Gas transport from methaneâ€saturated, tidal freshwat

Limnology and Oceanography 34, 807-819 DOI: 10.4319/lo.1989.34.5.0807

Citation Report

#	Article	IF	CITATIONS
1	Variations in sedimentary carbon remineralization rates in the White Oak River estuary, North Carolina. Limnology and Oceanography, 1990, 35, 372-383.	3.1	80
2	Air pressure and methane fluxes. Nature, 1990, 347, 718-719.	27.8	167
3	Dinitrogen and nitrous oxide emission and entrapment in Spartina alterniflora saltmarsh soils following addition of N-15 labelled ammonium and nitrate. Estuarine, Coastal and Shelf Science, 1991, 32, 161-172.	2.1	38
4	Methane fluxes in the southern North Sea: the role of European rivers. Continental Shelf Research, 1991, 11, 37-52.	1.8	76
5	Relationships between CH ₄ emission, biomass, and CO ₂ exchange in a subtropical grassland. Journal of Geophysical Research, 1991, 96, 13067-13071.	3.3	109
6	Role of Plants in Regulating the Methane Flux to the Atmosphere. , 1991, , 29-63.		147
7	Effects of Vegetation on Methane Flux, Reservoirs, and Carbon Isotopic Composition. , 1991, , 65-92.		130
8	Biogeochemistry of billabong sediments. I. The effect of macrophytes. Freshwater Biology, 1991, 26, 209-226.	2.4	59
9	Relationship between Aboveground and Belowground Biomass of Spartina alterniflora (Smooth) Tj ETQq0 0 0 rgl	BT /Qverlo 1.7	ck 10 Tf 50 4 103
10	CH4 production via CO2 reduction in a temperate bog: A source of 13C-depleted CH4. Geochimica Et Cosmochimica Acta, 1992, 56, 3493-3503.	3.9	187
11	Episodic fluxes of methane from subarctic fens. Canadian Journal of Soil Science, 1992, 72, 441-452.	1.2	97

12	Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake. Journal of Geophysical Research, 1992, 97, 16681-16688.	3.3	93
13	Methane flux from <i>Peltandra virginica:</i> stable isotope tracing and chamber effects. Global Biogeochemical Cycles, 1992, 6, 15-31.	4.9	94
14	Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukonâ€Kuskokwim delta, western Alaska. Journal of Geophysical Research, 1992, 97, 16689-16701.	3.3	82
15	Seasonal variations of stable hydrogen and carbon isotope ratios of methane in subtropical freshwater sediments. Global Biogeochemical Cycles, 1992, 6, 125-138.	4.9	24
16	Plantâ€dependent CH ₄ emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 1992, 6, 225-231.	4.9	245
17	Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshwater Biology, 1992, 27, 435-445.	2.4	78
18	Seasonal variation of fungal biomass in the sediment of a salt marsh in New Brunswick. Microbial Ecology, 1993, 26, 37-45.	2.8	22

#	Article	IF	CITATIONS
19	Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry, 1993, 23, 79-97.	3.5	104
20	Carbon remineralization in a north Florida swamp forest: Effects of water level on the pathways and rates of soil organic matter decomposition. Global Biogeochemical Cycles, 1993, 7, 475-490.	4.9	48
21	Methane and Carbon Dioxide Concentrations in Bogs and Fenswith Special Reference to the Effects of the Botanical Composition of the Peat. Journal of Ecology, 1993, 81, 615.	4.0	56
22	Methane Flux from Mangrove Sediments along the Southwestern Coast of Puerto Rico. Estuaries and Coasts, 1994, 17, 140.	1.7	79
23	The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochimica Et Cosmochimica Acta, 1994, 58, 4377-4388.	3.9	106
24	Methane emission by bubbling from Gatun Lake, Panama. Journal of Geophysical Research, 1994, 99, 8307.	3.3	189
25	Convective gas flow in Eleocharis sphacelata R. Br.: methane transport and release from wetlands. Aquatic Botany, 1994, 47, 197-212.	1.6	100
26	Production and emission of methane in a brackish and a freshwater wetland. Soil Biology and Biochemistry, 1994, 26, 7-18.	8.8	53
27	Methane flux from beds of Baumea arthrophylla (Nees) Boeckeler and Triglochin procerum R. Br. at Bool Lagoon, South Australia. Marine and Freshwater Research, 1994, 45, 1543.	1.3	9
28	Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 1995, 40, 1112-1129.	3.1	86
29	Methanogenesis in Arizona, USA dryland streams. Biogeochemistry, 1995, 31, 155-173.	3.5	53
30	Denitrification measured by a direct N2 flux method in sediments of Waquoit Bay, MA. Biogeochemistry, 1995, 31, 63.	3.5	32
31	Methane Fluxes from an Australian Floodplain Wetland: The Importance of Emergent Macrophytes. Journal of the North American Benthological Society, 1995, 14, 582-598.	3.1	32
32	Temporal variations in dissolved methane deep in the Lake Agassiz Peatlands, Minnesota. Global Biogeochemical Cycles, 1995, 9, 197-212.	4.9	81
33	Microbial diversity and activity in a Danish Fjord with anoxic deep water. Ophelia, 1995, 43, 45-100.	0.3	151
34	Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology and Biochemistry, 1996, 28, 17-23.	8.8	174
35	A history of pressurised gas-flow studies in plants. Aquatic Botany, 1996, 54, 87-100.	1.6	81
36	Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanography, 1996, 41, 1375-1383.	3.1	151

