Crystal structure of the carbon monoxide-substrate-cyt complex

Biochemistry 28, 7586-7592 DOI: 10.1021/bi00445a013

Citation Report

#	Article	IF	CITATIONS
1	Effect of the tyrosine 96 hydrogen bond on the inactivation of cytochrome P-450cam induced by hydrostatic pressure. FEBS Journal, 1990, 193, 383-386.	0.2	26
2	A molecular model for the enzyme cytochrome P45017α, a major target for the chemotherapy of prostatic cancer. Biochemical and Biophysical Research Communications, 1990, 171, 1160-1167.	1.0	91
3	Crystal structure of the cytochrome P-450CAM active site mutant Thr252Ala. Biochemistry, 1991, 30, 11420-11429.	1.2	232
4	Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry, 1991, 30, 2674-2684.	1.2	258
5	Carbon monoxide binding studies of engineered cytochrome P-450ds: effects of mutations at putative distal sites in the presence of polycyclic hydrocarbons. Biochemistry, 1991, 30, 4659-4662.	1.2	36
6	Absorption spectral study of cytochrome P450d-phenyl isocyanide complexes: effects of mutations at the putative distal site on the conformational stability. Biochemistry, 1991, 30, 11206-11211.	1.2	20
7	Structural and electronic characterization of heme moiety in oxygenated hemoproteins by using XANES spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 1991, 1115, 101-107.	1.1	13
8	[2] Modeling of mammalian P450s on basis of P450cam x-ray structure. Methods in Enzymology, 1991, 206, 11-30.	0.4	64
9	Remarkable Changes in Catalytic Activity toward Testosterone of Engineered Cytochrome P-450dby Mutations at Putative Distal Site. Chemistry Letters, 1991, 20, 973-976.	0.7	1
10	A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam. Proteins: Structure, Function and Bioinformatics, 1991, 11, 184-204.	1.5	71
11	Analysis of Active Site Motions from a 175 picosecond Molecular Dynamics Simulation of Camphor-bound Cytochrome P450cam. Journal of Biomolecular Structure and Dynamics, 1991, 9, 187-203.	2.0	27
12	Microbial Cytochromes P-450 and Xenobiotic Metabolism. Advances in Applied Microbiology, 1991, 36, 133-178.	1.3	70
13	[3] Mutagenesis of cytochromes P450cam and b5. Methods in Enzymology, 1991, 206, 31-49.	0.4	32
14	Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5567-5571.	3.3	69
15	Functional and Evolutionary Relationships Among Diverse Oxygenases. Annual Review of Microbiology, 1992, 46, 565-601.	2.9	470
16	Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420. Biochemistry, 1992, 31, 4384-4393.	1.2	114
17	Substrate analog induced changes of the carbon-oxygen-stretching mode in the cytochrome P450cam-carbon monoxide complex. Biochemistry, 1992, 31, 12855-12862.	1.2	110
18	Role of axial ligand in the electronic structure of model compound I complexes. International Journal of Quantum Chemistry, 1992, 44, 251-261.	1.0	20

#	Article	IF	CITATIONS
19	Substrate mobility in a deeply buried active site: Analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation. Proteins: Structure, Function and Bioinformatics, 1992, 13, 26-37.	1.5	21
20	Heme-pocket-hydration change during the inactivation of cytochrome P-450camphor by hydrostatic pressure. FEBS Journal, 1992, 209, 583-588.	0.2	30
21	Inhibitor-induced conformational change in cytochrome P-450CAM. Biochemistry, 1993, 32, 4571-4578.	1.2	101
22	Conformational dynamics of cytochrome P-450cam as monitored by photoacoustic calorimetry. Biochemistry, 1993, 32, 3671-3676.	1.2	24
23	Cytochromes P450: Their Active-Site Structure and Mechanism of Oxidation. Drug Metabolism Reviews, 1993, 25, 325-387.	1.5	60
