Ecotoxicological evaluation of soil quality criteria

Ecotoxicology and Environmental Safety 18, 241-251 DOI: 10.1016/0147-6513(89)90018-3

Citation Report

#	Article	IF	CITATIONS
1	Ecotoxicological effects assessment in the Netherlands: Recent developments. Environmental Management, 1990, 14, 779-792.	1.2	51
2	The myth of the final hazard assessment. Regulatory Toxicology and Pharmacology, 1990, 11, 123-131.	1.3	8
3	Ecotoxicological effects assessment: A comparison of several extrapolation procedures. Ecotoxicology and Environmental Safety, 1991, 21, 182-193.	2.9	48
4	Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Research, 1991, 25, 1237-1242.	5.3	234
5	QSAR in environmental sciences and drug design. Science of the Total Environment, 1991, 109-110, 1-7.	3.9	6
6	The application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment for narcotic pollutants. Science of the Total Environment, 1991, 109-110, 681-690.	3.9	8
7	Integrated Effects (Low Vegetation). Studies in Environmental Science, 1991, 46, 465-523.	0.0	5
8	Influence of NH ₃ and (NH ₄) ₂ SO ₄ on heathland vegetation. Acta Botanica Neerlandica, 1991, 40, 281-296.	1.0	102
9	Risks of toxic compounds in aquatic systems: Science and practice. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 279-281.	0.2	0
10	Extrapolation through hierarchical levels. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 291-299.	0.2	11
11	Estimation of SO 2 Effect Thresholds for Heathland Species. Functional Ecology, 1992, 6, 291.	1.7	7
12	Pesticide Effects on Soil Algae and Cyanobacteria. Reviews of Environmental Contamination and Toxicology, 1992, , 95-170.	0.7	25
13	The development of assessment and remediation guidelines for contaminated soils, a review of the science. Canadian Journal of Soil Science, 1992, 72, 359-394.	0.5	65
14	A comparison of test systems for assessing effects of metals on isopod ecological functions. Ecotoxicology and Environmental Safety, 1992, 24, 203-216.	2.9	11
15	Validation of earthworm toxicity tests by comparison with field studies: A review of benomyl, carbendazim, carbofuran, and carbaryl. Ecotoxicology and Environmental Safety, 1992, 23, 221-236.	2.9	63
16	Ecotoxicological risk evaluation of the cationic fabric softener DTDMAC. III. Risk assessment. Chemosphere, 1992, 24, 629-639.	4.2	17
17	Classifying environmental pollutants. Chemosphere, 1992, 25, 471-491.	4.2	674
18	The riverine biocoenosis model (aquatic stair case model). Chemosphere, 1992, 25, 563-579.	4.2	6

2

#	Article	IF	CITATIONS
19	UBA-principles on criteria and procedures for environmental assessment of pesticides. Chemosphere, 1992, 24, 793-815.	4.2	6
20	Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia, 1992, 89, 32-41.	0.9	78
21	The use of ecotoxicological risk assessment in deriving maximum acceptable half-lives of pesticides. Pest Management Science, 1992, 34, 227-231.	0.7	17
22	Optimized design for earthworm survival tests in soil. Bulletin of Environmental Contamination and Toxicology, 1992, 49, 648-55.	1.3	16
23	Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environmental Toxicology and Chemistry, 1992, 11, 267-282.	2.2	151
24	A european perspective on ecological risk assessment, illustrated by pesticide registration procedures in the united kingdom. Environmental Toxicology and Chemistry, 1992, 11, 1673-1689.	2.2	26
25	Quantitative life cycle assessment of products. Journal of Cleaner Production, 1993, 1, 81-91.	4.6	158
26	Ground water contamination at Finnish landfills. Water, Air, and Soil Pollution, 1993, 69, 179-199.	1.1	37
27	A plant life-cycle bioassay for contaminated soil, with comparison to other bioassays: Mercury and zinc. Archives of Environmental Contamination and Toxicology, 1993, 25, 27.	2.1	28
28	Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology, 1993, 2, 203-219.	1.1	88
30	Pollution studies in the R�o Santiago Basin, tributary of the R�o de la Plata estuary: Preliminary risk assessment evaluation. Bulletin of Environmental Contamination and Toxicology, 1993, 51, 657-64.	1.3	4
31	Alternatives for the noâ€observedâ€effect level. Environmental Toxicology and Chemistry, 1993, 12, 187-194.	2.2	103
32	Hazards and risks in Europe: Challenges for ecotoxicology. Environmental Toxicology and Chemistry, 1993, 12, 1519-1520.	2.2	7
33	Ecotoxicological relevance of atrazine in aquatic systems. Environmental Toxicology and Chemistry, 1993, 12, 1865-1881.	2.2	159
34	Validation of some extrapolation methods used for effect assessment. Environmental Toxicology and Chemistry, 1993, 12, 2139-2154.	2.2	59
35	The environmental risks of pollution in the Scheldt estuary. Netherlands Journal of Aquatic Ecology, 1993, 27, 383-393.	0.3	13
36	A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere, 1993, 26, 1925-1944.	4.2	114
37	Environmental assessment of pesticides under Directive 91/414/EEC. Chemosphere, 1993, 26, 979-1001.	4.2	23

#	Article	IF	CITATIONS
38	Heavy-metal adaptation in terrestrial invertebrates: A review of occurrence, genetics, physiology and ecological consequences. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 11-38.	0.5	147
39	A Critique of the Use of Distribution-Based Extrapolation Models in Ecotoxicology. Functional Ecology, 1993, 7, 249.	1.7	115
41	Biomagnification of metals in terrestrial ecosystems. Science of the Total Environment, 1993, 134, 511-524.	3.9	27
42	Presentation of a general algorithm to include secondary poisoning in effect assessment. Science of the Total Environment, 1993, 134, 1491-1500.	3.9	5
43	Assessing the risk of biomagnification: a physiological approach. Science of the Total Environment, 1993, 134, 1501-1506.	3.9	2
44	A multiple stress model for vegetation (â€~move'): a tool for scenario studies and standard-setting. Science of the Total Environment, 1993, 134, 1513-1526.	3.9	27
45	Attempts to bridge the gap between laboratory toxicity tests and ecosystems: a case study with LAS. Science of the Total Environment, 1993, 134, 1527-1538.	3.9	5
46	Ecological insights into risk analysis: the side-effects of pesticides as a case study. Science of the Total Environment, 1993, 134, 1547-1566.	3.9	23
47	Conceptual approaches in terrestrial and aquatic risk assessment of pesticides. Science of the Total Environment, 1993, 134, 1689-1699.	3.9	1
48	Ecological Implications of '95% Protection Levels' for Metals in Soil. Oikos, 1993, 66, 137.	1.2	69
50	A Toxicological Basis to Derive a Generic Interspecies Uncertainty Factor Environmental Health Perspectives, 1994, 102, 14-17.	2.8	14
51	Application of QSARs in Risk Management of Existing Chemicals. SAR and QSAR in Environmental Research, 1994, 2, 39-58.	1.0	36
52	Patterns of sensitivity to cadmium and pentachlorophenol among nematode species from different taxonomic and ecological groups. Archives of Environmental Contamination and Toxicology, 1994, 27, 88-94.	2.1	69
53	Derivation of water quality objectives for hazardous substances to protect aquatic ecosystems: Single-species test approach. Environmental Toxicology and Water Quality, 1994, 9, 263-272.	0.7	10
54	Integral hazard assessment of side effects of pesticides in the netherlands—a proposal. Environmental Toxicology and Chemistry, 1994, 13, 1331-1340.	2.2	3
55	Simple whole-soil bioassay based on microarthropods. Bulletin of Environmental Contamination and Toxicology, 1994, 52, 95-101.	1.3	12
57	Effects of atmospheric ammonia on vegetation—A review. Environmental Pollution, 1994, 86, 43-82.	3.7	403
58	A QSAR for base-line toxicity to the midge Chironomus riparius. Chemosphere, 1994, 28, 989-997.	4.2	8

