Retinal degeneration in the rd mouse is caused by a defective cGMP-phosphodiesterase

Nature 347, 677-680 DOI: 10.1038/347677a0

Citation Report

#	Article	IF	CITATIONS
1	Deficiencies in sight with the candidate gene approach. Nature, 1990, 347, 614-614.	13.7	34
2	Localization of the gene for interphotoreceptor retinoid-binding protein to mouse chromosome 14 near Np-1. Genomics, 1990, 8, 727-731.	1.3	20
3	Cyclic nucleotide phosphodiesterases: Pharmacology, biochemistry and function. , 1991, 51, 13-33.		236
4	Transplantation to the diseased and damaged retina. Trends in Neurosciences, 1991, 14, 347-350.	4.2	37
5	Elevated level of protein phosphatase 2A activity in retinas of rd mice. Experimental Eye Research, 1991, 53, 101-105.	1.2	19
6	Genetic analysis of patients with retinitis pigmentosa using a cloned cDNA probe for the human gamma subunit of cyclic GMP phosphodiesterase. Experimental Eye Research, 1991, 53, 557-564.	1.2	22
7	Chapter 12 Fibroblast growth factors in the retina. Progress in Retinal and Eye Research, 1991, 11, 333-374.	0.8	31
8	Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8322-8326.	3.3	581
9	Biochemie und Molekularbiologie 1990. Nachrichten Aus Der Chemie, 1991, 39, 176-199.	0.0	1
10	Death from natural and unnatural causes. Current Biology, 1991, 1, 388-390.	1.8	5
11	Structure and function of Î ³ -subunit of photoreceptor G-protein (transducin). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 433-438.	0.2	2
12	Analysis of choroideraemia gene. Nature, 1991, 351, 614-614.	13.7	27
13	Mouse chromosome 5. Mammalian Genome, 1991, 1, S79-S96.	1.0	5
14	Mouse map of paralogous genes. Mammalian Genome, 1991, 1, S433-S460.	1.0	13
15	Changes in a photoreceptor polypeptide correlating with an early-onset retinal dystrophy in the cat. Molecular and Cellular Biochemistry, 1991, 107, 111-7.	1.4	1
16	Circadian photoreception in the retinally degenerate mouse (rd/rd). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 39-50.	0.7	441
17	Genomic organization and complete sequence of the human gene encoding the Î ² -subunit of the cGMP phosphodiesterase and its localisation to 4p16.3. Nucleic Acids Research, 1991, 19, 6263-6268.	6.5	57
18	Molecular basis of mouse developmental mutants Genes and Development, 1991, 5, 1115-1123.	2.7	64

TATION REDO

		CITATION REPORT		
#	Article		IF	Citations
19	Hormonal Regulation of Cyclic Nucleotide Phosphodiesterases*. Endocrine Reviews, 1991, 12, 2	18-234.	8.9	156
20	New nucleotide sequence data on the EMBL File Server. Nucleic Acids Research, 1991, 19, 413-4	421.	6.5	1
21	Differential localizations of and requirements for the two Drosophila ninaC kinase/myosins in photoreceptor cells Journal of Cell Biology, 1992, 116, 683-693.		2.3	142
22	Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodieste beta subunit Proceedings of the National Academy of Sciences of the United States of America 89, 4422-4426.	rase 1, 1992,	3.3	152
23	An autosomal homologue of the choroideremia gene colocalizes with the usher syndrome type locus on the distal part of chromosome 1q. Human Molecular Genetics, 1992, 1, 71-75.	II	1.4	73
24	Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila Proceedings of the National Academy of Sciences of the United States of America, 89, 435-439.	1992,	3.3	33
25	The β subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia 1992, 9, 349-356.	1. Neuron,	3.8	181
26	Cloning of the CDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim p family implicated in human retinopathies. Neuron, 1992, 8, 1171-1184.	protein	3.8	310
27	Assignment of the ?-subunit of rod photoreceptor cGMP phosphodiesterase gene PDEB (homole	og of) Tj ETQq0 0	0 _[gBT /O	verlock 10 Tf
28	Chromosome mapping of the rod photoreceptor cGMP phosphodiesterase β-subunit gene in m human: Tight linkage to the Huntington disease region (4p16.3). Genomics, 1992, 12, 750-754	ouse and	1.3	26
29	The human β-subunit of rod photoreceptor cGMP phosphodiesterase: Complete retinal cDNA se and evidence for expression in brain. Genomics, 1992, 13, 698-704.	equence	1.3	35
30	Localization of the gene for a third G protein β-subunit to mouse chromosome 6 near Raf-1. Ge 1992, 12, 688-692.	nomics,	1.3	9
31	Sequence-tagged sites (STSs) spanning 4p16.3 and the Huntington disease candidate region. G 1992, 13, 75-80.	enomics,	1.3	16
32	Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia ge designated "rd― Vision Research, 1992, 32, 29-36.	ene	0.7	5
33	Carriers of the mouse rd gene have reduced levels of the beta subunit of the retinal cyclic GMP phosphodiesterase. Biochemical and Biophysical Research Communications, 1992, 184, 461-46	6.	1.0	3
34	Effect of phytanic acid on cultured retinal pigment epithelium: An in vitro model for Refsum's di Experimental Eye Research, 1992, 55, 869-878.	sease.	1.2	10
35	Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds lo Experimental Eye Research, 1992, 54, 853-860.)ci.	1.2	22
36	Synthesis and secretion of interphotoreceptor retinoid-binding protein (IRBP) and development expression of IRBP mRNA in normal and rd mouse retinas. Experimental Eye Research, 1992, 54,	al 957-963.	1.2	9

#	Article	IF	CITATIONS
37	Proteoglycans in the mouse interphotoreceptor matrix. VI. Evidence for photoreceptor synthesis of chondroitin sulfate proteoglycan using genetically fractionated retinas. Experimental Eye Research, 1992, 55, 345-356.	1.2	14
38	Reciprocal retinal transplantation: A tool for the study of an inherited retinal degeneration. Experimental Neurology, 1992, 115, 325-334.	2.0	18
39	Human rod photoreceptor cGMP-gated channel: amino acid sequence, gene structure, and functional expression. Journal of Neuroscience, 1992, 12, 3248-3256.	1.7	204
40	Chromosomal localization of the murine genes for the ?- and ?-subunits of calcium/calmodulin-dependent protein kinase II. Mammalian Genome, 1992, 3, 122-125.	1.0	5
41	Mouse Chromosome 5. Mammalian Genome, 1992, 3, S65-S80.	1.0	7
42	Possible role of cGMP in excitatory amino acid induced cytotoxicity in cultured cerebral cortical neurons. Neurochemical Research, 1992, 17, 35-43.	1.6	45
43	Comparative map for mice and humans. Mammalian Genome, 1992, 3, 480-536.	1.0	122
44	New insights into genetic eye disease. Trends in Genetics, 1992, 8, 85-91.	2.9	5
45	Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. Journal of Comparative Neurology, 1992, 324, 135-142.	0.9	127
46	Linkage studies and mutation analysis of the PDEB gene in 23 families with leber congenital amaurosis. Human Mutation, 1992, 1, 478-485.	1.1	6
47	Fibroblast growth factor receptor deficiency in dystrophic retinal pigmented epithelium. Journal of Cellular Physiology, 1993, 154, 631-642.	2.0	45
48	Developmental expression of a synaptic ribbon antigen (B16) in mouse retina. Journal of Comparative Neurology, 1993, 333, 109-117.	0.9	20
49	Recessive mutations in the gene encoding the β–subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genetics, 1993, 4, 130-134.	9.4	686
50	Gene Expression of the Neuropeptide-Processing Enzyme Carboxypeptidase E in Rat Photoreceptor Cells. Journal of Neurochemistry, 1993, 61, 1891-1900.	2.1	6
51	X-Arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Letters, 1993, 334, 203-209.	1.3	94
52	Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 1993, 74, 515-527.	13.5	1,081
53	A genetic linkage map of the mouse: current applications and future prospects. Science, 1993, 262, 57-66.	6.0	579
54	Strategies for rescue of retinal photoreceptor cells. Current Opinion in Neurobiology, 1993, 3, 797-804.	2.0	15

#	Article	IF	CITATIONS
55	Apoptosis: Final common pathway of photoreceptor death in rd, rds, and mutant mice. Neuron, 1993, 11, 595-605.	3.8	679
56	Chapter 11 Synaptic growth in the rod terminals after partial photoreceptor cell loss. Progress in Retinal and Eye Research, 1993, 12, 247-270.	0.8	5
57	The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1178, 153-175.	1.9	687
58	Confirmation of the rod cGMP phosphodiesterase β subunit (PDEβ) nonsense mutation in affected rcd-1 Irish setters in the UK and development of a diagnostic test. Current Eye Research, 1993, 12, 861-866.	0.7	54
59	How Shall Research in the Treatment of Retinitis Pigmentosa Proceed?. JAMA Ophthalmology, 1993, 111, 754.	2.6	10
60	Exclusion of the involvement of all known Retinitis Pigmentosa loci in the disease present in a family of Irish origin provides evidence for a sixth autosomal dominant locus (RP8). Human Molecular Genetics, 1993, 2, 875-878.	1.4	61
62	Hereditary retinopathies: insights into a complex genetic aetiology British Journal of Ophthalmology, 1993, 77, 469-470.	2.1	2
63	Rhodopsin and Phototransduction. International Review of Cytology, 1993, 137B, 49-97.	6.2	123
64	Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2955-2959.	3.3	256
65	Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5499-5503.	3.3	214
66	Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8484-8488.	3.3	218
67	Drosophila retinal degeneration A gene encodes an eye-specific diacylglycerol kinase with cysteine-rich zinc-finger motifs and ankyrin repeats. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11157-11161.	3.3	149
68	Differential cDNA Screening Strategies to Identify Novel Stage-Specific Proteins in the Developing Mammalian Brain. Developmental Neuroscience, 1993, 15, 77-86.	1.0	42
69	Rod photoreceptor cGMP-phosphodiesterase: analysis of alpha and beta subunits expressed in human kidney cells Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9340-9344.	3.3	35
70	Expression of cone transducin, Gz alpha, and other G-protein alpha-subunit messenger ribonucleic acids in pancreatic islets Endocrinology, 1994, 135, 31-37.	1.4	42
71	Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 974-978.	3.3	577
72	Differences in Circadian Photosensitivity between Retinally Degenerate CBA/J Mice (rd/rd) and Normal CBA/N Mice (+/+). Journal of Biological Rhythms, 1994, 9, 51-60.	1.4	29
73	Apoptosis, retinitis pigmentosa, and degeneration. Biochemistry and Cell Biology, 1994, 72, 489-498.	0.9	69

#	Article	IF	CITATIONS
74	Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa. Biochemistry and Cell Biology, 1994, 72, 439-446.	0.9	37
75	XLPRA: A canine retinal degeneration inherited as an X-linked trait. American Journal of Medical Genetics Part A, 1994, 52, 27-33.	2.4	60
76	Cone cells fail to develop normally in transgenic mice showing ablation of rod photoreceptor cells. Cell and Tissue Research, 1994, 275, 79-90.	1.5	15
77	The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration. Progress in Retinal and Eye Research, 1994, 13, 31-64.	7.3	138
78	Retinal degenerations of hereditary, viral and autoimmune origins: Studies on opsin and IRBP. Progress in Retinal and Eye Research, 1994, 13, 65-99.	7.3	4
79	Cloning and characterization of the gene encoding the cGMP-phosphodiesterase Î ³ -subunit of human rod photoreceptor cells. Gene, 1994, 151, 297-301.	1.0	19
80	Visual and circadian responses to light in aged retinally degenerate mice. Vision Research, 1994, 34, 1799-1806.	0.7	128
81	Effect of magnesium on NMDA mediated toxicity and increases in [Ca2+]i and cGMP in cultured neocortical neurons: evidence for distinct regulation of different responses. Neurochemistry International, 1994, 25, 303-308.	1.9	7
82	Chapter 17 Genetic Approaches for Studying Programmed Cell Death during Development of the Laboratory Mouse. Methods in Cell Biology, 1995, 46, 387-440.	0.5	23
83	Future directions for rhodopsin structure and function studies. Behavioral and Brain Sciences, 1995, 18, 403-414.	0.4	6
84	What are the mechanisms of photoreceptor adaptation?. Behavioral and Brain Sciences, 1995, 18, 415-424.	0.4	41
85	Recoverin and Ca ²⁺ in vertebrate phototransduction. Behavioral and Brain Sciences, 1995, 18, 425-428.	0.4	3
86	Do the calmodulin-stimulated adenylyl cyclases play a role in neuroplasticity?. Behavioral and Brain Sciences, 1995, 18, 429-440.	0.4	17
87	The cGMP-gated channel of photoreceptor cells: Its structural properties and role in phototransduction. Behavioral and Brain Sciences, 1995, 18, 441-451.	0.4	12
88	Correlation of phenotype with genotype in inherited retinal degeneration. Behavioral and Brain Sciences, 1995, 18, 452-467.	0.4	42
89	Calcium/calmodulin-sensitive adenylyl cyclase as an example of a molecular associative integrator. Behavioral and Brain Sciences, 1995, 18, 468-469.	0.4	0
90	The determination of rhodopsin structure may require alternative approaches. Behavioral and Brain Sciences, 1995, 18, 469-469.	0.4	0
91	Mechanisms of photoreceptor degenerations. Behavioral and Brain Sciences, 1995, 18, 470-470.	0.4	0

#	Article	IF	CITATIONS
92	Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behavioral and Brain Sciences, 1995, 18, 470-471.	0.4	0
93	Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behavioral and Brain Sciences, 1995, 18, 471-472.	0.4	0
94	The structure of rhodopsin and mechanisms of visual adaptation. Behavioral and Brain Sciences, 1995, 18, 472-473.	0.4	0
95	The key to rhodopsin function lies in the structure of its interface with transducin. Behavioral and Brain Sciences, 1995, 18, 473-474.	0.4	0
96	The atomic structure of visual rhodopsin: How and when?. Behavioral and Brain Sciences, 1995, 18, 474-475.	0.4	0
97	Does calmodulin play a functional role in phototransduction?. Behavioral and Brain Sciences, 1995, 18, 475-476.	0.4	5
98	Structure and physiology of photoreceptor cGMP-gated cation channels. Behavioral and Brain Sciences, 1995, 18, 476-477.	0.4	1
99	Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behavioral and Brain Sciences, 1995, 18, 477-478.	0.4	0
100	Channel structure and divalent cation regulation of phototransduction. Behavioral and Brain Sciences, 1995, 18, 478-478.	0.4	0
101	Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behavioral and Brain Sciences, 1995, 18, 478-479.	0.4	0
102	Unsolved issues in S-modulin/recoverin study. Behavioral and Brain Sciences, 1995, 18, 479-480.	0.4	0
103	Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca ²⁺ -buffering. Behavioral and Brain Sciences, 1995, 18, 480-481.	0.4	1
104	Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behavioral and Brain Sciences, 1995, 18, 481-481.	0.4	0
105	Gene therapy, regulatory mechanisms, and protein function in vision. Behavioral and Brain Sciences, 1995, 18, 481-482.	0.4	1
106	Structure of the cGMP-gated channel. Behavioral and Brain Sciences, 1995, 18, 482-483.	0.4	0
107	Recoverin is the tumor antigen in cancerassociated retinopathy. Behavioral and Brain Sciences, 1995, 18, 483-484.	0.4	5
108	Adenylyl cyclase, G proteins, and synaptic plasticity. Behavioral and Brain Sciences, 1995, 18, 484-485.	0.4	1
109	Regulation of adenylyl cyclase in LTP. Behavioral and Brain Sciences, 1995, 18, 485-486.	0.4	1

