The use of laboratory velocity data for estimating temp the lowâ€velocity zone: Comparison with heat flow and

Journal of Geophysical Research 94, 5689-5704 DOI: 10.1029/jb094ib05p05689

Citation Report

#	Article	IF	CITATIONS
1	Anelasticity and thermal structure of the oceanic upper mantle: Temperature calibration with heat flow data. Journal of Geophysical Research, 1989, 94, 5705-5715.	3.3	52
2	<i>Qp</i> â€melting temperature relation in peridotite at high pressure and temperature: Attenuation mechanism and implications for the mechanical properties of the upper mantle. Journal of Geophysical Research, 1989, 94, 10647-10661.	3.3	131
3	Electrical conductivity of the earth's crust and upper mantle. Surveys in Geophysics, 1990, 11, 133-161.	4.6	43
4	Marine electromagnetic induction studies. Surveys in Geophysics, 1990, 11, 303-327.	4.6	35
5	A kinematic model for the Late Cenozoic development of southern California crust and upper mantle. Journal of Geophysical Research, 1990, 95, 19747-19762.	3.3	70
6	Longâ€period <i>S</i> to <i>P</i> converted waves and the onset of partial melting beneath Oahu, Hawaii. Geophysical Research Letters, 1991, 18, 869-872.	4.0	46
7	Seafloor compliance observed by longâ€period pressure and displacement measurements. Journal of Geophysical Research, 1991, 96, 16151-16160.	3.3	105
8	<i>P</i> wave velocity anomalies between the Tonga subducting slab and the overlying mantle beneath the Lau Basin. Journal of Geophysical Research, 1991, 96, 18119-18128.	3.3	4
9	Joint inversion of shear wave travel time residuals and geoid and depth anomalies for longâ€wavelength variations in upper mantle temperature and composition along the Midâ€Atlantic Ridge. Journal of Geophysical Research, 1991, 96, 19981-20009.	3.3	48
10	Structure of the Earth: Mantle and Core. Reviews of Geophysics, 1991, 29, 671-679.	23.0	6
11	Tomography, the Geoid and Plate Motions. Reviews of Geophysics, 1991, 29, 776-782.	23.0	1
12	Mantle Discontinuities. Reviews of Geophysics, 1991, 29, 783-793.	23.0	36
13	<i>Q_p</i> beneath the Rio Grande and East African Rift Zones. Journal of Geophysical Research, 1991, 96, 10113-10128.	3.3	31
14	Midâ€Ocean Ridge Dynamics: Observations and Theory. Reviews of Geophysics, 1991, 29, 807-822.	23.0	18
15	Deformation of Earth Materials: Six Easy Pieces. Reviews of Geophysics, 1991, 29, 823-843.	23.0	18
16	Electromagnetic Induction Studies. Reviews of Geophysics, 1991, 29, 405-415.	23.0	11
17	A three-dimensional seismic image of the crust and upper mantle beneath the Kenya rift. Nature, 1991, 354, 199-203.	27.8	121
18	Viscosity of the upper mantle from laboratory creep and anelasticity measurements in peridotite at high pressure and temperature. Geophysical Journal International, 1991, 105, 587-599.	2.4	16