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
59	Uniform system for the evaluation of substances II Effects assessment. Chemosphere, 1994, 29, 319-335.	4.2	10
60	Evaluation of the toxicity and quantitative structure - activity Relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod (Tisbe battagliai) and two species of benthic flatfish, the flounder (Platichthys flesus) and sole (Solea solea). Chemosphere, 1994, 28, 825-836.	4.2	39
61	Soil quality criteria derived from critical body concentrations of metals in soil invertebrates. Applied Soil Ecology, 1994, 1, 185-191.	2.1	50
63	Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology, 1995, 4, 190-205.	1.1	224
64	Evaluation of alternative reference toxicants for use in the earthworm toxicity test. Environmental Toxicology and Chemistry, 1995, 14, 1189-1194.	2.2	22
65	Comparative Ecotoxicity of Cadmium, Chlorpyrifos and Triphenyltin Hydroxide for Four Clones of the Parthenogenetic Collembolan Folsomia candida in an Artificial Soil. Functional Ecology, 1995, 9, 734.	1.7	49
66	A toxicological basis to derive generic interspecies uncertainty factors for application in human and ecological risk assessment. Human and Ecological Risk Assessment (HERA), 1995, 1, 555-564.	1.7	11
67	BIOMAG: a model for biomagnification in terrestrial food chains. The case of cadmium in the Kempen, The Netherlands. Science of the Total Environment, 1995, 168, 215-223.	3.9	18
68	Thematic maps for regional ecotoxicological risk assessment: pesticides. Science of the Total Environment, 1995, 171, 281-287.	3.9	5
69	Comparison of the toxicity of zinc for the springtail Folsomia candida in artificially contaminated and polluted field soils. Applied Soil Ecology, 1996, 3, 127-136.	2.1	78
70	Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing fresh water plankton communities in enclosures. Water Research, 1996, 30, 1215-1227.	5.3	62
71	Effects assessments for surfactants in sludge-amended soils: a literature review and perspectives for terrestrial risk assessment. Science of the Total Environment, 1996, 185, 171-185.	3.9	38
72	Conceptual approach to estimating the effect of home-range size on the exposure of organisms to spatially variable soil contamination. Ecological Modelling, 1996, 87, 83-89.	1.2	32
73	Short-term effects of cadmium, copper, nickel and zinc on soil nematodes from different feeding and life-history strategy groups. Applied Soil Ecology, 1996, 4, 107-117.	2.1	135
74	Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota. Environmental Toxicology and Chemistry, 1996, 15, 1232-1241.	2.2	32
75	FITNESS CONSEQUENCES OF TOXIC STRESS EVALUATED WITHIN THE CONTEXT OF PHENOTYPIC PLASTICITY., 1997, 7, 726-734.		20
76	Concepts in the Netherlands of Risk Assessment of Soil Contamination. International Journal of Toxicology, 1997, 16, 509-518.	0.6	4
77	Environmental Policy Analysis, Peer Reviewed: Fallacies in Ecological Risk Assessment Practices. Environmental Science & Technology, 1997, 31, 370A-375A.	4.6	53

#	Article	IF	CITATIONS
78	Multicriteria Analysis. , 1997, , .		35
79	Cu Accumulation inLumbricus rubellusunder Laboratory Conditions Compared with Accumulation under Field Conditions. Ecotoxicology and Environmental Safety, 1997, 36, 17-26.	2.9	34
80	Added Risk Approach to Derive Maximum Permissible Concentrations for Heavy Metals: How to Take Natural Background Levels into Account. Ecotoxicology and Environmental Safety, 1997, 37, 112-118.	2.9	59
81	Influence of Temperature on the Regulation and Toxicity of Zinc inFolsomia candida(Collembola). Ecotoxicology and Environmental Safety, 1997, 37, 213-222.	2.9	51
82	Regression Study of Environmental Quality Objectives for Soil, Fresh Water, and Marine Water, Derived Independently. Ecotoxicology and Environmental Safety, 1997, 38, 210-223.	2.9	5
83	Cu accumulation by Lumbricus rubellus as affected by total amount of Cu in soil, soil moisture and soil heterogeneity. Soil Biology and Biochemistry, 1997, 29, 641-647.	4.2	21
84	Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere, 1997, 34, 455-499.	4.2	197
85	Pattern analysis of the variation in the sensitivity of aquatic species to toxicants. Chemosphere, 1997, 35, 1291-1309.	4.2	45
86	Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. Chemosphere, 1997, 35, 1311-1327.	4.2	65
87	Indicators of the sustainability of heavy-metal management in agro-ecosystems. Science of the Total Environment, 1997, 201, 155-169.	3.9	39
88	Development of zinc bioavailability and toxicity for the springtail Folsomia candida in an experimentally contaminated field plot. Environmental Pollution, 1997, 98, 73-80.	3.7	48
89	Bootstrap estimation of community NOEC values. Ecotoxicology, 1997, 6, 293-306.	1.1	40
90	Title is missing!. Hydrobiologia, 1997, 6, 141-157.	1.0	6
94	Community Structure and Dynamics in Desert Ecosystems: Potential Implications for Insecticide Risk Assessment. Archives of Environmental Contamination and Toxicology, 1997, 32, 11-21.	2.1	18
95	Ecotoxicology of Organisms Adapted to Life in Temporary Freshwater Ponds in Arid and Semi-Arid Regions. Archives of Environmental Contamination and Toxicology, 1997, 32, 50-57.	2.1	55
96	Extrapolation factors for small samples of pesticide toxicity data: Special focus on LD50 values for birds and mammals. Environmental Toxicology and Chemistry, 1997, 16, 1785-1788.	2.2	41
97	Comments on the Interpretation of Distributions in "Overview of Recent Developments in Ecological Risk Assessment". Risk Analysis, 1998, 18, 3-4.	1.5	4
98	A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environmental Toxicology and Chemistry, 1998, 17, 99-108.	2.2	296