#	Article	IF	CITATIONS
37	Losses of inorganic carbon and nitrous oxide from a temperate freshwater wetland in relation to nitrate loading. Biogeochemistry, 1996, 35, 305-326.	3.5	36
38	Summer Methane Fluxes and Fall Oxygen Resources of Onondaga Lake. Lake and Reservoir Management, 1996, 12, 91-101.	1.3	28
39	Methane Efflux from Emergent Vegetation in Peatlands. Journal of Ecology, 1996, 84, 239.	4.0	181
40	Methane oxidation and pathways of production in a Texas paddy field deduced from measurements of flux, Î13C, and ÎƊ of CH4. Global Biogeochemical Cycles, 1997, 11, 323-348.	4.9	124
41	Investigation of the methyl fluoride technique for determining rhizospheric methane oxidation. Biogeochemistry, 1997, 36, 153-172.	3.5	47
42	Die-back of Phragmites australis: influence on the distribution and rate of sediment methanogenesis. Biogeochemistry, 1997, 36, 173-188.	3.5	43
43	The influence of raised water table levels on carbon dioxide and methane production in ditch-dissected peat grasslands in the Netherlands. Ecological Engineering, 1997, 8, 129-144.	3.6	45
44	Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry, 1998, 40, 1-15.	3.5	46
45	Effects of two common macrophytes on methane dynamics in freshwater sediments. , 1998, 43, 79-104.		95
46	Management implications of metal transfer pathways from a refuse tip to mangrove sediments. Science of the Total Environment, 1998, 222, 17-34.	8.0	18
47	Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chemical Geology, 1998, 149, 147-171.	3.3	224
48	Controls on the stable carbon isotopic composition of biogenic methane produced in a tidal freshwater estaurine sediment. Geochimica Et Cosmochimica Acta, 1999, 63, 1075-1082.	3.9	34
49	Methane emission from lakes. Chemosphere, 1999, 38, 1453-1459.	8.2	10
50	Differences in CH4oxidation and pathways of production between rice cultivars deduced from measurements of CH4flux and δ13C of CH4and CO2. Global Biogeochemical Cycles, 1999, 13, 1029-1044.	4.9	70
51	Methane emissions from beaver ponds: Rates, patterns, and transport mechanisms. Global Biogeochemical Cycles, 1999, 13, 1079-1090.	4.9	36
52	Methane dynamics of a northern boreal beaver pond. Ecoscience, 1999, 6, 577-586.	1.4	38
53	Estimating the groundwater contribution into Florida Bay via natural tracers, ²²² Rn and CH ₄ . Limnology and Oceanography, 2000, 45, 1546-1557.	3.1	90
54	Resuspension and oxygen uptake of sediments in combined sewers. Urban Water, 2000, 2, 21-27.	0.5	22

