Heavy metal accumulation by bacteria and other micro

Experientia 46, 834-840 DOI: 10.1007/bf01935534

Citation Report

#	Article	IF	CITATIONS
1	Complexing agents from microorganisms. Experientia, 1990, 46, 827-834.	1.2	98
2	In vitro uptake of cadmium by basidiomycetesPleurotus ostreatus. Biotechnology Letters, 1991, 13, 701-704.	2.2	27
3	Complexes of mycobactin fromMycobacterium smegmatis with scandium, yttrium and lanthanum. Biology of Metals, 1991, 4, 207-210.	1.1	7
4	Biosorption of metal ions byAzotobacter vinelandii. World Journal of Microbiology and Biotechnology, 1992, 8, 319-323.	3.6	15
5	Bacterial biosorption and retention of thorium and uranyl cations by Mycobacterium smegmatis. Journal of Radioanalytical and Nuclear Chemistry, 1992, 166, 431-440.	1.5	13
6	Immobilisation protocols and effects on Cadmium uptake by Rhizopus arrhizus Biosorbents. Biotechnology Letters, 1993, 7, 739-744.	0.5	20
7	Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Applied Microbiology and Biotechnology, 1993, 39, 413.	3.6	84
8	Studies on metal resistance system inKluyveromyces marxianus. Biological Trace Element Research, 1993, 38, 117-127.	3.5	10
9	The effects of lead-resistant pseudomonads on the growth of Triticum Aestivum seedlings under lead stress. Environmental Pollution, 1993, 81, 179-184.	7.5	30
10	Bacterial consorts which enhance the copper tolerance ofamphora coffeaeformis. Biofouling, 1993, 7, 285-297.	2.2	1
11	Influence of organic acids on leaching of heavy metals from contaminated mine tailings. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1994, 29, 1045-1056.	0.1	11
12	Biological characterization of a southeast Kansas mining site. Water, Air, and Soil Pollution, 1994, 78, 169-177.	2.4	31
13	Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1994, 41, 149-154.	3.6	251
14	Biosorption of cadmium, copper and lead by isolated mother cell walls and whole cells of Chlorella fusca. Applied Microbiology and Biotechnology, 1994, 41, 725-728.	3.6	73
15	Effects of plants and soil microflora on leaching of zinc from mine tailings. Chemosphere, 1994, 29, 1691-1699.	8.2	28
16	Biosorption of heavy metals bySaccharomyces cerevisiae: Effects of nutrient conditions. Journal of Chemical Technology and Biotechnology, 1995, 63, 257-261.	3.2	47
17	Investigations on nickel biosorption and its remobilization. Process Biochemistry, 1995, 30, 729-734.	3.7	27
18	Metal cation uptake by yeast: a review. Applied Microbiology and Biotechnology, 1995, 43, 579-584.	3.6	185

ATION RED

ARTICLE IF CITATIONS # Characterization of bacterial communities in heavy metal contaminated soils. Canadian Journal of 19 1.7 174 Microbiology, 1996, 42, 593-603. A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1996, 45, 278-285. 3.6 Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. Journal of 21 3.2 44 Chemical Technology and Biotechnology, 1996, 65, 21-28. Metal removal by selected sorbents. Process Biochemistry, 1996, 31, 457-462. Biosorption of uranium byPseudomonas aeruginosa strain CSU: Characterization and comparison 23 138 studies., 1996, 51, 237-247. Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation, 1996, 7, 277-286. Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non-rhizospheric 25 7.5 40 pseudomonad strains. Environmental Pollution, 1997, 97, 265-273. Oscillatoria anguistissima : A Promising Cu 2+ Biosorbent. Current Microbiology, 1997, 35, 151-154. 2.2 26 19 Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium. Bioresource 27 9.6 38 Technology, 1997, 60, 87-90. Microorganisms in the subsurface. Microbiological Research, 1998, 153, 1-22. 5.3 Comparative toxicity of heavy metals to some yeasts isolated from Saudi Arabian soil. Bioresource 29 19 9.6 Technology, 1998, 64, 193-198. Effect of heavy-metals on amylolytic activity of the soil yeasts Geotrichum capitatum and Geotrichum 9.6 candidum. Bioresource Technology, 1998, 66, 213-217. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. $\mathbf{31}$ 8.8 1,684 Soil Biology and Biochemistry, 1998, 30, 1389-1414. The Effect of Cu²⁺and Cd²⁺on Citric Acid Production by<i>Saccharomycopsis 1.3 Lipolytica </i>
Strains. Biotechnology and Biotechnological Equipment, 1998, 12, 56-62. Uptake of free and complexed silver ions by yeasts isolated from a gold mining industry in Brazil.. 34 0.7 5 Journal of General and Applied Microbiology, 1999, 45, 121-124. Plant heavy metal concentrations and soil biological properties in agricultural serpentine soils. Communications in Soil Science and Plant Analysis, 1999, 30, 1867-1884. Thiol and exopolysaccharide production in a cyanobacterium under heavy metal stress. Process 36 3.7 17 Biochemistry, 1999, 35, 63-68. Phosphorus-rich granules in uncultured magnetotactic bacteria. FEMS Microbiology Letters, 1999, 172, 1.8 44 23-28.

#	Article	IF	CITATIONS
38	Hexavalent chromium uptake by sensitive and tolerant mutants ofSchizosaccharomyces pombe. FEMS Microbiology Letters, 1999, 178, 109-115.	1.8	42
39	Cyano-metal complexes uptake by Aspergillus niger. Biotechnology Letters, 1999, 21, 487-490.	2.2	10
40	Lead Resistance in Two Bacterial Isolates from Heavy Metal–Contaminated Soils. Microbial Ecology, 1999, 37, 218-224.	2.8	138
41	Seasonal mercury levels in phytoplankton and their relationship with algal biomass in two dystrophic shield lakes. Environmental Toxicology and Chemistry, 1999, 18, 523-532.	4.3	13
42	Removal of cadmium byPleurotus sajor-caju basidiomycetes. Acta Biotechnologica, 1999, 19, 171-177.	0.9	26
43	Organotin compounds and their interactions with microoganisms. Canadian Journal of Microbiology, 1999, 45, 541-554.	1.7	92
44	Effect of Copper and Cadmium on Filamentous Fungi Belonging to Genus <i>Aspergillus</i> . Biotechnology and Biotechnological Equipment, 1999, 13, 77-80.	1.3	2
45	Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiology Letters, 1999, 178, 109-115.	1.8	48
46	Bioavailability of Heavy Metals in the Mycorrhizosphere. , 2000, , .		14
47	ORIGINAL PAPERS Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 2000, 25, 1-7.	3.0	53
48	Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiological Research, 2000, 155, 113-121.	5.3	86
49	A possible mechanism of Zn2+ uptake by living cells of Penicillium sp Biotechnology Letters, 2000, 22, 1709-1712.	2.2	16
50	Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 2000, 226, 227-234.	3.7	377
51	Copper accumulation byAspergillus awamori. Folia Microbiologica, 2000, 45, 217-220.	2.3	9
52	Removal of chromate from industrial effluent by a new isolate of Staphylococcus cohnii. Water Science and Technology, 2000, 42, 93-98.	2.5	24
53	Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. European Journal of Soil Biology, 2001, 37, 95-102.	3.2	70
55	Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Applied Microbiology and Biotechnology, 2001, 57, 697-701.	3.6	87
56	Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Letters in Applied Microbiology, 2001, 32, 257-261.	2.2	53

