Regulation of dopamine synthesis in the rat kidney

Autonomic and Autacoid Pharmacology 10, s25-s30

DOI: 10.1111/j.1474-8673.1990.tb00224.x

Citation Report

#	Article	IF	CITATIONS
1	Regulation of dopamine synthesis in the rat kidney. Autonomic and Autacoid Pharmacology, 1990, 10, s25-s30.	0.7	62
2	Deamination of newlyâ€formed dopamine in rat renal tissues. British Journal of Pharmacology, 1991, 102, 778-782.	2.7	28
3	Inhibitory effects of guanosine 3â€2: 5â€2â€cyclic monophosphate on the synthesis of dopamine in the rat kidney. British Journal of Pharmacology, 1991, 103, 1923-1927.	2.7	14
4	A study on the renal synthesis of dopamine in aged rats. Acta Physiologica Scandinavica, 1991, 143, 287-293.	2.3	17
5	Sodiumâ€dependence and ouabainâ€sensitivity of the synthesis of dopamine in renal tissues of the rat. British Journal of Pharmacology, 1992, 105, 811-816.	2.7	30
6	Effect of αâ€human atrial natriuretic peptide on the synthesis of dopamine in the rat kidney. British Journal of Pharmacology, 1992, 105, 869-874.	2.7	18
7	A study on the neuronal and non-neuronal stores of dopamine in rat and rabbit kidney. Pharmacological Research, 1992, 26, 161-171.	3.1	4
8	Response of noradrenaline and dopamine to hypoxia and sympathectomy: evidence for an independent dopaminergic reactivity. Journal of the Autonomic Nervous System, 1992, 38, 21-28.	1.9	3
9	Actin cytoskeleton, tubular sodium and the renal synthesis of dopamine. Biochemical Pharmacology, 1992, 44, 1883-1886.	2.0	12
10	Type A and B monoamine oxidase activities in the human and rat kidney . Acta Physiologica Scandinavica, 1992, 145, 363-365.	2.3	46
11	A comparative study on the synthesis of dopamine in the human, dog and rat kidney. Acta Physiologica Scandinavica, 1993, 148, 347-351.	2.3	11
12	Preferential decarboxylation of l-threo-3,4-dihydroxyphenylserine in rat renal tissues. General Pharmacology, 1993, 24, 75-81.	0.7	4
13	Dopamine formation, from its immediate precursor 3,4â€dihydroxyphenylalanine, along the rat digestive tract. Fundamental and Clinical Pharmacology, 1993, 7, 235-243.	1.0	59
14	Enhanced protein kinase C mediated inhibition of renal dopamine synthesis during high sodium intake. Biochemical Pharmacology, 1993, 45, 1791-1800.	2.0	18
15	Renal tubular dopamine outward transfer during Na+-H+ exchange activation by $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -adrenoceptor agonists. British Journal of Pharmacology, 1993, 109, 569-576.	2.7	11
16	Kinetic study of the tubular dopamine outward transporter in the rat and dog kidney. British Journal of Pharmacology, 1993, 109, 577-580.	2.7	11
17	Cell inward transport of <scp>l</scp> â€DOPA and 3â€Oâ€methylâ€ <scp>l</scp> â€DOPA in rat renal tubules. British Journal of Pharmacology, 1994, 112, 611-615.	2.7	63
18	POSTER COMMUNICATIONS. British Journal of Pharmacology, 1994, 112, 158P.	2.7	1