#	Article	IF	CITATIONS
55	Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 2000, 49, 1-19.	3.5	244
56	Selective chemical extraction and grainsize normalisation for environmental assessment of anoxic sediments: validation of an integrated procedure. Science of the Total Environment, 2000, 258, 149-170.	8.0	54
57	Factors Influencing Stable Isotope Ratios in CH ₄ and CO ₂ Within Subenvironments of Freshwater Wetlands: Implications for δ-Signatures of Emissions. Isotopes in Environmental and Health Studies, 2000, 36, 151-176.	1.0	43
58	Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4in a northern Minnesota peatland. Clobal Biogeochemical Cycles, 2000, 14, 1095-1108.	4.9	187
59	Methane in the southern North Sea: Low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochemical Cycles, 2000, 14, 1205-1217.	4.9	136
60	Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California. Journal of Geophysical Research, 2001, 106, 27077-27086.	3.3	123
61	Modeling methane fluxes in wetlands with gas-transporting plants: 1. Single-root scale. Journal of Geophysical Research, 2001, 106, 3511-3528.	3.3	36
62	Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?. Aquatic Botany, 2001, 69, 313-324.	1.6	252
63	Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 2001, 71, 259-271.	1.6	67
65	Rate of growth of isolated bubbles in sediments with a diagenetic source of methane. Limnology and Oceanography, 2001, 46, 616-622.	3.1	46
66	Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: A combined groundwater tracer and in situ isotope enrichment study. Limnology and Oceanography, 2001, 46, 1977-1989.	3.1	94
67	Title is missing!. Water, Air and Soil Pollution, 2001, 1, 447-454.	0.8	9
68	Title is missing!. Biogeochemistry, 2001, 52, 207-224.	3.5	57
69	Gas transport in a residual layer of a water basin. Chemosphere, 2001, 3, 33-40.	1.2	8
70	A Gas-Capture Buoy for Measuring Bubbling Gas Flux in Oceans and Lakes. Journal of Atmospheric and Oceanic Technology, 2001, 18, 1411-1420.	1.3	22
71	Production of methane from alasses in eastern Siberia: Implications from its14C and stable isotopic compositions. Global Biogeochemical Cycles, 2002, 16, 14-1-14-15.	4.9	68
72	A mass balance of carbon stable isotopes in an organic-rich methane-producing lacustrine sediment (Lake Bled, Slovenia). Global and Planetary Change, 2002, 33, 57-72.	3.5	41
73	Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany, 2002, 72, 107-119.	1.6	52

	Cı	itation Report	
#	Article	IF	CITATIONS
74	Mechanical response of sediments to bubble growth. Marine Geology, 2002, 187, 347-363.	2.1	134
75	Title is missing!. Biogeochemistry, 2002, 59, 269-286.	3.5	145
76	Title is missing!. Biogeochemistry, 2002, 61, 1-19.	3.5	41
77	Title is missing!. Biogeochemistry, 2003, 62, 19-37.	3.5	86
78	Methane (CH4) release from littoral wetlands of Boreal lakes during an extended flooding period. Global Change Biology, 2003, 9, 413-424.	9.5	52
79	Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands. Water Resources Research, 2003, 39, .	4.2	90
80	Theoretical consideration of methane emission from sediments. Chemosphere, 2003, 50, 191-200.	8.2	9
81	Physical Controls on Methane Ebullition from Reservoirs and Lakes. Environmental and Engineering Geoscience, 2003, 9, 167-178.	0.9	141
82	Diel Variation of Methane Fluxes in Summer in a Eutrophic Subtropical Lake in China. Journal of Freshwater Ecology, 2004, 19, 639-644.	1.2	23
83	Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry, 2004, 67, 331-351.	3.5	226
84	Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh. Water, Air, and Soil Pollution, 2004, 158, 99-111.	2.4	24
85	Influence of plants on the methane emission from sediments. Chemosphere, 2004, 54, 209-215.	8.2	13
86	Extreme ¹³ C enrichments in a shallow hypereutrophic lake: Implications for carbon cycling. Limnology and Oceanography, 2004, 49, 1152-1159.	3.1	70
87	Coastal seismic wipe-outs: Distribution controlled by pore water salinity. Marine Geology, 2005, 217, 161-175.	2.1	10
88	Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment, 200 39, 3199-3207.)5, 4.1	139
89	Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continenta shelves during glacial low sea level. Marine and Petroleum Geology, 2005, 22, 591-596.	al 3.3	28
90	Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth and Planetary Science Letters, 2005, 235, 31-44.	4.4	66
91	The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry, 2005, 36, 753-768.	1.8	172