#	Article	IF	CITATIONS
110	Modulation of the cGMP-gated channel by calcium. Behavioral and Brain Sciences, 1995, 18, 486-486.	0.4	0
111	Unique lipids and unique properties of retinal proteins. Behavioral and Brain Sciences, 1995, 18, 486-487.	0.4	0
112	Na-Ca + K exchanger and Ca ²⁺ homeostasis in retinal rod outer segments: Inactivation of the Ca ²⁺ efflux mode and possible involvement of intracellular Ca ²⁺ stores in Ca ²⁺ homeostasis. Behavioral and Brain Sciences, 1995, 18, 488-488.	0.4	0
113	A novel protein family of neuronal modulators. Behavioral and Brain Sciences, 1995, 18, 489-490.	0.4	Ο
114	Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behavioral and Brain Sciences, 1995, 18, 490-490.	0.4	0
115	The genetic kaleidoscope of vision. Behavioral and Brain Sciences, 1995, 18, 490-492.	0.4	Ο
116	More answers about cGMP-gated channels pose more questions. Behavioral and Brain Sciences, 1995, 18, 492-493.	0.4	0
117	Cyclic nucleotides as regulators of light-adaptation in photoreceptors. Behavioral and Brain Sciences, 1995, 18, 493-494.	0.4	0
118	Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation?. Behavioral and Brain Sciences, 1995, 18, 494-494.	0.4	1
119	Future directions for rhodopsin structure and function studies. Behavioral and Brain Sciences, 1995, 18, 495-496.	0.4	0
120	How many light adaptation mechanisms are there?. Behavioral and Brain Sciences, 1995, 18, 496-497.	0.4	0
121	Recoverin, a calcium-binding protein in photoreceptors. Behavioral and Brain Sciences, 1995, 18, 497-498.	0.4	2
122	Evidence that the type I adenylyl cyclase may be important for neuroplasticity: Mutant mice deficient in the gene for type I adenylyl cyclase show altered behavior and LTP. Behavioral and Brain Sciences, 1995, 18, 498-500.	0.4	0
123	Further insight into the structural and regulatory properties of the cGMP-gated channel. Behavioral and Brain Sciences, 1995, 18, 500-501.	0.4	0
124	Genetic and functional complexity of inherited retinal degeneration. Behavioral and Brain Sciences, 1995, 18, 501-521.	0.4	1
125	Testing Mealey's model: The need to demonstrate an ESS and to establish the role of testosterone. Behavioral and Brain Sciences, 1995, 18, 541-542.	0.4	2
126	The sociopath: Cheater or warrior hawk?. Behavioral and Brain Sciences, 1995, 18, 542-543.	0.4	42
127	Continua outperform dichotomies. Behavioral and Brain Sciences, 1995, 18, 543-544.	0.4	49

	Сітатіо	n Report	
#	Article	IF	CITATIONS
128	Sociopathy, evolution, and the brain. Behavioral and Brain Sciences, 1995, 18, 544-544.	0.4	1
129	You can cheat people, but not nature!. Behavioral and Brain Sciences, 1995, 18, 544-545.	0.4	26
130	Secondary sociopathy and opportunistic reproductive strategy. Behavioral and Brain Sciences, 1995, 18, 545-546.	0.4	0
131	Group differences ≢ individual differences. Behavioral and Brain Sciences, 1995, 18, 546-548.	0.4	0
132	Putting cognition into sociopathy. Behavioral and Brain Sciences, 1995, 18, 548-548.	0.4	8
133	Sociopathy or hyper-masculinity?. Behavioral and Brain Sciences, 1995, 18, 548-549.	0.4	0
134	Cheaters never prosper, sometimes. Behavioral and Brain Sciences, 1995, 18, 549-550.	0.4	0
135	Prisoner's Dilemma, Chicken, and mixedstrategy evolutionary equilibria. Behavioral and Brain Sciences, 1995, 18, 550-551.	0.4	4
136	The sociopathy of sociobiology. Behavioral and Brain Sciences, 1995, 18, 552-552.	0.4	2
137	A neuropsychology of deception and self-deception. Behavioral and Brain Sciences, 1995, 18, 552-553.	0.4	0
138	The role of emotion in sociopathy: Contradictions and unanswered questions. Behavioral and Brain Sciences, 1995, 18, 553-554.	0.4	0
139	Extending arousal theory and reflecting on biosocial approaches to social science. Behavioral and Brain Sciences, 1995, 18, 554-554.	0.4	3
140	Sociopathy and sociobiology: Biological units and behavioral units. Behavioral and Brain Sciences, 1995, 18, 555-555.	0.4	0
141	The epigenesis of sociopathy. Behavioral and Brain Sciences, 1995, 18, 556-557.	0.4	4
142	"Just So―stories and sociopathy. Behavioral and Brain Sciences, 1995, 18, 557-558.	0.4	1
143	The primary/secondary distinction of psychopathy: A clinical perspective. Behavioral and Brain Sciences, 1995, 18, 558-559.	0.4	0
144	Genes, hormones, and gender in sociopathy. Behavioral and Brain Sciences, 1995, 18, 560-560.	0.4	5
145	Al Capone, discrete morphs, and complex dynamic systems. Behavioral and Brain Sciences, 1995, 18, 560-561.	0.4	4

	Сітатіс	on Report	
#	Article	IF	CITATIONS
146	Fatherless rearing leads to sociopathy. Behavioral and Brain Sciences, 1995, 18, 563-564.	0.4	5
147	Sociobiology, sociopathy, and social policy. Behavioral and Brain Sciences, 1995, 18, 564-564.	0.4	Ο
148	Genetic issues in "the sociobiology of sociopathy― Behavioral and Brain Sciences, 1995, 18, 565-565.	0.4	0
149	Diathesis stress model or "Just So―story?. Behavioral and Brain Sciences, 1995, 18, 565-566.	0.4	5
150	Adaptive and nonadaptive explanations of sociopathy. Behavioral and Brain Sciences, 1995, 18, 566-567.	0.4	8
151	Touchstones of abnormal personality theory. Behavioral and Brain Sciences, 1995, 18, 567-568.	0.4	1
152	On the brain and personality substrates of psychopathy. Behavioral and Brain Sciences, 1995, 18, 568-570.	0.4	1
153	"Genetics―and DNA polymorphisms. Behavioral and Brain Sciences, 1995, 18, 570-570.	0.4	0
154	Emotions and sociopathy. Behavioral and Brain Sciences, 1995, 18, 570-571.	0.4	2
155	Psychopathy is a nonarbitrary class. Behavioral and Brain Sciences, 1995, 18, 571-571.	0.4	9
156	Psychopathy and violence: Arousal, temperament, birth complications, maternal rejection, and prefrontal dysfunction. Behavioral and Brain Sciences, 1995, 18, 571-573.	0.4	7
157	Evolution, mating effort, and crime. Behavioral and Brain Sciences, 1995, 18, 573-574.	0.4	56
158	ls sociopathy a type or not? Will the "real―sociopathy please stand up?. Behavioral and Brain Sciences, 1995, 18, 575-576.	' 0.4	0
159	The role of attachment in the development and prevention of sociopathy. Behavioral and Brain Sciences, 1995, 18, 576-577.	0.4	0
160	Sociopathy within and between small groups. Behavioral and Brain Sciences, 1995, 18, 577-577.	0.4	46
161	Moral judgments by alleged sociopaths as a means for coping with problems of definition and identification in Mealey's model. Behavioral and Brain Sciences, 1995, 18, 577-578.	0.4	5
162	Is the distinction between primary and secondary sociopaths a matter of degree, secondary traits, or nature vs. nurture?. Behavioral and Brain Sciences, 1995, 18, 578-579.	0.4	3
163	Primary sociopathy (psychopathy) is a type, secondary is not. Behavioral and Brain Sciences, 1995, 18, 579-599.	0.4	46

		CITATION REPORT		
#	Article		IF	CITATIONS
164	Processing attributes and judging objects. Behavioral and Brain Sciences, 1995, 18, 602	1-602.	0.4	0
165	Arguments in favour of a psycho-psychophysics. Behavioral and Brain Sciences, 1995, 1	8, 602-604.	0.4	0
166	Bias by stimuli presented before the start of an investigation. Behavioral and Brain Scier 604-605.	nces, 1995, 18,	0.4	0
167	Psychophysical scaling: A conditional defense of R=f(I). Behavioral and Brain Sciences, 1	.995, 18, 605-606.	0.4	0
168	Weight and mass as psychophysical attributes. Behavioral and Brain Sciences, 1995, 18	s, 606-607.	0.4	2
169	Psychophysical scaling methods reveal and measure context effects. Behavioral and Bra 1995, 18, 607-612.	in Sciences,	0.4	33
170	The ontology of aspectual shape. Behavioral and Brain Sciences, 1995, 18, 612-614.		0.4	0
171	Searle's argument that intentional states are conscious states. Behavioral and Brain Sci 614-615.	ences, 1995, 18,	0.4	0
172	Token-identity, consciousness, and the connection principle. Behavioral and Brain Scier 615-616.	ices, 1995, 18,	0.4	42
173	Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sciences, 1995, 18, 488-489.	ioral and	0.4	0
174	Psychopathology: Type or trait?. Behavioral and Brain Sciences, 1995, 18, 555-556.		0.4	51
175	Pathways to sociopathy: Twin analyses offer direction. Behavioral and Brain Sciences, 1	995, 18, 574-575.	0.4	0
176	Implications of an evolutionary biopsychosocial model. Behavioral and Brain Sciences, 1 559-560.	995, 18,	0.4	0
177	An evaluation of Mealey's hypotheses based on psychopathy checklist: Identified group and Brain Sciences, 1995, 18, 562-563.	s. Behavioral	0.4	19
178	Investigation of the role of opsin gene polymorphism in generalized progressive retinal dogs. Animal Genetics, 1995, 26, 261-267.	atrophies in	0.6	18
179	Incidence of the gene mutation causal for rodâ€cone dysplasia type 1 in Irish setters in of Small Animal Practice, 1995, 36, 310-314.	the UK. Journal	0.5	12
180	Homozygous tandem duplication within the gene encoding the β-subunit of rod phosp cause for autosomal recessive retinitis pigmentosa. Human Mutation, 1995, 5, 228-234	hodiesterase as a 1.	1.1	68
181	Localization of three genes expressed in retina on mouse Chromosome 11. Mammalian 142-144.	Genome, 1995, 6,	1.0	10

#	Article	IF	CITATIONS
182	Autosomal recessive retinitis pigmentosa caused by mutations in the $\hat{I}\pm$ subunit of rod cGMP phosphodiesterase. Nature Genetics, 1995, 11, 468-471.	9.4	233
183	Support for the equivalent light hypothesis for RP. Nature Medicine, 1995, 1, 1254-1255.	15.2	69
184	Circadian rhythmicity in vertebrate retinas: Regulation by a photoreceptor oscillator. Progress in Retinal and Eye Research, 1995, 14, 267-291.	7.3	200
185	Retinal cell transplants. Progress in Retinal and Eye Research, 1995, 15, 197-230.	7.3	19
186	Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiological Reviews, 1995, 75, 725-748.	13.1	1,712
187	Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3249-3253.	3.3	281
188	The sociobiology of sociopathy: An integrated evolutionary model. Behavioral and Brain Sciences, 1995, 18, 523-541.	0.4	949
189	Isolation and characterization of a cDNA encoding the α′ subunit of human cone cGMP-phosphodiesterase. Gene, 1995, 166, 205-211.	1.0	12
190	Spatio-temporal pattern of ocular clusterin mRNA expression in the rd mouse. Molecular Brain Research, 1995, 29, 172-176.	2.5	16
191	Mullerian glia in dystrophic rodent retinas: an immimocytochemical analysis. Developmental Brain Research, 1995, 85, 171-180.	2.1	24
193	The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (): implications for circadian organization. Neuroscience Letters, 1995, 187, 33-36.	1.0	50
194	Genetics and Ophthalmology. Ophthalmology, 1996, 103, S66-S73.	2.5	1
195	Human cone-specific cGMP phosphodiesterase α′ subunit: Complete cDNA sequence and gene arrangement. FEBS Letters, 1996, 381, 149-152.	1.3	6
196	Screening of the PDE6B Gene in Patients with Autosomal Dominant Retinitis Pigmentosa. Experimental Eye Research, 1996, 62, 149-154.	1.2	8
197	Basic Fibroblast Growth Factor: Increased Gene Expression in Inherited and Light-Induced Photoreceptor Degeneration. Experimental Eye Research, 1996, 62, 181-190.	1.2	93
198	Morphological and Physiological Consequences of the Selective Elimination of Rod Photoreceptors in Transgenic Mice. Experimental Eye Research, 1996, 63, 35-49.	1.2	66
199	Selective Absence of Cone Outer Segment β3-Transducin Immunoreactivity in Hereditary Cone Degeneration (cd). Experimental Eye Research, 1996, 63, 285-296.	1.2	24
200	A novel mutation in exon 17 of the ?-subunit of rod phosphodiesterase in two RP sisters of a consanguineous family. Human Genetics, 1996, 97, 35-8.	1.8	21

