Restoration of retinal images obtained through cataract

IEEE Transactions on Medical Imaging 8, 401-406 DOI: 10.1109/42.41493

Citation Report

#	Article	IF	CITATIONS
1	Electro-optic fundus imaging. Survey of Ophthalmology, 1989, 34, 113-122.	4.0	9
2	Analysis Of Retinal Vessel Structure From Multiple Images. , 0, , .		3
3	Estimation Of Nerve Fiber Loss From Digitized Retinal Images. , 0, , .		2
4	Enhancement of retinal images: Pros and problems. Neuroscience and Biobehavioral Reviews, 1993, 17, 469-476.	6.1	20
5	<title>Enhancement of retinal images: a critical evaluation of the technology</title> . , 1993, 2094, 252.		0
6	Space and frequency variant image enhancement based on a Gabor representation. Pattern Recognition Letters, 1994, 15, 273-277.	4.2	22
7	A spatially variant model for imaging through cataract. , 0, , .		1
8	The preprocessing of retinal images for the detection of fluorescein leakage. Physics in Medicine and Biology, 1999, 44, 293-308.	3.0	47
9	A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Transactions on Medical Imaging, 2002, 21, 1236-1243.	8.9	667
10	Enhancement of color retinal images in poor imaging conditions. , 2012, , .		1
11	Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Processing, 2014, 8, 601-609.	2.5	55
12	Computerâ€∎ided diagnosis based on enhancement of degraded fundus photographs. Acta Ophthalmologica, 2018, 96, e320-e326.	1.1	11
13	Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis. IEEE Transactions on Medical Imaging, 2018, 37, 2536-2546.	8.9	45
15	Retinal image preprocessing, enhancement, and registration. , 2019, , 59-77.		7
16	Structure-preserving guided retinal image filtering for optic disc analysis. , 2019, , 199-221.		5
17	Multi-Label Classification of Fundus Images With EfficientNet. IEEE Access, 2020, 8, 212499-212508.	4.2	76
18	Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3374-3383.	6.3	30
19	Automatic fundus image quality assessment on a continuous scale. Computers in Biology and Medicine, 2021, 129, 104114.	7.0	13

TATION PEDO

CITATION REPORT

#	Article	IF	CITATIONS
20	Modeling and Enhancing Low-Quality Retinal Fundus Images. IEEE Transactions on Medical Imaging, 2021, 40, 996-1006.	8.9	71
21	Nul-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image Non-Uniform Illumination Removal. , 2020, , .		8
22	Detecting Diabetic Retinopathy from Retinal Images Using CUDA Deep Neural Network. International Journal of Intelligent Engineering and Systems, 2017, 10, 284-292.	0.6	2
23	A double-pass fundus reflection model for efficient single retinal image enhancement. Signal Processing, 2022, 192, 108400.	3.7	16
24	An Annotation-Free Restoration Network for Cataractous Fundus Images. IEEE Transactions on Medical Imaging, 2022, 41, 1699-1710.	8.9	28
25	End-to-end residual attention mechanism for cataractous retinal image dehazing. Computer Methods and Programs in Biomedicine, 2022, 219, 106779.	4.7	6
26	Improvement of Retinal Images Affected by Cataracts. Photonics, 2022, 9, 251.	2.0	3
27	Domain Generalization in Restoration of Cataract Fundus Images Via High-Frequency Components. , 2022, , .		3
28	Luminosity Rectified Blind Richardson-Lucy Deconvolution for Single Retinal Image Restoration. SSRN Electronic Journal, 0, , .	0.4	1
29	Structure-Consistent Restoration Network forÂCataract Fundus Image Enhancement. Lecture Notes in Computer Science, 2022, , 487-496.	1.3	10
30	Luminosity rectified blind Richardson-Lucy deconvolution for single retinal image restoration. Computer Methods and Programs in Biomedicine, 2023, 229, 107297.	4.7	0
31	EyeDeep-Net: a multi-class diagnosis of retinal diseases using deep neural network. Neural Computing and Applications, 2023, 35, 10551-10571.	5.6	9
32	A fundus image enhancer based on illumination-guided attention and optic disc perception GAN. Optik, 2023, 279, 170729.	2.9	2
33	MUTE: A multilevel-stimulated denoising strategy for single cataractous retinal image dehazing. Medical Image Analysis, 2023, 88, 102848.	11.6	0
34	Cataractous eye fundus image enhancement by using multi-scale tone decomposition. , 2023, , .		0
35	TSSFN: Transformer-based self-supervised fusion network for low-quality fundus image enhancement. Biomedical Signal Processing and Control, 2024, 89, 105768.	5.7	0
36	Effect of simulated cataract on the accuracy of artificial intelligence in detecting diabetic retinopathy in color fundus photos. Indian Journal of Ophthalmology, 2024, 72, S42-S45.	1.1	0
37	Fundus photograph-based cataract evaluation network using deep learning. Frontiers in Physics, 0, 11,	2.1	Ο

#	Article	IF	CITATIONS
38	Dehazing Algorithm for Enhancing Fundus Photographs Using Dark Channel and Bright Channel Prior. Journal of Korean Ophthalmological Society, 2024, 65, 44-52.	0.2	0
39	Removing Stray-Light forÂWild-Field Fundus Image Fusion Based onÂLarge Generative Models. Lecture Notes in Computer Science, 2024, , 3-16.	1.3	Ο

CITATION REPORT