#	Article	IF	CITATIONS
99	Application of species sensitivity distributions as ecological risk assessment tool for water management. Journal of Hazardous Materials, 1998, 61, 203-207.	6.5	10
100	Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in earthworms (Oligochaeta) in laboratory and field soils: A critical evaluation of data. Chemosphere, 1998, 36, 2643-2660.	4.2	91
101	Assessment of a soil quality criterion by means of a field survey. Applied Soil Ecology, 1998, 10, 51-63.	2.1	25
102	Environmental toxicology: the background for risk assessment. , 1998, , 75-100.		0
103	Acute/chronic ratios to estimate chronic toxicity from acute data. Toxicological and Environmental Chemistry, 1999, 69, 395-401.	0.6	1
104	Risk-Based Assessment of Soil and Groundwater Quality in the Netherlands: Standards and Remediation Urgency. Risk Analysis, 1999, 19, 1235-1249.	1.5	154
105	Best available practice regarding impact categories and category indicators in life cycle impact assessment. International Journal of Life Cycle Assessment, 1999, 4, 66.	2.2	230
106	Best available practice regarding impact categories and category indicators in life cycle impact assessment. International Journal of Life Cycle Assessment, 1999, 4, 167.	2.2	72
107	Minimum data required for deriving soil quality criteria from invertebrate ecotoxicity experiments. Environmental Toxicology and Chemistry, 1999, 18, 1304-1310.	2.2	6
108	Ecological risk assessment of agrochemicals in European estuaries. Environmental Toxicology and Chemistry, 1999, 18, 1574-1581.	2.2	63
109	The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 1999, 35, 115-134.	1.4	237
110	A comparison between toxicity tests using single species and a microbial process. Chemosphere, 1999, 38, 3277-3290.	4.2	8
111	Ecotoxicological Hazard and Risk Assessment of Heavy Metal Contents in Agricultural Soils of Central Germany. Ecotoxicology and Environmental Safety, 1999, 42, 191-201.	2.9	36
112	Critical Analysis of Methods for Assessment of Predicted No-Effect Concentration. Ecotoxicology and Environmental Safety, 1999, 43, 117-125.	2.9	20
113	Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management, 2000, 58, 297-312.	3.8	93
114	Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. Journal of Environmental Management, 2000, 60, 121-143.	3.8	159
115	Estimation for hazardous concentrations based on NOEC toxicity data: an alternative approach. Environmetrics, 2000, 11, 583-595.	0.6	114
116	Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry, 2000, 19, 3-13.	2.2	140

#	Article	IF	CITATIONS
117	Applying speciesâ€sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environmental Toxicology and Chemistry, 2000, 19, 508-515.	2.2	248
118	Methodology for the evaluation of cumulative episodic exposure to chemical stressors in aquatic risk assessment. Environmental Toxicology and Chemistry, 2000, 19, 1213-1221.	2.2	15
119	Responses of <i>Folsomia fimetaria</i> (Collembola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. Environmental Toxicology and Chemistry, 2000, 19, 1297-1303.	2.2	49
120	Evaluation of the dutch environmental risk limits for metals by application of the added risk approach. Environmental Toxicology and Chemistry, 2000, 19, 1692-1701.	2.2	29
121	Relative sensitivity of lifeâ€cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry, 2000, 19, 1800-1808.	2.2	125
122	Joint Toxicity of Copper and Zinc to a Terrestrial Nematode Community in an Acid Sandy Soil. Ecotoxicology, 2000, 9, 219-228.	1.1	44
123	Toxicity and Bioaccumulation of Copper to Black Bindweed (Fallopia convolvulus) in Relation to Bioavailability and the Age of Soil Contamination. Archives of Environmental Contamination and Toxicology, 2000, 39, 431-439.	2.1	51
125	Uncertainty of the Hazardous Concentration and Fraction Affected for Normal Species Sensitivity Distributions. Ecotoxicology and Environmental Safety, 2000, 46, 1-18.	2.9	344
126	Effects of the Fungicide Copper Oxychloride on the Growth and Reproduction of Eisenia fetida (Oligochaeta). Ecotoxicology and Environmental Safety, 2000, 46, 108-116.	2.9	109
127	Derivation of Predicted No-Effect Concentrations for Lindane, 3,4-Dichloroaniline, Atrazine, and Copper. Ecotoxicology and Environmental Safety, 2000, 46, 148-162.	2.9	26
128	Evaluation of PNEC values: extrapolation from microtox®, algae, daphnid, and fish data to HC5. Chemosphere, 2000, 40, 267-273.	4.2	17
129	Deriving ecological risk-based soil quality values in the Basque Country. Science of the Total Environment, 2000, 247, 279-284.	3.9	37
130	A Review of the Effects of Multiple Stressors on Aquatic Organisms and Analysis of Uncertainty Factors for Use in Risk Assessment. Critical Reviews in Toxicology, 2001, 31, 247-284.	1.9	451
131	QSAR and Chemometric Approaches for Setting Water Quality Objectives for Dangerous Chemicals. Ecotoxicology and Environmental Safety, 2001, 49, 206-220.	2.9	42
132	Effect of clay and organic matter type on the ecotoxicity of zinc and cadmium to the potworm Enchytraeus albidus. Chemosphere, 2001, 44, 1669-1672.	4.2	45
133	Indicators for Transboundary River Management. Environmental Management, 2001, 28, 115-129.	1.2	27
134	Earthworm avoidance test for soil assessments. Journal of Soils and Sediments, 2001, 1, 15-20.	1.5	119
135	Effects of metal contamination on the activity and diversity of carabid beetles in an ancient Pb-Zn mining area at PlombiÃ"res (Belgium). Entomologia Experimentalis Et Applicata, 2001, 99, 355-360.	0.7	14

#	Article	IF	CITATIONS
136	The relation between extrapolated risk, expressed as potentially affected fraction, and community effects, expressed as pollutionâ€induced community tolerance. Environmental Toxicology and Chemistry, 2001, 20, 1133-1140.	2.2	20
137	Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Environmental Toxicology and Chemistry, 2001, 20, 1846-1856.	2.2	110
138	Modeling zinc toxicity for terrestrial invertebrates. Environmental Toxicology and Chemistry, 2001, 20, 1901-1908.	2.2	70
139	A test system to evaluate the susceptibility of Oregon, USA, native stream invertebrates to triclopyr and carbaryl. Environmental Toxicology and Chemistry, 2001, 20, 2205-2214.	2.2	13
140	Effect of varying pesticide exposure duration and concentration on the toxicity of carbaryl to two fieldâ€collected stream invertebrates, <i>Calineuria californica</i> (Plecoptera: Perlidae) and <i>Cinygma</i> sp. (Ephemeroptera: Heptageniidae). Environmental Toxicology and Chemistry, 2001, 20, 2215-2223.	2.2	27
141	Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account. Ecotoxicology, 2001, 10, 315-322.	1.1	83
142	Estimating the 5-percentile of the species sensitivity distributions without any assumptions about the distribution. , 2001, 10, 25-34.		44
143	Marine Risk Assessment: Linear Alkylbenzenesulponates (LAS) in the North Sea. Marine Pollution Bulletin, 2001, 42, 635-642.	2.3	33
144	Predictive Ecotoxicology. , 2002, , .		0
145	Mixture Toxicity of Zinc, Cadmium, Copper, and Lead to the Potworm Enchytraeus albidus. Ecotoxicology and Environmental Safety, 2002, 52, 1-7.	2.9	56
146	SOURCES, PATHWAYS, AND RELATIVE RISKS OF CONTAMINANTS IN SURFACE WATER AND GROUNDWATER: A PERSPECTIVE PREPARED FOR THE WALKERTON INQUIRY. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2002, 65, 1-142.	1.1	336
147	Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc. Environmental Toxicology and Pharmacology, 2002, 11, 167-172.	2.0	64
148	Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environmental Toxicology and Pharmacology, 2002, 11, 149-158.	2.0	28
149	Cadmium and Zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Science of the Total Environment, 2002, 299, 191-205.	3.9	63
150	Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystems and Environment, 2002, 91, 37-57.	2.5	177
151	New concepts in ecological risk assessment: where do we go from here?. Marine Pollution Bulletin, 2002, 44, 279-285.	2.3	63
152	Better bootstrap estimation of hazardous concentration thresholds for aquatic assemblages. Environmental Toxicology and Chemistry, 2002, 21, 1515-1524.	2.2	62
153	Probabilistic approaches in the effect assessment of toxic chemicals. Environmental Science and Pollution Research, 2002, 9, 307-314.	2.7	17