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
93	Sediment porewater exchange and solute release during ebullition. Marine Chemistry, 2006, 102, 60-71.	2.3	29
94	Spatial patterns in dissolved oxygen and methane concentrations in a prairie pothole wetland in Iowa, USA. Wetlands, 2006, 26, 1020-1025.	1.5	15
95	Experimental Test of a Mechanistic Model of Production, Flux and Gas Bubble Zonation in Non-vegetated Flooded Rice Field Soil. Biogeochemistry, 2006, 78, 315-342.	3.5	5
96	Spatial and temporal distribution of methane in an extensive shallow estuary, South India. Journal of Earth System Science, 2006, 115, 451-460.	1.3	43
97	Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation. Geochimica Et Cosmochimica Acta, 2007, 71, 5135-5154.	3.9	89
98	Seabed Fluid Flow. Geofluids, 2007, 7, 468-469.	0.7	13
99	Methane release and coastal environment in the East Siberian Arctic shelf. Journal of Marine Systems, 2007, 66, 227-243.	2.1	101
100	Nitrogen ebullition in a Colorado plains river. Biogeochemistry, 2008, 89, 367-377.	3.5	22
101	Emissions of Greenhouse Gases CH4 and N2O from Low-gradient Streams in Agriculturally Developed Catchments. Water, Air, and Soil Pollution, 2008, 188, 155-170.	2.4	62
102	Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. Journal of Geophysical Research, 2008, 113, .	3.3	170
103	Methane bubbles in surface peat cores: <i>in situ</i> measurements. Global Change Biology, 2008, 14, 916-924.	9.5	12
104	Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 2008, 56, 2043-2051.	5.0	120
105	Methane dynamics in different boreal lake types. Biogeosciences, 2009, 6, 209-223.	3.3	181
106	A Model for Contaminant and Sediment Transport via Gas Ebullition Through a Sediment Cap. Environmental Engineering Science, 2009, 26, 1381-1391.	1.6	14
107	Effects of tidal fluctuations on CO2 and CH4 fluxes in the littoral zone of a brackish-water lake. Limnology, 2009, 10, 229-237.	1.5	18
108	Investigation of NAPL transport through a model sand cap during ebullition. Remediation, 2009, 19, 63-69.	2.4	6
109	EBULLITION-FACILITATED TRANSPORT OF MANUFACTURED GAS PLANT TAR FROM CONTAMINATED SEDIMENT. Environmental Toxicology and Chemistry, 2009, 28, 2298.	4.3	21
110	The contribution of the East Siberian shelf to the modern methane cycle. Herald of the Russian Academy of Sciences, 2009, 79, 237-246.	0.6	32

#	Article	IF	CITATIONS
111	Transient growth of an isolated bubble in muddy, fine-grained sediments. Geochimica Et Cosmochimica Acta, 2009, 73, 2581-2591.	3.9	47
112	Impact of terrestrial carbon input on methane emissions from an Alaskan Arctic lake. Geophysical Research Letters, 2009, 36, .	4.0	9
113	A simple technique for continuous measurement of timeâ€variable gas transfer in surface waters. Limnology and Oceanography: Methods, 2009, 7, 185-195.	2.0	40
114	A lowâ€cost automated trap to measure bubbling gas fluxes. Limnology and Oceanography: Methods, 2010, 8, 363-375.	2.0	29
115	Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry, 2010, 100, 21-37.	3.5	81
116	Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Estuarine, Coastal and Shelf Science, 2010, 89, 256-266.	2.1	56
117	Stability of bubbles in a linear elastic medium: Implications for bubble growth in marine sediments. Journal of Geophysical Research, 2010, 115, .	3.3	36
118	Methane dynamics across wetland plant species. Aquatic Botany, 2010, 93, 107-113.	1.6	87
119	Theory of methane emission from wetlands. Energy and Environmental Science, 2010, 3, 1057.	30.8	8
120	Initial rise of bubbles in cohesive sediments by a process of viscoelastic fracture. Journal of Geophysical Research, 2011, 116, .	3.3	76
121	Release of multiple bubbles from cohesive sediments. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	35
122	In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	47
123	Diffusive and ebullitive transport of methane and nitrous oxide from streams: Are bubble-mediated fluxes important?. Journal of Geophysical Research, 2011, 116, .	3.3	86
124	Atmospheric pressure drives changes in the vertical distribution of biogenic free-phase gas in a northern peatland. Journal of Geophysical Research, 2011, 116, .	3.3	35
125	Estuarine and Coastal Sediments $\hat{a} \in $ Coupled Biogeochemical Cycling. , 2011, , 279-316.		25
126	Field-based measurements of sulfur gas emissions from an agricultural coastal acid sulfate soil, eastern Australia. Soil Research, 2011, 49, 471.	1.1	11
127	Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry, 2011, 102, 135-151.	3.5	243
128	The Production of Trace Gases in the Estuarine and Coastal Environment. , 2011, , 271-309.		5