#	Article	IF	Citations
19	Chronic manipulation of dietary salt modulates renal physiology and kidney dopamine receptor subtypes: Functional and autoradiographic studies. General Pharmacology, 1995, 26, 727-735.	0.7	7
20	Assessment of renal dopaminergic system activity in the nitric oxideâ€deprived hypertensive rat model. British Journal of Pharmacology, 1995, 114, 1403-1413.	2.7	54
21	Studies on the pharmacology of the inward transport of Lâ€DOPA in rat renal tubules. British Journal of Pharmacology, 1996, 118, 741-747.	2.7	19
22	Dopamine—sodium relationship in Type 2 diabetic patients. Diabetes Research and Clinical Practice, 1996, 34, 89-98.	1.1	25
23	Tissue-specific Expression of the Nonneuronal Promoter of the Aromatic L-Amino Acid Decarboxylase Gene Is Regulated by Hepatocyte Nuclear Factor 1. Journal of Biological Chemistry, 1996, 271, 4528-4538.	1.6	18
24	A COMPARATIVE STUDY ON THE SYNTHESIS OF THE NATRIURETIC HORMONE DOPAMINE IN OK AND LLC-PK1CELLS. Cell Biology International, 1996, 20, 539-544.	1.4	8
25	Uptake of l-3,4-dihydroxyphenylalanine and dopamine formation in cultured renal epithelial cells. Biochemical Pharmacology, 1997, 54, 1037-1046.	2.0	11
26	Competitive and non-competitive inhibition of l-3,4-dihydroxyphenylalanine uptake in Opossum kidney cells. European Journal of Pharmacology, 1997, 332, 219-225.	1.7	3
27	Opossum kidney (OK) cells in culture synthesize and degrade the natriuretic hormone dopamine: A comparison with rat renal tubular cells. International Journal of Biochemistry and Cell Biology, 1997, 29, 681-688.	1.2	22
28	OPOSSUM KIDNEY CELLS TAKE UP L-DOPA THROUGH AN ORGANIC CATION POTENTIAL-DEPENDENT AND PROTON-INDEPENDENT TRANSPORTER. Cell Biology International, 1997, 21, 249-255.	1.4	9
29	Renal Dopamine Receptors in Health and Hypertension., 1998, 80, 149-182.		204
30	Aging, High Salt Intake, and Renal Dopaminergic Activity in Fischer 344 Rats. Hypertension, 1999, 34, 666-672.	1.3	63
31	Renal synthesis of dopamine in asymptomatic post-infarction left ventricular systolic dysfunction. Clinical Science, 2000, 99, 195-200.	1.8	7
32	Chemical hypoxia-induced increases in dopamine D1A receptor mRNA in renal epithelial cells are mediated by nitric oxide. Acta Physiologica Scandinavica, 2000, 168, 233-238.	2.3	8
33	Concerted action of dopamine on renal and intestinal Na ⁺ -K ⁺ -ATPase in the rat remnant kidney. American Journal of Physiology - Renal Physiology, 2000, 279, F1033-F1044.	1.3	27
34	Molecular modulation of inward and outward apical transporters of <scp> < scp>-dopa in LLC-PK < sub>1 < sub>cells. American Journal of Physiology - Renal Physiology, 2000, 279, F736-F746.</scp>	1.3	17
35	SALT INTAKE AND SENSITIVITY OF INTESTINAL AND RENAL NA+-K+ATPase TO INHIBITION BY DOPAMINE IN SPONTANEOUS HYPERTENSIVE AND WISTAR-KYOTO RATS. Clinical and Experimental Hypertension, 2000, 22, 455-469.	0.5	26
36	RENAL DOPAMINERGIC MECHANISMS IN RENAL PARENCHYMAL DISEASES, HYPERTENSION, AND HEART FAILURE. Clinical and Experimental Hypertension, 2000, 22, 251-268.	0.5	12