#	Article	IF	CITATIONS
201	Light-induced c-fos mRNA expression in the suprachiasmatic nucleus and the retina of C3H/HeN mice. Molecular Brain Research, 1996, 42, 193-201.	2.5	36
202	Cloning and characterization of the cDNA and gene encoding the Î ³ -subunit of cGMP-phosphodiesterase in canine retinal rod photoreceptor cells. Gene, 1996, 181, 1-5.	1.0	11
203	Phototransduction in transgenic mice. Current Opinion in Neurobiology, 1996, 6, 453-458.	2.0	27
204	Retinal Degeneration in Mice Lacking the gamma Subunit of the Rod cGMP Phosphodiesterase. Science, 1996, 272, 1026-1029.	6.0	226
205	Apoptosis in ocular disease: a molecular overview. Ophthalmic Genetics, 1996, 17, 145-165.	0.5	89
206	Identification and Quantification of PDE Isoenzymes and Subtypes by Molecular Biological Methods. , 1996, , 1-19.		11
207	Chapter 3 The role of multiple isozymes in the regulation of cyclic nucleotide synthesis and degradation. Principles of Medical Biology, 1996, , 77-122.	0.1	0
208	Type III cyclic nucleotide phosphodiesterases and insulin action. Current Topics in Cellular Regulation, 1996, 34, 63-100.	9.6	20
209	Nerve growth factor delays retinal degeneration in C3H mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 1996, 234, S96-S100.	1.0	63
210	The spatio-temporal pattern of photoreceptor degeneration in the aged rd / rd mouse retina. Cell and Tissue Research, 1996, 284, 193-202.	1.5	98
211	The interphotoreceptor matrix, a space in sight. Microscopy Research and Technique, 1996, 35, 463-471.	1.2	44
212	A candidate gene for the mouse mutation tubby. Nature, 1996, 380, 534-538.	13.7	334
213	Cloning of the cDNA for a Novel Photoreceptor Protein. Journal of Biological Chemistry, 1996, 271, 1797-1804.	1.6	46
214	Subunit Structure of Rod cGMP-Phosphodiesterase. Journal of Biological Chemistry, 1996, 271, 25382-25388.	1.6	24
215	Mouse models of human disease. Part II: recent progress and future directions Genes and Development, 1997, 11, 11-43.	2.7	172
216	Requirement for cGMP in Nerve Cell Death Caused by Glutathione Depletion. Journal of Cell Biology, 1997, 139, 1317-1324.	2.3	132
217	Gene Therapy for Retinal Degeneration. Ophthalmic Research, 1997, 29, 261-268.	1.0	13
218	5. The Contribution of the Mouse to Advances in Human Genetics. Advances in Genetics, 1997, 35, 155-205.	0.8	16

#	Article	IF	CITATIONS
219	Age-related distribution of cones and ON-bipolar cells in the rd mouse retina. Current Eye Research, 1997, 16, 244-251.	0.7	23
220	Canine rod transducin a-1: cloning of the cDNA and evaluation of the gene as a candidate for progressive retinal atrophy. Current Eye Research, 1997, 16, 71-77.	0.7	6
221	Molecular Cloning and Characterization of Mammalian Homologues of theDrosophila retinal degeneration BGene. Biochemical and Biophysical Research Communications, 1997, 236, 559-564.	1.0	38
222	A Novel Zebrafish Gene Expressed Specifically in the Photoreceptor Cells of the Retina. Biochemical and Biophysical Research Communications, 1997, 237, 84-89.	1.0	15
223	Variability in Rate of Cone Degeneration in the Retinal Degeneration (rd/rd) Mouse. Experimental Eye Research, 1997, 65, 45-50.	1.2	81
224	Human Retina-Specific Amine Oxidase (RAO): cDNA Cloning, Tissue Expression, and Chromosomal Mapping. Genomics, 1997, 40, 277-283.	1.3	58
225	Identification of genes causing photoreceptor degenerations leading to blindness. Current Opinion in Neurobiology, 1997, 7, 666-673.	2.0	45
226	Relationships between stress, protein damage, nutrition, and age-related eye diseases. Molecular Aspects of Medicine, 1997, 18, 307-414.	2.7	10
227	The Effect of Peripherin/rds Haploinsufficiency on Rod and Cone Photoreceptors. Journal of Neuroscience, 1997, 17, 8118-8128.	1.7	111
228	Cloning, Chromosomal Localization and Functional Expression of the Gene Encoding the α-Subunit of the cG-MP-Gated Channel in Human Cone Photoreceptors. European Journal of Neuroscience, 1997, 9, 2512-2521.	1.2	39
229	Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genetics, 1997, 16, 28-36.	9.4	307
230	Photopigments and photoentrainment in the Syrian golden hamster. Brain Research, 1997, 770, 131-138.	1.1	42
231	Mouse chromosome 5. Mammalian Genome, 1997, 7, S80-S99.	1.0	33
232	The first decade of continuous progress in retinal transplantation. , 1997, 36, 130-141.		31
233	Disruption of retinoid-related orphan receptor \hat{I}^2 changes circadian behavior, causes retinal degeneration and leads to vacillans phenotype in mice. EMBO Journal, 1998, 17, 3867-3877.	3.5	207
234	Diseases of G-Protein-Coupled Signal Transduction Pathways: The Mammalian Visual System as a Model. Seminars in Neuroscience, 1998, 9, 232-239.	2.3	0
235	Cloning and gene structure of the rod cGMP phosphodiesterase delta subunit gene (PDED) in man and mouse. European Journal of Human Genetics, 1998, 6, 283-290.	1.4	14
236	Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Therapy, 1998, 5, 1156-1164.	2.3	102

#	Article	IF	CITATIONS
237	Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. Brain Research, 1998, 779, 188-193.	1.1	30
238	A review of research to elucidate the causes of thegeneralized progressive retinal atrophies. Veterinary Journal, 1998, 155, 5-18.	0.6	35
239	Retinal projections in mice with inherited retinal degeneration: Implications for circadian photoentrainment. , 1998, 395, 417-439.		118
240	Development of Retinal Transplants. Acta Ophthalmologica, 1998, 76, 252-252.	0.4	1
241	Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the ratin vivo. European Journal of Neuroscience, 1998, 10, 3201-3209.	1.2	166
242	Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Progress in Neurobiology, 1998, 56, 37-64.	2.8	83
243	Cloning of a cyclic GMP phosphodiesterase Î ³ subunit from the ground squirrel retina. Molecular Brain Research, 1998, 54, 327-333.	2.5	1
244	2 Insights into Development and Genetics from Mouse Chimeras. Current Topics in Developmental Biology, 1998, 44, 21-66.	1.0	19
245	Retinal degeneration, apoptosis and the c-fos gene. Neuro-Ophthalmology, 1998, 20, 143-148.	0.4	1
246	Characterization of Human and Mouse Rod cGMP Phosphodiesterase δ Subunit (PDE6D) and Chromosomal Localization of the Human Gene. Genomics, 1998, 49, 76-82.	1.3	33
247	Animal models of human retinal dystrophies. Eye, 1998, 12, 566-570.	1.1	33
248	Encapsidated adenovirus mini-chromosome-mediated delivery of genes to the retina: application to the rescue of photoreceptor degeneration. Human Molecular Genetics, 1998, 7, 1893-1900.	1.4	114
249	A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9938-9943.	3.3	91
250	Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8357-8362.	3.3	188
251	Activation of Caspase-3 in the Retina of Transgenic Rats with the Rhodopsin Mutation S334ter during Photoreceptor Degeneration. Journal of Neuroscience, 1999, 19, 4778-4785.	1.7	153
252	Myosin VIIa Participates in Opsin Transport through The Photoreceptor Cilium. Journal of Neuroscience, 1999, 19, 6267-6274.	1.7	280
253	Photoreceptor dysplasia (pd) in miniature Schnauzer dogs: evaluation of candidate genes by molecular genetic analysis. , 1999, 90, 57-61.		7
254	A Nonsense Mutation in a Novel Gene Is Associated With Retinitis Pigmentosa in a Family Linked to the RP1 Locus. Human Molecular Genetics, 1999, 8, 1541-1546.	1.4	68

	CHATION REPO	RI	
ARTICLE Strategies for identification of mutations causing hereditary retinal diseases in dogs: evaluati opsin as a candidate gene. , 1999, 90, 133-137.	IF ion of	6	ITATIONS
Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc of the National Academy of Sciences of the United States of America, 1999, 96, 11998-1200	ceedings 3. 13.	3 2	02
Neither Functional Rod Photoreceptors nor Rod or Cone Outer Segments Are Required for th Inhibition of Pineal Melatonin*. Endocrinology, 1999, 140, 1520-1524.	e Photic 1.	4 6	5
The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cycli phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of 1999, 96, 1315-1320.	c GMP f America, 3.	3 1	19
Transgenic Animal Models for the Study of Inherited Retinal Dystrophies. ILAR Journal, 1999,	40, 51-58. 1.	8 1	5
Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse Medicine, 1999, 5, 1183-1187.	2. Nature 11	5.2 2	18
Genetic and physical maps of the mouse rd3 locus; exclusion of the ortholog of USH2A. Man Genome, 1999, 10, 657-661.	ımalian 1.	0 1	5
Regulation of the Mammalian Pineal by Non-rod, Non-cone, Ocular Photoreceptors. Science, 505-507.	1999, 284, 6.	.0 4	70
Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice. Neuroscie 1999, 89, 363-374.	nce, 1.	1 6	1
Molecular characterization and mapping of canine cGMP-phosphodiesterase delta subunit (P Gene, 1999, 236, 325-332.	DE6D). 1.	0 8	
Manipulations of ACHE gene expression suggest non-catalytic involvement of acetylcholines the functioning of mammalian photoreceptors but not in retinal degeneration. Molecular Bra Research, 1999, 71, 137-148.	terase in in 2.	.5 1'	7
Retinitis Pigmentosa. Survey of Ophthalmology, 1999, 43, 321-334.	1.	7 2	54
Management of Hereditary Retinal Degenerations. Survey of Ophthalmology, 1999, 43, 427-	444. 1.	7 8	9
Role of cyclic GMP in glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology, 1999, 38, 1883-1891.	2.	.0 5	9
Morphological Changes of Retinal Pigment Epithelium and Choroid in rd-mice. Experimental I Research, 1999, 68, 75-83.	Eye 1.	2 4	4
Evaluation of cGMP-Phosphodiesterase (PDE) Subunits for Causal Association with Rod–Co Dysplasia 2 (rcd2), a Canine Model of Abnormal Retinal cGMP Metabolism. Experimental Eye 1999, 69, 445-453.	pne Research, 1.	2 1	2
Photoreceptor Layer Reconstruction in a Rodent Model of Retinal Degeneration. Experimenta Neurology, 1999, 159, 21-33.	al 2.	.0 1.	15

272Characterization of the Gene for HRG4 (UNC119), a Novel Photoreceptor Synaptic Protein Homologous
to Unc-119. Genomics, 1999, 57, 446-450.1.323

#

#	Article	IF	CITATIONS
273	A Novel Retinal Degeneration Locus Identified by Linkage and Comparative Mapping of Canine Early Retinal Degeneration. Genomics, 1999, 59, 134-142.	1.3	55
274	Pigment Epithelium-Derived Factor Delays the Death of Photoreceptors in Mouse Models of Inherited Retinal Degenerations. Neurobiology of Disease, 1999, 6, 523-532.	2.1	192
275	Chapter 2.1.1 Mapping single locus mutations in mice: towards gene identification of neurological traits. Handbook of Behavioral Neuroscience, 1999, 13, 61-81.	0.0	0
276	Chapter 2.2.1 Subtractive cDNA hybridization and brain: then, now and tomorrow. Handbook of Behavioral Neuroscience, 1999, , 189-199.	0.0	0
277	[41] Transcriptional regulation of the cGMP phosphodiesterase, β-subunit gene. Methods in Enzymology, 2000, 315, 617-635.	0.4	8
278	Chapter 23 Preservation and restoration of vision following transplantation. Progress in Brain Research, 2000, 127, 489-499.	0.9	12
280	Quantitative analysis of subretinal injections in the rat. Graefe's Archive for Clinical and Experimental Ophthalmology, 2000, 238, 608-614.	1.0	15
281	A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5551-5556.	3.3	205
282	Persistent Hyperplastic Tunica Vasculosa Lentis and Persistent Hyperplastic Primary Vitreous in Transgenic Line TgN3261Rpw. Veterinary Pathology, 2000, 37, 422-427.	0.8	13
283	[47] Construction of encapsidated (gutted) adenovirus minichromosomes and their application to rescue of photoreceptor degeneration. Methods in Enzymology, 2000, 316, 724-743.	0.4	14
285	Mutation Analysis of Ocular Genes. , 2001, 47, 237-250.		0
286	Molecular ophthalmology: an update on animal models for retinal degenerations and dystrophies. British Journal of Ophthalmology, 2000, 84, 922-927.	2.1	52
288	Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11020-11025.	3.3	292
289	Analysis and Quantitation of mRNAs Encoding the α- and β-Subunits of Rod Photoreceptor cGMP Phosphodiesterase in Neonatal Retinal Degeneration (rd) Mouse Retinas. Experimental Eye Research, 2000, 71, 119-128.	1.2	8
290	Growth Factors in Combination, but Not Individually, Rescue rd Mouse Photoreceptors in Organ Culture. Experimental Neurology, 2000, 161, 676-685.	2.0	87
291	Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14697-14702.	3.3	181
292	Cryptochrome: The Second Photoactive Pigment in the Eye and Its Role in Circadian Photoreception. Annual Review of Biochemistry, 2000, 69, 31-67.	5.0	242
293	Genetics of the Mammalian Circadian System: Photic Entrainment, Circadian Pacemaker Mechanisms, and Posttranslational Regulation. Annual Review of Genetics, 2000, 34, 533-562.	3.2	268

#	Article	IF	CITATIONS
294	Apolipoprotein E deficiency effects on learning in mice are dependent upon the background strain. Behavioural Brain Research, 2001, 120, 23-34.	1.2	16
295	Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Current Opinion in Genetics and Development, 2001, 11, 307-316.	1.5	92
296	Chapter 46 Photoreceptor rescue in an organotypic model of retinal degeneration. Progress in Brain Research, 2001, 131, 641-648.	0.9	6
297	Lens epithelium-derived growth factor (LEDGF) delays photoreceptor degeneration in explants of rd/rd mouse retina. NeuroReport, 2001, 12, 2951-2955.	0.6	34
298	Two interactive genes responsible for a new inherited cataract (RCT) in the mouse. Mammalian Genome, 2001, 12, 278-283.	1.0	24
299	Pathways to photoreceptor cell death in inherited retinal degenerations. BioEssays, 2001, 23, 605-618.	1.2	88
300	Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nature Neuroscience, 2001, 4, 621-626.	7.1	546
301	Cell Transplantation as a Treatment for Retinal Disease. Progress in Retinal and Eye Research, 2001, 20, 415-449.	7.3	127
302	Immune Consequences of Intraocular Administration of Modified Adenoviral Vectors. Human Gene Therapy, 2001, 12, 833-838.	1.4	11
303	An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10368-10373.	3.3	75
304	Chapter 48 Genes and diseases in man and models. Progress in Brain Research, 2001, 131, 663-678.	0.9	7
305	Nrl and Sp Nuclear Proteins Mediate Transcription of Rod-specific cGMP-phosphodiesterase β-Subunit Gene. Journal of Biological Chemistry, 2001, 276, 34999-35007.	1.6	60
306	The Rod cGMP-phosphodiesterase β-Subunit Promoter Is a Specific Target for Sp4 and Is Not Activated by Other Sp Proteins or CRX. Journal of Biological Chemistry, 2002, 277, 25877-25883.	1.6	34
307	Biosynthetic Studies of A2E, a Major Fluorophore of Retinal Pigment Epithelial Lipofuscin. Journal of Biological Chemistry, 2002, 277, 7183-7190.	1.6	188
308	The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. Journal of Cell Biology, 2002, 157, 103-114.	2.3	441
309	Mapping Quantitative Trait Loci Affecting Circadian Photosensitivity in Retinally Degenerate Mice. Journal of Biological Rhythms, 2002, 17, 512-519.	1.4	14
310	Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Human Molecular Genetics, 2002, 11, 1879-1886.	1.4	118
311	In Vivo Regulation of Phosphoinositide 3-Kinase in Retina through Light-induced Tyrosine Phosphorylation of the Insulin Receptor β-Subunit. Journal of Biological Chemistry, 2002, 277, 43319-43326.	1.6	78