	CITAT	TION REPORT	
#	Article	IF	CITATIONS
129	Carbon Dioxide and Methane Dynamics in Estuaries. , 2011, , 119-161.		150
130	Acoustic detection of gas bubbles in saturated sands at high spatial and temporal resolution. Limnology and Oceanography: Methods, 2012, 10, 129-141.	2.0	8
131	The physics of bubbles in surficial, soft, cohesive sediments. Marine and Petroleum Geology, 2012, 38, 1-18.	3.3	116
132	The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and Forest Meteorology, 2012, 153, 177-187.	4.8	113
133	Characterization of subsurface methane production and release over 3years at a New Hampshire wetland. Geochimica Et Cosmochimica Acta, 2012, 91, 120-139.	3.9	18
134	Controls on gas transfer velocities in a large river. Journal of Geophysical Research, 2012, 117, .	3.3	69
135	Methane flux from sediment into near-bottom water in the coastal area of the Puck Bay (Southern) Tj ET	Qq0 0 0 rgBT /Over	lock 10 Tf 5
136	Automated Flux Chamber for Investigating Gas Flux at Water–Air Interfaces. Environmental Science & Technology, 2013, 47, 968-975.	10.0	38
137	Ebullition of methane from rice paddies: the importance of furthering understanding. Plant and Soil, 2013, 370, 31-34.	3.7	22
138	Autonomous Application of Quantitative PCR in the Deep Sea: In Situ Surveys of Aerobic Methanotrophs Using the Deep-Sea Environmental Sample Processor. Environmental Science & Technology, 2013, 47, 9339-9346.	10.0	47
139	Methane Accumulation and Release from Deep Peat: Measurements, Conceptual Models, and Biogeochemical Significance. Geophysical Monograph Series, 0, , 145-158.	0.1	7
140	Methane bubble growth in fine-grained muddy aquatic sediment: Insight from modeling. Earth and Planetary Science Letters, 2013, 377-378, 336-346.	4.4	35
141	Estimation of N2 and N2O ebullition from eutrophic water using an improved bubble trap device. Ecological Engineering, 2013, 57, 403-412.	3.6	23
142	Submarine groundwater discharge in the Sarasota Bay system: Its assessment and implications for the nearshore coastal environment. Continental Shelf Research, 2013, 53, 63-76.	1.8	16
143	Dynamics and exchange fluxes of methane in the estuarine mangrove environment of the Sundarbans, NE coast of India. Atmospheric Environment, 2013, 77, 631-639.	4.1	48
144	The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (HimmerfjÄ r den, Sweden). Estuaries and Coasts, 2013, 36, 98-115.	2.2	42
145	Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1015-1034.	3.0	60
146	Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith) Tj E	TQq1 1 0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
147	Temporal variability of <i>in situ</i> methane concentrations in gas hydrateâ€bearing sediments near Bullseye Vent, Northern Cascadia Margin. Geochemistry, Geophysics, Geosystems, 2013, 14, 2445-2459.	2.5	27
148	Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1802-1813.	3.0	26
149	Pumping methane out of aquatic sediments – ebullition forcing mechanisms in an impounded river. Biogeosciences, 2014, 11, 2925-2938.	3.3	95
150	Ebullitionâ€enhanced solute transport in coarseâ€grained sediments. Limnology and Oceanography, 2014, 59, 1733-1748.	3.1	16
151	Physical controls on CH ₄ emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences, 2014, 11, 4251-4269.	3.3	51
152	Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate. Springer Earth System Sciences, 2014, , 113-169.	0.2	29
153	Spatial and temporal dynamics of diffusive methane emissions in the Okavango Delta, northern Botswana, Africa. Wetlands Ecology and Management, 2014, 22, 63-78.	1.5	24
154	Ebullitive methane emissions from oxygenated wetland streams. Global Change Biology, 2014, 20, 3408-3422.	9.5	69
155	Seasonal methanotrophy across a hydrological gradient in a freshwater wetland. Ecological Engineering, 2014, 72, 116-124.	3.6	15
156	Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer. Geochimica Et Cosmochimica Acta, 2014, 128, 144-157.	3.9	13
157	Plant-mediated transport and isotopic composition of methane from shallow tropical wetlands. Inland Waters, 2014, 4, 369-376.	2.2	8
158	Modeling methane emissions from arctic lakes: Model development and siteâ€level study. Journal of Advances in Modeling Earth Systems, 2015, 7, 459-483.	3.8	71
159	Dissolved gas dynamics in wetland soils: Root-mediated gas transfer kinetics determined via push-pull tracer tests. Water Resources Research, 2015, 51, 7343-7357.	4.2	12
160	Gas bubble transport and emissions for shallow peat from a northern peatland: The role of pressure changes and peat structure. Water Resources Research, 2015, 51, 151-168.	4.2	23
161	Impacts of Biochar Amendment on Greenhouse Gas Emissions from Agricultural Soils. SSSA Special Publication Series, 0, , 259-293.	0.2	4
162	Sediment iron content does not play a significant suppressive role on methane emissions from boreal littoral sedge (Carex) vegetation. Aquatic Botany, 2015, 127, 70-79.	1.6	1
163	Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern) Tj ETQq0 0 0 rg	gBT_/Overlc	ock 10 Tf 50

Gas Transport and Exchange through Wetland Plant Aerenchyma. Soil Science Society of America 0. Book Series, 2015, , 177-196.