#	Article	IF	CITATIONS
57	Copper sorption by native and modified pellets of wood-rotting basidiomycetes. Letters in Applied Microbiology, 2001, 32, 194-198.	2.2	39
58	Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agriculture, Ecosystems and Environment, 2001, 87, 315-321.	5.3	53
59	Microbial bioremediation of textile effluents. Progress in Industrial Microbiology, 2002, 36, 331-348.	0.0	7
60	Microbial variables for bioremediation of heavy metals from industrial effluents. Progress in Industrial Microbiology, 2002, 36, 189-229.	0.0	10
61	Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48, 427-435.	8.2	435
62	Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices , under rootâ€organ culture conditions. New Phytologist, 2002, 156, 275-281.	7.3	74
63	Accumulation of some metal ions on Bacillus licheniformis. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251, 249-252.	1.5	6
64	Title is missing!. Plant and Soil, 2002, 243, 173-186.	3.7	112
65	Engineered Biofilms for Metal Ion Removal. Reviews in Environmental Science and Biotechnology, 2003, 2, 177-192.	8.1	25
66	Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Applied Microbiology and Biotechnology, 2003, 63, 182-186.	3.6	61
67	Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance. Microbiological Research, 2003, 158, 59-67.	5.3	49
68	Phosphatase production and activity in copper (II) accumulating Rhizopus delemar. Enzyme and Microbial Technology, 2003, 33, 926-931.	3.2	26
69	Uranium recovery by immobilized and dried powdered biomass: characterization and comparison. International Journal of Mineral Processing, 2003, 68, 93-107.	2.6	53
70	Corrosion influenced by biofilms during wet nuclear waste storage. International Biodeterioration and Biodegradation, 2003, 51, 151-156.	3.9	24
71	Comparative analysis on equilibrium sorption of metal ions by biosorbent Tempe. Biochemical Engineering Journal, 2003, 16, 361-364.	3.6	15
72	Response to Heavy Metals in Plants: A Molecular Approach. , 2003, , 133-156.		15
73	Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Research in Microbiology, 2003, 154, 409-415.	2.1	138
74	The Relationship between pH and Heavy Metal Ion Sorption by Algal Biomass. Adsorption Science and Technology, 2003, 21, 525-537.	3.2	11

#	Article	IF	CITATIONS
75	Biosorption of Ni(ii) and Pb(ii) by <i>Phanerochaete chrysosporium</i> from a binary metal system – kinetics. Water S A, 2004, 27, 15.	0.4	30
76	Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences, 2004, 4, 219-232.	3.6	575
77	Accumulation of uranium by filamentous green algae under natural environmental conditions. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260, 683-687.	1.5	14
78	Employment of Rhizobacteria for the Inoculation of Barley Plants Cultivated in Soil Contaminated with Lead and Cadmium. Microbiology, 2004, 73, 99-106.	1.2	77
80	Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. International Biodeterioration and Biodegradation, 2004, 54, 203-207.	3.9	37
81	Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces B: Biointerfaces, 2004, 34, 105-111.	5.0	117
82	Biological chromium(VI) reduction using a trickling filter. Journal of Hazardous Materials, 2005, 126, 78-85.	12.4	89
83	Effect of cadmium on lipid composition of Aureobasidium pullulans grown with added extracellular polysaccharides. International Biodeterioration and Biodegradation, 2005, 55, 195-202.	3.9	23
84	Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 2005, 37, 241-250.	8.8	720
85	Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 2005, 40, 1895-1901.	3.7	132
86	Cadmium biosorption by Bacillus circulans strain EB1. World Journal of Microbiology and Biotechnology, 2005, 21, 777-779.	3.6	52
87	Lead (II) Ion Inhibition of Respiration and Replication in a Toluene-Enriched Microbial Population. Bioremediation Journal, 2005, 9, 63-75.	2.0	1
88	Uptake, Assimilation and Translocation of Mineral Elements in Monoxenic Cultivation Systems. Soil Biology, 2005, , 201-215.	0.8	4
90	Synthesis of Platinum Nanoparticles by Reaction of Filamentous Cyanobacteria with Platinum(IV)â~Chloride Complex. Langmuir, 2006, 22, 7318-7323.	3.5	153
91	Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 2006, 64, 1036-1042.	8.2	347
92	Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere, 2006, 65, 1959-1965.	8.2	117
93	Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology, 2006, 97, 1253-1258.	9.6	96
94	Detoxification of chromium slag by chromate resistant bacteria. Journal of Hazardous Materials, 2006, 137, 836-841.	12.4	21

#	Article	IF	CITATIONS
95	Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 2006, 42, 267-272.	4.3	205
96	Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 2006, 115, 203-211.	12.7	315
97	Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 2006, 38, 2882-2889.	8.8	241
98	Copper accumulation by bacteria and transfer to scallop larvae. Marine Pollution Bulletin, 2006, 52, 293-300.	5.0	22
99	Interactions between zinc and cadmium uptake by free and immobilized cells ofScenedesmus quadricauda (Turp.) Breb Clean - Soil, Air, Water, 2006, 34, 20-26.	0.6	10
100	Tolerance and biosorption of copper and zinc byPseudomonas putidaCZ1 isolated from metal-polluted soil. Canadian Journal of Microbiology, 2006, 52, 308-316.	1.7	60
101	Synthesis of Palladium Nanoparticles by Reaction of Filamentous Cyanobacterial Biomass with a Palladium(II) Chloride Complex. Langmuir, 2007, 23, 8982-8987.	3.5	120
102	Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. Journal of Experimental Botany, 2007, 58, 4173-4182.	4.8	156
103	Biological removal of carcinogenic chromium(VI) using mixed Pseudomonas strains. Journal of General and Applied Microbiology, 2007, 53, 71-79.	0.7	19
104	Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by <i>Saprolegnia delica</i> and <i>Trichoderma viride</i> at Different pH Values and Temperature Degrees. Mycobiology, 2007, 35, 135.	1.7	18
105	Bioaccumulation of Cr(III) ions by Blue Green-alga Spirulina sp. Part II. Mathematical Modeling. American Journal of Agricultural and Biological Science, 2007, 2, 291-298.	0.4	5
106	Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. Journal of Environmental Sciences, 2007, 19, 1114-1119.	6.1	32
107	Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University: Science B, 2007, 8, 192-207.	2.8	364
108	Functional toxicity and tolerance patterns of bioavailable Pd(II), Pt(II), and Rh(III) on suspended Saccharomyces cerevisiae cells assayed in tandem by a respirometric biosensor. Analytical and Bioanalytical Chemistry, 2007, 389, 2185-2194.	3.7	26
109	A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. Journal of Inorganic Biochemistry, 2007, 101, 1201-1213.	3.5	118
110	Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 2008, 43, 5115-5122.	3.7	299
111	Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Marine Biotechnology, 2008, 10, 471-477.	2.4	257
112	Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Journal of Hazardous Materials, 2008, 155, 17-22.	12.4	177