#	Article	IF	CITATIONS
312	Distribution and Density of Medium- and Short-wavelength Selective Cones in the Domestic Pig Retina. Experimental Eye Research, 2002, 74, 435-444.	1.2	156
313	Dopamine Has a Critical Role in Photoreceptor Degeneration in the rd Mouse. Neurobiology of Disease, 2002, 10, 33-40.	2.1	35
314	Ganglion cell responses to retinal light stimulation in the absence of photoreceptor outer segments from retinal degenerate rodents. Current Eye Research, 2002, 24, 26-32.	0.7	18
315	Genetic analysis of photoreceptor cell development in the zebrafish retina. Mechanisms of Development, 2002, 110, 125-138.	1.7	73
316	Morphological and Functional Abnormalities in the Inner Retina of the rd/rd Mouse. Journal of Neuroscience, 2002, 22, 5492-5504.	1.7	298
317	Retinal transplantation—advantages of intact fetal sheets. Progress in Retinal and Eye Research, 2002, 21, 57-73.	7.3	72
318	Viagra® (sildenafil citrate) and ophthalmology. Progress in Retinal and Eye Research, 2002, 21, 485-506.	7.3	120
319	Opsins and mammalian photoentrainment. Cell and Tissue Research, 2002, 309, 57-71.	1.5	92
320	Caspase-3 inhibitor transiently delays inherited retinal degeneration in C3H mice carrying the rd gene. Graefe's Archive for Clinical and Experimental Ophthalmology, 2002, 240, 214-219.	1.0	56
321	Circadian phototransduction and the regulation of biological rhythms. Neurochemical Research, 2002, 27, 1473-1489.	1.6	13
322	Electrophysiological analysis of visual function in mutant mice. Documenta Ophthalmologica, 2003, 107, 13-35.	1.0	104
323	Analysis of PDE6D and PDE6G genes for generalised progressive retinal atrophy (gPRA) mutations in dogs. Genetics Selection Evolution, 2003, 35, 445-56.	1.2	5
324	Practical considerations of recombinant adeno-associated virus-mediated gene transfer for treatment of retinal degenerations. Journal of Gene Medicine, 2003, 5, 576-587.	1.4	18
325	Expression of the Blue-Light Receptor Cryptochrome in the Human Retina. , 2003, 44, 4515.		66
326	Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research, 2003, 22, 607-655.	7.3	772
327	Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Research, 2003, 43, 867-877.	0.7	216
328	Static, but not optokinetic visual stimuli induce Fos expression in the retina and brain of retinal degeneration mice. Neuroscience Letters, 2003, 342, 9-12.	1.0	3
329	The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina. Neuron, 2003, 37, 775-786.	3.8	395

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
330	Evolving neurovascular relationships in the RCS rat with age. Current Eye Research, 2003, 27, 183-196.	0.7	60
331	Instability of GGL domain-containing RGS proteins in mice lacking the G protein Â-subunit GÂ5. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6604-6609.	3.3	193
332	Characterization of the MRP4- and MRP5-mediated Transport of Cyclic Nucleotides from Intact Cells. Journal of Biological Chemistry, 2003, 278, 17664-17671.	1.6	233
333	Topical instillation of ciliary neurotrophic factor inhibits retinal degeneration in streptozotocin-induced diabetic rats. NeuroReport, 2003, 14, 2067-2071.	0.6	39
334	Basic Fibroblast and Epidermal Growth Factors Stimulate Survival in Adult Porcine Photoreceptor Cell Cultures. , 2003, 44, 4550.		42
335	Retinal Transplantation–Induced Recovery of Retinotectal Visual Function in a Rodent Model of Retinitis Pigmentosa. , 2003, 44, 1686.		89
336	Caspase-Independent Photoreceptor Apoptosis in Mouse Models of Retinal Degeneration. Journal of Neuroscience, 2003, 23, 5723-5731.	1.7	149
337	Neuronal Integration in an Abutting-Retinas Culture System. , 2003, 44, 4936.		20
338	Morphological Characterization of the Retina of the CNGA3â^'/â^'Rhoâ^'/â^'Mutant Mouse Lacking Functional Cones and Rods. , 2004, 45, 2039.		80
339	Progressive Cone Dystrophy Associated with Mutation inCNGB3. , 2004, 45, 1975.		74
340	Apoptosis: A Potential Therapeutic Target for Retinal Degenerations. Current Neurovascular Research, 2004, 1, 41-53.	0.4	62
341	Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration. Journal of Neuroscience, 2004, 24, 5651-5658.	1.7	122
342	Knock-in human rhodopsin-GFP fusions as mouse models for human disease and targets for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9109-9114.	3.3	85
343	Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 α subunit. Visual Neuroscience, 2004, 21, 675-683.	0.5	22
344	AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13903-13908.	3.3	113
345	Use of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse. PLoS Biology, 2004, 2, e393.	2.6	210
346	Inherited retinal degenerations: therapeutic prospects. Biology of the Cell, 2004, 96, 261-269.	0.7	84
347	Progress in retinal sheet transplantation. Progress in Retinal and Eye Research, 2004, 23, 475-494.	7.3	79

#	Article	IF	CITATIONS
348	Photoreceptor preservation in the S334ter model of retinitis pigmentosa by a novel estradiol analog. Biochemical Pharmacology, 2004, 68, 1971-1984.	2.0	32
349	Increased c-fos-like immunoreactivity in the superior colliculus and lateral geniculate nucleus of the rd mouse. Brain Research, 2004, 1025, 220-225.	1.1	6
350	Adenoviral-mediated gene transfer to retinal explants during development and degeneration. Experimental Eye Research, 2004, 79, 189-201.	1.2	25
351	Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochemical and Biophysical Research Communications, 2004, 313, 1015-1022.	1.0	75
352	An overview of leber congenital amaurosis: a model to understand human retinal development. Survey of Ophthalmology, 2004, 49, 379-398.	1.7	264
353	Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington′s disease transgenic mice prior to the onset of motor symptoms. Neuroscience, 2004, 123, 967-981.	1.1	156
354	Chapter 16 Experimental genetic disorders and visual neurophysiology. Handbook of Clinical Neurophysiology, 2005, , 329-346.	0.0	0
355	Stem Cells for Retinal Degenerative Disorders. Annals of the New York Academy of Sciences, 2005, 1049, 135-145.	1.8	15
356	Excessive activation of cyclic nucleotide-gated channels contributes to neuronal degeneration of photoreceptors. European Journal of Neuroscience, 2005, 22, 1013-1022.	1.2	46
357	Rhodopsin-iCre transgenic mouse line for Cre-mediated rod-specific gene targeting. Genesis, 2005, 41, 73-80.	0.8	130
358	Effects of the rd1 Mutation and Host Strain on Hippocampal Learning in Mice. Behavior Genetics, 2005, 35, 591-601.	1.4	30
359	Differential Akt activation in the photoreceptors of normal and rd1 mice. Cell and Tissue Research, 2005, 320, 213-222.	1.5	24
360	Genotype–Phenotype Correlation of MousePde6bMutations. , 2005, 46, 3443.		75
361	Leukemia Inhibitory Factor Blocks Expression of Crx and Nrl Transcription Factors to Inhibit Photoreceptor Differentiation. , 2005, 46, 2601.		37
362	Heme Oxygenase-2 Protects Against Glutathione Depletion-induced Neuronal Apoptosis Mediated by Bilirubin and Cyclic GMP. Current Neurovascular Research, 2005, 2, 121-131.	0.4	33
363	Sp4 Is Expressed in Retinal Neurons, Activates Transcription of Photoreceptor-specific Genes, and Synergizes with Crx. Journal of Biological Chemistry, 2005, 280, 20642-20650.	1.6	45
364	The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Human Molecular Genetics, 2005, 14, 747-764.	1.4	237
365	Identification of Sequential Events and Factors Associated with Microglial Activation, Migration, and Cytotoxicity in Retinal Degeneration inrdMice. , 2005, 46, 2992.		185

#	Article	IF	CITATIONS
366	Transplantation of Neuroblastic Progenitor Cells as a Sheet Preserves and Restores Retinal Function. Seminars in Ophthalmology, 2005, 20, 31-42.	0.8	26
367	Impaired Channel Targeting and Retinal Degeneration in Mice Lacking the Cyclic Nucleotide-Gated Channel Subunit CNGB1. Journal of Neuroscience, 2005, 25, 130-138.	1.7	148
368	Ribozyme Knockdown of the \hat{I}^3 -Subunit of Rod cGMP Phosphodiesterase Alters the ERG and Retinal Morphology in Wild-Type Mice. , 2005, 46, 3836.		14
369	Retinal remodeling during retinal degeneration. Experimental Eye Research, 2005, 81, 123-137.	1.2	397
370	Application of functional genomic technologies in a mouse model of retinal degeneration. Genomics, 2005, 85, 309-321.	1.3	9
371	Beyond Counting Photons: Trials and Trends in Vertebrate Visual Transduction. Neuron, 2005, 48, 387-401.	3.8	226
372	Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience, 2005, 130, 397-407.	1.1	49
373	Decreased glutathione transferase levels in rd1/rd1 mouse retina: Replenishment protects photoreceptors in retinal explants. Neuroscience, 2005, 131, 935-943.	1.1	17
374	A substitution of G to C in the cone cGMP-phosphodiesterase ? subunit gene found in a distinctive form of cone dystrophy. Ophthalmology, 2005, 112, 159-166.	2.5	35
375	Mutation in the Gene GUCA1A, Encoding Guanylate Cyclase-Activating Protein 1, Causes Cone, Cone-Rod, and Macular Dystrophy. Ophthalmology, 2005, 112, 1442-1447.	2.5	50
376	Training and aging modulate the loss-of-balance phenotype observed in a new ENU-induced allele of Otopetrin1. Biology of the Cell, 2005, 97, 787-798.	0.7	18
377	Retinal Prosthesis. Annual Review of Biomedical Engineering, 2005, 7, 361-401.	5.7	407
378	Chromatin immunoprecipitation identifies photoreceptor transcription factor targets in mouse models of retinal degeneration: New findings and challenges. Visual Neuroscience, 2005, 22, 575-586.	0.5	51
380	Methods to rapidly and accurately screen a large number of ENU mutagenized mice for abnormal motor phenotypes. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2006, 7, 112-118.	2.3	14
381	Premature Truncation of a Novel Protein, RD3, Exhibiting Subnuclear Localization Is Associated with Retinal Degeneration. American Journal of Human Genetics, 2006, 79, 1059-1070.	2.6	112
382	Translational regulation of the rod photoreceptor cGMP-phosphodiesterase: The role of the $5\hat{a}\in^2$ - and $3\hat{a}\in^2$ -untranslated regions. Experimental Eye Research, 2006, 83, 841-848.	1.2	2
383	Up-regulation and increased phosphorylation of protein kinase C (PKC) δ, μ and Î, in the degenerating rd1 mouse retina. Molecular and Cellular Neurosciences, 2006, 31, 759-773.	1.0	30
384	Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron, 2006, 50, 23-33.	3.8	695

#	Article	IF	Citations
385	Progressive Cone and Cone-Rod Dystrophies: Phenotypes and Underlying Molecular Genetic Basis. Survey of Ophthalmology, 2006, 51, 232-258.	1.7	208
386	Lentiviral Expression of Retinal Guanylate Cyclase-1 (RetGC1) Restores Vision in an Avian Model of Childhood Blindness. PLoS Medicine, 2006, 3, e201.	3.9	80
387	Caspase-1 Ablation Protects Photoreceptors in a Model of Autosomal Dominant Retinitis Pigmentosa. , 2006, 47, 5181.		37
388	Disruption of the Gene Encoding the β1-Subunit of Transducin in theRd4/+ Mouse. , 2006, 47, 1293.		19
389	Structure and Function of Rod Photoreceptors. , 2006, , 153-170.		4
390	Calpain is activated in degenerating photoreceptors in the rd1 mouse. Journal of Neurochemistry, 2006, 96, 802-814.	2.1	129
391	A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Research, 2006, 1109, 192-200.	1.1	41
392	Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17366-17371.	3.3	204
393	Differential Modification of Phosducin Protein in Degenerating rd1 Retina Is Associated with Constitutively Active Ca2+/Calmodulin Kinase II in Rod Outer Segments. Molecular and Cellular Proteomics, 2006, 5, 324-336.	2.5	51
394	Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10432-10437.	3.3	53
395	Differential role of Jakâ€&TAT signaling in retinal degenerations. FASEB Journal, 2006, 20, 2411-2413.	0.2	110
396	The Inhibitory Î ³ Subunit of the Rod cGMP Phosphodiesterase Binds the Catalytic Subunits in an Extended Linear Structure*. Journal of Biological Chemistry, 2006, 281, 15412-15422.	1.6	42
397	In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Human Molecular Genetics, 2006, 15, 1847-1857.	1.4	353
398	Overview of PDEs and Their Regulation. Circulation Research, 2007, 100, 309-327.	2.0	643
399	Retinal Degenerations. , 2007, , .		7
400	Excessive Activation of Poly(ADP-Ribose) Polymerase Contributes to Inherited Photoreceptor Degeneration in the Retinal Degeneration 1 Mouse. Journal of Neuroscience, 2007, 27, 10311-10319.	1.7	124
401	A Mutation in the Cone-Specific <i>pde6</i> Gene Causes Rapid Cone Photoreceptor Degeneration in Zebrafish. Journal of Neuroscience, 2007, 27, 13866-13874.	1.7	114
402	The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors. Journal of Biological Chemistry, 2007, 282, 8837-8847.	1.6	151