24	Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure. Protein Engineering, Design and Selection, 1993, 6, 359-365.	1.0	19
25	EPR Studies on the Photoproducts of Ferric Cytochrome P450cam (CYP101) Nitrosyl Complexes: Effects of Camphor and Its Analogues on Ligand-Bound Structures1. Journal of Biochemistry, 1994, 116, 1146-1152.	0.9	11
26	Modeling cytochrome P450 14α demethylase (Candida albicans) from P450cam. Journal of Molecular Graphics, 1994, 12, 185-192.	1.7	64
27	Comparison of heme environment at the putative distal region of P-450s utilizing their external and internal nitrogenous ligand bound forms. BBA - Proteins and Proteomics, 1994, 1207, 49-57.	2.1	9
28	The Carbon Monoxide Stretching Modes in Camphor-Bound Cytochrome P-450cam. The Effect of Solvent Conditions, Temperature, and Pressure. FEBS Journal, 1994, 224, 1047-1055.	0.2	23
29	Regiochemistry of Cytochrome P450 Isozymes. Annual Review of Pharmacology and Toxicology, 1994, 34, 251-279.	4.2	36
30	Low-temperature magnetic circular dichroism investigation of the active site of chloroperoxidase. FEBS Letters, 1994, 355, 279-281.	1.3	3
31	Crystal structure and refinement of cytochrome P450terp at 2·3 à resolution. Journal of Molecular Biology, 1994, 236, 1169-1185.	2.0	412
32	Kinetics and Thermodynamics of CO Binding to Cytochrome P450nor. Biochemistry, 1994, 33, 8673-8677.	1.2	30
33	Kinetics of CO Binding to Cytochromes P450 in the Endoplasmic Reticulum. Biochemistry, 1994, 33, 2484-2489.	1.2	17
35	Structure and function of cytochromes P450:a comparative analysis of three crystal structures. Structure, 1995, 3, 41-62.	1.6	642
36	Compressibility of the Heme Pocket of Substrate Analogue Complexes of Cytochrome P -450cam-CO. The Effect of Hydrostatic Pressure on the Soret Band. FEBS Journal, 1995, 233, 600-606.	0.2	38
37	A threeâ€dimensional model of aromatase cytochrome P450. Protein Science, 1995, 4, 1065-1080.	3.1	193

#	Article	IF	CITATIONS
38	Thermodynamic aspects of the CO-binding reaction to cytochrome P-450cam. Relevance with their biological significance and structure. BBA - Proteins and Proteomics, 1995, 1246, 178-184.	2.1	14
39	The Stoichiometry of the Cytochrome P-450-catalyzed Metabolism of Methoxyflurane and Benzphetamine in the Presence and Absence of Cytochrome b5. Journal of Biological Chemistry, 1995, 270, 24707-24718.	1.6	84
40	Interaction of Polycyclic Aromatic Hydrocarbons and Flavones with Cytochromes P450 in the Endoplasmic Reticulum: Effect on CO Binding Kinetics. Biochemistry, 1995, 34, 1942-1947.	1.2	10
41	Antagonistic effects of hydrostatic pressure and osmotic pressure on cytochrome P-450cam spin transition. Biophysical Journal, 1995, 68, 2056-2061.	0.2	50
42	Oxygen and Xenobiotic Reductase Activities of Cytochrome P450. Critical Reviews in Toxicology, 1995, 25, 25-65.	1.9	217
43	Structural Changes in Cytochrome P-450camEffected by the Binding of the Enantiomers (1R)-Camphor and (1S)-Camphorâ€. Biochemistry, 1996, 35, 14127-14138.	1.2	25
44	Structure-function Analysis of the Bacterial Aromatic Ring-hydroxylating Dioxygenases. Advances in Microbial Physiology, 1996, 38, 47-84.	1.0	196
45	Infrared Spectra of Carbonyl Horseradish Peroxidase and Its Substrate Complexes:  Characterization of pH-Dependent Conformers. Journal of the American Chemical Society, 1996, 118, 3354-3359.	6.6	42
46	Study of Water Binding to Low-Spin Fe(III) in Cytochrome P450 by Pulsed ENDOR and Four-Pulse ESEEM Spectroscopies. Journal of the American Chemical Society, 1996, 118, 2686-2693.	6.6	50