	CHAIR		
#	Article	IF	CITATIONS
113	Cyanobacteria as a biosorbent for mercuric ion. Bioresource Technology, 2008, 99, 6578-6586.	9.6	65
114	Immobilization of long-lived radionuclides 152,154Eu by selective bioaccumulation in Saccharomyces cerevisiae from a synthetic mixture of 152,154Eu, 137Cs and 60Co. Biochemical Engineering Journal, 2008, 40, 363-367.	3.6	17
115	Toxicity of Carbon Tetrachloride toDunaliella salina,an Environmentally Tolerant Alga. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 474-477.	2.3	3
116	Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. Journal of Applied Microbiology, 2008, 105, 88-94.	3.1	91
117	Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. , 2008, , 99-134.		24
118	Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 2008, 71, 834-842.	8.2	300
120	Mycorrhizae: Sustainable Agriculture and Forestry. , 2008, , .		76
122	Feasibility of Using Microalgal Biomass Cultured in Domestic Wastewater for the Removal of Chromium Pollutants. Water Environment Research, 2008, 80, 647-653.	2.7	14
123	Pseudomonas aeruginosa KUCd1, a possible candidate for cadmium bioremediation. Brazilian Journal of Microbiology, 2009, 40, 655-662.	2.0	52
124	Simultaneous measurement of S, macronutrients, and heavy metals in the soil microbial biomass with CHCl3 fumigation and NH4NO3 extraction. Soil Biology and Biochemistry, 2009, 41, 309-314.	8.8	44
125	Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. Journal of Environmental Sciences, 2009, 21, 814-820.	6.1	188
126	Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009, 97, 98-104.	4.3	94
127	Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. Journal of Hazardous Materials, 2009, 161, 88-94.	12.4	92
128	Biosorption equilibria of binary Cd(II) and Ni(II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: Application of response surface methodology. Journal of Hazardous Materials, 2009, 168, 1437-1448.	12.4	65
129	Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337, 67-73.	4.7	88
130	Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicology and Environmental Safety, 2009, 72, 1343-1348.	6.0	122
132	The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 2010, 15, 86-102.	2.6	554
133	Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system. Indian Journal of Microbiology, 2010, 50, 34-40.	2.7	18

ARTICLE IF CITATIONS NAA for studying detoxification of Cr and Hg by Arthrobacter globiformis 151B. Journal of 134 1.5 6 Radioanalytical and Nuclear Chemistry, 2010, 286, 533-537. The effect of carbon source on microbial community structure and Cr(VI) reduction rate. 3.3 28 Biotechnology and Bioengineering, 2010, 107, 478-487. Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in 136 0.6 38 bioremediation of wastewater. African Journal of Biotechnology, 2010, 9, 1493-1498. Bioremediation of Hexavalent Chromium and Tannic Acid in Synthetic Tannery Wastewater Using Free and Calcium Alginate–Immobilized Spores and Mycelia of <i>Aspergillus niger </i>and <i>Aspergillus parasiticus </i>. Bioremediation Journal, 2010, 14, 142-149. 2.0 Biosorption of mercury and lead by driedAspergillus nigerTiegh. isolated from estuarine sediments. 138 1.6 4 International Journal of Environmental Studies, 2010, 67, 735-746. Soil Contamination at Dumpsites: Implication of Soil Heavy Metals Distribution in Municipal Solid Waste Disposal System: A Case Study of Abeokuta, Southwestern Nigeria. Soil and Sediment Contamination, 2011, 20, 370-386. Role of Plant Growth Promoting Bacteria and Fungi in Heavy Metal Detoxification. Soil Biology, 2011, , 140 0.8 11 369-388. Immobilized Biosorbents for Bioreactors and Commercial Biosorbents., 2011, , 285-300. 141 Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy 142 metals in contaminated soils. International Journal of Environmental Science and Technology, 2011, 8, 3.5 19 807-816. 143 Detoxification of Heavy Metals. Soil Biology, 2011, , . Microbial Biosorption of Metals., 2011,,. 144 65 Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from 5.1 99 contaminated soils in the Apulia region, Southern Italy. Geoderma, 2011, 160, 517-523. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: A 146 8.0 78 review. Science of the Total Environment, 2011, 409, 4891-4898. Enhanced biosorptive removal of cadmium from aqueous solutions by silicon dioxide nano-powder, 8.2 heat inactivated and immobilized Aspergillus ustus. Desalination, 2011, 279, 291-297. Specificity of actinomycetal complexes in urbanozems of the city of Kirov. Eurasian Soil Science, 2011, 148 1.6 11 44, 180-185. Phytoremediation of metals from fly ash through bacterial augmentation. Ecotoxicology, 2011, 20, 149 166-176. Effect of Zn(II) on the reduction and accumulation of Cr(VI) by Arthrobacter species. Journal of 150 3.03 Industrial Microbiology and Biotechnology, 2011, 38, 1803-1808. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and 151 practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 2011, 92, 246 697-708.

#	Article	IF	CITATIONS
152	Detoxification of Chromium-Containing Slag by Chromium-Resistant Bacteria. Advanced Materials Research, 0, 414, 56-62.	0.3	1
153	Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System. Applied and Environmental Microbiology, 2011, 77, 5557-5561.	3.1	28
154	Tolerance and Biosorption of Heavy Metals by <i>Cupriavidus metallidurans</i> strain XXKD-1 Isolated from a Subsurface Laneway in the Qixiashan Pb-Zn Sulfide Minery in Eastern China. Geomicrobiology Journal, 2012, 29, 274-286.	2.0	19
156	Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrology and Hydrobiology, 2012, 12, 191-198.	2.3	40
157	Biosorption Potentiality of Living <i>Aspergillus niger</i> Tiegh in Removing Heavy Metal from Aqueous Solution. Bioremediation Journal, 2012, 16, 195-203.	2.0	20
158	The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma, 2012, 170, 322-330.	5.1	56
159	Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. Advances in Bioscience and Biotechnology (Print), 2012, 03, 290-295.	0.7	25
160	Strategies for Chromium Bioremediation of Tannery Effluent. Reviews of Environmental Contamination and Toxicology, 2012, 217, 75-140.	1.3	35
161	Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic. International Journal of Environmental Science and Technology, 2012, 9, 433-440.	3.5	54
162	Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation, 2012, 23, 441-454.	3.0	6
163	Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges. Chemosphere, 2012, 89, 340-349.	8.2	23
164	Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology, 2012, 112, 1193-1206.	3.1	141
165	Removal of chromium using Rhizobium leguminosarum. World Journal of Microbiology and Biotechnology, 2012, 28, 627-636.	3.6	18
166	Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 2012, 23, 25-34.	3.0	42
167	Retention of resources (metals, metalloids and rare earth elements) by autochthonously/allochthonously dominated wetlands: A review. Ecological Engineering, 2013, 53, 106-114.	3.6	26
168	Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Extremophiles, 2013, 17, 723-731.	2.3	39
169	Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 2013, 94, 94-103.	6.0	128
170	Lead resistant bacteria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 2013, 98, 1-7.	6.0	203