#	Article	IF	Citations
154	Effects of Zinc Contamination on a Natural Nematode Community in Outdoor Soil Mesocosms. Archives of Environmental Contamination and Toxicology, 2002, 42, 205-216.	2.1	42
155	Higher-tier laboratory methods for assessing the aquatic toxicity of pesticides. Pest Management Science, 2002, 58, 637-648.	1.7	48
156	Effects of a mixture of two insecticides in freshwater microcosms: II. Responses of plankton and ecological risk assessment. Ecotoxicology, 2002, 11, 181-197.	1.1	37
157	Cd and Zn concentration in hybrid poplar foliage and leaf beetles grown on polluted sediment-derived soils. Environmental Monitoring and Assessment, 2003, 89, 263-283.	1.3	36
158	Influence of aging on copper bioavailability in soils. Environmental Toxicology and Chemistry, 2003, 22, 1162-1166.	2.2	62
159	Environmental risk assessment scheme for plant protection products. EPPO Bulletin, 2003, 33, 211-238.	0.6	9
160	Environmental risk assessment scheme for plant protection products. EPPO Bulletin, 2003, 33, 239-244.	0.6	3
161	Environmental risk assessment scheme for plant protection products. EPPO Bulletin, 2003, 33, 183-194.	0.6	2
162	Chapter 2 Bioindicators and environmental stress assessment. Trace Metals and Other Contaminants in the Environment, 2003, , 41-84.	0.1	11
163	Evaluation of an ecosystem model in ecological risk assessment of chemicals. Chemosphere, 2003, 53, 363-375.	4.2	34
164	The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil. Chemosphere, 2003, 52, 1153-1162.	4.2	19
165	Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution, 2003, 124, 179-221.	3.7	795
166	Influence of ageing on zinc bioavailability in soils. Environmental Pollution, 2003, 126, 371-374.	3.7	83
167	Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombières, Belgium. European Journal of Soil Biology, 2003, 39, 25-29.	1.4	38
168	Influence of Aging on Metal Availability in Soils. Reviews of Environmental Contamination and Toxicology, 2003, 178, 1-21.	0.7	56
169	Chapter 5 Predicting toxic effects of contaminants in ecosystems using single species investigations. Trace Metals and Other Contaminants in the Environment, 2003, 6, 153-198.	0.1	6
170	Chapter 4 Bioindicators for ecosystem management, with special reference to freshwater systems. Trace Metals and Other Contaminants in the Environment, 2003, 6, 123-152.	0.1	6
172	Current Issues in Statistics and Models for Ecotoxicological Risk Assessment. Acta Biotheoretica, 2004, 52, 201-217.	0.7	48

#	Article	IF	CITATIONS
173	Suitability of soil microbial parameters as indicators of heavy metal pollution. Water, Air, and Soil Pollution, 2004, 158, 21-35.	1.1	56
174	APPLICATION OF THE NARCOSIS TARGET LIPID MODEL TO ALGAL TOXICITY AND DERIVING PREDICTED-NO-EFFECT CONCENTRATIONS. Environmental Toxicology and Chemistry, 2004, 23, 2503.	2.2	62
175	Confirming the Species-Sensitivity Distribution Concept for Endosulfan Using Laboratory, Mesocosm, and Field Data. Archives of Environmental Contamination and Toxicology, 2004, 47, 511-520.	2.1	150
176	A conservative, nonparametric estimator for the 5th percentile of the species sensitivity distributions. Journal of Statistical Planning and Inference, 2004, 123, 243-258.	0.4	18
177	Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Ecotoxicology and Environmental Safety, 2004, 59, 340-348.	2.9	79
178	Monitoring microbial biomass and respiration in different soils from the Czech Republic—a summary of results. Environment International, 2004, 30, 19-30.	4.8	43
180	Approach to Legislation in a Global Context. , 0, , 257-309.		2
181	RELEVANCE OF GENERIC AND SITE-SPECIFIC SPECIES SENSITIVITY DISTRIBUTIONS IN THE CURRENT RISK ASSESSMENT PROCEDURES FOR COPPER AND ZINC. Environmental Toxicology and Chemistry, 2005, 24, 470.	2.2	19
182	INSECTICIDE SPECIES SENSITIVITY DISTRIBUTIONS: IMPORTANCE OF TEST SPECIES SELECTION AND RELEVANCE TO AQUATIC ECOSYSTEMS. Environmental Toxicology and Chemistry, 2005, 24, 379.	2.2	358
183	ENVIRONMENTAL MONITORING AND ECOLOGICAL RISK ASSESSMENT FOR PESTICIDE CONTAMINATION AND EFFECTS IN LAKE PAMVOTIS, NORTHWESTERN GREECE. Environmental Toxicology and Chemistry, 2005, 24, 1548.	2.2	117
184	Soil Type–Specific Environmental Quality Standards for Zinc in Dutch Soil. Integrated Environmental Assessment and Management, 2005, 1, 252.	1.6	6
185	Effects of Anthropogenic Estrogens Nonylphenol and 17?-Ethinylestradiol in Aquatic Model Ecosystems. Clean - Soil, Air, Water, 2005, 33, 27-37.	0.8	5
187	Environmental Pathway and Risk Assessment Studies of the Musi River's Heavy Metal Contamination—A Case Study. Human and Ecological Risk Assessment (HERA), 2005, 11, 1217-1235.	1.7	23
188	Legislation and ecological quality assessment of soil: implementation of ecological indication systems in Europe. Ecotoxicology and Environmental Safety, 2005, 62, 201-210.	2.9	27
189	Toxicity of copper and zinc assessed with three different earthworm tests. Applied Soil Ecology, 2005, 30, 133-146.	2.1	108
190	Hierarchical Responses of Soil Invertebrates (Earthworms) to Toxic Metal Stress. Environmental Science & Technology, 2005, 39, 5327-5334.	4.6	49
191	Complex bioindication and environmental stress assessment. Ecological Indicators, 2006, 6, 114-136.	2.6	62
192	Opinion of the Scientific Panel on Plant Health, Plant Protection Products and their Residues (PPR) on a request from EFSA related to the assessment of the acute and chronic risk to aquatic organisms with regard to the possibility of lowering the uncertail EFSA Journal, 2006, 4, 301	0.9	10