47	Time-resolved Fourier-transform infrared studies of the cytochrome P-450camcarbonmonoxide complex bound with (1R)-camphor and (1S)-camphor substrate. FEBS Letters, 1996, 383, 13-17.	1.3	13
48	Active-Site Topologies of Human CYP2D6 and Its Aspartate-301 → Glutamate, Asparagine, and Glycine Mutants. Archives of Biochemistry and Biophysics, 1996, 331, 134-140.	1.4	45
49	Interaction of Polycyclic Aromatic Hydrocarbons with Human Cytochrome P450 1A1: A CO Flash Photolysis Study. Archives of Biochemistry and Biophysics, 1996, 336, 261-267.	1.4	7
50	Carbon monoxide binding to cytochrome P450BM-3: Evidence for a substrate-dependent conformational change. Biochimie, 1996, 78, 700-705.	1.3	20
51	A structure-based model for cytochrome P450cam-putidaredoxin interactions. Biochimie, 1996, 78, 723-733.	1.3	112
52	NMR studies of recombinant cytochrome P450cam mutants. Biochimie, 1996, 78, 763-770.	1.3	5
53	Scanning tunneling microscopy study of cytochrome P450 2B4 incorporated in proteoliposomes. Biochimie, 1996, 78, 780-784.	1.3	10
54	P450s: Structural similarities and functional differences. FASEB Journal, 1996, 10, 206-214.	0.2	133
55	The other kind of biological NMR—Studies of enzyme-substrate interactions. Neurochemical Research, 1996, 21, 1117-1124.	1.6	6

#	Article	IF	CITATIONS
56	Ligands and electrons and haem proteins. Nature Structural Biology, 1996, 3, 401-403.	9.7	32
57	The catalytic mechanism of cytochrome P450 BM3 involves a 6 Ã movement of the bound substrate on reduction. Nature Structural Biology, 1996, 3, 414-417.	9.7	123
58	Role of Arg112 of Cytochrome P450cam in the Electron Transfer from Reduced Putidaredoxin. Journal of Biological Chemistry, 1996, 271, 17869-17874.	1.6	85
59	Molecular modelling of CYP3A4 from an alignment with CYP102: Identification of key interactions between putative active site residues and CYP3A-specific chemicals. Xenobiotica, 1996, 26, 1067-1086.	0.5	95
60	Putidaredoxin Reductase-Putidaredoxin-Cytochrome P450cam Triple Fusion Protein. Journal of Biological Chemistry, 1996, 271, 22462-22469.	1.6	99
61	NO Synthase Isozymes Have Distinct Substrate Binding Sites. Biochemistry, 1997, 36, 12660-12665.	1.2	72
62	Interactions between Substrate Analogues and Heme Ligands in Nitric Oxide Synthaseâ€. Biochemistry, 1997, 36, 4595-4606.	1.2	81
63	Structural properties of peroxidases. Journal of Biotechnology, 1997, 53, 253-263.	1.9	161
64	Oxygen Activation by Cytochrome P450BM-3: Effects of Mutating an Active Site Acidic Residue. Archives of Biochemistry and Biophysics, 1997, 337, 209-216.	1.4	50
65	The regulation of 17,20 lyase activity. Steroids, 1997, 62, 133-142.	0.8	218
66	The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nature Structural Biology, 1997, 4, 140-146.	9.7	433
67	Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nature Structural Biology, 1997, 4, 827-832.	9.7	172
68	Absorption spectral studies on heme ligand interactions of P-450nor. BBA - Proteins and Proteomics, 1997, 1337, 66-74.	2.1	12
69	A Bridged Porphyrinato(thiolato)iron(III) Complex as a Model of the Active Center of the Cytochrome P-450 Isozyme. Angewandte Chemie International Edition in English, 1997, 36, 1442-1445.	4.4	30
70	Ein überbrückter Porphyrinato(thiolato)eisen(<scp>III</scp>)â€Komplex als Modell des aktiven Zentrums der Cytochromâ€Pâ€450â€Isozyme. Angewandte Chemie, 1997, 109, 1510-1513.	1.6	4
72	On the Origin of the Low-Spin Character of Cytochrome P450cam in the Resting State—Investigations of Enzyme Models with Pulse EPR and ENDOR Spectroscopy. Angewandte Chemie - International Edition, 1998, 37, 2998-3002.	7.2	53