#	Article	IF	CITATIONS
171	Isolation and identification of Aeromonas caviae strain KS-1 as TBTC- and lead-resistant estuarine bacteria. Environmental Monitoring and Assessment, 2013, 185, 5243-5249.	2.7	28
172	Chromium-Resistant Bacteria and Their Environmental Condition for Hexavalent Chromium Removal: A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 955-1009.	12.8	182
173	Influence of Nickel and Cadmium Resistant PGPB on Metal Accumulation and Growth Responses of Lycopersicon esculentum Plants Grown in Fly Ash Amended Soil. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	6
174	Comparative Study of Chromium Biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in Single and Binary Mixtures. Applied Biochemistry and Biotechnology, 2013, 169, 570-587.	2.9	27
175	Biochemical and Molecular Characterization of Strontium-resistant Environmental Isolates of <i>Pseudomonas fluorescens</i> and <i>Sphingomonas paucimobilis</i> . Geomicrobiology Journal, 2013, 30, 381-390.	2.0	15
176	Effects of Heavy Metals and Metalloids on Soil Organisms. Environmental Pollution, 2013, , 141-160.	0.4	12
177	Preconcentration of metal ions using microbacteria. Mikrochimica Acta, 2013, 180, 719-739.	5.0	53
178	Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 2013, 51, 11-17.	2.8	151
179	Microbial Transformation of Trace Elements in Soils in Relation to Bioavailability and Remediation. Reviews of Environmental Contamination and Toxicology, 2013, 225, 1-56.	1.3	41
180	Antibacterial Effects of Ag, Au and Bimetallic (Ag-Au) Nanoparticles Synthesized from Red Algae. Solid State Phenomena, 0, 201, 211-230.	0.3	38
181	EFFECT OF METAL TOLERANT PLANT GROWTH PROMOTING BACTERIA ON GROWTH AND METAL ACCUMULATION IN <i>ZEA MAYS</i> PLANTS GROWN IN FLY ASH AMENDED SOIL. International Journal of Phytoremediation, 2013, 15, 743-755.	3.1	10
182	Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats. BioMed Research International, 2013, 2013, 1-15.	1.9	21
183	HCl-Extractable Metal Profiles Correlate with Bacterial Population Shifts in Metal-Impacted Anoxic Coastal Sediment from the Wet/Dry Tropics. Geomicrobiology Journal, 2013, 30, 48-60.	2.0	7
184	Effect of Heavy Metal Uptake by E. coli and Bacillus sps. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	11
185	Biosorption of Uranium and Thorium by Biopolymers. , 2014, , 363-395.		11
186	Excessive chromium may cause dietary toxicity in parsley (<i>Petroselinum crispum</i>). Toxicological and Environmental Chemistry, 2014, 96, 287-295.	1.2	2
187	Equilibrium, Kinetics, and Thermodynamics of the Removal of Nickel(II) from Aqueous Solution Using Cow Hooves. Advances in Physical Chemistry, 2014, 2014, 1-8.	2.0	6
188	Biosorption of heavy metals and cephalexin from secondary effluents by tolerant bacteria. Clean Technologies and Environmental Policy, 2014, 16, 137-148.	4.1	42

#	Article	IF	CITATIONS
189	Removal of toxic Co-EDTA complex by a halophilic solar-salt-pan isolate Pseudomonas aeruginosa SPB-1. Chemosphere, 2014, 95, 503-510.	8.2	21
190	Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, 2014, 109, 134-142.	8.2	109
191	Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2014, 98, 6409-6418.	3.6	86
192	Cadmium-Resistance Mechanism in the Bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of Environmental Contamination and Toxicology, 2014, 67, 149-157.	4.1	30
193	Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Applied Microbiology and Biotechnology, 2014, 98, 5261-5273.	3.6	28
194	Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chemical Engineering Journal, 2014, 235, 176-185.	12.7	95
195	Assessing the technogenic contamination of urban soils from the profile distribution of heavy metals and the soil bulk density. Eurasian Soil Science, 2014, 47, 824-833.	1.6	10
196	Changes in the proteome of the cadmium-tolerant bacteria <i>Cupriavidus taiwanensis</i> KKU2500-3 in response to cadmium toxicity. Canadian Journal of Microbiology, 2014, 60, 121-131.	1.7	17
197	Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicid a PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere, 2014, 117, 433-439.	8.2	55
198	Isolation and Characterization of Cadmium- and Arsenic-Absorbing Bacteria for Bioremediation. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	39
199	Biosequestration of lead using Bacillus strains isolated from seleniferous soils and sediments of Punjab. Environmental Science and Pollution Research, 2014, 21, 10186-10193.	5.3	11
200	Continuous metal bioremoval by new bacterial isolates in immobilized cell reactor. Annals of Microbiology, 2014, 64, 699-706.	2.6	1
201	Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Separation and Purification Technology, 2014, 136, 10-17.	7.9	56
202	16S rDNA analysis of bacterial communities associated with the hyper accumulator Arabidopsis halleri grown on a Zn and Cd polluted soil. European Journal of Soil Biology, 2014, 60, 16-23.	3.2	18
203	Effect of pulse electric fields (PEF) on accumulation of magnesium and zinc ions in Saccharomyces cerevisiae cells. Food Chemistry, 2014, 157, 125-131.	8.2	19
204	The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields. International Journal of Oral Science, 2014, 6, 7-14.	8.6	20
205	Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water. PLoS ONE, 2015, 10, e0140962.	2.5	39
206	A zeoponic system modified with Penicillium simplicissimum for the removal of trace elements from aqueous solutions and gold mine leachates. Journal of Geochemical Exploration, 2015, 156, 34-43.	3.2	4

#	Article	IF	CITATIONS
207	Uptake of copper ions from aqueous solutions by <i>Bacillus</i> strain isolated from desert soil. Toxicology and Industrial Health, 2015, 31, 52-59.	1.4	1
208	Applied Microbial Ecology and Bioremediation. , 2015, , 659-753.		10
209	Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, 2015, , .	0.8	24
210	Modelling of optimum conditions for bioaccumulation of As(III) and As(V) by response surface methodology (RSM). Journal of Environmental Chemical Engineering, 2015, 3, 1986-2001.	6.7	9
211	Removal of metallic elements from industrial waste water through biomass and clay. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2015, 8, 223-230.	1.1	14
212	Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. Journal of Hazardous Materials, 2015, 292, 137-145.	12.4	32
213	Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 2015, 187, 201.	2.7	564
214	Removal of heavy metals and antibiotics from treated sewage effluent by bacteria. Clean Technologies and Environmental Policy, 2015, 17, 2101-2123.	4.1	71
215	Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 2015, 122, 322-330.	6.0	134
216	Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Applied Microbiology and Biotechnology, 2015, 99, 10745-10757.	3.6	75
217	Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 2015, 113, 329-352.	6.0	595
218	The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. Journal of Industrial and Engineering Chemistry, 2015, 21, 635-643.	5.8	69
219	Microbial reduction of [Co(III)–EDTA]â^' by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan. Journal of Hazardous Materials, 2015, 283, 582-590.	12.4	24
220	Biotoxic Effect of Chromium (VI) on Plant Growth-Promoting Traits of Novel Cellulosimicrobium funkei Strain AR8 Isolated from Phaseolus vulgaris Rhizosphere. Geomicrobiology Journal, 2016, , 1-9.	2.0	13
221	Chromium uptake by giant reed under rhizobacterial inhibition. International Journal of Environmental Science and Technology, 2016, 13, 1581-1590.	3.5	4
222	Comparative mathematical modelling of a green approach for bioaccumulation of cobalt from wastewater. Environmental Science and Pollution Research, 2016, 23, 24215-24229.	5.3	6
223	Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express, 2016, 6, 54.	3.0	74
224	Production and harvesting of microalgae biomass from wastewater: a critical review. Environmental Technology Reviews, 2016, 5, 39-56.	4.3	36