#	Article	IF	CITATIONS
165	Does <i>Juncus effusus</i> enhance methane emissions from grazed pastures on peat?. Biogeosciences, 2015, 12, 5667-5676.	3.3	7
166	Modeling of gas generation from the river adjacent to the manufactured gas plant. RSC Advances, 2015, 5, 9565-9573.	3.6	3
167	Applying a new method for direct collection, volume quantification and determination of N2 emission from water. Journal of Environmental Sciences, 2015, 27, 217-224.	6.1	4
168	CO ₂ and CH ₄ isotope compositions and production pathways in a tropical peatland. Global Biogeochemical Cycles, 2015, 29, 1-18.	4.9	41
170	Does vegetation affect the methane oxidation efficiency of passive biosystems?. Waste Management, 2015, 38, 240-249.	7.4	17
171	Above- and Belowground Biomass Allocation in Four Dominant Salt Marsh Species of the Eastern United States. Wetlands, 2015, 35, 21-30.	1.5	37
172	Anthropogenic effects on greenhouse gas (CH4 and N2O) emissions in the Guadalete River Estuary (SW) Tj ETQc	0 0 0 rgB ⁻ 8.0	[/Overlock 1
173	Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 2016, 13, 3735-3755.	3.3	102
174	Ephemerality of discrete methane vents in lake sediments. Geophysical Research Letters, 2016, 43, 4374-4381.	4.0	32
175	Biased sampling of methane release from northern lakes: A problem for extrapolation. Geophysical Research Letters, 2016, 43, 1256-1262.	4.0	128
176	Substrate mapping of three rivers in a Ramsar wetland in Jamaica: a comparison of data collection (hydroacoustic v. grab samples), classification and kriging methods. Marine and Freshwater Research, 2016, 67, 1771.	1.3	6
177	Effect of plants on processes of methane cycle in bottom deposits and soil rhizosphere. Contemporary Problems of Ecology, 2016, 9, 771-782.	0.7	3
178	Supplemental tests of gas trapping device for N2 flux measurement. Ecological Engineering, 2016, 93, 9-12.	3.6	2
179	The role of sediment structure in gas bubble storage and release. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1992-2005.	3.0	51
180	Methane emission through ebullition from an estuarine mudflat: 1. A conceptual model to explain tidal forcing based on effective stress changes. Water Resources Research, 2016, 52, 4469-4485.	4.2	19
181	Biogeochemistry of Ethanol and Acetaldehyde in Freshwater Sediments. Aquatic Geochemistry, 2016, 22, 177-195.	1.3	9
182	Processes affecting molecular and stable isotope compositions of sediment gas in estuarine waters along the southern Baltic coast (Poland). Biogeochemistry, 2016, 131, 203-228.	3.5	2
183	High resolution sampling of methane transport in the <scp>C</scp> olumbia <scp>R</scp> iver nearâ€field plume: Implications for sources and sinks in a riverâ€dominated estuary. Limnology and Oceanography, 2016, 61, S204.	3.1	10

#	Article	IF	CITATIONS
184	Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake. Environmental Science & Technology, 2016, 50, 6267-6275.	10.0	43
185	Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau. Science of the Total Environment, 2016, 542, 57-64.	8.0	30
186	Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission. Environmental Science & Technology, 2017, 51, 1267-1277.	10.0	91
187	Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?. Environmental Science & Technology, 2017, 51, 3703-3713.	10.0	10
188	Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1156-1174.	3.0	46
189	Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1216-1238.	3.0	21
190	Persistence of bubble outlets in soft, methaneâ€generating sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1298-1320.	3.0	25
191	Dataâ€Constrained Projections of Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated CO ₂ and Warming. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2841-2861.	3.0	47
192	Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Global Change Biology, 2017, 23, 2768-2782.	9.5	54
193	Methane emission through ebullition from an estuarine mudflat: 2. Field observations and modeling of occurrence probability. Water Resources Research, 2017, 53, 6439-6453.	4.2	6
194	Oxygen Ebullition From Lakes. Geophysical Research Letters, 2017, 44, 9372-9378.	4.0	24
195	Timescale dependence of environmental controls on methane efflux from Poyang Hu, China. Biogeosciences, 2017, 14, 2019-2032.	3.3	13
196	Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan. Atmospheric Environment, 2018, 179, 156-165.	4.1	13
197	Benthic fluxes of methane along the salinity gradient of a tropical monsoonal estuary: Implications for CH4 supersaturation and emission. Marine Chemistry, 2018, 202, 73-85.	2.3	20
198	Gas bubble cavities in deltaic muds, Lake Powell delta, Glen Canyon National Recreation Area, Hite, Utah. Marine and Petroleum Geology, 2018, 92, 904-912.	3.3	3
199	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	23.0	354
200	Importance of sediment organic matter to methane ebullition in a sub-tropical freshwater reservoir. Science of the Total Environment, 2018, 621, 1199-1207.	8.0	34
201	Standing Dead Trees are a Conduit for the Atmospheric Flux of CH4 and CO2 from Wetlands. Wetlands, 2018, 38, 133-143.	1.5	18