ARTICLE IF CITATIONS # Seismic Imaging of Sea-Floor Spreading. Science, 1992, 258, 1442-1443. 19 12.6 2 Physical model of source region of subduction zone volcanics. Journal of Geophysical Research, 1992, 3.3 97, 2037-2070. Heatâ€flow constraints on the West African lithosphere structure. Geophysical Research Letters, 1992, 21 4.0 21 19, 561-564. Tomographic image of the axial low $\hat{e}v$ elocity zone at $12\hat{A}^{\circ}50\hat{e}^{2}N$ on the East Pacific Rise. Journal of Geophysical Research, 1992, 97, 9243-9263. Seismic constraints on the nature of lower crustal reflectors beneath the extending Southern Transition Zone of the Colorado Plateau, Arizona. Journal of Geophysical Research, 1992, 97, 23 3.3 28 12391-12407. A study of the Kenya rift using delay-time tomography analysis and gravity modelling. Tectonophysics, 1992, 209, 197-207. 2.2 37 A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992, 25 27.8 1,351 359, 123-129. The electrical conductivity of the oceanic upper mantle. Geophysical Journal International, 1992, 110, 2.4 26 159-179. Thermal structure of the mantle wedge beneath northeastern Japan: Magmatism in an island arc from 27 the combined data of seismic anelasticity and velocity and heat flow. Journal of Volcanology and 2.1 26 Geothermal Research, 1992, 51, 237-252. Thermal anomalies beneath the Australian-Antarctic discordance. Earth and Planetary Science Letters, 4.4 24 1993, 119, 349-364. Small-Scale Convective Instability and Upper Mantle Viscosity Under California. Science, 1993, 261, 29 12.6 55 460-463. Tomographic image of the Midâ€Atlantic Plate Boundary in southwestern Iceland. Journal of 3.3 Geophysical Research, 1993, 98, 6607-6622. The accretion of oceanic crust by episodic sill intrusion. Journal of Geophysical Research, 1993, 98, $\mathbf{31}$ 3.3 216 4143-4161. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9°17â€2N Deval from forward modeling of common depth point data. Journal of Geophysical Research, 1993, 98, 3.3 194 13945-13969. Dilatational anelasticity in partial melts: Viscosity, attenuation, and velocity dispersion. Journal of 33 3.3 11 Geophysical Research, 1993, 98, 19807-19817. Convection and melting at midâ€ocean ridges. Journal of Geophysical Research, 1993, 98, 19477-19503. Seismic evidence for active magmatic underplating beneath the Basin and Range Province, western 35 3.3 52 United States. Journal of Geophysical Research, 1993, 98, 22095-22108. Trace elements in migrating highâ€temperature fluids: Effects of diffusive exchange with the adjoining 3.3 solid. Journal of Geophysical Research, 1993, 98, 22007-22020.

#	Article	IF	CITATIONS
37	Magma chambers at oceanic ridges: How large?. Geology, 1993, 21, 53.	4.4	53
38	Constraints on Pacific midplate swells from global depth-age and heat flow-age models. Geophysical Monograph Series, 1993, , 53-76.	0.1	31
39	Magnetotelluric Surveys and Resistivity Profiles in Australia. Exploration Geophysics, 1993, 24, 175-178.	1.1	1
40	H2O and Magmatism in Island Arc Mantle Inferred from Seismic Anelasticity and Heat Flow Data Journal of Physics of the Earth, 1994, 42, 439-453.	1.4	6
41	Chapter 12 Generalized Upper Mantle Thermal Structure of the Western United States and Its Relationship to Seismic Attenuation, Heat Flow, Partial Melt, and Magma Ascent and Emplacement. International Geophysics, 1994, 57, 259-290.	0.6	9
42	Subduction systems and magmatism. Geological Society Special Publication, 1994, 81, 3-28.	1.3	59
43	Seismological Constraints on the Velocity Structure and Fate of Subducting Lithospheric Slabs: 25 Years of Progress. Advances in Geophysics, 1994, , 1-180.	2.8	11
44	PnVelocities Beneath Continental Collision Zones: the Turkish-Iranian Plateau. Geophysical Journal International, 1994, 117, 273-283.	2.4	184
45	Characterizing Long-Period Seismic Effects of Long-Wavelength Elastic and Anelastic Models. Geophysical Journal International, 1994, 117, 365-393.	2.4	11
46	Convective coupling between ductile lower crust and upper mantle, and its tectonic implications. Geophysical Journal International, 1994, 118, 579-603.	2.4	15
47	Physical state of the western U.S. upper mantle. Journal of Geophysical Research, 1994, 99, 9635-9650.	3.3	108
48	Seismic constraints on a model of partial melts under ridge axes. Journal of Geophysical Research, 1994, 99, 4549-4558.	3.3	7
49	Pn tomography beneath the Southern Great Basin. Geophysical Research Letters, 1994, 21, 2187-2190.	4.0	12
50	Comment on "Tomographic image of the Mid-Atlantic plate boundary in southwestern Ireland―by Ingi T. Bjarnason, William Menke, Ólafur G. Flóvenz, and David Caress. Journal of Geophysical Research, 1994, 99, 17909-17914.	3.3	5
51	Reply [to "Comment on â€~Tomographic image of the Mid-Atlantic plate boundary in southwestern Ireland' by Ingi T. Bjarnason, William Menke, A"lafur G. FlÃ3venz, and David Caressâ€]. Journal of Geophysical Research, 1994, 99, 17915-17917.	3.3	6
52	S-wave velocity, basalt chemistry and bathymetry along the Mid-Atlantic Ridge. Physics of the Earth and Planetary Interiors, 1994, 84, 79-93.	1.9	20
53	Crustal tomography of the central kenya rift. Tectonophysics, 1994, 236, 291-304.	2.2	7
54	Chapter 7 An Observational and Theoretical Synthesis of Magma Chamber Geometry and Crustal Genesis along a Mid-ocean Ridge Spreading Center. International Geophysics, 1994, 57, 139-178.	0.6	39