#	Article	IF	CITATIONS
225	Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology, 2016, 85, 257-271.	1.2	25
226	Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Science of the Total Environment, 2016, 569-570, 97-104.	8.0	108
227	Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere, 2016, 159, 32-43.	8.2	25
228	The unicellular fungal tool RhoTox for risk assessments in groundwater systems. Ecotoxicology and Environmental Safety, 2016, 132, 18-25.	6.0	8
229	Trophic transfer of radioisotopes in Mediterranean sponges through bacteria consumption. Chemosphere, 2016, 144, 1885-1892.	8.2	6
230	Assessment of toxicity using dehydrogenases activity and mathematical modeling. Ecotoxicology, 2016, 25, 924-939.	2.4	19
231	Bioimmobilization of Heavy Metals in Acidic Copper Mine Tailings Soil. Geomicrobiology Journal, 2016, 33, 261-266.	2.0	66
232	Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress. Applied and Environmental Microbiology, 2016, 82, 1734-1744.	3.1	101
233	Investigation of inhibition kinetics of Zn(II) Ions on the acid phosphatase activity and growth of <i>R. delemar</i> and Zn(II) bioaccumulation. Desalination and Water Treatment, 2016, 57, 3689-3699.	1.0	2
234	Biosorption an innovative tool for bioremediation of metal-contaminated municipal solid waste leachate: optimization and mechanisms exploration. International Journal of Environmental Science and Technology, 2017, 14, 729-742.	3.5	8
235	Bacterial Oxidation and Stabilization of As(III) in Soil. Environmental Engineering Science, 2017, 34, 158-164.	1.6	9
236	Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic <i>Mesorhizobium</i> . ISME Journal, 2017, 11, 248-262.	9.8	69
237	Removal of Heavy Metal Ions From Aqueous Solutions Using <i>Bacillus subtilis</i> Biomass Preâ€Treated by Supercritical Carbon Dioxide. Clean - Soil, Air, Water, 2017, 45, 1700356.	1.1	14
238	Cellular Metabolism at the Systems Level. Springer Theses, 2017, , 1-24.	0.1	1
239	Biological re-colonization of sub-aerial boundaries of an â€ [~] artificial construction-niche' contaminated by iron mine tailings: laboratory bioassays. Environmental Earth Sciences, 2017, 76, 1.	2.7	3
240	Stability of biological and inorganic hemimorphite: Implications for hemimorphite precipitation in non-sulfide Zn deposits. Ore Geology Reviews, 2017, 89, 808-821.	2.7	22
241	Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiological Research, 2017, 204, 65-71.	5.3	67
242	Adhesion of <i>Pseudomonas putida</i> onto Palygorskite and Sepiolite Clay Minerals. Geomicrobiology Journal, 2017, 34, 677-686.	2.0	11

#	Article	IF	CITATIONS
243	Heavy metals and soil microbes. Environmental Chemistry Letters, 2017, 15, 65-84.	16.2	225
244	Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnology, 2017, 39, 125-134.	4.4	105
245	The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of <i>Arundo donax</i> L. International Journal of Phytoremediation, 2017, 19, 360-370.	3.1	44
246	Bio-removal of Nickel ions by Sporosarcina pasteurii and Bacillus megaterium, A Comparative Study. IOP Conference Series: Materials Science and Engineering, 2017, 226, 012044.	0.6	11
247	Characterization of Cultured Rod-shaped MagnetotacticBetaproteobacteriafrom Skudai River, Malaysia. Indian Journal of Science and Technology, 2017, 9, .	0.7	1
248	Uranium Removal from Wastewater Using Immobilized Multiple Heavy-Metal and Antibiotic Resistance E. coli Isolated from Aborshid Egypt. Advances in Recycling & Waste Management, 2017, 02, .	0.4	1
249	Bioaccumulation of cadmium in soil organisms – With focus on wood ash application. Ecotoxicology and Environmental Safety, 2018, 156, 452-462.	6.0	41
250	Prospects of Arbuscular Mycorrhizal Fungi for Heavy Metal-Polluted Soil Management. Microorganisms for Sustainability, 2018, , 91-113.	0.7	1
251	Cd resistant characterization of mutant strain irradiated by carbon-ion beam. Journal of Hazardous Materials, 2018, 353, 1-8.	12.4	11
252	Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Applied Biochemistry and Biotechnology, 2018, 186, 199-216.	2.9	82
253	Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment. Energy, Ecology and Environment, 2018, 3, 102-109.	3.9	19
254	Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. Journal of Cleaner Production, 2018, 171, 1361-1375.	9.3	126
255	Fate, toxicity and bioconcentration of cadmium on Pseudokirchneriella subcapitata and Lemna minor in mid-term single tests. Ecotoxicology, 2018, 27, 132-143.	2.4	5
256	Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury. Molecular Biotechnology, 2018, 60, 12-20.	2.4	17
257	Applications of Lactic Acid Bacteria in Heavy Metal Pollution Environment. , 2018, , 213-248.		2
258	Lactic Acid Bacteria in Foodborne Hazards Reduction. , 2018, , .		8
259	Biogenic synthesis of silver nanoparticles using extracts of <i>Leptolyngbya</i> JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 471-480.	2.8	42
260	Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Advances, 2018, 8, 30902-30911.	3.6	41