73	Pyrrole Denitrogenation and Fragmentation of Tetramethylethylenediamine Promoted by a NbII Cluster. Angewandte Chemie - International Edition, 1998, 37, 3002-3005.	7.2	19
74	Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chemistry and Biology, 1998, 5, 461-473.	6.2	149

#	Article	IF	CITATIONS
75	Understanding the Role of the Essential Asp251 in Cytochrome P450cam Using Site-Directed Mutagenesis, Crystallography, and Kinetic Solvent Isotope Effect. Biochemistry, 1998, 37, 9211-9219.	1.2	243
76	Pressure-Induced Deformation of the Cytochrome P450camActive Site. Journal of the American Chemical Society, 1998, 120, 3590-3596.	6.6	11
77	Interactions of Substrate and Product with Cytochrome P450: P4502B4versus P450cam. Archives of Biochemistry and Biophysics, 1998, 353, 228-238.	1.4	14
78	[15] Photoacoustic calorimetry of proteins. Methods in Enzymology, 1998, 295, 316-330.	0.4	8
79	The P450 Catalytic Cycle and Oxygenation Mechanism. Drug Metabolism Reviews, 1998, 30, 739-786.	1.5	69
80	First principles investigation of singly reduced cytochrome P450. Xenobiotica, 1999, 29, 561-571.	0.5	14
81	Cytochrome P450 Substrate Specificities, Substrate Structural Templates and Enzyme Active Site Geometries. Drug Metabolism and Drug Interactions, 1999, 15, 1-50.	0.3	56
82	Inhibitors of cytochrome P450 catalyzed insecticide metabolism: A rational approach. International Journal of Quantum Chemistry, 1999, 73, 123-135.	1.0	13
83	Changes in Secondary Structure and Salt Links of Cytochrome P-450camInduced by Photoreduction:Â A Fourier Transform Infrared Spectroscopic Studyâ€. Biochemistry, 1999, 38, 16253-16260.	1.2	28
84	Kinetics of Cytochrome P450 2E1-Catalyzed Oxidation of Ethanol to Acetic Acid via Acetaldehyde. Journal of Biological Chemistry, 1999, 274, 23833-23840.	1.6	123
85	ldentification of the Feâ^'Oâ^'O Bending Mode in Oxycytochrome P450cam by Resonance Raman Spectroscopy. Journal of the American Chemical Society, 1999, 121, 376-380.	6.6	60
86	Role of Unusual Amino Acid Residues in the Proximal and Distal Heme Regions of a Plant P450, CYP73A1â€. Biochemistry, 1999, 38, 6093-6103.	1.2	32
87	Resonance Raman Studies of Cytochrome P450bm3and Its Complexes with Exogenous Ligandsâ€. Biochemistry, 1999, 38, 13699-13706.	1.2	45
88	X-Ray Crystal Structure and Catalytic Properties of Thr2521le Mutant of Cytochrome P450cam: Roles of Thr252 and Water in the Active Center. Journal of Biochemistry, 2000, 128, 965-974.	0.9	42
89	Adrenodoxin: Structure, stability, and electron transfer properties. Proteins: Structure, Function and Bioinformatics, 2000, 40, 590-612.	1.5	194
90	Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. Journal of Molecular Recognition, 2000, 13, 325-351.	1.1	215
91	Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome P450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments. FEBS Journal, 2000, 267, 216-221.	0.2	9
92	Proton Delivery in NO Reduction by Fungal Nitric-oxide Reductase. Journal of Biological Chemistry, 2000, 275, 4816-4826.	1.6	100

#	Article	IF	CITATIONS
93	The Ferrous Dioxygen Complex of the Oxygenase Domain of Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry, 2000, 275, 3201-3205.	1.6	53
94	Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. , 2000, , 1-35.		75
95	A Refined 3-Dimensional QSAR of Cytochrome P450 2C9:Â Computational Predictions of Drug Interactions. Journal of Medicinal Chemistry, 2000, 43, 2789-2796.	2.9	104