#	Article	IF	CITATIONS
55	Three-dimensional P- and S-wave velocity structure below Unzen volcano. Journal of Volcanology and Geothermal Research, 1995, 65, 1-26.	2.1	22
56	Laboratory Seismic Studies: A Search for Mechanical, Thermal and Chemical Structures of the Earth Journal of Physics of the Earth, 1995, 43, 421-455.	1.4	2
57	Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. Journal of Geophysical Research, 1995, 100, 1981-2001.	3.3	386
58	Upper crustal tomographic images of the Amiata-Vulsini geothermal region, central Italy. Journal of Geophysical Research, 1995, 100, 4053-4066.	3.3	34
59	Seismological evidence for magmatic and hydrothermal structure in Long Valley Caldera from local earthquake attenuation and velocity tomography. Journal of Geophysical Research, 1995, 100, 8311-8326.	3.3	102
60	The lower crust of the Bay of Islands ophiolite, Canada: Petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. Journal of Geophysical Research, 1996, 101, 25105-25124.	3.3	55
61	Variable viscosity convection and partial melting in the continental asthenosphere. Journal of Geophysical Research, 1996, 101, 5411-5423.	3.3	27
62	Convective thermal instabilities in the wake of the migrating Mendocino Triple Junction, California. Geophysical Research Letters, 1996, 23, 1573-1576.	4.0	9
63	Influence of fluids on the elastic properties of sandstone at high pressure and temperature. Geophysical Research Letters, 1996, 23, 3115-3118.	4.0	7
64	The upper mantle structure of the central Rio Grande rift region from teleseismicPandSwave travel time delays and attenuation. Journal of Geophysical Research, 1996, 101, 16003-16023.	3.3	26
65	Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research, 1996, 101, 22291-22309.	3.3	170
66	An Analysis of the Temperature Derivative of Shear-Wave Velocity in the Oceanic Lithosphere of the Pacific Basin Journal of Physics of the Earth, 1997, 45, 67-71.	1.4	5
67	Upper mantlePwave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. Journal of Geophysical Research, 1997, 102, 11829-11841.	3.3	87
68	Three-dimensional tomographic velocity structure of upper crust, Coaxial segment, Juan de Fuca Ridge: Implications for on-axis evolution and hydrothermal circulation. Journal of Geophysical Research, 1997, 102, 17679-17695.	3.3	47
69	Crustal structure along the west flank of the Cascades, western Washington. Journal of Geophysical Research, 1997, 102, 17857-17873.	3.3	35
70	SKSsplitting beneath continental rift zones. Journal of Geophysical Research, 1997, 102, 22781-22797.	3.3	143
71	Three-dimensional thermal modeling for the Mendocino Triple Junction area. Earth and Planetary Science Letters, 1997, 148, 45-57.	4.4	23
72	Three-dimensional Mapping of Magma Source and Transport Regions from Seismic Data: The Mantle Wedge beneath Northeastern Japan. Pure and Applied <u>Geophysics. 1998. 153. 377-398.</u>	1.9	12

