Polysaccharide exopolymer adhesives from periphytic

Journal of Adhesion Science and Technology 3, 213-223

DOI: 10.1163/156856189x00173

Citation Report

#	Article	IF	CITATIONS
1	Properties of an extracellular adhesive polymer from the marine bacterium, <i>Shewanella Colwelliana </i> . Biofouling, 1991, 3, 69-84.	0.8	47
2	Glucose metabolism and polysaccharide accumulation in the marine bacterium, Shewanella colwelliana. World Journal of Microbiology and Biotechnology, 1994, 10, 543-546.	1.7	5
3	Structure, function and immunochemistry of bacterial exopolysaccharides. Journal of Industrial Microbiology, 1995, 15, 339-346.	0.9	91
4	Development of Chemical Substances Regulating Biofilm Formation. Bulletin of the Chemical Society of Japan, 1997, 70, 3061-3069.	2.0	70
5	Extraction of EPS. , 1999, , 49-72.		118
6	Biochemical Differences Between Trail Mucus and Adhesive Mucus From Marsh Periwinkle Snails. Biological Bulletin, 2002, 203, 338-346.	0.7	87
7	The Structure and Function of Adhesive Gels from Invertebrates. Integrative and Comparative Biology, 2002, 42, 1164-1171.	0.9	100
8	CALCOFLUOR AS A FLUORESCENT PROBE TO DETECT BIOFILMS OF FOODBORNE PATHOGENS. Journal of Food Safety, 2003, 23, 25-33.	1.1	O
9	Influence of Surface Characteristics on the Stability of Cryptosporidium parvum Oocysts. Applied and Environmental Microbiology, 2003, 69, 3819-3825.	1.4	38
10	Bacterially derived biopolymers as wood adhesives. International Journal of Adhesion and Adhesives, 2004, 24, 495-502.	1.4	36
11	Bacterially derived wood adhesive. International Journal of Adhesion and Adhesives, 2006, 26, 177-183.	1.4	39
12	Microbial signature lipid profiling and exopolysaccharides: Experiences initiated with Professor David C White and transported to Tasmania, Australia. Journal of Microbiological Methods, 2008, 74, 33-46.	0.7	14
13	Screening Microalgal Cultures in Search of Microbial Exopolysaccharides with Potential as Adhesives. Journal of Adhesion, 2009, 85, 97-125.	1.8	18
14	Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for Production of Biodiesel, Long-Chain Omega-3 Oils, and Exopolysaccharide. Marine Biotechnology, 2014, 16, 396-411.	1.1	104
15	Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1. Carbohydrate Polymers, 2015, 117, 543-548.	5.1	10
16	Bio-based adhesives. , 2016, , 369-385.		16
17	Assessment of the adhesive properties of the bacterial polysaccharide FucoPol. International Journal of Biological Macromolecules, 2016, 92, 383-389.	3.6	20
18	Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalination and Water Treatment, 2016, 57, 16220-16237.	1.0	101

#	Article	IF	CITATIONS
19	Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 2018, 111, 102-108.	3.6	58
21	Methods of Sample Preparation and Assay of Bacterial Biofilms with Special Reference to Their Significance in Agriculture and Extreme Environments. Springer Protocols, 2021, , 39-65.	0.1	2
22	Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Development. , 2006, , 1-19.		12
23	Interactions between <i>Shewanella colwelliana</i> Oyster Larvae, and Hydrophobic Organophosphate Pesticides. Applied and Environmental Microbiology, 1990, 56, 3817-3821.	1.4	7
24	Production and characterization of monoclonal antibodies specific for Shewanella colwelliana exopolysaccharide. Applied and Environmental Microbiology, 1993, 59, 1565-1572.	1.4	17
25	Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Applied and Environmental Microbiology, 1995, 61, 1620-1622.	1.4	109
26	Polysaccharides as Adhesives. Reviews of Adhesion and Adhesives, 2013, 1, 312-345.	3.3	39
27	Non-ionic surfactant integrated extraction of exopolysaccharides from engineered Synechocystis sp. PCC 6803 under fed-batch mode facilitates the sugar-rich syrup production for ethanol fermentation. Algal Research, 2022, 66, 102772.	2.4	2
29	Dual Production of Microbial Exopolysaccharides and Polyhydroxyalkanoates Using a Biorefinery Approach to Replace Synthetic Polymers. , 2023, , 1-45.		0