96	Conformational Relaxation in Hemoproteins:Â The Cytochrome P-450camCase. Biochemistry, 2000, 39, 14219-14231.	1.2	4
97	Threonine 201 in the Diiron Enzyme Toluene 4-Monooxygenase Is Not Required for Catalysis. Biochemistry, 2000, 39, 791-799.	1.2	53
98	Electron transfer in the ruthenated heme domain of cytochrome P450BM-3. Israel Journal of Chemistry, 2000, 40, 47-53.	1.0	27
99	SAC/SACâ^'CI Study of the Ground, Excited, and Ionized States of Cytochromes P450CO. Journal of Physical Chemistry B, 2001, 105, 7341-7352.	1.2	18
100	Multiple Oxidants in Cytochrome P450 Catalyzed Reactions Implications for Drug Metabolism. Current Drug Metabolism, 2001, 2, 1-16.	0.7	17
101	Synthetic active site analogues of heme–thiolate proteins Characterization and identification of intermediates of the catalytic cycles of cytochrome P450cam and chloroperoxidase. Journal of Inorganic Biochemistry, 2001, 83, 289-300.	1.5	52
102	Ligand-induced changes in the binding sites of proteins. Bioinformatics, 2002, 18, 939-948.	1.8	46
103	Applications ofab initioatomistic simulations to biology. Journal of Physics Condensed Matter, 2002, 14, 2957-2973.	0.7	30
104	Characterization and Application of Xylene Monooxygenase for Multistep Biocatalysis. Applied and Environmental Microbiology, 2002, 68, 560-568.	1.4	100
105	X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 81-89.	2.5	21
106	Specific and non-specific effects of potassium cations on substrate–protein interactions in cytochromes P450cam and P450lin. Journal of Inorganic Biochemistry, 2002, 91, 597-606.	1.5	18
107	Remote Effects Modulating the Spin Equilibrium of the Resting State of Cytochrome P450cam –An Investigation Using Active Site Analogues. Advanced Synthesis and Catalysis, 2003, 345, 743-765.	2.1	10
108	A Model for Effector Activity in a Highly Specific Biological Electron Transfer Complex:Â The Cytochrome P450camâ^'Putidaredoxin Coupleâ€,‡. Biochemistry, 2003, 42, 5649-5656.	1.2	83
109	Crystallographic Studies on the Complex Behavior of Nicotine Binding to P450cam (CYP101)â€. Biochemistry, 2003, 42, 11943-11950.	1.2	28
110	Compressibility and uncoupling of cytochrome P450cam: high pressure FTIR and activity studies. Biochemical and Biophysical Research Communications, 2003, 312, 197-203.	1.0	12

#	Article	IF	CITATIONS
111	Crystal structures of cyanide complexes of P450cam and the oxygenase domain of inducible nitric oxide synthase—structural models of the short-lived oxygen complexes. Archives of Biochemistry and Biophysics, 2003, 409, 25-31.	1.4	59
112	Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Transactions, 2003, , 2133.	1.6	48
113	Vitamin D Analogs in Cancer Prevention and Therapy. Recent Results in Cancer Research, 2003, , .	1.8	9
114	Preliminary Characterization and Crystal Structure of a Thermostable Cytochrome P450 from Thermus thermophilus. Journal of Biological Chemistry, 2003, 278, 608-616.	1.6	76
115	NMR Study on the Structural Changes of Cytochrome P450cam upon the Complex Formation with Putidaredoxin. Journal of Biological Chemistry, 2003, 278, 39809-39821.	1.6	46
116	P450 structures and oxidative metabolismof xenobiotics. Pharmacogenomics, 2003, 4, 387-395.	0.6	59
117	Engineering substrate recognition in catalysis by cytochrome P450cam. Biochemical Society Transactions, 2003, 31, 558-562.	1.6	34
118	Structural Models for Cytochrome P450ïزئا⁄2Mediated Catalysis. Scientific World Journal, The, 2003, 3, 536-545.	0.8	3
119	Crystal Structure of the Cytochrome P450cam Mutant That Exhibits the Same Spectral Perturbations Induced by Putidaredoxin Binding. Journal of Biological Chemistry, 2004, 279, 42844-42849.	1.6	54
