant Sciences, 0, , 000-000.	0.6	5
518	Identification and characterization of olfactory genes in the parasitoid wasp Diadegma semiclausum (Hellén) (Hymenoptera: Ichneumonidae). Bulletin of Entomological Research, 2021, , 1-10.	0.5	2
519	A model of the burglar alarm hypothesis of prey alarm calls. Theoretical Population Biology, 2021, 141, 1-13.	0.5	5
520	Radiation and chemical induced genomic instability as a driver for environmental evolution. , 2021, , 639-658.		0
521	Cracking the code: a comparative approach to plant communication. Communicative and Integrative Biology, 2021, 14, 176-185.	0.6	1

ARTICLE IF CITATIONS # Attraction of Parasitic Wasps by Caterpillarâ€Damaged Plants. Novartis Foundation Symposium, 1999, 522 1.2 29 223, 21-42. Aphids, Predators and Parasitoids. Novartis Foundation Symposium, 1999, 223, 60-73. 1.2 Induced Biosynthesis of Insect Semiochemicals in Plants. Novartis Foundation Symposium, 1999, 223, 524 1.2 9 110-131. Role of Natural Products in Nature: Plant-Insect Interactions., 2009, , 321-347. The Role of Microorganisms in TRI-Trophic Interactions in Systems Consisting of Plants, Herbivores, 526 4 and Carnivores., 1996,, 71-84. Aromatic Volatiles and Their Involvement in Plant Defense., 2008, , 409-432. 24 528 Behavior-Modifying Strategies in IPM: Theory and Practice., 2009, , 263-315. 43 Herbivore-Induced Plant Volatiles with Multifunctional Effects in Ecosystems: A Complex Pattern of 529 530 Insects and Plants: How to Apply Our Knowledge., 1998, , 343-365. 1 Use of Semiochemical-Based Strategies to Enhance Biological Control., 2019, , 509-522. Enhancement of Natural Control Function for Aphids by Intercropping and Infochemical Releasers in 532 0.5 4 Wheat Ecosystem. Progress in Biological Control, 2020, , 85-116. Ant Mimicry., 2016, , 299-304. The role of infochemicals in the interaction between cassava green mite and its fungal pathogen 534 3 Neozygites tanajoae., 2010,, 249-253. Herbivore-induced plant volatiles prime two indirect defences in lima bean., 2010, , 255-258. 536 Resistance to parasites., 1993, , 422-447. 15 The Partial Past. Current Plant Science and Biotechnology in Agriculture, 1993, , 11-22. 538 Systemic Induced Resistance., 2000, , 521-574. 99 Behavioural ecology of plantâ€"phytoseiid interactions mediated by herbivore-induced plant volatiles. , 539 1999, , 251-268.

#	Article	IF	CITATIONS
540	Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods?. , 1999, , 131-142.		8
541	Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison. , 2002, , 181-192.		4
543	10.1007/BF00163316.,2011,,.		32
544	10.1007/BF00192140.,2011,,.		3
545	10.1007/BF02381786., 2011,,.		12
546	10.1007/BF02382309.,2011,,.		4
547	10.1007/BF02382480., 2011,,.		12
548	10.1007/BF02383034.,2011,,.		14
549	10.1007/BF02383544.,2011,,.		2
550	Third Trophic Level Influences of Plant Allelochemicals. , 1992, , 243-277.		52
551	The potential for modifying plant volatile composition to enhance resistance to arthropod pests CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-10.	0.6	6
553	Plant odours with potential for a push?pull strategy to control the onion thrips, Thrips tabaci. Entomologia Experimentalis Et Applicata, 2006, .	0.7	1
554	Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol. PLoS ONE, 2007, 2, e852.	1.1	83
555	Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus. PLoS ONE, 2012, 7, e53229.	1.1	22
556	Herbivoreâ€induced plant volatiles and their potential role in integrated pest management. Progress in Plant Protection, 2013, 53, .	0.4	3
557	The role of plant odours in the leafminer Liriomyza sativae (Diptera: Agromyzidae) and its parasitoid Diglyphus isaea (Hymenoptera: Eulophidae): Orientation towards the host habitat. European Journal of Entomology, 2002, 99, 445-450.	1.2	16
558	Identification of limonene as a potential kairomone of the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 2010, 107, 541-548.	1.2	31
559	Effect of Aspidiotus rigidus infestation on the volatile chemical profile of the host plant Garcinia mangostana. Hellenic Plant Protection Journal, 2018, 11, 1-8.	0.4	2