#	Article	IF	CITATIONS
73	Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global approach. Earth and Planetary Science Letters, 1998, 157, 151-165.	4.4	50
74	Melt topology and seismic anisotropy in mantle peridotites of the oman ophiolite. Earth and Planetary Science Letters, 1998, 164, 553-568.	4.4	23
75	High-resolution, two-dimensional vertical tomography of the central Pacific mantle usingScSreverberations and frequency-dependent travel times. Journal of Geophysical Research, 1998, 103, 17933-17971.	3.3	98
76	A seismic inversion study of the axial magma chamber reflector beneath the East Pacific Rise near 10°N. Geological Society Special Publication, 1998, 148, 17-28.	1.3	9
77	Velocity–density relationships and modeling the lithospheric density variations of the Kenya Rift. Tectonophysics, 1999, 302, 225-240.	2.2	16
78	Modelling the seismic properties of fast-spreading ridge crustal Low-Velocity Zones: insights from Oman gabbro textures. Tectonophysics, 1999, 312, 283-301.	2.2	30
79	Seismological structure of the upper mantle: a regional comparison of seismic layering. Physics of the Earth and Planetary Interiors, 1999, 110, 21-41.	1.9	138
80	Seismic structure of the upper mantle beneath the western Philippine Sea. Physics of the Earth and Planetary Interiors, 1999, 110, 263-283.	1.9	28
81	Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust. Journal of Geophysical Research, 1999, 104, 5069-5079.	3.3	53
82	Shear-wave structure of the lithosphere above the Hawaiian Hot Spot from two-station Rayleigh wave phase velocity measurements. Geophysical Research Letters, 1999, 26, 1493-1496.	4.0	58
83	Lithospheric deformation beneath the San Gabriel Mountains in the southern California Transverse Ranges. Journal of Geophysical Research, 1999, 104, 15025-15041.	3.3	36
84	2-D georesistivity structure in the central part of the northeastern Japan arc. Earth, Planets and Space, 1999, 51, 1035-1046.	2.5	7
85	Study of intergranular films and interstitial phases in geomaterials using high temperature centrifuge and ultrasonic method at high pressure. Physics and Chemistry of the Earth, 2000, 25, 209-214.	0.6	9
86	Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms. Physics of the Earth and Planetary Interiors, 2000, 121, 339-357.	1.9	30
87	Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone. Tectonophysics, 2000, 319, 225-239.	2.2	71
88	Evidence for the location and cause of large crustal earthquakes in Japan. Journal of Geophysical Research, 2000, 105, 13579-13594.	3.3	78
89	Upper mantle velocity structure in the western Pacific rim estimated from short-period recordings at Matsushiro Seismic Array System. Earth, Planets and Space, 2000, 52, 459-466.	2.5	5
90	Melting and seismic structure beneath the Northeast Japan Arc. Geophysical Research Letters, 2000, 27, 425-428.	4.0	115

#	Article	IF	CITATIONS
91	Shallow mantle temperatures under Europe fromPandSwave tomography. Journal of Geophysical Research, 2000, 105, 11153-11169.	3.3	485
92	Recent seismicity and tomographic modeling of the Mount Etna plumbing system. Journal of Geophysical Research, 2000, 105, 10923-10938.	3.3	137
93	Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 2001, 106, 16387-16414.	3.3	729
94	Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth, 2001, 26, 325-332.	0.6	23
95	Experimental determination of compressional wave velocities of olivine aggregate up to 1000°C at 1GPa. Tectonophysics, 2001, 339, 473-478.	2.2	15
96	Three-dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan. Bulletin of Volcanology, 2001, 63, 326-344.	3.0	69
97	Constraints on reflective bodies below the 8° discontinuity from reflectivity modelling. Geophysical Journal International, 2001, 145, 759-770.	2.4	15
98	Oceanic upper mantle structure from experimental scaling ofVSand density at different depths. Geophysical Journal International, 2001, 147, 199-214.	2.4	34
99	Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature, 2001, 413, 833-836.	27.8	74
100	Lithospheric Structure of the Marmara and Aegean Regions, Western Turkey. Bulletin of the Seismological Society of America, 2002, 92, 322-329.	2.3	26
101	Shallow-crustal magma chamber beneath the axial high of the Coaxial segment of Juan de Fuca Ridge at the source site of the 1993 eruption. Geology, 2002, 30, 359.	4.4	13
102	Conductivity distribution and seismicity in the northeastern Japan Arc. Earth, Planets and Space, 2002, 54, 629-636.	2.5	5
103	Implications of seismic scattering below the 8° discontinuity along PNE profile Kraton. Tectonophysics, 2002, 358, 135-150.	2.2	35
104	Tomographic inversion of seismic P- and S-wave velocities from the Baltic Shield based on FENNOLORA data. Tectonophysics, 2002, 358, 151-174.	2.2	28
105	The uppermost mantle beneath the Kenya dome and relation to melting, rifting and uplift in East Africa. Geophysical Research Letters, 2002, 29, 21-1.	4.0	34
106	Compaction control of melt distribution at fast-spreading mid-ocean ridges. Geophysical Research Letters, 2002, 29, 41-1.	4.0	6
107	Olivine-Pyroxene-H2O system as a practical analogue for estimating the elastic properties of fluid-bearing mantle rocks at high pressures and temperatures. Geophysical Research Letters, 2002, 29, 39-1-39-4.	4.0	7
108	Nature of the crust-mantle transition zone and the thermal state of the upper mantle beneath Iceland from gravity modelling. Geophysical Journal International, 2002, 149, 281-299.	2.4	99