120	L358P Mutation on Cytochrome P450cam Simulates Structural Changes upon Putidaredoxin Binding. Journal of Biological Chemistry, 2004, 279, 42836-42843.	1.6	53
121	Prediction of Drug-Like Molecular Properties. Methods in Molecular Biology, 2004, 275, 449-520.	0.4	12
122	Structural Stability and Dynamics of Hydrogenated and Perdeuterated Cytochrome P450cam (CYP101)â€. Biochemistry, 2004, 43, 8744-8753.	1.2	46
124	Bioorganometallic Chemistry of Ferrocene. Chemical Reviews, 2004, 104, 5931-5986.	23.0	1,209
125	Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews, 2004, 104, 3947-3980.	23.0	2,048
126	Crystal Structures of the Ferrous Dioxygen Complex of Wild-type Cytochrome P450eryF and Its Mutants, A245S and A245T. Journal of Biological Chemistry, 2005, 280, 22102-22107.	1.6	83
127	Structure and Chemistry of Cytochrome P450. Chemical Reviews, 2005, 105, 2253-2278.	23.0	1,771
128	Metalloporphyrines as Active Site AnaloguesLessons from Enzymes and Enzyme Models. Accounts of Chemical Research, 2005, 38, 127-136.	7.6	105
129	Detection of a High-Barrier Conformational Change in the Active Site of Cytochrome P450camupon Binding of Putidaredoxin. Journal of the American Chemical Society, 2005, 127, 6974-6976.	6.6	38

#	Article	IF	Citations
130	Dominant features of protein reaction dynamics: Conformational relaxation and ligand migration. Biochimica Et Biophysica Acta - General Subjects, 2005, 1724, 411-424.	1.1	16
131	Disentangling Ligand Migration and Heme Pocket Relaxation in Cytochrome P450cam. Biophysical Journal, 2005, 88, 1250-1263.	0.2	9
132	Comparison of the Complexes Formed by Cytochrome P450camwith Cytochromeb5and Putidaredoxin, Two Effectors of Camphor Hydroxylase Activityâ€. Biochemistry, 2006, 45, 3887-3897.	1.2	23
133	Specific Effects of Potassium Ion Binding on Wild-Type and L358P Cytochrome P450cam. Biochemistry, 2006, 45, 14379-14388.	1.2	29
134	Raman Evidence for Specific Substrate-Induced Structural Changes in the Heme Pocket of Human Cytochrome P450 Aromatase during the Three Consecutive Oxygen Activation Steps. Biochemistry, 2006, 45, 5631-5640.	1.2	30
137	Chapter 10 Cytochrome P450 Enzymes: Computational Approaches to Substrate Prediction. Annual Reports in Computational Chemistry, 2006, 2, 171-195.	0.9	3
139	Filling a Hole in Cytochrome P450 BM3 Improves Substrate Binding and Catalytic Efficiency. Journal of Molecular Biology, 2007, 373, 633-651.	2.0	71
141	Leakage in Cytochrome P450 Reactions in Relation to Protein Structural Properties. , 2007, , 187-234.		6
142	Structural evidence for a functionally relevant second camphor binding site in P450cam: Model for substrate entry into a P450 active site. Proteins: Structure, Function and Bioinformatics, 2007, 69, 125-138.	1.5	37
143	Toxic action/toxicity. Biological Reviews, 2000, 75, 95-127.	4.7	1
144	CO migration pathways in cytochrome P450camstudied by molecular dynamics simulations. Protein Science, 2007, 16, 781-794.	3.1	10
145	A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochemistry, 2008, 9, 11.	4.4	124
146	Combined QM/MM calculations of active-site vibrations in binding process of P450cam to putidaredoxin. Journal of Inorganic Biochemistry, 2008, 102, 427-432.	1.5	7
147	Application of high pressure laser flash photolysis in studies on selected hemoprotein reactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1481-1492.	1.1	15
148	A Functional Proline Switch in Cytochrome P450cam. Structure, 2008, 16, 916-923.	1.6	46