#	Article	IF	Citations
202	Effects of an Experimental Water-level Drawdown on Methane Emissions from a Eutrophic Reservoir. Ecosystems, 2018, 21, 657-674.	3.4	38
203	Distribution and isotopic signature of deep gases in submerged soils in an island of the Lower Delta of the ParanÃ; River, Argentina. Environmental Monitoring and Assessment, 2018, 190, 647.	2.7	1
204	Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere. Biogeosciences, 2018, 15, 1775-1794.	3.3	15
205	Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. Applied and Environmental Microbiology, 2018, 84, .	3.1	13
206	Bubble-mediated methane release from polluted Dalian Bay in China in summer, 2016. Continental Shelf Research, 2019, 185, 51-56.	1.8	8
207	Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Science of the Total Environment, 2019, 686, 1164-1172.	8.0	40
208	What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition. Limnology and Oceanography, 2019, 64, 1526-1544.	3.1	47
209	Methane Bubble Escape From Gas Horizon in Muddy Aquatic Sediment Under Periodic Wave Loading. Geophysical Research Letters, 2019, 46, 6507-6515.	4.0	7
210	Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. New Phytologist, 2019, 224, 146-154.	7.3	66
211	Rapid formation of iron sulfides alters soil morphology and chemistry following simulated marsh restoration. Geoderma, 2019, 351, 76-84.	5.1	9
212	Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland. Biogeosciences, 2019, 16, 1937-1953.	3.3	29
213	iAMES: An <u>i</u> nexpensive, <u>A</u> utomated <u>M</u> ethane <u>E</u> bullition <u>S</u> ensor. Environmental Science & Technology, 2019, 53, 6420-6426.	10.0	16
214	Methane Dynamics Associated with Tidal Processes in the Lower Columbia River. Estuaries and Coasts, 2019, 42, 1249-1264.	2.2	3
215	Wetland methane emissions dominated by plantâ€mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnology and Oceanography, 2019, 64, 1895-1912.	3.1	52
216	Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology and Oceanography, 2019, 64, 2114-2128.	3.1	48
217	Highly Dynamic Methane Emission from the West Siberian Boreal Floodplains. Wetlands, 2019, 39, 217-226.	1.5	10
218	Biogeochemistry of Tidal Freshwater Wetlands. , 2019, , 641-683.		19
219	Biogeochemical and physical controls on methane fluxes from two ferruginous meromictic lakes. Geobiology 2020 18 54-69	2.4	14

#	Article	IF	CITATIONS
220	Legacy Effects of Eutrophication on Modern Methane Dynamics in a Boreal Estuary. Estuaries and Coasts, 2020, 43, 189-206.	2.2	25
221	Methane dissolution inside bulk or porous-medium-confined water at near-hydrate equilibrium conditions. Molecular Physics, 2020, 118, e1699186.	1.7	1
222	Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005474.	3.0	26
223	Spatial and temporal variability of methane emissions from cascading reservoirs in the Upper Mekong River. Water Research, 2020, 186, 116319.	11.3	29
224	Vegetation Affects Timing and Location of Wetland Methane Emissions. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005777.	3.0	33
225	Variability of a natural hydrocarbon seep and its connection to the ocean surface. Scientific Reports, 2020, 10, 12654.	3.3	19
226	Spatial and temporal heterogeneity of geochemical controls on carbon cycling in a tidal salt marsh. Geochimica Et Cosmochimica Acta, 2020, 282, 1-18.	3.9	43
227	Temperature Proxies as a Solution to Biased Sampling of Lake Methane Emissions. Geophysical Research Letters, 2020, 47, e2020GL088647.	4.0	14
228	Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. Journal of Environmental Management, 2020, 271, 110997.	7.8	10
229	Carbon Dioxide and Methane Emissions From A Temperate Salt Marsh Tidal Creek. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005558.	3.0	27
230	Methane emissions from oil and gas platforms in the Bohai Sea, China. Environmental Pollution, 2020, 263, 114486.	7.5	11
231	Greenhouse gas emissions (CO2 and CH4) and inorganic carbon behavior in an urban highly polluted tropical coastal lagoon (SE, Brazil). Environmental Science and Pollution Research, 2021, 28, 38173-38192.	5.3	17
232	Noble gases as tracers for the gas dynamics in methane supersaturated lacustrine sediments. Chemical Geology, 2021, 568, 119905.	3.3	2
233	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
234	Ebullition dominates methane fluxes from the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of the growing season. Science of the Total Environment, 2021, 767, 144498.	8.0	24
235	Gas Pressure Dynamics in Small and Mid-Size Lakes. Water (Switzerland), 2021, 13, 1824.	2.7	7
236	Sea-Air Exchange of Methane in Shallow Inshore Areas of the Baltic Sea. Frontiers in Marine Science, 2021, 8, .	2.5	5
237	An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2019JG005468.	3.0	11