ARTICLE IF CITATIONS # The role of herbivore-induced plant volatiles (HIPVs) as indirect plant defense mechanism in a diverse plant and herbivore species; a review. International Journal of Agriculture Environment and Food 560 0.2 11 Sciences, 0, , 139-147. Chemically mediated foraging by subtidal marine predators: a field test of tritrophic cues. Marine Ecology - Progress Series, 2014, 498, 161-171. Terpene synthases in cucumber (<i>Cucumis sativus</i>) and their contribution to herbivoreâ€induced 562 3.519 volatile terpenoid emission. New Phytologist, 2022, 233, 862-877. Phaseoleae., 2001,, 306-469. Biological Interaction Networks in Plant-Herbivore-Carnivore Systems. Journal of Pesticide Sciences, 564 0.8 0 2003, 28, 354-359. Lessons from interactions within the cassava green mite fungal pathogen NeozygitesÂtanajoae system and prospects for microbial control using Entomophthorales., 2008, 195-210. Differences in foraging strategies between populations of the predatory mite Neoseiulus womersleyi: 566 0 correlation between olfactory response and dispersal tendency., 2010, 259-263. Parasitizing behavior of Cervellus piranga Penteado-Dias (Hymenoptera, Braconidae, Braconinae) on papaya borer weevil Pseudopiazurus obesus Marshall (Coleoptera, Curculionidae). Revista Brasileira 0.1 De Entomologia, 2011, 55, 612-614. Can We Make Crops More Attractive to the Natural Enemies of Herbivores?. Entomology, Ornithology, 568 0.1 0 & Herpetology: Current Research, 2012, 01, . The Role of Terpenoids in Plants and Its Application. Botanical Research, 2013, 02, 106-108. Infochemicals that mediate plant-carnivore communication systemically induced by herbivory., 1992,, 571 0 355-356. Crop Production on the Threshold of a New Century., 1994, , 1-8. Plant Genetic Resources for the Study of Insect-Plant Interactions., 1998,,. 573 0 Expression of Defensive Genes Responsible for Direct and Indirect Defense Against Spider Mite 0.4 Tetranychus urticae in Black Bean. Journal of Crop Breeding, 2017, 9, 35-43. Prediction of Whitefly Population and Infestation Based on Multitrophic Analysis between Competitor Pest, Plant Traits and Natural Enemy. Journal of Agricultural Science and Technology A, 577 0.2 0 2019, 9, . THE EFFECT OF INFECTION BY CALOGLYPHUS BERLESEI ON ORGANIC VOLATILE COMPOUNDS OF SOME 578 STORED PRODUCTS. Egyptian Journal of Nutrition and Feeds, 2019, 22, 121-132. Multiple Infestations Induce Direct Defense of Maize to Tetranychus urticae (Acari: Tetranychidae). 579 0.2 4 Florida Entomologist, 2020, 103, . Importance of Community Relationships in Biodiversity., 1996, 13-18.

0

#	Article	IF	CITATIONS
581	Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica. Biology, 2022, 11, 84.	1.3	3
582	Ouvrages cités. , 2020, , 93-107.		0
583	Companion and Smart Plants: Scientific Background to Promote Conservation Biological Control. Neotropical Entomology, 2022, 51, 171-187.	0.5	11
584	AlepPBP2, but not AlepPBP3, may involve in the recognition of sex pheromones and maize volatiles in <i>Athetis lepigone </i> . Bulletin of Entomological Research, 2022, 112, 536-545.	0.5	4
585	Florivory and Pollination Intersection: Changes in Floral Trait Expression Do Not Discourage Hummingbird Pollination. Frontiers in Plant Science, 2022, 13, 813418.	1.7	2
586	Chemical Ecology: Multifunctional Compounds and Multitrophic Interactions. Die Naturwissenschaften, 1996, 83, 248-254.	0.6	4
587	Factors Influencing the Efficacy of Biological Control Agents Used to Manage Insect Pests in Indoor Cannabis (Cannabis sativa) Cultivation. Frontiers in Agronomy, 2022, 4, .	1.5	3
589	Bumblebee attraction to <i>Matthiola livida</i> flowers is altered by combined water stress and insect herbivory. Entomologia Experimentalis Et Applicata, 2022, 170, 666-680.	0.7	3
590	Induced defense in Eucalyptus trees increases with prolonged herbivory. Revista Colombiana De Entomologia, 2010, 36, 1-4.	0.1	6
591	<i>Spodoptera litura</i> larvae are attracted by <scp>HvAV</scp> â€3hâ€infected <i>S. litura</i> larvaeâ€damaged pepper leaves. Pest Management Science, 2023, 79, 2713-2724.	1.7	1
592	Monoterpene Composition of Phloem of Eastern Larch (Larix laricina (Du Roi) K. Koch) in the Great Lakes Region: With What Must the Eastern Larch Beetle (Dendroctonus simplex LeConte) Contend?. Forests, 2023, 14, 566.	0.9	0
593	Role of kairomones in biological control of pests. , 2023, , 57-80.		0

599 Plant–Animal Interactions. , 2013, , 166-184.