#	Article	IF	CITATIONS
403	Wnt Signaling Promotes Regeneration in the Retina of Adult Mammals. Journal of Neuroscience, 2007, 27, 4210-4219.	1.7	306
404	Evidence for retinal remodelling in retinitis pigmentosa caused by PDE6B mutation. British Journal of Ophthalmology, 2007, 91, 699-701.	2.1	35
405	Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Research, 2007, 35, e102-e102.	6.5	42
406	The slow wave component of retinal activity in <i>rd</i> / <i>rd</i> mice recorded with a multi-electrode array. Physiological Measurement, 2007, 28, 1079-1088.	1.2	55
407	Comparison of Voltage Parameters for the Stimulation of Normal and Degenerate Retina. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 5783-6.	0.5	8
408	Nucleoredoxin, a Novel Thioredoxin Family Member Involved in Cell Growth and Differentiation. Antioxidants and Redox Signaling, 2007, 9, 1035-1058.	2.5	93
409	A New Rational Algebraic Approach to Find Exact Analytical Solutions to a (2+1)-Dimensional System. Communications in Theoretical Physics, 2007, 48, 801-810.	1.1	0
410	Preliminary Design and Analysis of ITER In-Wall Shielding. Plasma Science and Technology, 2007, 9, 94-100.	0.7	7
411	Simulations of Reversed Shear Configuration in EAST. Plasma Science and Technology, 2007, 9, 139-142.	0.7	0
412	Severe diffuse lamellar keratitis after femtosecond lamellar keratectomy. British Journal of Ophthalmology, 2007, 91, 699-699.	2.1	9
413	Changes in the retinal inner limiting membrane associated with Valsalva retinopathy. British Journal of Ophthalmology, 2007, 91, 701-702.	2.1	29
414	Multiple Photoreceptors Contribute to Nonimage-forming Visual Functions Predominantly through Melanopsin-containing Retinal Ganglion Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 509-515.	2.0	38
415	Targeted inactivation of synaptic HRG4 (UNC119) causes dysfunction in the distal photoreceptor and slow retinal degeneration, revealing a new function. Experimental Eye Research, 2007, 84, 473-485.	1.2	38
416	Role of phosphodiesterases in neurological and psychiatric disease. Current Opinion in Pharmacology, 2007, 7, 86-92.	1.7	69
417	Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). NeuroImage, 2007, 37, S37-S46.	2.1	92
418	Activation of Endoplasmic Reticulum Stress in Degenerating Photoreceptors of the <i>rd1</i> Mouse. , 2007, 48, 5191.		69
419	Cellular Responses to Photoreceptor Death in therd1Mouse Model of Retinal Degeneration. , 2007, 48, 849.		58
420	The Role of VEGF and VEGFR2/Flk1 in Proliferation of Retinal Progenitor Cells in Murine Retinal Degeneration. , 2007, 48, 4315.		23

ARTICLE IF CITATIONS # Ocular Regenerative Engineering., 0,, 964-1006. 421 0 Transgenic mice carrying theH258N mutation in the gene encoding the Î²-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness. Human Mutation, 2007, 28, 1.1 243-254 Seeing the light: New insights into the molecular pathogenesis of retinal diseases. Journal of Cellular 423 2.0 15 Physiology, 2007, 213, 348-354. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG 424 0.9 study. Journal of Comparative Neurology, 2007, 500, 222-238. FVB.129P2-Pde6b+Tyrc-ch/Ant, a sighted variant of the FVB/N mouse strain suitable for behavioral 425 1.1 39 analysis. Genes, Brain and Behavior, 2007, 6, 552-557. CNTF+BDNF treatment and neuroprotective pathways in the rd1 mouse retina. Brain Research, 2007, 1.1 87 1129, 116-129. 427 The challenge of modeling macular degeneration in mice. Trends in Genetics, 2007, 23, 225-231. 2.9 40 Phototransduction in mouse rods and cones. Pflugers Archiv European Journal of Physiology, 2007, 428 1.3 242 454, 805-819. Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration. Molecular Neurobiology, 429 1.9 259 2008, 38, 253-269. FIZ1 is part of the regulatory protein complex on active photoreceptor-specific gene promoters in vivo. BMC Molecular Biology, 2008, 9, 87. Ultrasound $\hat{a} \in guided$ in utero injections allow studies of the development and function of the eye. 431 0.8 29 Developmental Dynamics, 2008, 237, 1034-1042. Large-scale Molecular Analysis of a 34 Mb Interval on Chromosome 6q: Major Refinement of the RP25 Interval. Annals of Human Genetics, 2008, 72, 463-477. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Progress in Retinal and Eye 433 7.3 708 Research, 2008, 27, 391-419. Exacerbation of retinal degeneration in the absence of alpha crystallins in an in vivo model of 434 1.2 chemically induced hypoxia. Experimental Eye Research, 2008, 86, 355-365. Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. 435 1.2 36 Experimental Eye Research, 2008, 87, 168-175. Oxidative Stress and the Eye. Veterinary Clinics of North America - Small Animal Practice, 2008, 38, 48 179-192. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit 437 1.4 78 Gria4. Human Molecular Genetics, 2008, 17, 1738-1749. Tauroursodeoxycholic Acid Preservation of Photoreceptor Structure and Function in 438 the<i>rd10</i>Mouse through Postnatal Day 30., 2008, 49, 2148.

#	Article	IF	CITATIONS
439	Phototransduction in Rods and Cones. , 2008, , 269-301.		27
440	Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16009-16014.	3.3	271
441	Retardation of Photoreceptor Degeneration in the Detached Retina of <i>rd1</i> Mouse. , 2008, 49, 781.		11
442	Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14181-14186.	3.3	243
443	The Genomic Response of the Retinal Pigment Epithelium to Light Damage and Retinal Detachment. Journal of Neuroscience, 2008, 28, 9880-9889.	1.7	43
444	Leukemia Inhibitory Factor Extends the Lifespan of Injured Photoreceptors <i>In Vivo</i> . Journal of Neuroscience, 2008, 28, 13765-13774.	1.7	122
445	Emergence of Sustained Spontaneous Hyperactivity and Temporary Preservation of <scp>off</scp> Responses in Ganglion Cells of the Retinal Degeneration (<i>rd1</i>) Mouse. Journal of Neurophysiology, 2008, 99, 1408-1421.	0.9	217
446	The Retinal cGMP Phosphodiesterase γ-Subunit — A Chameleon. Current Protein and Peptide Science, 2008, 9, 611-625.	0.7	15
447	Sialoadhesin Expression in Intact Degenerating Retinas and Following Transplantation. , 2008, 49, 5602.		13
448	The Search for Rod-Dependent Cone Viability Factors, Secreted Factors Promoting Cone Viability. Novartis Foundation Symposium, 2008, , 117-130.	1.2	9
449	Functional Rescue of Degenerating Photoreceptors in Mice Homozygous for a Hypomorphic cGMP Phosphodiesterase 6 b Allele (<i>Pde6b</i> ^{<i>H620Q</i>}). , 2008, 49, 5067.		57
450	Spectral Domain Optical Coherence Tomography in Mouse Models of Retinal Degeneration. , 2009, 50, 5888.		193
451	Light-Induced Fos Expression in Intrinsically Photosensitive Retinal Ganglion Cells in Melanopsin Knockout (Opn4â~'/â~') Mice. PLoS ONE, 2009, 4, e4984.	1.1	27
452	Retinal cell apoptosis. Expert Review of Ophthalmology, 2009, 4, 27-45.	0.3	4
453	A homologous genetic basis of the murine <i>cpfl1</i> mutant and human achromatopsia linked to mutations in the <i>PDE6C</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19581-19586.	3.3	178
454	Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa. Molecular Therapy, 2009, 17, 787-795.	3.7	147
455	Mechanisms of Apoptosis in Retinitis Pigmentosa. Current Molecular Medicine, 2009, 9, 375-383.	0.6	72
456	CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development. PLoS Genetics, 2009, 5, e1000607.	1.5	43

	CITATION REI	PORT	
#	ARTICLE Ectopic Expression of Multiple Microbial Rhodopsins Restores ON and OFF Light Responses in Retinas	IF	CITATION
458	Activation of ganglion cells in wild-type and <i>rd1</i> mouse retinas with monophasic and biphasic current pulses lournal of Neural Engineering, 2009, 6, 035004	1.7	49
459	Regulatory Sequences in the 3′ Untranslated Region of the Human cGMP-Phosphodiesterase β-Subunit Gene. , 2009, 50, 2591.		1
460	Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. Neurobiology of Disease, 2009, 35, 319-336.	2.1	281
461	Prospects for retinal gene replacement therapy. Trends in Genetics, 2009, 25, 156-165.	2.9	71
462	Naturally occurring animal models with outer retina phenotypes. Vision Research, 2009, 49, 2636-2652.	0.7	74
463	Extracellular ATP induces retinal photoreceptor apoptosis through activation of purinoceptors in rodents. Journal of Comparative Neurology, 2009, 513, 430-440.	0.9	71
464	Bile acids in treatment of ocular disease. Journal of Ocular Biology, Diseases, and Informatics, 2009, 2, 149-159.	0.2	98
465	Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nature Neuroscience, 2009, 12, 44-52.	7.1	443
466	Retinal cell transplants: How close to clinical application?. Acta Ophthalmologica, 1997, 75, 355-363.	0.4	12
467	Differential loss and preservation of glutamate receptor function in bipolar cells in the <i>rd10</i> mouse model of retinitis pigmentosa. European Journal of Neuroscience, 2009, 29, 1533-1542.	1.2	81
468	PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. Journal of Neurochemistry, 2009, 108, 796-810.	2.1	113
469	Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Experimental Eye Research, 2009, 88, 589-599.	1.2	143
470	Characterization of green fluorescent protein–expressing retinal cone bipolar cells in a 5-hydroxytryptamine receptor 2a transgenic mouse line. Neuroscience, 2009, 163, 662-668.	1.1	14
471	HDAC4 Regulates Neuronal Survival in Normal and Diseased Retinas. Science, 2009, 323, 256-259.	6.0	180
472	Fibrae Medullares in the Retina of the RD Mouse: A Case Report. Current Eye Research, 2009, 34, 411-413.	0.7	3
473	PROGRESS TOWARD THE MAINTENANCE AND REPAIR OF DEGENERATING RETINAL CIRCUITRY. Retina, 2010, 30, 983-1001.	1.0	19
474	Rhodopsin-regulated Insulin Receptor Signaling Pathway in Rod Photoreceptor Neurons. Molecular Neurobiology, 2010, 42, 39-47.	1.9	35

#	Article	IF	CITATIONS
475	Effects of age and retinal degeneration on the expression of proprotein convertases in the visual cortex. Brain Research, 2010, 1317, 1-12.	1.1	0
476	Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. Free Radical Biology and Medicine, 2010, 48, 216-222.	1.3	39
477	Progression of neuronal and synaptic remodeling in the <i>rd10</i> mouse model of retinitis pigmentosa. Journal of Comparative Neurology, 2010, 518, 2071-2089.	0.9	102
478	cCMPâ€dependent cone photoreceptor degeneration in the <i>cpfl1</i> mouse retina. Journal of Comparative Neurology, 2010, 518, 3604-3617.	0.9	50
479	LIFâ€dependent JAK3 activation is not essential for retinal degeneration. Journal of Neurochemistry, 2010, 113, 1210-1220.	2.1	4
480	Photoreceptor rescue and toxicity induced by different calpain inhibitors. Journal of Neurochemistry, 2010, 115, 930-940.	2.1	71
481	C. elegans phototransduction requires a G protein–dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience, 2010, 13, 715-722.	7.1	171
482	Mouse Experimental Myopia Has Features of Primate Myopia. , 2010, 51, 1297.		81
483	Analysis of Postnatal Eye Development in the Mouse with High-Resolution Small Animal Magnetic Resonance Imaging. , 2010, 51, 21.		78
484	The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina. Human Molecular Genetics, 2010, 19, 250-261.	1.4	40
485	Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells. Journal of Neuroscience, 2010, 30, 8745-8758.	1.7	125
486	The Differential Role of Jak/Stat Signaling in Retinal Degeneration. Advances in Experimental Medicine and Biology, 2010, 664, 601-607.	0.8	8
487	Altered Expression of Metallothionein-I and -II and Their Receptor Megalin in Inherited Photoreceptor Degeneration. , 2010, 51, 4809.		25
488	Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in <i>rd11</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15523-15528.	3.3	55
489	Retinitis pigmentosa and related disorders. , 2010, , 579-589.		0
490	Papillorenal Syndrome-Causing Missense Mutations in PAX2/Pax2 Result in Hypomorphic Alleles in Mouse and Human. PLoS Genetics, 2010, 6, e1000870.	1.5	21
491	Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death and Disease, 2010, 1, e24-e24.	2.7	100
492	Nanotechnology in ophthalmology. Canadian Journal of Ophthalmology, 2010, 45, 457-476.	0.4	76

#	ARTICLE	IF	CITATIONS
493	Retinal Progenitor Cells, Differentiation, and Barriers to Cell Cycle Reentry. Current Topics in Developmental Biology, 2010, 93, 175-188.	1.0	18
494	Animal Models for Retinal Degeneration. Neuromethods, 2010, , 51-79.	0.2	14
495	Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Experimental Eye Research, 2010, 90, 429-436.	1.2	139
496	Do Calcium Channel Blockers Rescue Dying Photoreceptors in the Pde6b rd1 Mouse?. Advances in Experimental Medicine and Biology, 2010, 664, 491-499.	0.8	44
497	Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, 2010, , .	0.8	19
498	Animal Models for Retinal Diseases. Neuromethods, 2010, , .	0.2	7
499	IRD1 and IRD2 Mice, Naturally Occurring Models of Hereditary Retinal Dysfunction, Show Late-Onset and Progressive Retinal Degeneration. Current Eye Research, 2010, 35, 137-145.	0.7	4
500	Cyclic Nucleotide-Gated Channel Block by Hydrolysis-Resistant Tetracaine Derivatives. Journal of Medicinal Chemistry, 2011, 54, 4904-4912.	2.9	6
501	Protein Misfolding and Retinal Degeneration. Cold Spring Harbor Perspectives in Biology, 2011, 3, a007492-a007492.	2.3	45
502	Drug Product Development for the Back of the Eye. AAPS Advances in the Pharmaceutical Sciences Series, 2011, , .	0.2	13
503	Morphological and functional evaluation of an animal model for the retinal degeneration induced by <i>N</i> -methyl- <i>N</i> -nitrosourea. Anatomy and Cell Biology, 2011, 44, 314.	0.5	20
504	Transcriptomic Analysis of Human Retinal Detachment Reveals Both Inflammatory Response and Photoreceptor Death. PLoS ONE, 2011, 6, e28791.	1.1	42
505	Targeted mutation of the calbindin D _{28k} gene selectively alters nonvisual photosensitivity. European Journal of Neuroscience, 2011, 33, 2299-2307.	1.2	6
506	shRNA knockdown ofâ€,guanylate cyclase 2eâ€,orâ€,cyclic nucleotide gated channel alpha 1â€,increases photoreceptor survival in a cGMPâ€,phosphodiesteraseâ€,mouse model of retinitis pigmentosa. Journal of Cellular and Molecular Medicine, 2011, 15, 1778-1787.	1.6	25
507	Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6417-6419.	1.0	0
508	Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Research, 2011, 1422, 46-56.	1.1	2
509	Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases. Stem Cell Reviews and Reports, 2011, 7, 434-445.	5.6	77
510	â"®-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa. BMC Ophthalmology, 2011, 11, 38.	0.6	10