149	Efficient catalytic turnover of cytochrome P450cam is supported by a T252N mutation. Archives of Biochemistry and Biophysics, 2008, 474, 150-156.	1.4	14
152	Structural and Dynamic Implications of an Effector-induced Backbone Amide cis–trans Isomerization in Cytochrome P450cam. Journal of Molecular Biology, 2009, 388, 801-814.	2.0	28
153	Redox-Dependent Dynamics in Cytochrome P450cam. Biochemistry, 2009, 48, 4254-4261.	1.2	18

#	Article	IF	CITATIONS
154	Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. Journal of Computer-Aided Molecular Design, 2010, 24, 399-408.	1.3	35
156	Covalent linkage of CYP101 with the electrode enhances the electrocatalytic activity of the enzyme: Vectorial electron transport from the electrode. Inorganica Chimica Acta, 2010, 363, 2804-2811.	1.2	11
157	Vascular Plant Lignification: Biochemical/Structural Biology Considerations of Upstream Aromatic Amino Acid and Monolignol Pathways. , 2010, , 541-604.		2
158	High-Valent Iron-Oxo Porphyrins in Oxygenation Reactions. Handbook of Porphyrin Science, 2010, , 85-139.	0.3	13
161	Conformational Plasticity and Structure/Function Relationships in Cytochromes P450. Antioxidants and Redox Signaling, 2010, 13, 1273-1296.	2.5	108
162	Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy. Journal of the American Chemical Society, 2011, 133, 3995-4004.	6.6	60
163	Cytochrome P450 enzyme mimics in â€~peroxo-shunt' oxidation reactions – a kinetic and mechanistic approach. Bioinorganic Reaction Mechanisms, 2011, 7, .	0.5	0
164	Experimentally Restrained Molecular Dynamics Simulations for Characterizing the Open States of Cytochrome P450 _{cam} . Biochemistry, 2011, 50, 1664-1671.	1.2	24
165	The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochemical Journal, 2011, 433, 85-93.	1.7	36
168	A Single-Site Mutation (F429H) Converts the Enzyme CYP 2B4 into a Heme Oxygenase: A QM/MM Study. Journal of the American Chemical Society, 2012, 134, 4053-4056.	6.6	31
169	Axial Ligand Effect On The Rate Constant of Aromatic Hydroxylation By Iron(IV)–Oxo Complexes Mimicking Cytochrome P450 Enzymes. Journal of Physical Chemistry B, 2012, 116, 718-730.	1.2	64
171	Oxygen Atom Transfer. , 2013, , 619-634.		6
172	Cytochrome P450 Dynamics. , 2014, , 75-94.		3
173	Heme Enzyme Structure and Function. Chemical Reviews, 2014, 114, 3919-3962.	23.0	1,049
174	Fifty Years of Cytochrome P450 Research. , 2014, , .		17
176	Heme iron centers in cytochrome P450: structure and catalytic activity. Rendiconti Lincei, 2017, 28, 159-167.	1.0	15
177	Differential metabolism of diastereoisomeric diterpenes by Preussia minima, found as endophytic fungus in Cupressus lusitanica. Bioorganic Chemistry, 2018, 78, 436-443.	2.0	9
178	Role of CadC and CadD in the 2,4-dichlorophenoxyacetic acid oxygenase system of Sphingomonas agrestis 58-1. Journal of Bioscience and Bioengineering, 2018, 125, 649-653.	1.1	6

#	Article	IF	CITATIONS
179	Some Surprising Implications of NMR-directed Simulations of Substrate Recognition and Binding by Cytochrome P450 cam (CYP101A1). Journal of Molecular Biology, 2018, 430, 1295-1310.	2.0	13
180	Use of bioconjugation with cytochrome P450 enzymes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 32-51.	1.1	15
181	NADH reduction of nitroaromatics as a probe for residual ferric form high-spin in a cytochrome P450. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 126-133.	1.1	7
182	Conformational Change Induced by Putidaredoxin Binding to Ferrous CO-ligated Cytochrome P450cam Characterized by 2D IR Spectroscopy. Frontiers in Molecular Biosciences, 2018, 5, 94.	1.6	6