#	Article	IF	Citations
193	PREDICTED EFFECTS OF TOXICANT MIXTURES ARE CONFIRMED BY CHANGES IN FISH SPECIES ASSEMBLAGES IN OHIO, USA, RIVERS. Environmental Toxicology and Chemistry, 2006, 25, 1094.	2.2	92
194	EFFECTS OF PESTICIDES ON SOIL INVERTEBRATES IN LABORATORY STUDIES: A REVIEW AND ANALYSIS USING SPECIES SENSITIVITY DISTRIBUTIONS. Environmental Toxicology and Chemistry, 2006, 25, 2480.	2.2	165
195	The Evolution of the Environmental Quality Concept: From the US EPA Red Book to the European Water Framework Directive. Environmental Science and Pollution Research, 2006, 13, 9-14.	2.7	41
196	Schwermetalle in Regenwürmern Baden-Württembergs. Environmental Sciences Europe, 2006, 18, 173-173.	0.1	0
197	Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field. Ecotoxicology, 2006, 15, 411-424.	1.1	22
198	Impact of heavy metal pollution on plants and leaf-miners. Environmental Chemistry Letters, 2006, 4, 83-86.	8.3	12
199	Risk-based ecological soil quality criteria for the characterization of contaminated soils. Combination of chemical and biological tools. Science of the Total Environment, 2006, 366, 466-484.	3.9	40
200	A new method for evaluating biological safety of environmental water with algae, daphnia and fish toxicity ranks. Science of the Total Environment, 2006, 371, 383-390.	3.9	27
201	Environmental Risk Assessment Studies of Heavy Metal Contamination in the Industrial Area of Kattedan, India—A Case Study. Human and Ecological Risk Assessment (HERA), 2006, 12, 408-422.	1.7	23
202	Zinc Accumulation in Plant Species Indigenous to a Portuguese Polluted Site. Journal of Environmental Quality, 2007, 36, 646-653.	1.0	14
203	Using biological traits to predict species sensitivity to toxic substances. Ecotoxicology and Environmental Safety, 2007, 67, 296-301.	2.9	141
204	Improving ecological risk assessment by including bioavailability into species sensitivity distributions: An example for plants exposed to nickel in soil. Environmental Pollution, 2007, 148, 642-647.	3.7	14
205	Terrestrial ecotoxicity and effect factors of metals in life cycle assessment (LCA). Chemosphere, 2007, 68, 1489-1496.	4.2	41
206	Ecotoxicological Effects. , 2007, , 281-356.		11
207	Application of the target lipid model for deriving predicted noâ€effect concentrations for wastewater organisms. Environmental Toxicology and Chemistry, 2007, 26, 2317-2331.	2.2	17
209	Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach. Journal of Environmental Radioactivity, 2008, 99, 1474-1483.	0.9	93
210	Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. Journal of Environmental Management, 2008, 86, 721-730.	3.8	69
211	Time and concentration dependency in the potentially affected fraction of species: The case of hydrogen peroxide treatment of ballast water. Environmental Toxicology and Chemistry, 2008, 27, 746-753	2.2	34

#	Article	IF	CITATIONS
212	Development and application of a species sensitivity distribution for temperatureâ€induced mortality in the aquatic environment. Environmental Toxicology and Chemistry, 2008, 27, 2591-2598.	2.2	50
213	Assessment of environmental risks from toxic and nontoxic stressors; A proposed concept for a riskâ€based management tool for offshore drilling discharges. Integrated Environmental Assessment and Management, 2008, 4, 177-183.	1.6	28
214	Test systems to determine the ecological risks posed by toxin release from <i>Bacillus thuringiensis</i> genes in crop plants. Molecular Ecology, 1994, 3, 81-89.	2.0	86
215	System-oriented ecotoxicological research: Which way to go?. Science of the Total Environment, 2008, 406, 530-536.	3.9	11
216	Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: A discussion paper. Science of the Total Environment, 2008, 406, 503-517.	3.9	42
217	Photometric application of the MTT- and NRR-assays as biomarkers for the evaluation of cytotoxicity ex vivo in Eisenia andrei. Soil Biology and Biochemistry, 2008, 40, 1040-1048.	4.2	12
218	Current research in soil invertebrate ecotoxicogenomics. Advances in Experimental Biology, 2008, 2, 133-326.	0.1	9
219	Ecological Risk Assessment: From Book-Keeping to Chemical Stress Ecology. Environmental Science & Technology, 2008, 42, 8999-9004.	4.6	95
220	A weight-of-evidence approach to assessing the ecological impact of organotin pollution in Dutch marine and brackish waters; combining risk prognosis and field monitoring using common periwinkles (Littorina littorea). Marine Environmental Research, 2008, 66, 231-239.	1.1	13
221	Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 2008, 69, 513-524.	2.9	696
222	A Novel Approach to Determining a Population-Level Threshold in Ecological Risk Assessment: A Case Study of Zinc. Human and Ecological Risk Assessment (HERA), 2008, 14, 714-727.	1.7	18
223	Framework For The Environmental Impact Factor For Drilling Discharges - A Proposed Tool For Risk Reduction, Management And Regulation Of Drilling Discharges. , 2008, , .		1
224	Relating biomarkers to wholeâ€organism effects using species sensitivity distributions: A pilot study for marine species exposed to oil. Environmental Toxicology and Chemistry, 2009, 28, 1104-1109.	2.2	51
225	Fungicide Risk Assessment for Aquatic Ecosystems: Importance of Interspecific Variation, Toxic Mode of Action, and Exposure Regime. Environmental Science & Technology, 2009, 43, 7556-7563.	4.6	188
226	On the application of loss functions in determining assessment factors for ecological risk. Ecotoxicology and Environmental Safety, 2009, 72, 293-300.	2.9	15
227	Role of clay content in partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 2009, 72, 99-107.	2.9	18
228	Comparing ecotoxicological effect concentrations of chemicals established in multi-species vs. single-species toxicity test systems. Ecotoxicology and Environmental Safety, 2009, 72, 310-315.	2.9	32
229	Derivation of Ecologically Based Soil Standards for Trace Elements. , 2010, , 7-80.		11