#	Article	IF	CITATIONS
511	GDNFâ€induced osteopontin from Müller glial cells promotes photoreceptor survival in the Pde6b ^{rd1} mouse model of retinal degeneration. Glia, 2011, 59, 821-832.	2.5	70
512	Disruption of the Chaperonin Containing TCP-1 Function Affects Protein Networks Essential for Rod Outer Segment Morphogenesis and Survival. Molecular and Cellular Proteomics, 2011, 10, M110.000570.	2.5	32
513	Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 745-750.	1.2	52
514	Peculiar Transmission Characteristics of the Large Gap Semi-Insulating GaAs Photoconductive Switch. Chinese Physics Letters, 2011, 28, 124201.	1.3	0
515	A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Human Molecular Genetics, 2011, 20, 941-947.	1.4	103
516	Deletion of the p85α Regulatory Subunit of Phosphoinositide 3-Kinase in Cone Photoreceptor Cells Results in Cone Photoreceptor Degeneration. , 2011, 52, 3775.		46
517	Retinal ganglion cell responses to voltage and current stimulation in wild-type and <i>rd1</i> mouse retinas. Journal of Neural Engineering, 2011, 8, 035003.	1.8	46
518	Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit. Journal of Biological Chemistry, 2011, 286, 33252-33259.	1.6	21
519	The Transcription Factor Neural Retina Leucine Zipper (NRL) Controls Photoreceptor-specific Expression of Myocyte Enhancer Factor Mef2c from an Alternative Promoter. Journal of Biological Chemistry, 2011, 286, 34893-34902.	1.6	35
520	Lentivirus-mediated expression of cDNA and shRNA slows degeneration in retinitis pigmentosa. Experimental Biology and Medicine, 2011, 236, 1211-1217.	1.1	26
521	Animal Models of Retinal Disease. Progress in Molecular Biology and Translational Science, 2011, 100, 211-286.	0.9	89
522	AAV-Mediated Gene Therapy in Mouse Models of Recessive Retinal Degeneration. Current Molecular Medicine, 2012, 12, 316-330.	0.6	17
523	Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. Journal of Cell Biology, 2012, 199, 381-399.	2.3	145
524	Cell replacement and visual restoration by retinal sheet transplants. Progress in Retinal and Eye Research, 2012, 31, 661-687.	7.3	135
525	Müller glia express rhodopsin in a mouse model of inherited retinal degeneration. Neuroscience, 2012, 225, 152-161.	1.1	21
526	Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Experimental Eye Research, 2012, 105, 60-69.	1.2	64
527	Apelin Is Required for Non-Neovascular Remodeling in the Retina. American Journal of Pathology, 2012, 180, 399-409.	1.9	31
528	Activation of survival pathways in the degenerating retina of rd10 mice. Experimental Eye Research, 2012, 99, 17-26.	1.2	59

#	Article	IF	CITATIONS
529	A role for prenylated rab acceptor 1 in vertebrate photoreceptor development. BMC Neuroscience, 2012, 13, 152.	0.8	19
530	Development and Degeneration of Cone Bipolar Cells Are Independent of Cone Photoreceptors in a Mouse Model of Retinitis Pigmentosa. PLoS ONE, 2012, 7, e44036.	1.1	15
531	Regenerative nanomedicine and the treatment of degenerative retinal diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 113-137.	3.3	23
532	Analysis of the RPE Sheet in the rd10 Retinal Degeneration Model. Advances in Experimental Medicine and Biology, 2012, 723, 641-647.	0.8	30
533	Long-Term Characterization of Retinal Degeneration in <i>rd1</i> and <i>rd10</i> Mice Using Spectral Domain Optical Coherence Tomography. , 2012, 53, 4644.		121
534	Age-related functional and structural retinal modifications in the Igf1â^'/â^' null mouse. Neurobiology of Disease, 2012, 46, 476-485.	2.1	35
535	Atypical retinal degeneration 3 in mice is caused by defective PDE6B pre-mRNA splicing. Vision Research, 2012, 57, 1-8.	0.7	6
536	Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography. Veterinary Ophthalmology, 2012, 15, 94-104.	0.6	26
537	Rearrangement of the cone mosaic in the retina of the rat model of retinitis pigmentosa. Journal of Comparative Neurology, 2012, 520, 874-888.	0.9	30
538	Age-Dependent Differences in Recovered Visual Responses in Royal College of Surgeons Rats Transduced with the Channelrhodopsin-2 Gene. Journal of Molecular Neuroscience, 2012, 46, 393-400.	1.1	24
539	Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mammalian Genome, 2012, 23, 40-61.	1.0	78
540	The optogenetic (r)evolution. Molecular Genetics and Genomics, 2012, 287, 95-109.	1.0	69
541	Nestin expression in the retina of rats with inherited retinal degeneration. Experimental Eye Research, 2013, 110, 26-34.	1.2	14
542	Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, 2013, , .	0.4	8
543	Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina. Journal of Biological Chemistry, 2013, 288, 36129-36140.	1.6	72
544	Photoreceptor Inner and Outer Segments. Current Topics in Membranes, 2013, 72, 231-265.	0.5	33
545	Phosphodiesterase inhibition induces retinal degeneration, oxidative stress and inflammation in cone-enriched cultures of porcine retina. Experimental Eye Research, 2013, 111, 122-133.	1.2	24
546	Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice. Neurobiology of Aging, 2013, 34, 716-730.	1.5	45

	C	itation Report	
#	Article	IF	Citations
547	Structure and Function of Rod and Cone Photoreceptors. , 2013, , 342-359.		3
548	Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa. Cell and Tissue Research, 2013, 351, 29-40.	1.5	29
549	Gene therapy for retinal disease. Translational Research, 2013, 161, 241-254.	2.2	62
550	Retinal Gene Delivery by rAAV and DNA Electroporation. Current Protocols in Microbiology, 2013, 28 Unit 14D.4.	s, 6.5	29
551	Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Research, 2013, 23, 788-802.	5.7	47
552	Protein sorting, targeting and trafficking in photoreceptor cells. Progress in Retinal and Eye Research, 2013, 36, 24-51.	7.3	167
553	Detection of cGMP in the Degenerating Retina. Methods in Molecular Biology, 2013, 1020, 235-245	. 0.4	8
554	Stem Cells and Cellular Therapy. , 2013, , 669-688.		1
555	Mechanisms of ER Stress in Retinal Disease. , 2013, , 529-536.		0
556	Channelrhodopsins: visual regeneration and neural activation by a light switch. New Biotechnology, 2013, 30, 461-474.	2.4	20
557	Nanomedicine in Ophthalmology. , 2013, , 689-715.		3
558	Nanomedicine for the treatment of retinal and optic nerve diseases. Current Opinion in Pharmacology, 2013, 13, 134-148.	1.7	34
559	Characterizing visual performance in mice: An objective and automated system based on the optokinetic reflex Behavioral Neuroscience, 2013, 127, 788-796.	0.6	44
560	A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE. Astrophy Journal Letters, 2013, 778, L32.	sical 3.0	16
561	Interaction of Aryl Hydrocarbon Receptor-interacting Protein-like 1 with the Farnesyl Moiety. Journal of Biological Chemistry, 2013, 288, 21320-21328.	1.6	32
562	Functional and neurochemical development in the normal and degenerating mouse retina. Journal of Comparative Neurology, 2013, 521, 1251-1267.	0.9	60
563	Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80+/Ly6c+ macrophages in a mouse model of retinal degeneration. Stem Cells 2013, 31, 2149-2161.	, 1.4	30
564	cGMP Accumulation Causes Photoreceptor Degeneration in CNG Channel Deficiency: Evidence of cC Cytotoxicity Independently of Enhanced CNG Channel Function. Journal of Neuroscience, 2013, 33, 14939-14948.	MP 1.7	64

~	_	
	12 FDC	DT
CILAD	NLFU	

#	Article	IF	CITATIONS
565	Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1101-1106.	3.3	229
566	Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death and Disease, 2013, 4, e488-e488.	2.7	67
567	Loss of Pde6 reduces cell body Ca2+ transients within photoreceptors. Cell Death and Disease, 2013, 4, e797-e797.	2.7	18
568	Insulin Receptor Signaling in Cones. Journal of Biological Chemistry, 2013, 288, 19503-19515.	1.6	42
569	Retinal Ganglion Cells are Resistant to Photoreceptor Loss in Retinal Degeneration. PLoS ONE, 2013, 8, e68084.	1.1	51
570	Detection of Retinitis Pigmentosa by Differential Interference Contrast Microscopy. PLoS ONE, 2014, 9, e97170.	1.1	5
571	Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Frontiers in Neural Circuits, 2014, 8, 108.	1.4	42
572	Insights into the role of RD3 in guanylate cyclase trafficking, photoreceptor degeneration, and Leber congenital amaurosis. Frontiers in Molecular Neuroscience, 2014, 7, 44.	1.4	25
573	Inherited retinal diseases in dogs: advances in gene/mutation discovery. Journal of Animal Genetics, 2014, 42, 79-89.	0.5	7
574	Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors. Cell Death and Disease, 2014, 5, e1234-e1234.	2.7	13
575	Restoration of the Majority of the Visual Spectrum by Using Modified Volvox Channelrhodopsin-1. Molecular Therapy, 2014, 22, 1434-1440.	3.7	56
576	Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. Journal of Neurochemistry, 2014, 130, 227-240.	2.1	18
577	The GAFa domain of phosphodiesteraseâ€6 contains a rod outer segment localization signal. Journal of Neurochemistry, 2014, 129, 256-263.	2.1	8
578	Evolution of Visual and Non-visual Pigments. , 2014, , .		33
580	CARBON NEUTRON STAR ATMOSPHERES. Astrophysical Journal, Supplement Series, 2014, 210, 13.	3.0	35
581	Inhibition of dopamine signaling suppresses cGMP accumulation in rd1 retinal organ cultures. NeuroReport, 2014, 25, 601-606.	0.6	3
582	Next-generation Sequencing Revealed a Novel Mutation in the Gene Encoding the Beta Subunit of Rod Phosphodiesterase. Ophthalmic Genetics, 2014, 35, 142-150.	0.5	17
583	Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors. Comptes Rendus - Biologies, 2014, 337, 207-213.	0.1	13

#	Article	IF	CITATIONS
584	Photoswitching Proteins. Methods in Molecular Biology, 2014, , .	0.4	7
585	Oxidative stress retards vascular development before neural degeneration occurs in retinal degeneration rd1 mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 411-416.	1.0	6
586	The supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration. Orphanet Journal of Rare Diseases, 2014, 9, 12.	1.2	91
587	Restoring Visual Function to Blind Mice with a Photoswitch that Exploits Electrophysiological Remodeling of Retinal Ganglion Cells. Neuron, 2014, 81, 800-813.	3.8	165
588	Sildenafil alters retinal function in mouse carriers of Retinitis Pigmentosa. Experimental Eye Research, 2014, 128, 43-56.	1.2	25
589	Clinical and Molecular Genetics of the Phosphodiesterases (PDEs). Endocrine Reviews, 2014, 35, 195-233.	8.9	228
590	Disorders of the visual system. , 0, , 26-34.		0
592	Destructive Changes in the Neuronal Structure of the FVB/N Mouse Retina. PLoS ONE, 2015, 10, e0129719.	1.1	9
593	Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria. , 2015, 56, 8428.		104
594	Multiple Independent Oscillatory Networks in the Degenerating Retina. Frontiers in Cellular Neuroscience, 2015, 9, 444.	1.8	33
595	Role of Lycium Barbarum Extracts in Retinal Diseases. , 2015, , 153-178.		1
596	Lycium Barbarum and Human Health. , 2015, , .		13
597	Identification of rod- and cone-specific expression signatures to identify candidate genes for retinal disease. Experimental Eye Research, 2015, 132, 161-173.	1.2	5
598	Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88. Experimental Neurology, 2015, 267, 1-12.	2.0	23
599	Retinitis pigmentosa: impact of differentPde6apoint mutations on the disease phenotype. Human Molecular Genetics, 2015, 24, 5486-5499.	1.4	41
600	Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLoS Biology, 2015, 13, e1002143.	2.6	184
601	The p110α isoform of phosphoinositide 3-kinase is essential for cone photoreceptor survival. Biochimie, 2015, 112, 35-40.	1.3	8
602	Reduced rod electroretinograms in carrier parents of two Japanese siblings with autosomal recessive retinitis pigmentosa associated with PDE6B gene mutations. Documenta Ophthalmologica, 2015, 131, 71-79.	1.0	5

#	Article	IF	CITATIONS
603	Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Experimental Eye Research, 2015, 133, 3-18.	1.2	104
604	Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179. Nature Communications, 2015, 6, 6006.	5.8	79
605	The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Progress in Retinal and Eye Research, 2015, 48, 137-159.	7.3	81
606	Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in <i>rd1</i> mice. Stem Cells, 2015, 33, 1543-1553.	1.4	59
607	Targeted Ablation of the Pde6h Gene in Mice Reveals Cross-species Differences in Cone and Rod Phototransduction Protein Isoform Inventory. Journal of Biological Chemistry, 2015, 290, 10242-10255.	1.6	26
608	A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nature Communications, 2015, 6, 8005.	5.8	23
609	Extended conformation of the prolineâ€rich domain of human aryl hydrocarbon receptorâ€interacting proteinâ€like 1: implications for retina disease. Journal of Neurochemistry, 2015, 135, 165-175.	2.1	18
610	Vision Science: Can Rhodopsin Cure Blindness?. Current Biology, 2015, 25, R713-R715.	1.8	0
611	The Expression Pattern of Systemically Injected AAV9 in the Developing Mouse Retina Is Determined by Age. Molecular Therapy, 2015, 23, 290-296.	3.7	31
612	TIMP-1 affects the spatial distribution of dendritic processes of second-order neurons in a rat model of Retinitis Pigmentosa. Experimental Eye Research, 2015, 140, 41-52.	1.2	6
613	Distinct patterns of compartmentalization and proteolytic stability of PDE6C mutants linked to achromatopsia. Molecular and Cellular Neurosciences, 2015, 64, 1-8.	1.0	9
614	Neurotrophin Family Members as Neuroprotectants in Retinal Degenerations. BioDrugs, 2015, 29, 1-13.	2.2	10
615	Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, Î, , 2016, 57, 877.		9
616	Increased Plasma cGMP in a Family With Autosomal Recessive Retinitis Pigmentosa Due to Homozygous Mutations in the PDE6A Gene. , 2016, 57, 6048.		9
617	Peripheral Sensory Neurons Expressing Melanopsin Respond to Light. Frontiers in Neural Circuits, 2016, 10, 60.	1.4	50
618	Retinal Cell Degeneration in Animal Models. International Journal of Molecular Sciences, 2016, 17, 110.	1.8	46
619	Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue. PLoS ONE, 2016, 11, e0155468.	1.1	38
620	Cav1.4 L-Type Calcium Channels Contribute to Calpain Activation in Degenerating Photoreceptors of rd1 Mice. PLoS ONE, 2016, 11, e0156974.	1.1	15

ARTICLE IF CITATIONS # A role of Heat Shock Protein 70 in Photoreceptor Cell Death: Potential as a Novel Therapeutic Target 621 1.9 22 in Retinal Degeneration. CNS Neuroscience and Therapeutics, 2016, 22, 7-14. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Progress in Retinal 7.3 and Eye Research, 2016, 55, 32-51. TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and 623 2.7 17 mTORC1 dissociation from the lysosome. Cell Death and Disease, 2016, 7, e2279-e2279. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of 624 5.8 180 cytoplasmic fusion. Nature Communications, 2016, 7, 13537. Calcium dynamics change in degenerating cone photoreceptors. Human Molecular Genetics, 2016, 25, 625 1.4 28 3729-3740. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Scientific Reports, 2016, 6, 39537. 1.6 CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. Molecular 627 3.7 93 Therapy, 2016, 24, 1388-1394. Melanopsin and the Nonâ€visual Photochemistry in the Inner Retina of Vertebrates. Photochemistry and 1.3 Photobiology, 2016, 92, 29-44. 629 The Retina and Other Light-sensitive Ocular Clocks. Journal of Biological Rhythms, 2016, 31, 223-243. 1.4 67 Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4â''/â'' mouse 2.3 and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Therapy, 2016, 23, 767-774. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent 631 19 0.6 manner. Biológy Open, 2016, 5, 1283-1289. Conditional rod photoreceptor ablation reveals <i>Sall1</i> as a microglial marker and regulator of 2.5 microglial morphology in the retina. Glia, 2016, 64, 2005-2024. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Scientific 633 1.6 128 Reports, 2016, 6, 29784. Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models. Free Radical Biology and Medicine, 2016, 96, 245-254. 634 1.3 Aryl Hydrocarbon Receptor-interacting Protein-like 1 Is an Obligate Chaperone of Phosphodiesterase 6 635 1.6 35 and Is Assisted by the Î³-Subunit of Its Client. Journal of Biological Chemistry, 2016, 291, 16282-16291. Animal Models of Retinitis Pigmentosa (RP). Essentials in Ophthalmology, 2016, , 101-116. 637 Animal Models of Ophthalmic Diseases. Essentials in Ophthalmology, 2016, , . 0.0 5 Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 705-716.