183	Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catalysis, 2018, 8, 10964-10976.	5.5	243
184	Cytochrome P450 Structure, Function and Clinical Significance: A Review. Current Drug Targets, 2018, 19, 38-54.	1.0	467
185	Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam (CYP101A1). Journal of the American Chemical Society, 2019, 141, 2678-2683.	6.6	23
186	An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin. Biochemistry, 2019, 58, 2353-2361.	1.2	12
187	Cytochrome P450: Significance, reaction mechanisms and active site analogues. Topics in Current Chemistry, 1996, , 39-96.	4.0	47
188	Protein engineering of cytochrome P450cam. Structure and Bonding, 1997, , 175-207.	1.0	25
189	A Profile of Ring-hydroxylating Oxygenases that Degrade Aromatic Pollutants. Reviews of Environmental Contamination and Toxicology, 2010, 206, 65-94.	0.7	11
190	Utilization of Nitric Oxide as a Paramagnetic Probe of the Molecular Oxygen Binding Site of Metalloenzymes. , 1997, , 99-143.		4
191	Twenty-five Years of P450cam Research. , 1995, , 83-124.		95
192	Structural Studies on Prokaryotic Cytochromes P450. , 1995, , 125-150.		34
193	Combination of Vitamin D Metabolites with Selective Inhibitors of Vitamin D Metabolism. Recent Results in Cancer Research, 2003, 164, 169-188.	1.8	22
194	Heme Monooxygenases. Catalysis By Metal Complexes, 1997, , 195-221.	0.6	20
195	A role for Asp-251 in cytochrome P-450cam oxygen activation Journal of Biological Chemistry, 1994, 269, 4260-4266.	1.6	179
196	Heme active-site structural characterization of chloroperoxidase by resonance Raman spectroscopy Journal of Biological Chemistry, 1993, 268, 6189-6193.	1.6	41

	Ст	TATION REPORT	
#	ARTICLE Electronic and stereochemical characterizations of intermediates in the photolysis of ferric cytochrome P450scc nitrosyl complexes. Effects of cholesterol and its analogues on ligand binding	IF 1.6	Citations 7
198	structures Journal of Biological Chemistry, 1992, 267, 18377-18381.	4.7	10
199	The Cytochrome P450 Oxidative System. , 2019, , 57-82.		5
200	Dioxygen Activation by Cytochromes P450. , 2003, , 1-32.		2
201	The Cytochrome P450 Oxidative System. , 1999, , 109-130.		5
202	Induced fit for cytochrome P450 3A4 based on molecular dynamics. ADMET and DMPK, 2019, 7, 252-2	266. 1.1	5
204	Molecular Switching by dπ-pπ Interaction in Metal Centers of Metalloenzymes and Its Model Complexes. Springer Series in Chemical Physics, 2002, , 265-306.	0.2	0
205	A New Classification System for Bacterial Rieske Non-Heme Iron Aromatic Ring-Hydroxylating Oxygenases. , 2011, , 145-174.		0
206	P450c17—The Qualitative Regulator of Steroidogenesis. , 1999, , 139-152.		0
209	Hydroxylation Regiochemistry Is Robust to Active Site Mutations in Cytochrome P450 _{cam(CYP101A1). Biochemistry, 0, , .}	> 1.2	3
210	The Bonding Nature of Fe–CO Complexes in Heme Proteins. Inorganic Chemistry, 2022, 61, 17494-1	17504. 1.9	5
212	Spectral features of the ferrous–CO complex in cytochrome P450: a revisit using TDDFT calculations Journal of Biological Inorganic Chemistry, 2023, 28, 57-64.	5. 1.1	1
213	Solution phase refinement of active site structure using 2D NMR and judiciously 13C-labeled cytochrome P450. Journal of Inorganic Biochemistry, 2023, 241, 112126.	1.5	1
214	Tyrosinase and Oxygenases: Fundamentals and Applications. , 2023, , 323-340.		1
215	Conformational heterogeneity suggests multiple substrate binding modes in CYP106A2. Journal of Inorganic Biochemistry, 2023, 241, 112129.	1.5	3