#	Article	IF	CITATIONS
230	Patterning ecological risk of pesticide contamination at the river basin scale. Science of the Total Environment, 2010, 408, 2319-2326.	3.9	39
231	Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environmental Pollution, 2010, 158, 2465-2471.	3.7	73
232	Consequences of stressorâ€induced changes in species assemblage for biodiversity indicators. Environmental Toxicology and Chemistry, 2010, 29, 1868-1876.	2.2	8
234	A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). Journal of Hazardous Materials, 2010, 179, 612-621.	6.5	213
235	From ecotoxicology to nanoecotoxicology. Toxicology, 2010, 269, 105-119.	2.0	673
236	Ecological Risk Assessment of Pesticide Residues' Chronic Impacts in Taihu Lake. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
237	Considering Data Uncertainty in Species Sensitivity Distribution for Ecological Risk Assessment of Chemicals. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
238	Toxicity of ionic liquids on the growth, reproductive ability, and ATPase activity of earthworm. Ecotoxicology and Environmental Safety, 2010, 73, 1046-1050.	2.9	35
239	Ecotoxicogenomics: Bridging the Gap between Genes and Populations. Environmental Science & Technology, 2010, 44, 4328-4333.	4.6	54
240	Notice of Retraction: Aquatic Predicted No-Effect Concentration (PNEC) Derivation for Perfluorooctane Sulfonic Acid (PFOA). , 2011, , .		1
241	European Experience in Chemicals Management: Integrating Science into Policy. Environmental Science & Technology, 2011, 45, 80-89.	4.6	15
243	Assessing, mapping and validating site-specific ecotoxicological risk for pesticide mixtures: A case study for small scale hot spots in aquatic and terrestrial environments. Ecotoxicology and Environmental Safety, 2011, 74, 2156-2166.	2.9	25
244	Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Marine Environmental Research, 2011, 72, 179-187.	1.1	38
245	Ecological risk assessment of pesticide residues in Taihu Lake wetland, China. Ecological Modelling, 2011, 222, 287-292.	1.2	60
246	Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: Comparing native species data with non-native species data. Chemosphere, 2011, 84, 1506-1511.	4.2	90
247	Comparative sensitivity of the several zooplankton species (Cladocera, Copepoda) to sumicidine-alpha insecticide. Contemporary Problems of Ecology, 2011, 4, 373-378.	0.3	6
248	Regional ecotoxicological hazards associated with anthropogenic enrichment of heavy metals. Environmental Geochemistry and Health, 2011, 33, 409-426.	1.8	9
249	Aquatic predicted noâ€effectâ€concentration derivation for perfluorooctane sulfonic acid. Environmental Toxicology and Chemistry, 2011, 30, 836-842.	2.2	53

	CITATION R	CITATION REPORT	
# 250	ARTICLE Achievements of risk-based produced water management on the Norwegian continental shelf (2002-2008). Integrated Environmental Assessment and Management, 2011, 7, 668-677.	IF 1.6	CITATIONS
251	Use of species sensitivity distributions to predict no-effect concentrations of an antifouling biocide, pyridine triphenylborane, for marine organisms. Marine Pollution Bulletin, 2012, 64, 2807-2814.	2.3	19
252	Methodology for Derivation of Water Quality Criteria for Protecting Aquatic Environment and Future Development. Critical Reviews in Environmental Science and Technology, 2012, 42, 2471-2503.	6.6	10
253	Species sensitivity distribution approach to primary risk analysis of the metal pyrithione photodegradation product, 2,2′-dipyridyldisulfide in the Inland Sea and induction of notochord undulation in fish embryos. Aquatic Toxicology, 2012, 118-119, 152-163.	1.9	15
254	Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental Safety, 2012, 79, 122-128.	2.9	125
255	Ecological Risk Assessment of Agricultural Pesticides throughout the Shadegan Wetland, Iran. Journal of Agricultural Science, 2012, 4, .	0.1	3
256	Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environmental Toxicology and Chemistry, 2012, 31, 2175-2188.	2.2	59
257	Toxicity of pentachlorophenol to native aquatic species in the Yangtze River. Environmental Science and Pollution Research, 2012, 19, 609-618.	2.7	49
258	Competing Statistical Methods for the Fitting of Normal Species Sensitivity Distributions: Recommendations for Practitioners. Risk Analysis, 2012, 32, 1232-1243.	1.5	18
259	Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere, 2012, 88, 484-491.	4.2	97
260	Validation of the species sensitivity distribution in retrospective risk assessment of herbicides at the river basin scale—the Scheldt river basin case study. Environmental Science and Pollution Research, 2013, 20, 6070-6084.	2.7	19
261	Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas. Science of the Total Environment, 2013, 463-464, 446-453.	3.9	34
262	Sensitivity of species to chemicals: Dose–response characteristics for various test types (LC50, LR50) Tj ETQq	0 0 0 rgBT 2.9	/Overlock 10
263	Predicting Water Quality Criteria for Protecting Aquatic Life from Physicochemical Properties of Metals or Metalloids. Environmental Science & amp; Technology, 2013, 47, 446-453.	4.6	89
264	Handling Fish Mixture Exposures in Risk Assessment. Fish Physiology, 2013, , 481-524.	0.2	0
265	Ecological Risk Assessment of Organochlorine Pesticides in Surface Waters of Lake Taihu, China. Human and Ecological Risk Assessment (HERA), 2013, 19, 840-856.	1.7	13
266	The "Dream Charter" Project. Towards a Unified Approach for Evaluation and Reduction of Potential Environmental Impact Caused by Regular Discharges to Sea. , 2013, , .		3
267	Species Sensitivity Distribution Estimation from Uncertain (QSAR-based) Effects Data. ATLA Alternatives To Laboratory Animals, 2013, 41, 19-31.	0.7	24

#	Article	IF	CITATIONS
268	Setting Water Quality Criteria in China: Approaches for Developing Species Sensitivity Distributions for Metals and Metalloids. Reviews of Environmental Contamination and Toxicology, 2014, 230, 35-57.	0.7	11
269	Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model. Chemosphere, 2014, 104, 113-119.	4.2	79
270	Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China. Environmental Science and Pollution Research, 2014, 21, 148-158.	2.7	29
271	Deriving environmental quality standards in European surface waters: when are there too few data?. Environmental Science and Pollution Research, 2014, 21, 67-76.	2.7	7
272	Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model. Environmental Pollution, 2014, 188, 50-55.	3.7	33
273	Multiple linear and principal component regressions for modelling ecotoxicity bioassay response. Environmental Technology (United Kingdom), 2014, 35, 945-955.	1.2	6
274	Comparison of species sensitivity distributions for species from China and the USA. Environmental Science and Pollution Research, 2014, 21, 168-176.	2.7	47
275	Do predictions from Species Sensitivity Distributions match with field data?. Environmental Pollution, 2014, 189, 126-133.	3.7	47
276	Protocols for Ecological Risk Assessment Using the Triad Approach. Springer Protocols, 2015, , 65-79.	0.1	1
277	Hierarchical Bayesian Approach To Reduce Uncertainty in the Aquatic Effect Assessment of Realistic Chemical Mixtures. Environmental Science & Technology, 2015, 49, 10457-10465.	4.6	9
278	<i>In Response</i> : Some species sensitivity distribution statistics revisited—A governmental perspective. Environmental Toxicology and Chemistry, 2015, 34, 2442-2444.	2.2	4
279	Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles. Science of the Total Environment, 2015, 526, 233-242.	3.9	60
280	Study of Species Sensitivity Distribution for Pollutants. SpringerBriefs in Environmental Science, 2015, , 69-127.	0.3	0
281	Improvement on species sensitivity distribution methods for deriving site-specific water quality criteria. Environmental Science and Pollution Research, 2015, 22, 5271-5282.	2.7	13
282	Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. Science of the Total Environment, 2015, 518-519, 139-147.	3.9	48
283	Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals. Environmental Science and Pollution Research, 2015, 22, 13980-13989.	2.7	15
284	Comparison of produced water toxicity to Arctic and temperate species. Ecotoxicology and Environmental Safety, 2015, 113, 248-258.	2.9	34
285	Dietary Toxicity Thresholds and Ecological Risks for Birds and Mammals Based on Species Sensitivity Distributions. Environmental Science & 2017, 2016, 50, 10644-10652.	4.6	10