#	Article	IF	CITATIONS
109	Origin of upper-mantle seismic scattering - evidence from Russian peaceful nuclear explosion data. Geophysical Journal International, 2003, 154, 196-204.	2.4	33
110	Multiple-ScS probing of the Ontong-Java Plateau. Physics of the Earth and Planetary Interiors, 2003, 138, 317-331.	1.9	39
111	Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet. Science, 2003, 300, 1424-1427.	12.6	310
112	Seismological constraints on structure and flow patterns within the mantle wedge. Geophysical Monograph Series, 2003, , 59-81.	0.1	30
113	Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates. Geophysical Journal International, 2004, 158, 1024-1040.	2.4	175
114	High-pressure and high-temperature measurements of electrical conductivity in basaltic rocks from Mount Etna, Sicily, Italy. Journal of Geophysical Research, 2004, 109, .	3.3	18
115	Hawaiian hot-spot swell structure from seafloor MT sounding. Tectonophysics, 2004, 389, 111-124.	2.2	39
116	The Mt. Etna plumbing system: The contribution of seismic tomography. Geophysical Monograph Series, 2004, , 191-204.	0.1	28
117	Rock Anelasticity Studies at High Pressure and Temperature. Journal of Geography (Chigaku Zasshi), 2005, 114, 1022-1031.	0.3	1
118	Crustal modeling of the North Atlantic from spectrally correlated free-air and terrain gravity. Journal of Geodynamics, 2005, 40, 23-50.	1.6	15
119	Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research, 2005, 110, .	3.3	249
120	Three-dimensional seismic tomography fromPwave andSwave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera. Journal of Geophysical Research, 2005, 110, .	3.3	137
121	Upper mantle structure beneath the eastern Pacific Ocean ridges. Journal of Geophysical Research, 2005, 110, .	3.3	29
122	Subduction evolution and mantle dynamics at a continental margin: Central North Island, New Zealand. Reviews of Geophysics, 2006, 44, .	23.0	121
123	Explosion seismic P and S velocity and attenuation constraints on the lower crust of the North–Central Tibetan Plateau, and comparison with the Tethyan Himalayas: Implications on composition, mineralogy, temperature, and tectonic evolution. Tectonophysics, 2006, 412, 141-157.	2.2	41
124	Test of the upper mantle low velocity layer in Siberia with surface waves. Tectonophysics, 2006, 416, 113-131.	2.2	8
125	Identification of crustal and upper mantle heterogeneity by modelling of controlled-source seismic data. Tectonophysics, 2006, 416, 209-228.	2.2	22
126	The heterogeneous upper mantle low velocity zone. Tectonophysics, 2006, 416, 53-79.	2.2	162

#	Article	IF	CITATIONS
127	Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand. Geophysical Journal International, 2006, 167, 968-990.	2.4	70
128	Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves. Geophysical Journal International, 2006, 166, 1466-1483.	2.4	70
129	Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science, 2006, 313, 821-823.	12.6	213
130	Properties of Rocks and Minerals – Seismic Properties of Rocks and Minerals, and Structure of the Earth. , 2007, , 7-32.		8
131	The Hawaiian SWELL pilot experiment—Evidence for lithosphere rejuvenation from ocean bottom surface wave data. , 2007, , 209-233.		15
132	Origin of magmas in subduction zones: a review of experimental studies. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2007, 83, 1-15.	3.8	24
133	1-D electrical conductivity structure beneath the Philippine Sea: Results from an ocean bottom magnetotelluric survey. Physics of the Earth and Planetary Interiors, 2007, 162, 2-12.	1.9	28
134	Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chemical Geology, 2007, 239, 182-198.	3.3	417
135	Tomographic images of Klyuchevskoy Volcano P-wave velocity. Geophysical Monograph Series, 2007, , 293-302.	0.1	19
136	Seismic tomography of magmatic systems. Journal of Volcanology and Geothermal Research, 2007, 167, 37-56.	2.1	187
137	Neogene magmatism northeast of the Aegir and Kolbeinsey ridges, NE Atlantic: Spreading ridge–mantle plume interaction?. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	28
138	Attenuation in the upper mantle beneath Southern California: Physical state of the lithosphere and asthenosphere. Journal of Geophysical Research, 2008, 113, .	3.3	34
139	Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis. Journal of Geophysical Research, 2008, 113, .	3.3	52
140	The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 2009, 109, 23-46.	1.4	253
141	A new thermal and rheological model of the European lithosphere. Tectonophysics, 2009, 476, 478-495.	2.2	105
142	Elastic properties of hydrous forsterites under high pressure: First-principle calculations. Physics of the Earth and Planetary Interiors, 2009, 176, 89-97.	1.9	24
143	Thermal and Rheological Model of the European Lithosphere. , 2009, , 71-101.		5
144	Spatial variations of P wave attenuation in the mantle beneath North America. Journal of Geophysical Research, 2009, 114, .	3.3	19