#	Article	IF	CITATIONS
261	Commercial African Catfish (Clarias gariepinus) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle. Sustainability, 2018, 10, 1805.	3.2	38
262	Lead absorption mechanisms in bacteria as strategies for lead bioremediation. Applied Microbiology and Biotechnology, 2018, 102, 5437-5444.	3.6	66
263	Poly-γ-glutamic acid, a bio-chelator, alleviates the toxicity of Cd and Pb in the soil and promotes the establishment of healthy Cucumis sativus L. seedling. Environmental Science and Pollution Research, 2018, 25, 19975-19988.	5.3	36
264	Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi. Scientific Reports, 2018, 8, 12818.	3.3	11
265	Numerical Modelling of Heavy Metal Dynamics in a River-Lagoon System. Mathematical Problems in Engineering, 2019, 2019, 1-24.	1.1	5
266	Removal of metals from water using a novel high-rate algal pond and submerged macrophyte pond treatment reactor. Water Science and Technology, 2019, 79, 1447-1457.	2.5	2
267	Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicology and Environmental Safety, 2019, 185, 109706.	6.0	93
268	Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi River Estuary, Northeast China. Marine Pollution Bulletin, 2019, 140, 171-178.	5.0	31
269	Isolation and identification of chromium-tolerant bacterial strains and their potential to promote plant growth. E3S Web of Conferences, 2019, 96, 01005.	0.5	3
270	Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environmental Science and Pollution Research, 2019, 26, 19097-19118.	5.3	75
271	Biotechnological Tools in the Remediation of Cadmium Toxicity. , 2019, , 497-520.		1
272	Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment, 2019, 675, 367-379.	8.0	95
273	Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicology and Environmental Safety, 2019, 175, 138-147.	6.0	57
274	Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Applied Microbiology and Biotechnology, 2019, 103, 3887-3897.	3.6	40
275	Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Applied Nanoscience (Switzerland), 2019, 9, 49-66.	3.1	7
276	Enhanced biosorption of transition metals by living <i>Chlorella vulgaris</i> immobilized in Ca-alginate beads. Environmental Technology (United Kingdom), 2019, 40, 1793-1809.	2.2	36
277	Combining tolerant species and microorganisms for phytoremediation in aluminium-contaminated areas. International Journal of Environmental Studies, 2020, 77, 108-121.	1.6	4
278	Contrasting the Pb (II) and Cd (II) tolerance of <i>Enterobacter</i> sp. via its cellular stress responses. Environmental Microbiology, 2020, 22, 1507-1516.	3.8	31

#	Article	IF	CITATIONS
279	Fresh Water Pollution Dynamics and Remediation. , 2020, , .		34
280	Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater. , 2020, , 167-181.		18
281	Biosorption of Co-EDTA complex by Aspergillus versicolor SPF-1 strain isolated from solar salt pan. Journal of Environmental Chemical Engineering, 2020, 8, 103549.	6.7	2
282	Importance of Surface Coating to Accumulation Dynamics and Acute Toxicity of Copper Nanomaterials and Dissolved Copper in <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2020, 39, 287-299.	4.3	6
283	Screening of trace metal elements for pollution tolerance of freshwater and marine microalgal strains: Overview and perspectives. Algal Research, 2020, 45, 101751.	4.6	21
284	Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 2020, 190, 110089.	6.0	78
286	Interference of a magnetic field generated by circular magnets in the retention of chromium by microbial cells and in the morphology of a mixed culture during the bio-removal of chromium from effluent. Chemical Engineering and Processing: Process Intensification, 2020, 154, 108019.	3.6	4
287	Biomineralization of Sr by the Cyanobacterium Pseudanabaena catenata Under Alkaline Conditions. Frontiers in Earth Science, 2020, 8, .	1.8	7
288	Nutrient-toxic element mixtures and the early postnatal gut microbiome in a United States longitudinal birth cohort. Environment International, 2020, 138, 105613.	10.0	32
289	Transformation of lead compounds in the soil-plant system under the influence of <i>Bacillus</i> and <i>Azotobacter</i> rhizobacteria. Chemistry and Ecology, 2020, 36, 220-235.	1.6	8
290	Microbes as a boon for the bane of heavy metals. Environmental Sustainability, 2020, 3, 233-255.	2.8	12
291	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 2020, 1, 366-381.	29.7	493
292	Phycoremediation of Precious Metals by Cladophora fracta From Mine Gallery Waters Causing Environmental Contamination. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 134-138.	2.7	6
294	Microbial bloom formation in a high pH spent nuclear fuel pond. Science of the Total Environment, 2020, 720, 137515.	8.0	24
295	Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation Magnox Storage Pond. Frontiers in Microbiology, 2020, 11, 515.	3.5	13
296	Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. Science of the Total Environment, 2021, 758, 143596.	8.0	18
297	An insight into the mechanism of â€ [~] symbiotic-bioremoval' of heavy metal ions from synthetic and industrial samples using bacterial consortium. Environmental Technology and Innovation, 2021, 21, 101302.	6.1	9
298	Geographical Variability of Mineral Elements and Stability of Restrictive Mineral Elements in Terrestrial Cyanobacteria Across Gradients of Climate, Soil, and Atmospheric Wet Deposition Mineral Concentration. Frontiers in Microbiology, 2021, 11, 582655.	3.5	3

#	Article	IF	CITATIONS
299	Genomic and Physiological Investigation of Heavy Metal Resistance from Plant Endophytic Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum. International Journal of Environmental Research and Public Health, 2021, 18, 997.	2.6	16
300	Toxic metals bioremediation potentials of <i>Paenibacillus</i> sp. strain SEM1 and <i>Morganella</i> sp. strain WEM7 isolated from Enyigba Pb–Zn mining site, Ebonyi State Nigeria. Bioremediation Journal, 2021, 25, 285-296.	2.0	4
301	Microbial remediation of soil and water metal contaminants. , 2021, , 523-536.		0
302	Cadmium- and Lead-Tolerant PGPRs as Proficient Toxicity Alleviators for Agricultural Crops. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 189-204.	0.4	1
303	Fungi-Mediated Detoxification of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 205-219.	0.4	1
304	Influences of geochemical factors and substrate availability on Gram-positive and Gram-negative bacterial distribution and bio-processes in ageing municipal landfills. International Microbiology, 2021, 24, 311-324.	2.4	3
306	Dual-channel responsive fluorescent sensor for the logic-controlled detection and bioimaging of Zn2+ and Hg2+. Journal of Molecular Liquids, 2021, 326, 115279.	4.9	18
307	CELLS IMMOBILIZATION OF SOME MICROORGANISMS AS A TOOL FOR BIOREMEDIATION : B- ASPERGILLUS NIGER. IOP Conference Series: Earth and Environmental Science, 2021, 722, 012009.	0.3	1
308	Characterization of multiple metal resistant Bacillus licheniformis and its potential use in arsenic contaminated industrial wastewater. Applied Water Science, 2021, 11, 1.	5.6	12
309	Molecular Insight Into Key Eco-Physiological Process in Bioremediating and Plant-Growth-Promoting Bacteria. Frontiers in Agronomy, 2021, 3, .	3.3	2
310	Potential Applications of Textile Wastes and By-products in Preparation of Textile Auxiliaries. Egyptian Journal of Chemistry, 2021, .	0.2	10
311	Transmission Electron Microscopy Analysis on Microbial Ultrathin Sections Prepared by the Ultra-Low Lead Staining Technique. Microscopy and Microanalysis, 2021, 27, 1265-1272.	0.4	4
314	Effective removal of Cd2+, Zn2+ by immobilizing the non-absorbent active catalyst by packed bed column reactor for industrial wastewater treatment. Chemosphere, 2021, 277, 130230.	8.2	8
315	A Systematic Analysis of Metal and Metalloid Concentrations in Eight Zebrafish Recirculating Water Systems. Zebrafish, 2021, 18, 252-264.	1.1	2
316	Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Critical Reviews in Microbiology, 2022, 48, 327-355.	6.1	63
317	Ferromanganese oxide deposits: Geochemical and microbiological perspectives of interactions of cobalt and nickel. Ore Geology Reviews, 2021, 139, 104458.	2.7	9
318	Molecular mechanism of radio-resistance and heavy metal tolerance adaptation in microbes. , 2022, , 275-293.		4
319	Application and efficacy of low-cost adsorbents for metal removal from contaminated water: A review. Materials Today: Proceedings, 2021, 43, 2958-2964.	1.8	11