	CITATION R	CITATION REPORT	
# 639	ARTICLE Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the ciard10c/ia Mouse Model Journal of Protecome Research, 2016, 15, 1350-1359	IF 1.8	CITATIONS
640	A kind of rd1 mouse in C57BL/6J mice from crossing with a mutated Kunming mouse. Gene, 2017, 607, 9-15.	1.0	11
641	Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. Journal of Neurophysiology, 2017, 118, 434-454.	0.9	29
642	Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Molecular Therapy, 2017, 25, 1076-1094.	3.7	99
643	Dynamic alterations in decoy VEGF receptor-1 stability regulate angiogenesis. Nature Communications, 2017, 8, 15699.	5.8	50
644	Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Progress in Retinal and Eye Research, 2017, 59, 53-96.	7.3	85
645	NMR resonance assignments of the FKBP domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) in complex with a farnesyl ligand. Biomolecular NMR Assignments, 2017, 11, 111-115.	0.4	9
646	Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic <i>X. laevis</i> Models of Retinitis Pigmentosa. Journal of Neuroscience, 2017, 37, 1039-1054.	1.7	31
647	CRISPR-Mediated Ophthalmic Genome Surgery. Current Ophthalmology Reports, 2017, 5, 199-206.	0.5	12
648	AIPL1: A specialized chaperone for the phototransduction effector. Cellular Signalling, 2017, 40, 183-189.	1.7	21
649	Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina. Gene Therapy, 2017, 24, 787-800.	2.3	55
650	Neurotoxicity of cGMP in the vertebrate retina: from the initial research on <i>rd</i> mutant mice to zebrafish genetic approaches. Journal of Neurogenetics, 2017, 31, 88-101.	0.6	21
651	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
652	CRISPR in the Retina: Evaluation of Future Potential. Advances in Experimental Medicine and Biology, 2017, 1016, 147-155.	0.8	3
653	Metabolic and redox signaling in the retina. Cellular and Molecular Life Sciences, 2017, 74, 3649-3665.	2.4	83
654	Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. International Journal of Molecular Sciences, 2017, 18, 201.	1.8	12
655	DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice. Cell Death and Disease, 2018, 9, 310.	2.7	37
656	Pde6b rd1 mutation modifies cataractogenesis in Foxe3 rct mice. Biochemical and Biophysical Research Communications, 2018, 496, 231-237.	1.0	4

#	Article	IF	CITATIONS
657	The mechanism of cone cell death in Retinitis Pigmentosa. Progress in Retinal and Eye Research, 2018, 62, 24-37.	7.3	205
658	Electrical activation of degenerated photoreceptors in blind mouse retina elicited network-mediated responses in different types of ganglion cells. Scientific Reports, 2018, 8, 16998.	1.6	18
659	Ribosomal protein S6 kinase 1 promotes the survival of photoreceptors in retinitis pigmentosa. Cell Death and Disease, 2018, 9, 1141.	2.7	15
660	Malformation of the Posterior Cerebellar Vermis Is a Common Neuroanatomical Phenotype of Genetically Engineered Mice on the C57BL/6 Background. Cerebellum, 2018, 17, 173-190.	1.4	3
661	The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. Journal of Biological Chemistry, 2018, 293, 15332-15346.	1.6	53
662	Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells. Journal of Neural Engineering, 2018, 15, 045004.	1.8	12
663	The Use of DREADDs for Dissecting the Contribution of Cellular and Neural Circuit Mechanisms in Models of Neurodegenerative Disease. , 2018, , 565-596.		1
664	Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Frontiers in Pharmacology, 2018, 9, 469.	1.6	12
665	Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Progress in Retinal and Eye Research, 2018, 67, 87-101.	7.3	51
666	Interaction of the tetratricopeptide repeat domain of aryl hydrocarbon receptor–interacting protein–like 1 with the regulatory Pl³ subunit of phosphodiesterase 6. Journal of Biological Chemistry, 2019, 294, 15795-15807.	1.6	11
667	Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa. BMC Neuroscience, 2019, 20, 46.	0.8	19
668	CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones. Stem Cells, 2019, 37, 609-622.	1.4	51
669	Genetic modifiers of rodent animal models: the role in cataractogenesis. Experimental Animals, 2019, 68, 397-406.	0.7	2
670	Longitudinal Clinical Follow-up and Genetic Spectrum of Patients With Rod-Cone Dystrophy Associated With Mutations in <i>PDE6A</i> and <i>PDE6B</i> . JAMA Ophthalmology, 2019, 137, 669.	1.4	32
671	Therapeutic Window for Phosphodiesterase 6–Related Retinitis Pigmentosa. JAMA Ophthalmology, 2019, 137, 679.	1.4	3
672	Rescue of Retinal Degeneration in rd1 Mice by Intravitreally Injected Metformin. Frontiers in Molecular Neuroscience, 2019, 12, 102.	1.4	28
673	The microphthalmia-associated transcription factor (Mitf) gene and its role in regulating eye function. Scientific Reports, 2019, 9, 15386.	1.6	11
674	Chaperones and retinal disorders. Advances in Protein Chemistry and Structural Biology, 2019, 114, 85-117.	1.0	7

#	ARTICLE NMR resonance assignments of the TPR domain of human aryl hydrocarbon receptor-interacting	IF 0.4	CITATIONS 3
676	Metipranolol promotes structure and function of retinal photoreceptors in the <i>rd10</i> mouse model of human retinitis pigmentosa. Journal of Neurochemistry, 2019, 148, 307-318.	2.1	12
677	Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases. Journal of Medicinal Chemistry, 2020, 63, 23-39.	2.9	69
678	Cellular mechanisms of hereditary photoreceptor degeneration – Focus on cGMP. Progress in Retinal and Eye Research, 2020, 74, 100772.	7.3	85
679	Drug repurposing studies of PARP inhibitors as a new therapy for inherited retinal degeneration. Cellular and Molecular Life Sciences, 2020, 77, 2199-2216.	2.4	20
680	Multiple genetic mutations implicate spectrum of phenotypes in Bardet-Biedl syndrome. Gene, 2020, 725, 144164.	1.0	3
681	Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5, 1.	7.1	1,354
682	Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Progress in Retinal and Eye Research, 2020, 77, 100827.	7.3	133
683	AAV-Delivered Tulp1 Supplementation Therapy Targeting Photoreceptors Provides Minimal Benefit in Tulp1â´'/â´' Retinas. Frontiers in Neuroscience, 2020, 14, 891.	1.4	6
684	Unmasking inhibition prolongs neuronal function in retinal degeneration mouse model. FASEB Journal, 2020, 34, 15282-15299.	0.2	6
685	The cGMP system in normal and degenerating mouse neuroretina: New proteins with cGMP interaction potential identified by a proteomics approach. Journal of Neurochemistry, 2020, 157, 2173-2186.	2.1	9
686	Microglia dynamics in retinitis pigmentosa model: formation of fundus whitening and autofluorescence as an indicator of activity of retinal degeneration. Scientific Reports, 2020, 10, 14700.	1.6	14
687	Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Frontiers in Pharmacology, 2020, 11, 590572.	1.6	9
688	Retinal ganglion cell defects cause decision shifts in visually evoked defense responses. Journal of Neurophysiology, 2020, 124, 1530-1549.	0.9	4
689	Surveying veterinary ophthalmologists to assess the advice given to owners of pets with irreversible blindness. Veterinary Record, 2020, 187, e30.	0.2	2
690	Potential contribution of ryanodine receptor 2 upregulation to cGMP/PKG signalingâ€induced cone degeneration in cyclic nucleotideâ€gated channel deficiency. FASEB Journal, 2020, 34, 6335-6350.	0.2	6
691	Patient-Specific Retinal Organoids Recapitulate Disease Features of Late-Onset Retinitis Pigmentosa. Frontiers in Cell and Developmental Biology, 2020, 8, 128.	1.8	66
692	Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. International Journal of Molecular Sciences, 2020, 21, 1625.	1.8	20

#	Article	IF	CITATIONS
693	Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease. Stem Cell Research and Therapy, 2020, 11, 98.	2.4	34
694	Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Human Gene Therapy, 2020, 31, 709-718.	1.4	31
695	Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells, 2020, 9, 931.	1.8	56
696	Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Therapy, 2021, 28, 223-241.	2.3	39
697	MAdCAM-1 mediates retinal neuron degeneration in experimental colitis through recruiting gut-homing CD4+ T cells. Mucosal Immunology, 2021, 14, 152-163.	2.7	10
698	Clinical Phenotype of PDE6B-Associated Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 2374.	1.8	12
699	Control of Microbial Opsin Expression in Stem Cell Derived Cones for Improved Outcomes in Cell Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 648210.	1.8	10
700	A universal protocol for isolating retinal ON bipolar cells across species via fluorescence-activated cell sorting. Molecular Therapy - Methods and Clinical Development, 2021, 20, 587-600.	1.8	1
701	bFGF and insulin lead to migration of Müller glia to photoreceptor layer in rd1 mouse retina. Neuroscience Letters, 2021, 755, 135936.	1.0	6
702	Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 2021, 11, 15146.	1.6	2
703	Developmental Dynamics of the Functional State of the Retina in Mice with Inherited Photoreceptor Degeneration. Neuroscience and Behavioral Physiology, 2021, 51, 807-815.	0.2	2
704	Rb deficiency induces p21cip1 expression and delays retinal degeneration in rd1 mice. Experimental Eye Research, 2021, 210, 108701.	1.2	1
705	Les atrophies progressives de la rétine chez le chienÂ: que doit connaître le praticien en 2021Â?. Revue Veterinaire Clinique, 2021, 56, 113-140.	0.1	0
706	Technological advancements to study cellular signaling pathways in inherited retinal degenerative diseases. Current Opinion in Pharmacology, 2021, 60, 102-110.	1.7	2
707	Neurodevelopmental malformations of the cerebellum and neocortex in the Shank3 and Cntnap2 mouse models of autism. Neuroscience Letters, 2021, 765, 136257.	1.0	6
708	Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. Journal of the American Chemical Society, 2021, 143, 2304-2314.	6.6	13
710	Retinal Remodeling: Circuitry Revisions Triggered by Photoreceptor Degeneration. , 2006, , 33-54.		6
711	Cone Survival: Identification of RdCVF. , 2006, 572, 315-319.		9

ARTICLE IF CITATIONS Retinal Transpilantation., 2006, , 367-376. 712 13 Molecular Neurobiology of Retinal Degeneration., 2007, , 47-92. 714 Neurotransmitter Stimulation for Retinal Prosthesis: The Artificial Synapse Chip., 2011, 173-191. 10 Development of Bile Acids as Anti-Apoptotic and Neuroprotective Agents in Treatment of Ocular Disease. AAPS Advances in the Pharmaceutical Sciences Series, 2011, , 565-576. HDAC Inhibition Prevents Rd1 Mouse Photoreceptor Degeneration. Advances in Experimental Medicine 716 0.8 14 and Biology, 2012, 723, 107-113. Dark-Rearing the rd10 Mouse: Implications for Therapy. Advances in Experimental Medicine and Biology, 2012, 723, 129-136. 0.8 In Vivo Assessment of Rodent Retinal Structure Using Spectral Domain Optical Coherence 718 0.8 7 Tomography. Advances in Experimental Medicine and Biology, 2012, 723, 489-494. How Long Does a Photoreceptor Cell Take to Die? Implications for the Causative Cell Death 0.8 Mechanisms. Advances in Experimental Medicine and Biology, 2014, 801, 575-581. 720 The Evolution and Function of Melanopsin in Craniates., 2014, , 23-63. 7 Light-Induced Photoreceptor Damage Triggers DNA Repair: Differential Fate of Rods and Cones. 721 Advances in Experimental Medicine and Biology, 2003, 533, 229-240. Characterization of Vertebrate Homologs of Drosophila Photoreceptor Proteins., 1995, , 263-274. 722 2 Apoptosis in Inherited Retinal Degenerations., 1994, , 15-29. Cellular and Molecular Mechanisms Regulating Retinal Cell Differentiation., 1992, , 21-35. 724 2 Salvaging Ruins: Reverting Blind Retinas into Functional Visual Sensors. Methods in Molecular 0.4 Biology, 2014, 1148, 149-160. 726 Synaptic Remodeling in Retinal Degeneration., 2007, , 269-289. 1 On The Suppression of Photoreceptor Cell Death in Retinitis Pigmentosa., 2007, , 293-317. Leber Congenital Amaurosis., 2007, , 61-90. 728 1 729 Mouse Models of RP., 2007, , 149-161.