#	Article	IF	CITATIONS
145	Crust–mantle structure of the central North Island, New Zealand, based on seismological observations. Journal of Volcanology and Geothermal Research, 2010, 190, 58-74.	2.1	30
146	Velocity structure in the crust beneath the Kyushu area. Earth, Planets and Space, 2010, 62, 449-462.	2.5	32
147	North American lithospheric discontinuity structure imaged by <i>Ps</i> and <i>Sp</i> receiver functions. Journal of Geophysical Research, 2010, 115, .	3.3	233
148	Partial Melting and Its Implications for Understanding the Seismic Velocity Structure within the Southern Tibetan Crust. Acta Geologica Sinica, 2003, 77, 64-71.	1.4	5
149	Evidence for the contemporary magmatic system beneath Long Valley Caldera from local earthquake tomography and receiver function analysis. Journal of Geophysical Research, 2011, 116, .	3.3	36
150	Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ŰC: comparison with field observations. Geophysical Journal International, 2011, 187, 1393-1404.	2.4	18
151	Anisotropic Pn tomography of Turkey and adjacent regions. Geophysical Journal International, 2011, 187, 1743-1758.	2.4	100
152	The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary. Science, 2012, 335, 1480-1483.	12.6	203
153	Questioning mantle plumes. Physics Today, 2012, 65, 10-12.	0.3	5
154	Age-differentiated subduction regime: An explanation of regional scale upper mantle differences beneath the Alps and the Variscides of Central Europe. Physics of the Earth and Planetary Interiors, 2012, 206-207, 1-15.	1.9	4
155	Change of olivine a-axis alignment induced by water: Origin of seismic anisotropy in subduction zones. Earth and Planetary Science Letters, 2012, 317-318, 111-119.	4.4	34
156	A 3D Vs model of the upper mantle beneath Italy: Insight on the geodynamics of central Mediterranean. Earth and Planetary Science Letters, 2012, 335-336, 105-120.	4.4	68
157	Upper crustal structure of Newberry Volcano from Pâ€wave tomography and finite difference waveform modeling. Journal of Geophysical Research, 2012, 117, .	3.3	20
158	Thermal structure of the shallow upper mantle beneath Italy and neighbouring areas: Correlation with magmatic activity and geodynamic significance. Earth-Science Reviews, 2012, 114, 369-385.	9.1	12
159	Effect of dynamic melting on acoustic velocities in a partially molten peridotite. Physics of the Earth and Planetary Interiors, 2013, 222, 1-7.	1.9	16
160	Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea. Tectonophysics, 2013, 608, 330-345.	2.2	44
161	Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from Pn and Sn tomography. Geophysical Journal International, 2013, 192, 310-325.	2.4	55
162	Geophysical Constraints on Mantle Flow and Melt Generation Beneath Mid-Ocean Ridges. Geophysical Monograph Series, 0, , 1-65.	0.1	83