#	Article	IF	CITATIONS
286	Context-dependent environmental quality standards of soil nitrate for terrestrial plant communities. Journal of Environmental Management, 2016, 181, 681-686.	3.8	0
287	Eco-epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors. Science of the Total Environment, 2016, 573, 1303-1319.	3.9	39
288	Pesticide Toxicity to Earthworms: Exposure, Toxicity and Risk Assessment Methodologies. , 2016, , 277-350.		1
289	A statistical evaluation of the safety factor and species sensitivity distribution approaches to deriving environmental quality guidelines. Integrated Environmental Assessment and Management, 2016, 12, 380-387.	1.6	6
290	Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater. Environmental Pollution, 2017, 224, 384-391.	3.7	28
291	l: Biomarker quantification in fish exposed to crude oil as input to species sensitivity distributions and threshold values for environmental monitoring. Marine Environmental Research, 2017, 125, 10-24.	1.1	17
292	Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals. Environmental Pollution, 2017, 221, 343-350.	3.7	11
293	ll. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria. Marine Environmental Research, 2017, 127, 11-23.	1.1	14
294	Heavy Metal Toxicities in Soils and Their Remediation. , 2017, , 153-176.		3
295	Effects of Individual and Combined Pesticide Commercial Formulations Exposure to Egestion and Movement of Common Freshwater Snails, Physa acuta and Helisoma anceps. American Midland Naturalist, 2017, 178, 97-111.	0.2	10
296	Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures. Integrated Environmental Assessment and Management, 2017, 13, 664-674.	1.6	88
297	Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Science of the Total Environment, 2017, 576, 888-894.	3.9	47
298	The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability, 2017, 9, 279.	1.6	78
299	Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Science of the Total Environment, 2018, 634, 934-940.	3.9	37
300	Marine environmental risk assessment and acute water quality criterion for pentachlorophenol in coastal waters. Ecotoxicology, 2018, 27, 803-808.	1.1	9
301	Microbial conservation in the Anthropocene. Environmental Microbiology, 2018, 20, 1925-1928.	1.8	19
302	Amendment of water quality standards in China: viewpoint on strategic considerations. Environmental Science and Pollution Research, 2018, 25, 3078-3092.	2.7	32
303	Prospective mixture risk assessment and management prioritizations for river catchments with diverse land uses. Environmental Toxicology and Chemistry, 2018, 37, 715-728.	2.2	35

#	Article	IF	CITATIONS
304	Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. International Journal of Life Cycle Assessment, 2018, 23, 1995-2006.	2.2	30
305	Soil ecological criteria for nickel as a function of soil properties. Environmental Science and Pollution Research, 2018, 25, 2137-2146.	2.7	20
308	Metals and Mining. , 0, , 22-67.		0
309	Biology of Trace Metals. , 0, , 68-123.		0
310	Terrestrial Environment. , 0, , 124-285.		0
311	Freshwater. , 0, , 286-400.		0
312	Estuaries. , 0, , 401-564.		1
313	Coastal Seas and Oceans. , 0, , 565-654.		Ο
317	Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. Journal of Environmental Management, 2018, 223, 150-164.	3.8	20
318	Pollution Control. , 2018, , 329-354.		1
319	Ecotoxicological Effects and Risk Assessment of Pollutants. , 2018, , 191-216.		7
320	SSDs revisited: part II—practical considerations in the development and use of application factors applied to species sensitivity distributions. Environmental Toxicology and Chemistry, 2019, 38, 1526-1541.	2.2	18
321	SSDs Revisited: Part l—A Framework for Sample Size Guidance on Species Sensitivity Distribution Analysis. Environmental Toxicology and Chemistry, 2019, 38, 1514-1525.	2.2	27
322	Removal of low levels of Cu from ongoing sources in the presence of other elements – Implications for remediated contaminated sediments. Science of the Total Environment, 2019, 668, 645-657.	3.9	3
323	"AMORE―Decision Support System for probabilistic Ecological Risk Assessment - Part II: Effect assessment of the case study on cyanide. Science of the Total Environment, 2019, 648, 1665-1672.	3.9	1
324	Higher than … or lower than ….? Evidence for the validity of the extrapolation of laboratory toxicity test results to predict the effects of chemicals and ionising radiation in the field. Journal of Environmental Radioactivity, 2020, 211, 105757.	0.9	1
325	Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Research, 2020, 36, 41-62.	1.3	42
326	A quantitative structure-activity relationships approach to predict the toxicity of narcotic compounds to aquatic communities. Ecotoxicology and Environmental Safety, 2020, 190, 110068.	2.9	7

#	Article	IF	CITATIONS
327	Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Frontiers in Environmental Science, 2020, 8, .	1.5	65
328	Ecological risk assessment of an antifouling biocide triphenyl (octadecylamine) boron in the Seto Inland Sea, Japan. Marine Pollution Bulletin, 2020, 157, 111320.	2.3	5
329	Detecting landscape scale consequences of insecticide use on invertebrate communities. Advances in Ecological Research, 2020, 63, 93-126.	1.4	4
330	Ecological criteria for zinc in Chinese soil as affected by soil properties. Ecotoxicology and Environmental Safety, 2020, 194, 110418.	2.9	14
331	Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China. Environmental Pollution, 2020, 260, 114082.	3.7	13
332	Recent Developments in Species Sensitivity Distribution Modeling. Environmental Toxicology and Chemistry, 2021, 40, 293-308.	2.2	69
333	Water quality criteria for selected pharmaceuticals and personal care products for the protection of marine ecosystems. Science of the Total Environment, 2021, 758, 143589.	3.9	16
334	Ecological hazard assessment via species sensitivity distributions: The nonâ€exchangeability issue. Biometrical Journal, 2021, 63, 875-892.	0.6	0
335	Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. Environmental Pollution, 2021, 284, 117154.	3.7	2
336	The University of California-Davis Methodology for Deriving Aquatic Life Pesticide Water Quality Criteria. Reviews of Environmental Contamination and Toxicology, 2010, 209, 1-155.	0.7	11
337	Ecotoxicological Risk of Produced Water Discharged From Oil Production Platforms in the Statfjord and Gullfaks Field. , 1996, , 127-134.		7
338	Ecological approaches in soil ecotoxicology. , 1997, , 3-21.		4
339	Extrapolation of laboratory toxicity results to the field: a case study using the OECD artificial soil earthworm toxicity test. , 1997, , 253-273.		5
340	Reaction norms for life history traits as the basis for the evaluation of critical effect levels of toxicants. , 1997, , 293-304.		4
341	Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. , 1997, , 25-50.		47
342	Effects of toxicants on population and community parameters in field conditions, and their potential use in the validation of risk assessment methods. , 1997, , 85-123.		16
343	Ecological Risk Assessment: The Triad Approach. , 2010, , 4465-4472.		1
344	Soil Ecotoxicological Risk Assessment: How to Find Avenues in a Pitch Dark Labyrinth. Archives of Toxicology Supplement, 1998, 20, 83-96.	0.7	3