#	ARTICLE	IF	CITATIONS
" 320	Lichens as an Alternative Biosorbent: A Review. , 2015, , 233-241.	u	6
321	Lithobionts: Cryptic and Refuge Niches. , 2014, , 163-179.		8
322	Molecular biology and biotechnology of microbial interactions with organic and inorganic heavy metal compounds. , 1992, , 225-257.		27
323	Bioaccumulation of metal cations by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1994, 41, 149-154.	3.6	24
324	Microbial Detoxification of Polluted Soils and Agroecosystem. , 2020, , 237-257.		1
325	Uptake and translocation of uranium by arbuscular mycorrhizal fungi under monoxenic culture conditions. , 2005, , 431-455.		2
326	Role of Plant Biomass in Heavy Metal Treatment of Contaminated Water. RSC Green Chemistry, 2013, , 30-50.	0.1	3
327	CHAPTER 4. Natural Polysaccharides as Treatment Agents for Wastewater. RSC Green Chemistry, 2013, , 51-81.	0.1	10
328	Metals and microorganisms: A problem of definition. FEMS Microbiology Letters, 1992, 100, 197-203.	1.8	169
329	Metals and microorganisms: A problem of definition. FEMS Microbiology Letters, 1992, 100, 197-203.	1.8	115
330	Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation. Brazilian Journal of Microbiology, 2009, 40, 655-62.	2.0	22
331	Microbial oxidation of metal sulfides and its consequences. Acta Petrologica Sinica, 2019, 35, 153-163.	0.8	4
332	Effect of aluminum in Bacillus megaterium nickel resistance and removal capability. Mexican Journal of Biotechnology, 2017, 2, 206-220.	0.3	3
333	Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health and Disease, 2016, 6, 195.	0.6	10
334	Accumulation of Elements in Biodeposits on the Stone Surface in Urban Environment. Case Studies from Saint Petersburg, Russia. Microorganisms, 2021, 9, 36.	3.6	6
335	Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments. Minerals (Basel, Switzerland), 2021, 11, 22.	2.0	14
336	Bioaccumulation of Cr(III) ions by Blue-Green alga Spirulina sp. Part I. A Comparison with Biosorption. American Journal of Agricultural and Biological Science, 2007, 2, 218-223.	0.4	27
337	The Inhibition of Bean Plant Metabolism by Cd Metal and Atrazine III: Effect of Seaweed Codium iyengarii on Metal, Herbicide Toxicity and Rhizosphere of the Soil. Biotechnology, 2005, 5, 85-89.	0.1	7

#	Article	IF	CITATIONS
338	Microbial Response against Metal Toxicity. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 75-96.	0.4	5
339	Metal Toxicity in Microorganism. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 1-23.	0.4	4
340	Bioaccumulation of Pb(II) From Aqueous Solutions by Bacillus cereus M1 16. Journal of Hazardous Substance Research, 2006, 5, .	0.3	7
341	Uptake and Reduction of Hexavalent Chromium by Aspergillus Niger and Aspergillus Parasiticus. Journal of Petroleum & Environmental Biotechnology, 2012, 03, .	0.3	26
343	Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Scientific Research and Essays, 2011, 6, 4055-4064.	0.4	25
345	Chemical and Biological Leaching Methods to Remove Heavy Metals from Sewage Sludge: A Review. Journal of Advances in Chemistry, 2013, 4, 509-517.	0.1	1
346	Molecular Characterization of Some Novel Marine Alicyclobacillus Strains, Capable of Removing Lead from a Heavy Metal Contaminated Sea Spot. Biotechnology, 2008, 8, 100-106.	0.1	2
347	EFFICIENCY OF SOME PLANTS IN REMOVING HEAVY METALS FROM WETLAND EFFLUENT. Journal of Soil Sciences and Agricultural Engineering, 2009, 34, 7177-7186.	0.1	0
348	Removal of Ni (II) and Cu (II) from their Solutions and Waste Water by Nonliving Biomass of Pseudomonas oleovorans. Hydrology Current Research, 2012, 03, .	0.4	1
350	Removal of lead from aqueous solutions by a Brevibacterium strain. , 1997, , 523-533.		3
351	Accumulation of radionuclides by associative bacteria and the uptake of 134Cs by the inoculated barley plants. , 1998, , 275-280.		2
352	Heavy Metals and Antibiotics Resistance of Halophilic Bacteria Isolated from Different Areas in Red Sea, Egypt Egyptian Academic Journal of Biological Sciences G Microbiology, 2014, 6, 77-89.	0.0	1
353	Rhizosphere Microflora in Advocacy of Heavy Metal Tolerance in Plants. Soil Biology, 2015, , 323-337.	0.8	0
354	Evaluating the Effects of Municipal Waste and Wastewater on Absorption of Nickel and Cadmium of Helianthus Annuus Plant. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2016, 64, 741-749.	0.4	0
355	Bioremediation of Hexavalent Chromium in Potassium Dichromate Solution by Botrytis aclada fres and Chrysonilia sitophila. International Journal of Biotechnology for Wellness Industries, 2016, 5, 32-38.	0.3	0
356	AVALIAÇÃO DO PROCESSO DE DESSORÇÃO DO CROMO EM MEIO DE CULTURA POR CULTURA MICROBIAN MISTA. , 0, , .	IA	0
357	Removal of Pharmaceutically Active Compounds from Contaminated Water and Wastewater Using Biochar as Low-Cost Adsorbents, An Overview. , 2018, , 1-9.		0
358	Removal of Pharmaceutically Active Compounds from Contaminated Water and Wastewater Using Biochar as Low-Cost Adsorbents, An Overview. , 2019, , 951-959.		0