#	ARTICLE	IF	CITATIONS
163	Heat Flow of the Earth. AGU Reference Shelf, 2013, , 144-158.	0.6	38
164	Structures and geometries of the Tajo Basin crust, Spain: Results of a magnetotelluric investigation compared to seismic and thermal models. Tectonics, 2014, 33, 1710-1737.	2.8	5
165	Mantle updrafts and mechanisms of oceanic volcanism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4298-304.	7.1	41
166	Crust and upper mantle structure of the New Madrid Seismic Zone: Insight into intraplate earthquakes. Physics of the Earth and Planetary Interiors, 2014, 230, 1-14.	1.9	53
167	Threeâ€dimensional Vp and Vp/Vs models in the Coso geothermal area, California: Seismic characterization of the magmatic system. Journal of Geophysical Research: Solid Earth, 2014, 119, 4907-4922.	3.4	30
168	Thermodynamic calculations of the polybaric melting phase relations of spinel lherzolite. Geochemistry, Geophysics, Geosystems, 2014, 15, 5015-5033.	2.5	9
169	Crustal imprints of Precambrian orogenesis in western Laurentia. Journal of Geophysical Research: Solid Earth, 2015, 120, 6993-7012.	3.4	31
170	The thickness of the lithospheric plate and the parameters of the asthenosphere beneath the Scandinavian Shield according to the BEAR experiment. Izvestiya, Physics of the Solid Earth, 2015, 51, 493-504.	0.9	0
171	Kinetics of melting in peridotite from volume strain measurements. Physics of the Earth and Planetary Interiors, 2015, 246, 25-30.	1.9	3
172	Seismic Properties of Rocks and Minerals, and the Structure of Earth. , 2015, , 417-439.		1
173	Imaging Rayleigh wave attenuation with USArray. Geophysical Journal International, 2016, 206, 241-259.	2.4	27
174	Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China. Science China Earth Sciences, 2017, 60, 821-857.	5.2	25
175	Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography. Earth and Planetary Science Letters, 2017, 460, 244-254.	4.4	44
176	Lithospheric structure of Southeast Anatolia from joint inversion of local and teleseismic data. Studia Geophysica Et Geodaetica, 2017, 61, 703-727.	0.5	5
177	Constraints on volumes and patterns of asthenospheric melt from the spaceâ€ŧime distribution of seamounts. Geophysical Research Letters, 2017, 44, 7203-7210.	4.0	8
178	Experimental evidence supporting a global melt layer at the base of the Earth's upper mantle. Nature Communications, 2017, 8, 2186.	12.8	41
179	Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLBâ€1. Journal of Geophysical Research: Solid Earth, 2018, 123, 1252-1261.	3.4	8
180	Crustal model of the Southern Central Andes derived from ambient seismic noise Rayleigh-wave tomography. Tectonophysics, 2018, 744, 215-226.	2.2	14

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
181	Modeling Satellite Gravity Gradient Data to Derive Density, Temperature, and Viscosity Structure of the Antarctic Lithosphere. Journal of Geophysical Research: Solid Earth, 2019, 124, 12053-12076.	3.4	25
182	Seismic velocity and anisotropy of the uppermost mantle beneath Madagascar from <i>Pn</i> tomography. Geophysical Journal International, 2020, 224, 290-305.	2.4	1
183	Effect of high temperature on physical properties of yellow sandstone. Heat and Mass Transfer, 2021, 57, 1981-1995.	2.1	9
184	Teleseismic <i>P</i> â€Wave Attenuation Beneath the Southeastern United States. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009715.	2.5	2
185	Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton. Scientific Reports, 2021, 11, 12523.	3.3	5
186	Pn tomography and anisotropic study of the Indian shield and the adjacent regions. Tectonophysics, 2021, 813, 228932.	2.2	4
187	A Partially Molten Zone beneath the Global 8 \hat{A}° Discontinuity at ~100 Km Depth. , 1997, , 343-350.		5
188	Lithospheric Thermal Structure: One of Factors Influencing Depth of Earthquakes. Zisin (Journal of) Tj ETQq1 1	0.784314 r 0.2	gBJ /Overlo
189	Upper mantle structure along a profile from Oslo (NORESS) to Helsinki to Leningrad, based on explosion seismology. Bulletin of the Seismological Society of America, 1990, 80, 2194-2213.	2.3	7
190	Three-dimensional Mapping of Magma Source and Transport Regions from Seismic Data: The Mantle Wedge beneath Northeastern Japan. , 1998, , 377-398.		0
191	Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone: The Southern Central Andes. Lithosphere, 2022, 2022, .	1.4	3
192	Moho depth and crustal density structure in the Tibetan Plateau from gravity data modelling. Journal of Asian Earth Sciences, 2022, 233, 105261.	2.3	4
193	Propagation characteristics of short-period <i>Sn</i> and <i>Lg</i> in the Middle East. Bulletin of the Seismological Society of America, 1997, 87, 396-413.	2.3	95