#	Article	IF	CITATIONS
238	Carbon Dioxide and Methane Emissions from Estuaries. , 0, , 187-207.		20
239	Biogenic Trace Gas Exchanges. , 2000, , 235-248.		4
241	Seasonal Variations in the Isotopic Composition of Methane Associated with Aquatic Macrophytes. , 1993, , 619-632.		2
242	Methane Oxidation in Coastal Marine Environments. , 1996, , 51-68.		21
243	Modeling trace gas emissions from agricultural ecosystems. , 2000, , 259-276.		93
244	Methane Fluxes from a Wetland using the Flux-Gradient Technique. , 2001, , 447-454.		3
245	Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake. Biogeosciences, 2020, 17, 3135-3147.	3.3	8
246	Mineralization of organic matter in boreal lake sediments: rates, pathways, and nature of the fermenting substrates. Biogeosciences, 2020, 17, 4571-4589.	3.3	4
253	Methane dynamics of saltmarsh soils built up from marine and peat material at the German North Sea coast. , 2002, , 197-213.		1
254	Deep-water coral reefs: unique biodiversity hot-spots. Choice Reviews, 2008, 46, 46-2065-46-2065.	0.2	3
255	An Empirical Model for Dinitrogen Gas Emission from Inland Waters. Atmospheric and Climate Sciences, 2019, 09, 1-25.	0.3	1
257	Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006511.	3.0	7
258	Disproportionate Contribution of Vegetated Habitats to the CH4 and CO2 Budgets of a Boreal Lake. Ecosystems, 2022, 25, 1522-1541.	3.4	14
259	Dominance of Diffusive Methane Emissions From Lowland Headwater Streams Promotes Oxidation and Isotopic Enrichment. Frontiers in Environmental Science, 2022, 9, .	3.3	5
260	Mechanism of Faster CH4 Bubble Growth Under Surface Waves in Muddy Aquatic Sediments: Effects of Wave Amplitude, Period, and Water Depth. Frontiers in Earth Science, 2022, 10, .	1.8	3
261	The tidal freshwater river zone: Physical properties and biogeochemical contribution to estuarine hypoxia and acidification - The "hydrologic switch― Estuarine, Coastal and Shelf Science, 2022, 268, 107786.	2.1	3
262	Water-air gas exchange of CO2 and CH4 in coastal wetlands. , 2022, , 167-196.		0
263	Advance in Numerical Simulation Research of Marine Methane Processes. Frontiers in Earth Science, 2022. 10	1.8	1

	Сіта	CITATION REPORT		
#	Article	IF	CITATIONS	
264	Ebullition Regulated by Pressure Variations in a Boreal Pit Lake. Frontiers in Earth Science, 2022, 10, .	1.8	1	
265	Physiological processes affecting methane transport by wetland vegetation – A review. Aquatic Botany, 2022, 182, 103547.	1.6	22	
266	Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone. Geosciences (Switzerland), 2022, 12, 345.	2.2	2	
268	Changing temporal and spatial patterns of methane emission from rivers by reservoir dams: a review. Environmental Science and Pollution Research, 2023, 30, 74485-74499.	5.3	1	
269	Resource availability governs polyhydroxyalkanoate (PHA) accumulation and diversity of methanotrophic enrichments from wetlands. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	2	
270	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	1.5	2	
271	Large Methane Emissions From Tree Stems Complicate the Wetland Methane Budget. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0	
272	Estuarine and Coastal Sediments $\hat{a} \in $ Coupled Biogeochemical Cycling. , 2024, , 578-625.		1	
273	Subsurface Redox Interactions Regulate Ebullitive Methane Flux in Heterogeneous Mississippi River Deltaic Wetland. Journal of Advances in Modeling Earth Systems, 2024, 16, .	3.8	2	
274	Methane gas dynamics in sediments of Lake Kinneret, Israel, and their controls: Insights from a multiannual acoustic investigation and correlation analysis. Science of the Total Environment, 2024, 918, 170480.	8.0	0	
275	Methane oxidation minimizes emissions and offsets to carbon burial in mangroves. Nature Climate Change, 2024, 14, 275-281.	18.8	0	
276	High methane ebullition throughout one year in a regulated central European stream. Scientific Reports, 2024, 14, .	3.3	0	
277	Carbon Dioxide and Methane Dynamics in Estuaries. , 2011, , 78-122.		0	
278	The Production of Trace Gases in the Estuarine and Coastal Environment. , 2011, , 35-77.		0	