		EPORT	
#	Article	IF	CITATIONS
730	Mouse Mutants for Eye Development. Results and Problems in Cell Differentiation, 2000, 31, 219-256.	0.2	20
731	The Light-Regulated cGMP Phosphodiesterase of Vertebrate Photoreceptors: Structure and Mechanism of Activation by Gtl±. Handbook of Experimental Pharmacology, 1993, , 213-223.	0.9	2
732	Clinical aspects: retinitis pigmentosa. , 1995, , 447-460.		4
733	Phototransduction, excitation and adaptation. , 1995, , 105-131.		13
734	CYCLIC NUCLEOTIDE PHOSPHODIESTERASES: PHARMACOLOGY, BIOCHEMISTRY AND FUNCTION. , 1993, , 287-313.		3
735	Rapid Freezing and Subsequent Preparation Methods in Retinal Cell Biology. Methods in Neurosciences, 1993, 15, 37-53.	0.5	2
736	Molecular Genetics of Blindness. Molecular Genetic Medicine, 1994, 4, 1-36.	1.6	1
738	Molecular Genetics of Retinal Disease. , 2006, , 373-394.		5
739	Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase Journal of Biological Chemistry, 1994, 269, 3265-3271.	1.6	53
740	In vitro isoprenylation and membrane association of mouse rod photoreceptor cGMP phosphodiesterase alpha and beta subunits expressed in bacteria Journal of Biological Chemistry, 1992, 267, 8458-8463.	1.6	70
741	Isolation and characterization of the Drosophila retinal degeneration B (rdgB) gene Genetics, 1991, 127, 761-768.	1.2	112
742	Circadian Photoreception in Humans and Mice. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 484-492.	3.4	40
744	Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. Journal of Virology, 1994, 68, 448-452.	1.5	46
745	Restoration of Visual Response in Aged Dystrophic RCS Rats Using AAV-Mediated Channelopsin-2 Gene Transfer. , 2007, 48, 3821.		144
746	Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells. Journal of Clinical Investigation, 2004, 114, 765-774.	3.9	224
747	Rescue of retinal degeneration by intravitreally injected adult bone marrow–derived lineage-negative hematopoietic stem cells. Journal of Clinical Investigation, 2004, 114, 765-774.	3.9	192
748	Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. Journal of Clinical Investigation, 2015, 125, 1446-1458.	3.9	126
749	It's never too late to save a photoreceptor. Journal of Clinical Investigation, 2015, 125, 3424-3426.	3.9	6

#	Article	IF	CITATIONS
750	Photoreceptor Phosphodiesterase (PDE6): A G-Protein-Activated PDE Regulating Visual Excitation in Rod and Cone Photoreceptor Cells. , 2006, , 165-193.		16
751	Photoreceptor Phosphodiesterase (PDE6). , 2006, , .		5
752	Retinal Degeneration Mutants of Drosophila. , 1994, , 29-52.		9
753	Compensatory synaptic growth in the rod terminals as a sequel to partial photoreceptor cell loss in the retina of chimaeric mice. Development (Cambridge), 1992, 114, 797-803.	1.2	23
754	Mutations affecting development of the zebrafish retina. Development (Cambridge), 1996, 123, 263-273.	1.2	217
755	Mutations affecting development of the zebrafish ear. Development (Cambridge), 1996, 123, 275-283.	1.2	176
756	In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of <i>Drosophila</i> . Journal of Cell Science, 1997, 110, 2943-2953.	1.2	90
757	Effect of the rd1 mutation on motor performance in R6/2 and wild type mice. PLOS Currents, 2012, 4, RRN1303.	1.4	7
758	PARP1 Gene Knock-Out Increases Resistance to Retinal Degeneration without Affecting Retinal Function. PLoS ONE, 2010, 5, e15495.	1.1	71
759	Reduced Light Response of Neuronal Firing Activity in the Suprachiasmatic Nucleus and Optic Nerve of Cryptochrome-Deficient Mice. PLoS ONE, 2011, 6, e28726.	1.1	4
760	Novel Role for the Innate Immune Receptor Toll-Like Receptor 4 (TLR4) in the Regulation of the Wnt Signaling Pathway and Photoreceptor Apoptosis. PLoS ONE, 2012, 7, e36560.	1.1	55
761	Pharmacological Analysis of Intrinsic Neuronal Oscillations in rd10 Retina. PLoS ONE, 2014, 9, e99075.	1.1	50
762	Temporal progression of PARP activity in the Prph2 mutant rd2 mouse: Neuroprotective effects of the PARP inhibitor PJ34. PLoS ONE, 2017, 12, e0181374.	1.1	23
763	Protective effect of clusterin on rod photoreceptor in rat model of retinitis pigmentosa. PLoS ONE, 2017, 12, e0182389.	1.1	18
764	Animal models and different therapies for treatment of retinitis pigmentosa. Histology and Histopathology, 2009, 24, 1295-322.	0.5	52
765	Human melanopsin-AAV2/8 transfection to retina transiently restores visual function in rd1 mice. International Journal of Ophthalmology, 2016, 9, 655-61.	0.5	10
766	Novel mutations in PDE6B causing human retinitis pigmentosa. International Journal of Ophthalmology, 2016, 9, 1094-9.	0.5	13
767	Developmental and light regulation of tumor suppressor protein PP2A in the retina. Oncotarget, 2018, 9, 1505-1523.	0.8	7

#	Article	IF	CITATIONS
768	Neuroprotective Strategies for the Treatment of Inherited Photoreceptor Degeneration. Current Molecular Medicine, 2012, 12, 598-612.	0.6	68
769	Characterization and Possible Roles of Fibroblast Growth Factors in Retinal Photoreceptor Cells Keio Journal of Medicine, 1996, 45, 140-154.	0.5	9
770	Early Structural Anomalies Observed by High-Resolution Imaging in Two Related Cases of Autosomal-Dominant Retinitis Pigmentosa. Ophthalmic Surgery Lasers and Imaging Retina, 2014, 45, 469-473.	0.4	21
772	The cGMP-Phosphodiesterase β-Subunit Gene. , 2001, , 255-267.		Ο
773	Leukemia Inhibitory Factor Prevents Photoreceptor Cell Death in rd-/- Mice by Blocking Functional Differentiation. , 2001, , 135-144.		1
774	Retina. Research Methods for Mutant Mice Series, 2001, , .	0.1	0
777	Retinal Disease Models for Development of Drug and Gene Therapies. , 2003, , 515-533.		0
778	Retinal Disease Models for Development of Drug and Gene Therapies. , 2003, , 536-555.		0
779	Recombinant Viral Vectors. , 2003, , 181-202.		1
781	Deciphering Irradiance Detection in the Mammalian Retina. , 2008, , 173-183.		0
782	Phosphodiesterase 6B, cGMP-specific rod beta. The AFCS-nature Molecule Pages, 0, , .	0.2	0
783	Genetic and Genomic Approaches for Understanding Retinal Diseases. Neuromethods, 2010, , 25-49.	0.2	0
784	Photoreceptor Degeneration: Molecular Mechanisms of Photoreceptor Degeneration. , 2014, , 275-308.		0
785	The Molecular Biology of the Rod Photoreceptor cGMP Phosphodiesterase α- and β-Subunits. Research Reports in Physics, 1992, , 132-146.	0.0	0
786	Transgenic Mouse Studies of Retinal Degeneration: Expression of The β-Subunit of cGMP Phosphodiesterase and Transducin α-Subunits. , 1993, , 231-242.		0
787	Comments on Gene Symbols and Terminology. , 1993, , 161-170.		0
788	Nonsense Mutations in the ß Subunit Gene of the Rod cGMP Phosphodiesterase That are Associated with Inherited Retinal Degenerative Disease. , 1993, , 251-258.		0
789	Abnormal Ca2+ Mobilization and Excessive Photopigment Phosphorylation Lead to Photoreceptor Degeneration in Drosophila Mutants. , 1995, , 227-234.		0

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
790	The Role of the Retinal Degeneration B Protein in the Drosophila Visual System. , 1995, , 243-254.		1
791	Studies on the Cone Cyclic GMP-Phosphodiesterase $\hat{l}\pm\hat{a}\in {}^{\rm M}$ Subunit Gene. , 1997, , 227-236.		0
792	Isolation of Candidate Genes for Retinal Degenerations. , 1997, , 205-226.		0
793	Molecular Mechanisms of rhodopsin phosphorylation and dephosphorylation Seibutsu Butsuri, 1997, 37, 155-160.	0.0	0
794	An Overview of Mouse Models in Neuroscience Research. , 1999, , 1-24.		0
796	Animal and Human Models of Retinal Diseases. , 2020, , 590-613.		0
797	Expression of glucose transporterâ $\in 2$ in murine retina: Evidence for glucose transport from horizontal cells to photoreceptor synapses. Journal of Neurochemistry, 2022, 160, 283-296.	2.1	7
798	Transgenic Expression of Leukemia Inhibitory Factor Inhibits Both Rod and Cone Gene Expression. , 2006, 572, 147-153.		0
799	Transcriptional and Post-Transcriptional Regulation of the Rod cGMP-Phosphodiesterase β-Subunit Gene. , 2006, 572, 217-229.		2
800	Blindness in Usher Syndrome 1B. , 1999, , 15-26.		0
801	Rods Produce a Diffusible Factor Promoting Cone Photoreceptor Survival In Vivo and in Vitro. , 1999, , 509-517.		0
803	Cell-Based Therapies to Restrict the Progress of Photoreceptor Degeneration. , 2007, , 319-344.		0
806	Molecular genetics of retinitis pigmentosa. Western Journal of Medicine, 1991, 155, 388-99.	0.3	9
807	Molecular advances in retinitis pigmentosa. Western Journal of Medicine, 1991, 155, 423-4.	0.3	2
809	The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa. American Journal of Human Genetics, 1992, 51, 755-62.	2.6	13
810	RNA interference for apoptosis signal-regulating kinase-1 (ASK-1) rescues photoreceptor death in the rd1 mouse. Molecular Vision, 2009, 15, 1764-73.	1.1	6
812	Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Molecular Vision, 2009, 15, 2868-78.	1.1	3
813	Retinal channelrhodopsin-2-mediated activity in vivo evaluated with manganese-enhanced magnetic resonance imaging. Molecular Vision, 2010, 16, 1059-67.	1.1	21

ARTICLE IF CITATIONS # Retinal degeneration modulates intracellular localization of CDC42 in photoreceptors. Molecular 815 1.1 19 Vision, 2011, 17, 2934-46. Gene expression changes within Müller glial cells in retinitis pigmentosa. Molecular Vision, 2012, 18, 1.1 74 1197-214. 818 Retinal degeneration increases susceptibility to myopia in mice. Molecular Vision, 2013, 19, 2068-79. 29 1.1 Review: the history and role of naturally occurring mouse models with Pde6b mutations. Molecular 1.1 Vision, 2013, 19, 2579-89. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. 820 1.1 23 Molecular Vision, 2014, 20, 1527-44. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice. Molecular Vision, 2015, 21, 811-27. 1.1 Gene expression changes in the retina following subretinal injection of human neural progenitor 822 1.1 11 cells into a rodent model for retinal degeneration. Molecular Vision, 2016, 22, 472-90. Insights from Genetic Model Systems of Retinal Degeneration: Role of Epsins in Retinal Angiogenesis 1.1 and VEGFR2 Signaling. Journal of Nature and Science, 2017, 3, . Genome Surgery and Gene Therapy in Retinal Disorders. Yale Journal of Biology and Medicine, 2017, 90, 824 0.2 9 523-532. Loss of the cone-enriched does not affect secondary cone death in retinitis pigmentosa. Molecular 1.1 Vision, 2017, 23, 944-951. SAHA is neuroprotective in in vitro and in situ models of retinitis pigmentosa. Molecular Vision, 2021, 826 1.1 1 27, 151-160. Reproducibility of the Rod Photoreceptor Response Depends Critically on the Concentration of the Phosphodiestérase Effector Enzyme. Journal of Neuroscience, 2022, 42, 2180-2189. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from 828 0.6 13 Preclinical Mouse Models. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 3-32. Human Retinal Organoids Provide a Suitable Tool for Toxicological Investigations: A Comprehensive Validation Using Drugs and Compounds Affecting the Retina. Stem Cells Translational Medicine, 2022, 1.6 11, 159-177. Multiomics analyses reveal early metabolic imbalance and mitochondrial stress in neonatal photoreceptors leading to cell death in <i>Pde6brd1/rd1</i> mouse model of retinal degeneration. 830 1.4 25 Human Molecular Genetics, 2022, 31, 2137-2154. Metformin and retinal diseases in preclinical and clinical studies: Insights and review of literature. 1.1 Experimental Biology and Medicine, 2022, 247, 317-329. Mouse chromosome 5. Mammalian Genome, 1992, 3 Spec No, S65-80. 832 1.0 9 Inherited Retinal Degeneration: PARP-Dependent Activation of Calpain Requires CNG Channel Activity. 1.8 Biomolecules, 2022, 12, 455.

#	Article	IF	CITATIONS
834	Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies. Antioxidants, 2022, 11, 670.	2.2	6
835	A systematic comparison of optogenetic approaches to visual restoration. Molecular Therapy - Methods and Clinical Development, 2022, 25, 111-123.	1.8	13
837	Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic <i>X. laevis</i> Models of Retinitis Pigmentosa. Journal of Neuroscience, 2017, 37, 1039-1054.	1.7	6
845	Enhanced cGMP Interactor Rap Guanine Exchange Factor 4 (EPAC2) Expression and Activity in Degenerating Photoreceptors: A Neuroprotective Response?. International Journal of Molecular Sciences, 2022, 23, 4619.	1.8	3
847	Beyond irradiance: Visual signals influencing mammalian circadian function. Progress in Brain Research, 2022, , .	0.9	0
848	Pain disorders. , 0, , 18-25.		0
849	Disorders of the visual system. , 0, , 26-34.		0
852	Major clinical findings of cellular therapy for intravitreal use in ischemic retinopathy and macular degeneration: a systematic review. MedNEXT Journal of Medical and Health Sciences, 2022, 3, .	0.0	Ο
853	Characterization of a novel Pde6b-deficient rat model of retinal degeneration and treatment with adeno-associated virus (AAV) gene therapy. Gene Therapy, 2023, 30, 362-368.	2.3	3
854	Single-Cell Transcriptomic Profiling in Inherited Retinal Degeneration Reveals Distinct Metabolic Pathways in Rod and Cone Photoreceptors. International Journal of Molecular Sciences, 2022, 23, 12170.	1.8	5
855	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
856	Protective effect of ZYMT, a traditional Chinese patent medicine in a mouse model of retinitis pigmentosa. Biomedicine and Pharmacotherapy, 2023, 162, 114580.	2.5	0
857	no b-wave: A potential mouse model of CSNB. , 1998, , .		0
858	A novel homozygous missense substitution p.Thr313lle in the PDE6B gene underlies autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family. BMC Ophthalmology, 2023, 23, .	0.6	1
859	Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules, 2023, 13, 581.	1.8	1
860	Retinal cone photoreceptors from pluripotent stem cells for macular regeneration. , 2023, , 221-241.		0
866	TheÂRole of Microglia in Inherited Retinal Diseases. Advances in Experimental Medicine and Biology, 2023, , 197-205.	0.8	0
872	Dysregulation of histone deacetylases in ocular diseases. Archives of Pharmacal Research, 0, , .	2.7	0

ARTICLE

IF CITATIONS