#	Article	IF	CITATIONS
359	AKUMULASI KROMIUM PADA PISTIA STRATIOTES DALAM CONSTRUCTED WETLAND TIPE FREE WATER SURFACE UNTUK PENGOLAHAN LIMBAH TEKSTIL. Jurnal Teknik Lingkungan, 2019, 25, 73-90.	0.1	0
360	Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria. , 2020, , 101-116.		3
361	Removal of Heavy Metals from Industrial Wastewaters Using Low-Cost Adsorbents. Learning and Analytics in Intelligent Systems, 2020, , 331-337.	0.6	0
362	Biosorption of Nickel (II) and Cadmium (II). Environmental Chemistry for A Sustainable World, 2020, , 373-391.	0.5	0
363	Terbium Excitation Spectroscopy as a Detection Method for Chromatographic Separation of Lanthanide-Binding Biomolecules. ACS Omega, 2020, 5, 27050-27056.	3.5	1
364	Source reduction, recycling, disposal, and treatment. , 2022, , 67-88.		6
365	Removal of toxic heavy metal Cd(II) and Cu(II) ions using glutaraldehyde-cross-linked KFC/CNT/PVA ternary blend. Biomass Conversion and Biorefinery, 2023, 13, 13381-13391.	4.6	3
366	Sustainable approaches for nickel removal from wastewater using bacterial biomass and nanocomposite adsorbents: A review. Chemosphere, 2022, 291, 132862.	8.2	8
367	Tolerance and Cadmium (Cd) Immobilization by Native Bacteria Isolated in Cocoa Soils with Presence of Metal. SSRN Electronic Journal, 0, , .	0.4	0
368	Overview of Waste Stabilization Ponds in Developing Countries. Handbook of Environmental Chemistry, 2021, , .	0.4	0
369	Probiotic Characterization of Arsenic-resistant Lactic Acid Bacteria for Possible Application as Arsenic Bioremediation Tool in Fish for Safe Fish Food Production. Probiotics and Antimicrobial Proteins, 2023, 15, 889-902.	3.9	7
371	Rhizosphere microbe-mediated alleviation of aluminum and iron toxicity in acidic soils. , 2022, , 499-526.		1
372	Cadmium Stress Management in Plants: Prospects of Plant Growth-Promoting Rhizobacteria. Advances in Science, Technology and Innovation, 2022, , 235-249.	0.4	1
373	RHIZOSPHERE MICROBES AS BIOSORBENTS FOR HEAVY METAL REMOVAL. , 2022, , 45-48.		1
374	Recent trends in Ni(II) sorption from aqueous solutions using natural materials. Reviews in Environmental Science and Biotechnology, 2022, 21, 105-138.	8.1	22
379	Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach. Environmental Research, 2022, 212, 113337.	7.5	19
380	Copper Bioremediation Ability of Ciliate Paramecium multimicronucleatum Isolated from Industrial Wastewater. Water (Switzerland), 2022, 14, 1419.	2.7	4
382	Differential toxicity of potentially toxic elements to human gut microbes. Chemosphere, 2022, 303, 134958.	8.2	4

		CITATION REPORT		
#	ARTICLE Bacterial biofertilizers for bioremediation: A priority for future research. , 2022. , 565-612.		IF	CITATIONS
000				1
384	An approach towards safe and sustainable use of the green alga Chlorella for removal of radionuclides and heavy metal ions. Journal of Applied Phycology, 2022, 34, 2117-2133.		2.8	2
385	Biofilm control on metallic materials in medical fields from the viewpoint of materials science â€ from the fundamental aspects to evaluation. International Materials Reviews, 2023, 68, 247-271		19.3	2
386	Evaluation of the impact of hydrogenâ€rich water on the deaccumulation of heavy metals in but Journal of Food Safety, 2022, 42, .	er.	2.3	9
387	Microalgae—A Promising Tool for Heavy Metal Remediation. , 2022, , 277-295.			0
388	Transcriptome analysis of the response of Hypomyces chrysospermus to cadmium stress. Frontie Microbiology, 0, 13, .	rs in	3.5	1
389	Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Sc from Bayannur, Northwestern China. International Journal of Environmental Research and Public Health, 2022, 19, 13880.	il	2.6	2
390	Ni2+ and Cu2+ Biosorption by EPS-Producing Serratia plymuthica Strains and Potential Bio-Catal the Organo–Metal Complexes. Water (Switzerland), 2022, 14, 3410.	vsis of	2.7	О
391	Copper bioremoval by novel bacterial isolates and their identification by 16S rRNA gene sequenc analysis. Turkish Journal of Biology, 0, , .	2	0.8	6
392	Potential of using Alfa grass fibers (Stipa Tenacissima L.) to remove Pb ²⁺ , Cu ²⁺ , and Zn ²⁺ from an aqueous solution. Environmental Technology (United) Tj ETQq1	ዾዉ 7843	1 4 rgBT /O
393	Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. Journal of Saudi Chemical Society, 2022, 26, 101569.		5.2	18
395	Environmental Impact of Magnetized Water: Evidence from Heavy Metals in the System Soil-Plar Green and Sustainable Chemistry, 2022, 12, 118-137.	t.	1.2	Ο
396	Adsorptive recovery of arsenic (III) ions from aqueous solutions using dried Chlamydomonas sp Heliyon, 2022, 8, e12398.		3.2	5
397	Microbial remediation mechanisms and applications for lead-contaminated environments. World Journal of Microbiology and Biotechnology, 2023, 39, .		3.6	8
398	Alleviation of Cr(VI) Toxicity and Improve Phytostabilization Potential of Vigna radiata Using a No Cr(VI) Reducing Multi-Stress-Tolerant Plant Growth Promoting Rhizobacterial Strain Bacillus flexu M2. Agronomy, 2022, 12, 3079.	vel s	3.0	4
399	Accumulation of Heavy Metals in Vegetable Crops. Russian Agricultural Sciences, 2022, 48, S164	-S173.	0.2	1
400	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Maize. , 2023, , 235	263.		0
401	Interactive Role of Phenolics and PGPR in Alleviating Heavy Metal Toxicity in Wheat. , 2023, , 287	-320.		3

#	Article	IF	CITATIONS
403	Carbon based nanomaterial interactions with metals and metalloids in terrestrial environment: A review. Carbon, 2023, 206, 325-339.	10.3	1
404	The abundance of bird species in three sections of Kwale District's coastal forests in Kenya. , 2017, 1, .		0
405	Sequestration of cobalt and nickel by biofilm forming bacteria isolated from spent nuclear fuel pool water. Environmental Monitoring and Assessment, 2023, 195, .	2.7	3
407	Identification of algal rich microbial blooms in the Sellafield Pile Fuel Storage Pond and the application of ultrasonic treatment to control the formation of blooms. Frontiers in Microbiology, 0, 14, .	3.5	0
408	Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Frontiers in Microbiology, 0, 14, .	3.5	1
409	Bioremediation potential of cadmium-resistant bacteria isolated from water samples of rivulet Holy Kali Bein, Punjab, India. Bioremediation Journal, 0, , 1-22.	2.0	0
410	Biological perspectives in geotechnics: Application and monitoring. Journal of Rock Mechanics and Geotechnical Engineering, 2023, , .	8.1	0
411	Cadmium-Tolerant Bacterium Strain Cdb8-1 Contributed to the Remediation of Cadmium Pollution through Increasing the Growth and Cadmium Uptake of Chinese Milk Vetch (Astragalus sinicus L.) in Cadmium-Polluted Soils. Plants, 2024, 13, 76.	3.5	0
412	A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. Environmental Research, 2024, 248, 118280.	7.5	0
413	The Potential Role of Chromophiles (Absorbtion) Fungi from Polluted Landfill by Tannery Effluent Challawa Industrial Estates Kano State of Nigeria. , 2024, 2, 48-67.		Ο