#	ARTICLE	IF	CITATIONS
346	Soil Protection in The Netherlands. , 1995, , 79-100.		11
347	Capacity Controlling Parameters and Their Impact on Metal Toxicity in Soil Invertebrates. , 1995, , 171-192.		13
348	Introduction to Ecological Risk Assessment. , 2011, , 573-624.		4
349	Ecological Risk Assessment of Diffuse and Local Soil Contamination Using Species Sensitivity Distributions. , 2011, , 625-691.		10
350	Developments and present status of terrestrial ecotoxicology. Tasks for Vegetation Science, 1991, , 210-219.	0.6	3
351	Toxicological and biostatistical foundations for the derivation of a generic interspecies uncertainty factor for application in non-carcinogen risk assessment. , 1996, , 149-158.		1
352	The Problem of Scale in Bioindication of Soil Contamination. , 1996, , 111-121.		6
354	Critical Body Concentrations: Their Use in Bioindication. , 1996, , 5-16.		16
355	Influence of Temperature and Humidity Fluctuations on the Sensitivity of folsomia Candida (Collembola) for Zinc. Soil & Environment, 1995, , 645-646.	0.0	5
356	Generic Values to Assess Soil Quality in the Basque Autonomous Community: Ecological Criteria. Soil & Environment, 1995, , 691-700.	0.0	1
357	Monte-Carlo Simulations in Ecological Risk Assessment. , 1994, , 460-470.		1
358	Soil Quality in Relation to Agricultural Uses. Soil & Environment, 1993, , 187-200.	0.0	11
359	Risk assessment of contaminated soil: Proposals for adjusted, toxicologically based Dutch soil clean-up criteria. Soil & Environment, 1993, , 349-364.	0.0	15
360	Adverse Effects of Cadmium on Soil Microflora and Fauna. , 1999, , 199-218.		16
361	Assessment of Ecological Risks of Soil and Groundwater Pollution. , 1995, , 65-71.		2
363	Currently monitored microplastics pose negligible ecological risk to the global ocean. Scientific Reports, 2020, 10, 22281.	1.6	67
364	Earthworms as Test Organisms in Ecotoxicological Assessment of Toxicant Impacts on Ecosystems. , 2004, , 299-320.		25

	CITATION RE	CITATION REPORT		
#	Article	IF	CITATIONS	
365	Laboratory bioassays with microalgae. , 1997, , 225-276.		8	
366	EFFECT OF VARYING PESTICIDE EXPOSURE DURATION AND CONCENTRATION ON THE TOXICITY OF CARBARYL TO TWO FIELD-COLLECTED STREAM INVERTEBRATES, CALINEURIA CALIFORNICA (PLECOPTERA: PERLIDAE) AND CINYGMA SP. (EPHEMEROPTERA: HEPTAGENIIDAE). Environmental Toxicology and Chemistry, 2001, 20, 2215.	2.2	8	
367	Assessment of Environmental Risks from Toxic and Nontoxic Stressors; A Proposed Concept for a Risk-Based Management Tool for Offshore Drilling Discharges. Integrated Environmental Assessment and Management, 2008, 4, 1.	1.6	10	
368	Indices of Soil Quality: A Multicriteria Value Functions Approach. Journal of Environmental Systems, 0, 23, 1-20.	1.0	3	
369	Heavy-metal balances of agricultural soils. Environment & Policy, 2000, , 47-64.	0.4	0	
374	The concept of bioavailability and establishing uniform standards for permissible chemical contamination of soil. South African Journal of Science and Technology, 2006, 25, .	0.1	0	
375	The Future of Ecological Risk Assessment. , 2006, , .		0	
376	Methods for Deriving Pesticide Aquatic Life Criteria. Reviews of Environmental Contamination and Toxicology, 2008, , 1-92.	0.7	8	
377	Monitoring of Pesticides in the Environment. , 2008, , .		0	
379	Assessment of Risk Based Pollution Level of Pb and Cd in Metal Contaminated Soils Using Biotic Ligand Model. Journal of Soil and Groundwater Environment, 2011, 16, 23-30.	0.1	0	
380	Ecological Risk Assessment of Pesticide Residues in Agricultural Lake : Risk Quotients and Probabilistic Approach. Korean Journal of Environmental Agriculture, 2011, 30, 316-322.	0.0	2	
381	- Statistical Tests for Detection of Chronic Lethal and Sublethal Stress. , 2012, , 240-293.		0	
385	Ökotoxikologische RisikoabschÃæung als Grundlage für die Entwicklung von Bodenqualitäkriterien. , 1990, , 197-206.		0	
386	Boden. , 1991, , 231-284.		0	
387	Boden. , 1992, , 231-284.		0	
388	Ecotoxicological Risk Indicators for Environmental Chemicals. Euro Courses Environmental Impact Assessment, 1992, , 261-275.	0.0	1	
389	Estimating Worker Exposure For Pesticide Registration. Reviews of Environmental Contamination and Toxicology, 1992, , 43-54.	0.7	9	
391	How to Give Scientific Answers to Political Questions. Soil & Environment, 1993, , 51-54.	0.0	0	

#	Article	IF	CITATIONS
392	Effects of Soil Spatial Variability on Exposure of Organisms to Contamination. Soil & Environment, 1993, , 317-318.	0.0	0
393	Do target values help to protect the soil?. Soil & Environment, 1993, , 373-382.	0.0	2
395	Time series analysis for determining ecologically acceptable Cu concentration from species sensitivity distribution with biotic ligand models in soil pore water. Environmental Engineering Research, 2021, 26, 200021-0.	1.5	1
397	Use of the Species Sensitivity Distribution Approach to Derive Ecological Threshold of Toxicological Concern (eco-TTC) for Pesticides. International Journal of Environmental Research and Public Health, 2021, 18, 12078.	1.2	3
398	Characterization of ecotoxicological risks from unintentional mixture exposures calculated from European freshwater monitoring data: Forwarding prospective chemical risk management. Science of the Total Environment, 2022, 822, 153385.	3.9	16
400	Species sensitivity distributions. , 2024, , 661-669.		0
401	A critical review of effect modeling for ecological risk assessment of plant protection products. Environmental Science and Pollution Research, 2022, 29, 43448-43500.	2.7	17
402	Derivation of ecotoxicologically acceptable Cu concentrations in the Han River basin, Korea with emphasis on Ca concentration and instantaneously changing water characteristics. Science of the Total Environment, 2022, 828, 154495.	3.9	3
404	From sediments to soils: changes in pore water metal bioavailability. SN Applied Sciences, 2022, 4, .	1.5	0
407	Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity. Ecotoxicology and Environmental Safety, 2022, 246, 114170.	2.9	3
408	Critical review of the OSPAR riskâ€based approach for offshoreâ€produced water discharges. Integrated Environmental Assessment and Management, 2023, 19, 1172-1187.	1.6	1
409	Water Quality Criteria and Ecological Risk Assessment of Typical Transition Metals in South Asia. International Journal of Environmental Research and Public Health, 2022, 19, 16125.	1.2	1
410	Polycyclic aromatic hydrocarbons in aquatic media of Turkey: A systematic review of cancer and ecological risk. Marine Pollution Bulletin, 2023, 188, 114671.	2.3	3
411	Introducing the Noâ€Significantâ€Effect Concentration. Environmental Toxicology and Chemistry, 2023, 42, 2019-2028.	2.2	4
412	Species Sensitivity Distribution in Ecological Risk Assessment. Theoretical Biology, 2023, , 103-134.	0.0	0