#	ARTICLE	IF	CITATIONS
37	Ouabain-insensitive acidification by dopamine in renal OK cells: primary control of the Na+/H+exchanger. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R10-R18.	0.9	38
38	Neurohormonal activation, the renal dopaminergic system and sodium handling in patients with severe heart failure under vasodilator therapy. Clinical Science, 2001, 100, 557-566.	1.8	22
39	D1-like dopamine receptor activation and natriuresis by nitrocatechol COMT inhibitors. Kidney International, 2001, 59, 1683-1694.	2.6	25
40	Heart failure, aging, and renal synthesis of dopamine. American Journal of Kidney Diseases, 2001, 38, 502-509.	2.1	11
41	The renal dopaminergic system, neurohumoral activation, and sodium handling in heart failure. American Heart Journal, 2002, 143, 391-397.	1.2	14
42	Differences in the renal dopaminergic system activity between Wistar rats from two suppliers. Acta Physiologica Scandinavica, 2003, 178, 83-89.	2.3	10
43	Organ-Specific Overexpression of Renal LAT2 and Enhanced Tubular I -DOPA Uptake Precede the Onset of Hypertension. Hypertension, 2003, 42, 613-618.	1.3	29
44	Dopamine recruits D1A receptors to Na-K-ATPase-rich caveolar plasma membranes in rat renal proximal tubules. American Journal of Physiology - Renal Physiology, 2004, 287, F921-F931.	1.3	26
45	The effect of dietary sodium restriction on neurohumoral activity and renal dopaminergic response in patients with heart failure. European Journal of Heart Failure, 2004, 6, 593-599.	2.9	65
46	Over-expression of renal LAT1 and LAT2 and enhanced L-DOPA uptake in SHR immortalized renal proximal tubular cells. Kidney International, 2004, 66, 216-226.	2.6	42
47	Effect of Saline Load and Metoclopramide on the Renal Dopaminergic System in Patients with Heart Failure and Healthy Controls. Journal of Cardiovascular Pharmacology, 2005, 45, 197-203.	0.8	14
48	Renal Dopaminergic System Activity in the Rat Remnant Kidney. Nephron Experimental Nephrology, 2005, 99, e46-e55.	2.4	22
49	Blunted renal dopaminergic system activity in HgCl2-induced membranous nephropathy. Life Sciences, 2006, 78, 1246-1255.	2.0	4
50	Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent l-DOPA transport in renal OK cells. Life Sciences, 2006, 79, 723-729.	2.0	9
51	High-salt intake and the renal expression of amino acid transporters in spontaneously hypertensive rats. American Journal of Physiology - Renal Physiology, 2007, 292, F1452-F1463.	1.3	27
52	Renal Dopaminergic System Activity in Uninephrectomized Rats up to 26 Weeks after Surgery. American Journal of Nephrology, 2007, 27, 232-239.	1.4	10
53	Regulation of amino acid transporters in the rat remnant kidney. Nephrology Dialysis Transplantation, 2009, 24, 2058-2067.	0.4	9
54	Renal dopaminergic system activity in rat remnant kidney up to twenty-six weeks after surgery. Life Sciences, 2009, 84, 409-414.	2.0	9

#	Article	IF	CITATIONS
55	α _{2C} -Adrenoceptors modulate <scp> </scp> -DOPA uptake in opossum kidney cells and in the mouse kidney. American Journal of Physiology - Renal Physiology, 2012, 303, F928-F938.	1.3	3
56	Blunted renal dopaminergic system in a mouse model of diet-induced obesity. Experimental Biology and Medicine, 2012, 237, 949-955.	1.1	9
57	Direct inhibition of basolateral K _{ir} 4.1/5.1 and K _{ir} 4.1 channels in the cortical collecting duct by dopamine. American Journal of Physiology - Renal Physiology, 2013, 305, F1277-F1287.	1.3	49
58	Renalase regulates peripheral and central dopaminergic activities. American Journal of Physiology - Renal Physiology, 2015, 308, F84-F91.	1.3	16
59	Amine neurotransmitters, inflammation and epithelial sodium transport. Experimental Physiology, 2016, 101, 459-464.	0.9	7
61	The renal dopamine receptors Journal of the American Society of Nephrology: JASN, 1992, 2, 1265-1278.	3.0	166
62	In vivo effects of the monoamine oxidase inhibitors Ro 41-1049 and Ro 19-6327 on the production and fate of renal dopamine., 1994, 41, 365-370.		3